Characteristics of large animal models for current cell-based oral

tissue regeneration.

Mangione Francesca, DDS, PhD

Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies,

Life Imaging Platform (PIV), UFR Odontology, France

AP-HP, Henri Mondor Hospital, Créteil, France

tel/fax: +33 158 076 724

francesca.mangione@u-paris.fr

Salmon Benjamin, DDS, PhD

Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, France

AP-HP, Bretonneau Hospital, Paris, France

AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, Paris, France

tel/fax: +33 158 076 724

benjamin.salmon@u-paris.fr

EzEldeen Mostafa, DDS, MScD

OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.

Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium

tel/fax: +32 16 332954

mostafa.ezeldeen@kuleuven.be

Jacobs Reinhilde, DDS, PhD

OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.

Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden

tel/fax: +3216332452

reinhilde.jacobs@uzleuven.be

Chaussain Catherine DDS, PhD

Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, France

AP-HP, Bretonneau Hospital, Paris, France

AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, Paris, France

tel/fax: +33 158 076 724

catherine.chaussain@u-paris.fr

Vital Sibylle DDS, PhD (Corresponding author)

Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, France

AP-HP, Louis Mourier Hospital, DMU ESPRIT, Colombes, France

tel/fax: +33 158 076 724

sibylle.vital@u-paris.fr

Running title: Large animal models for oral tissue engineering

Keywords: stem cells, tissue engineering, animal model, pig, dog, sheep

ABSTRACT

The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move towards clinical application.

Currently, porcine, canine and ovine models are the mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies.

Thus, this systematic review investigates the application of porcine, canine and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate.

A customized search of PubMed, EMBASE, Scopus, and Web of Science databases, from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine and ovine models were evaluated. Among the evaluated articles, fifty-eight relevant studies about cell-based oral regeneration in porcine, canine and ovine models matched the eligibility criteria and were selected for full analysis.

Porcine models, the most similar specie with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig except for one study in dog.

Canine models were the most transversal models, successfully involved for all oral tissues regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models.

Ovine models, alternative to porcine and canine ones were mainly used for bone and, scarcely, for periodontium regeneration. The anatomy and physiology of these animals restrain their involvement.

If consistency was found in defects specificities and cells trends among different species animal models of bone, dentin-pulp complex or tooth regeneration, variability appeared in periodontium.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384)

4

Regeneration assessment methods were more elaborate in porcines and canines than in ovines.

Risk of bias was low for selection, attrition and reporting but unclear for performance and detection.

Overall, if none of the large animal models can be considered as an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.

This systematic review investigates porcine, canine and ovine models for current oral cellbased regeneration procedures, and researchers could refer to it for the choice of the most pertinent pre-clinical model for a given cell-based therapeutics.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384)

INTRODUCTION

Injuries and pathologies affecting the oral region as well as lesions resulting from invasive and destructing therapeutic approaches can determine extensive loss of tissues and function. Moreover, due to the heterogeneity of the tissues of this area, their reconstruction is particularly complex¹.

In recent years, thanks to the exponential growth of tissue engineering, new perspectives have been opened in cell-based oral regeneration². In fact, the use of new sources of stem cells^{2,3}, the development of high-performance biomaterials and promising biotechnologies, such as 3D bioprinting^{3,4}, allowed a considerable progress towards human application of cell-based oral tissue regeneration procedures. Prior to clinical trials, validation in animal models is required.

It has been established that rodents' substantial anatomic and physiologic dissimilarities with humans affect extrapolation of results from murine studies to patients. Thus, the development of large animal models, overcoming the limits of the rodent ones and allowing the reproduction of near-to-real clinical situations, plays a crucial role in the translation of cell-based regenerative procedures from bench to bedside^{5,6}.

The identification of the most relevant animal model is a crucial step of the study conception. However, this selection is far from being a simple process, since multiple factors are at stake. Literature on oral regeneration reports large animal models that significantly contributed to the current knowledge on the field. In particular, non-human primates, porcines and canines have been involved, over decades, to investigate surgical procedures, pathogenesis of periodontal and endodontic diseases, guided-tissue regeneration and implantology⁷⁻⁹.

The identification and characterization of dental stem cells, in 2000, allowed a significant development of cell-based approaches of oral tissue regeneration¹⁰⁻¹². Therefore, the above-mentioned animal species have been used to validate key models of bone^{3,9,13}, periodontium^{14,15}, dentin-pulp complex¹⁶⁻¹⁸ and tooth organ regeneration¹⁹, which opened the way to current research and still represent the benchmarks in the field.

More recently, animal research faced considerable changes. Indeed, the introduction of the ARRIVE (Animal Research: Reporting of *In Vivo* Experiments) guidelines supported transparency and systematization in reporting on animal studies, addressing the problem of poor reproducibility of scientific findings²⁰. Moreover, an emerging debate on the protection of animals used for scientific purposes led to substantial revisions of the existing regulation, notably introducing the 3Rs principle (Replacement, Reduction and Refinement) and restricting the use of specific species, with an actual full application by different countries only in the last few years.

This results in the exclusion of non-human primates' models for cell based oral tissue regeneration, leaving the choice of porcines, canines and ovines²¹⁻²³.

Porcines are widely used due to their similitudes with humans in terms of anatomy (tab 1, fig 1), physiology and pathology, as well as for ethical reasons. Nevertheless, their temperament can be difficult to manage⁵.

Canines are one of the most common large animal models for oral and dental regeneration, notably due to their familiar behavior and the comparable growth, physiology and pathology with humans. However, dogs are considered companion animals and their use in medical research is negatively perceived by society⁷ (tab 1, fig 2).

As an alternative, the use of ovines increased over the last decade, but the ruminant nature leads to substantial anatomical differences in comparison with humans⁷ (tab 1, fig 3).

Hence, this review aimed to investigate porcine, canine and ovine models for current cellbased oral tissue regeneration procedures, in order to i) provide an exhaustive analysis of the present potential application of each model, and ii) support researchers in the choice of the most pertinent one for a given study, according to the animal characteristics and the tissue to regenerate.

METHODS

Search Strategy

The review process followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines²⁴ and the protocol was registered in PROSPERO (International Prospective Register of Systematic Reviews) under the number CRD42020201550.

The peer-reviewed literature reporting about large animal models on most recent cellbased oral regeneration procedures was systematically searched in PubMed (National Library of Medicine, NCBI), Embase, Web of Science and Scopus databases, from January 2015 to March 2020. The following combination of key words was used: Oral AND (regeneration OR tissue engineering) AND stem cells AND (pig OR dog OR sheep). A manual review of articles' references was also performed.

Eligibility criteria

Inclusion criteria were: 1) cell-based oral tissues regeneration studies, 2) large animal studies, 3) English language available full text, 4) publication between 2015 and 2020.

Exclusion criteria were: 1) murine studies, 2) *in vitro* studies, 3) non-cell-based studies, 4) ectopic and semi-orthotopic regeneration models, 5) literature reviews.

Two independent reviewers (FM and SV) screened all relevant titles and abstracts against eligibility criteria. If the abstract did not provide sufficient information, the full text article was analyzed. A third reviewer (BS) was involved to resolve disagreements.

Data Extraction and Analysis

The selected articles were assigned, depending on the regenerated tissue, as follow: a) bone regeneration, b) periodontium regeneration, c) dentin-pulp complex regeneration, d) tooth/tooth-root regeneration studies.

For each tissue, articles were subsequently classified according to the involved animal; reproduced clinical context/pathology, source of stem cells, scaffolds, follow-up and assessment techniques were considered.

Assessment of quality of the studies

Risk of bias for the included studies was evaluated by SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation) risk of bias tool. The following criteria were used: 1) selection bias, 2) performance bias, 3) detection bias, 4) attrition and 5) reporting bias. Studies were scored with a "yes" for low risk of bias, "no" for high risk of bias, and "?" for unclear risk of bias by the two reviewers independently. Disagreements were resolved by a third reviewer (BS).

RESULTS

As presented in the flowchart based on PRISMA (fig 4), the initial search resulted in a total of 148 articles. Eight relevant publications were manually added from reference lists of the articles identified. After duplicate removal, a total of 123 articles was identified. The review and selection procedure resulted in the exclusion of 43 articles at title screening-stage and 11 articles based on the content of the abstract. Of the remaining 69 articles, 11 were excluded at the full-text reading stage for the following reasons: 1) 3 articles were not *in vivo* studies, 2) 1 article reported ectopic cell-based regeneration, 3) 3 articles reported studies not developed on large animal models, 4) 4 studies presented non cell-based regeneration. The entire selection process therefore resulted in a total of 58 articles, included in the present systematic review.

Characteristics of the included studies

Results are summarized in tables 2 to 5 (tab 2-5). Considering the regenerated tissues, 24 articles focused on bone²⁵⁻⁴⁸, 17 on periodontium⁴⁹⁻⁶⁵, 10 on dentin pulp-complex⁶⁶⁻⁷⁵ and 7 on tooth or tooth root⁷⁶⁻⁸². Regarding bone regeneration, 8 studies developed a porcine model²⁵⁻³², 14 a canine³³⁻⁴⁶ and 2 an ovine one^{47,48}. Eight studies reported periodontium regeneration in pig⁴⁹⁻⁵⁶, 8 in dog⁵⁷⁻⁶⁴ and 1 in sheep⁶⁵. Among the articles about dentin

10

pulp-complex regeneration, 2 studies were developed in pig^{66,67} and 8 in dog⁶⁸⁻⁷⁵. Except for 1 canine model⁸², in all the studies, tooth or tooth root regeneration was reported in porcines⁷⁶⁻⁸¹.

a) <u>Bone regeneration (tab 2)</u> Porcine models

The clinical situations were exclusively acute defects such as mandible non critical²⁶ and critical size bone defects^{27,29,31}, mandible extraction socket³², alveolar cleft^{25,30} as well as ramus and condyle defects²⁸.

Employed cells were mostly porcine cells such as pMSCs^{25,30,32}, pBMSCs^{26,29,31} and pADSCs²⁸, except in one study in which human DPSCs were used²⁷. The used scaffolds were PLGA^{25,29,30}, b-TCP^{26,27} and decellularized bone scaffolds^{28,31}. In one article, cell sheets were involved³².

Follow-up was performed during 4 weeks (or 30 days)^{25,31}, 6 weeks³², 8 weeks^{26,27}, 12 weeks (or 90 days)^{29,30} and 6 months²⁸.

Regenerated tissues were assessed by histology in all studies²⁵⁻³², in association with CT and/or μ CT evaluation^{25,28-31}, immunohistochemistry^{25,26,30}, histomorphometry^{26,27,32}, mechanical tests³⁰ and fluorescence microscopy³².

Canine models

The studies focused on acute models of mandible peri-implant bone defects^{33,39,43,45,46}, mandible non critical³⁴ and critical size bone defects^{37,42,44}, alveolar cleft³⁵, bilateral sinus lift³⁸, mandible segmental defect⁴¹. Two studies developed chronic mandible peri-implant bone defects^{36,40}.

The employed cells were cBMSCs^{34,35,38,41,45}, rhPDGF- cBMSCs³⁹, cADSCs^{37,43}, cEPCs⁴², BMP2-cADSCs⁴⁰, BMP2-cPDLSCs³⁶, cPDLSCs⁴⁶. Only 2 studies used hADCs^{33,44}. Cell sheets were used in 2 articles^{41,46}.

Cells were seeded into various scaffolds such as b-TCP^{35,39,45}, TCP⁴⁰, HA-TCP^{33,44}, TCPfibronectin^{37,43}, PLGA⁴⁴, b-TCP coated with PLGA releasing VEGF⁴², FDB⁴¹ and HA-collagen³⁶.

The follow-up was performed during 4 weeks³³, 8 weeks^{41,42,44}, 11 weeks⁴⁶, 12 weeks or 3 months^{35-37,39,43,45}, 16 weeks³⁴, 6 months³⁸ and 10 months⁴⁰.

In 13 out of 14 studies, assessment was made by histology and histomorphometry^{33-40,42-46}; these techniques were also associated with 2D and/or 3D (μ CT) radiographic analysis^{38,40,41,44,45}, BIC evaluation^{33,36,39,40,43,45,46}, hardness mechanical tests^{34,38} and fluorescence microscopy³⁹. Only one study evaluated regenerated tissues by combining histology, immunohistochemistry and radiographies⁴¹.

Ovine models

One study focused on sinus lift⁴⁷, the other one on acute mandible segmental bone defect⁴⁸. oMSCs⁴⁷ and oBMSCs⁴⁸ were used respectively associated with autologous serum and BBM scaffold. Follow-up was made for 16⁴⁷ and 32 weeks⁴⁸.

Histology and histomorphometry were performed in both studies^{47,48}, in one case also combined with CT and μ CT evaluations⁴⁸.

b) Periodontium regeneration (tab 3)

Porcine models

The experimental models of periodontitis reproduced acute or acute-chronic mandibular class II furcation defects^{53,56}, acute-chronic maxillary and/or mandibular alveolar 3 walls bone defects^{49-52,54,55}.

Porcine cells such as pMSCs⁵⁰, pADCs⁵⁶ and pPDLSCs⁵³ were used in 3 studies. Human cells like hPDLSCs transfected with HGF⁴⁹, hDPSCs⁵², IGFBP5-hMSCs⁵¹ and human SCAPS⁵⁴ transfected or not with SFRP2⁵⁵ were employed in the other articles.

Cells were seeded into fibrin gel complex⁵⁶, IL1-HyA-sECM⁵⁰ hydrogel and collagen⁵³ scaffolds. In the other studies cells were injected^{49,51,52,54,55} and in one case also associated with cells sheets⁵².

The follow-up was performed during 4 weeks⁵⁶, 12 weeks or 3 months^{49,51-55} and 16 weeks⁵⁰.

Assessment was made by clinical, radiographic and histological evaluations in 5 studies^{49,50,52,54,55}, 3 out of which also performed histomorphometry^{49,54,55}.

One article presented clinical, photographic and histological but no radiographic analysis⁵¹. Two articles reported histology and histomorphometry respectively associated with μ CT and immunohistochemistry⁵⁶ as well as fluorescence microscopy⁵³ but no clinical evaluation.

Canine models

The experimental models of periodontitis reproduced acute mandible alveolar bone dehiscence⁵⁹ and maxillary-mandibular class II furcation defects⁶³, acute-chronic mandible class III or II furcation defects^{58,60}, mandibular alveolar bone dehiscence^{62,64}, as well as chronic maxilla and mandible alveolar bone defects⁶¹. One model of tooth reimplantation was reported⁵⁷.

The employed cells were cBMSCs^{58,59,63} also transfected with GFP⁶³ or TRL2⁶⁴, cESEHT with PAB⁶⁰, cPDLSCs⁵⁷, b-defensin-3-cPDLCs⁶¹. Human cells (hPDLCs) were used once⁶².

One study used cells sheets⁶¹. Each article reported a different scaffold material such as atelocollagen with b-TCP⁵⁸, HA-collagen⁵⁹, collagen⁶⁴, BCP⁶², PRP and fibrin glue⁶³, decellularized dental root with calcium phosphate (CaP)-fibronectin coating⁵⁷. In 1 study grafting materials were not specified⁶⁰.

The follow-up was performed during 2 weeks⁶⁴, 8 weeks^{57,58,60,61,63}, 12 weeks⁶² and 6 moths⁵⁹.

The assessment was performed in half of the studies by histology and histomorphometry^{58-60,63} also associated with μ CT analysis⁵⁹, immunohistochemistry and TRAP⁵⁸. Histology and μ CT analysis^{57,62,64}, in 1 case also associated with fluorescence microscopy⁶², were reported. In 1 study assessment consisted of histology and immunohistochemistry⁶¹.

Ovine model

The periodontal defect was an acute dehiscence in the mandibular premolar-molar area. Ovine PDLSCs and BMSCs sheets were used associated with polycaprolactone biphasic scaffold.

The follow-up was 10 weeks. The assessment of regenerated tissues was made by histology, histomorphometry and μCT^{65} .

c) <u>Dentin-pulp complex regeneration (tab 4)</u>

Porcine models

One study focused on partial pulp regeneration⁶⁶, the other one investigated total pulp regeneration⁶⁷. In both cases, upper and lower mature multirooted teeth were involved and the pulp defects were acutely induced.

Porcine DPCs and pDPSCs were used. The cells were seeded in a nanopeptide⁶⁶ and in HyA or Collagen hydrogels⁶⁷ respectively.

The follow-up was performed during 21 days⁶⁶ and 4 months⁶⁷.

In one study assessment was made by histology, immunohistochemistry, μ CT and histomorphometry⁶⁶, in the other one histological, immunohistochemical and 2D radiographic analysis were performed⁶⁷.

Canine models

Models of partial pulp regeneration involving upper and lower multirooted teeth were reported in 2 studies^{71,75}. Authors used immature⁷¹ and mature⁷⁵ teeth respectively. Five studies focused on total pulp regeneration^{68-70,73,74}. The involved teeth were upper and lower mature incisors^{69,70,74}, upper immature incisors⁷³ as well as upper and lower mature multirooted teeth⁶⁸. Only 1 study evaluated a model of pulp chamber floor perforation in upper and lower mature premolars⁷². Expect for 1 article⁷³, dentin-pulp complex defects were acutely generated.

Regarding the source of cells, cDPSCs^{68,71-73}, (G-CSF)MDPSCs^{69,70,74} as well cBMSCs⁷⁵ were involved.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384)

Cells were implanted with atelocollagen scaffold^{69,70,74}, PRF⁶⁸, TDM or TCP⁷², gelatin sponge associated with simvastatin⁷¹ and chitosan hydrogel releasing VEGF-2, PDGF, NGF and BMP7⁷³. In 1 study cells were injected⁷⁵.

Follow-up was performed during 2 weeks⁶⁹, 8 weeks⁶⁸, 9 weeks⁷⁵, 10 weeks⁷¹, 3 months or 12 weeks^{72,74}, 4 months⁷³ and 6 months⁷⁰.

Histological assessment was reported in all studies⁶⁸⁻⁷⁵, associated with histomorphometric analysis^{68,69,72}, 2D radiographies^{71,73} MRI⁷⁰, *in situ* hybridization⁶⁹, immunohistochemistry⁶⁹ as well as blood and urine tests⁷⁵.

d) Tooth or tooth root regeneration (tab 5)

Porcine models

Three studies focused on tooth root regeneration in the mandibular incisor⁷⁸ and premolar area^{76,77}. Three articles described whole tooth regeneration⁷⁹⁻⁸¹ in the upper incisor and premolar region⁸¹, in lower canine and premolar region⁸⁰ as well as in lower premolar and premolar region⁷⁹.

Porcine DFCs transfected or not with GFP were used in 2 studies^{76,77}. One article described re-associated tooth germs implantation associated with BMSCs systemically infused⁸¹. In 2 cases, pDPSCs were combined with pPDLSCs sheets⁷⁸ or epithelial cells from gingiva⁷⁹. In 1 study pECs were associated with hDPCs and hUVEC1⁸⁰.

The scaffolds in which cells were seeded were TDM^{76,77}, HA-TCP⁷⁸, gelatin-chondroitinhyaluronan scaffold⁷⁹ and dTB⁸⁰.

The follow-up was performed during 12 weeks⁷⁶, 150 days⁸¹, 6 months^{77,78,80} and 13,5 months⁷⁹.

Histology, radiography (2D, μ CT, CT, CBCT) and immunohistochemistry analysis were reported in 5 studies^{76,77,79-81}, in 1 of which clinical oral assessment was performed too⁷⁷.

In only 1 study, clinical, radiographic (CT, μ CT), biomechanical and elemental analysis were combined⁷⁸.

Canine model

Whole tooth regeneration was performed in lower premolar area. The regenerated teeth underwent orthodontic traction to test periodontal ligament remodeling.

Canine tooth buds cells were used. The follow-up consisted of 6 months plus 1 month for orthodontic treatment evaluation. The assessment was made by histology, 3D radiography (CBCT and μ CT), scanning electron microscopy and energy dispersive X-ray spectroscopy⁸².

Assessment of quality of studies

In 98% of the studies a low risk of selection bias (baseline characteristics) was found^{25-42,44-64,66-82}. Performance bias was considered unclear in 98% of cases^{25-47,49-82}, because no information about random housing was given. Random outcome assessment was scored as low risk for 24% of the studies^{25-29,33,34,36-40,42,43,46-48,50,52,54,57-60,62-74,76-82} and unclear for the rest of them. In none of studies blinding was described and the risk was rated as unclear²⁵⁻⁸². A low risk of attrition and reporting bias was estimated for all studies²⁵⁻⁸² (fig 5, supplemental fig 1-4).

DISCUSSION

Large animal models according to regenerated tissues

Bone regeneration

Our research highlights that porcine, canine and ovine models were developed for cellbased regeneration of acute critical maxillary and mandible jawbone defects, mimicking congenital lack of tissues as well as traumatic or postsurgical sequels, such as clefts or segmental osteotomies²⁵⁻⁴⁸. Moreover, procedures requiring long healing process were possible, since reported follow-up went from 1 month even up to 10 months²⁵⁻⁴⁸.

As supported by broad literature on cell-based bone regeneration in large animals⁸³, these models make up for multiple limitations of widespread murine calvarial defects, such as the impossibility to perform long term studies, the lack of biomechanical loading and faster tissue healing than in humans^{5,84,85}.

In accordance with previous studies⁸⁶⁻⁸⁸, it appears that porcine models are preferred to the other models for higher challenge bone regeneration procedures, because of their similarities with humans, in terms of anatomy, morphology, healing, remodeling and mechanical properties^{25,28,30}.

For instance, Bhumiratana *et al.* demonstrated regeneration of ramus-condyle unit by using an autologous, anatomically shaped, living graft, made by decellularized bovine trabecular bone and pADSCs²⁸.

Furthermore, since congenital clefts occurring in pig resemble those in humans, Caballero *et al.* reported porcine alveolar cleft regeneration using porcine umbilical cord mesenchymal stem cells sheets associated with nano-microfiber PLGA scaffold^{25,30}.

In implantology, canines play a key role^{14,89}. In this review, numerous peri-implant bone defects and re-osteointegration models were identified^{33,36,39,40,43,45,46}; in fact, dogs' bone turnover, composition and mechanical properties are the most similar to humans among large animal models, even if jaws show a denser and more resistant bone^{7,89}.

Even if ovine models of cell-based bone regeneration are reported in literature^{90,91}, in our research, only two studies developed maxillary sinus lift and mandible segmental osteotomy. Indeed, ovine bone dissimilarities with humans such as higher density and mechanical resistance, as well as age related changes in structure and remodeling can limit the relevance of ovine models for follow-up studies^{7,14,25,89,92}.

Periodontium regeneration

Since murine periodontium and bacterial resistance sensibly differ from humans, porcine, canine and ovine models of periodontitis are developed^{14,89}.

In this review, similar types of periodontal lesions were reported in pig and dog. However, variability in defects' standardization and follow-up was encountered between the two species.

Only one study developed an acute ovine model of mandible dehiscence⁶⁵. Sheep periodontium displays constant cement apposition as a compensation response to teeth ware which is typical in ruminants¹⁴. Hence, this periodontal physiology is likely to have an

impact on regeneration mechanisms, which represents a non-neglecting bias for the potential extrapolation to patients^{14,92,93}.

Dentin-pulp complex regeneration

Regenerative endodontics opens up the perspective of an alternative to millions of endodontic treatments each year⁹⁴⁻⁹⁶.

Validated in murine ectopic models, dentin-pulp regeneration is hardly performed orthotopically due to frequent dental fractures and differences with human pulp reparation process. Thus, large animals are required to address these limitations^{97,98}.

Interestingly, despite a more important similarity of pig dental anatomy and physiology with humans in comparison with dogs, mostly canine and only two porcine models were developed^{66-75.}

Besides, in both animals, partial and total dentin-pulp complex regeneration procedures, involving upper and lower mature or immature single-rooted or multi-rooted teeth, were evaluated, meaning that several clinical situations can be reproduced in these models. In addition, in dog also a pulp chamber floor perforation model was reported⁷².

However, regarding partial pulp regeneration, contrasting findings were reported. In 2017, our team demonstrated, after 3 weeks follow-up, no pulp regeneration but reparative osteodentinogenesis in minipig mature multi-rooted permanent teeth by implanting pDPCs into a self-assembling injectable hydrogel scaffold in a pulpotomy model⁶⁶. In dog, after 9 to 10 weeks, normally organized pulp tissue with a complete dentin bridge was found in single-rooted immature teeth as well as in multirooted mature teeth, using cDPSCs seeded in a gelatin sponge scaffold releasing simvastatine and injected cBMSCs respectively^{71,75}.

In line with previous studies⁹⁹⁻¹⁰², canine models as well as the only porcine model of total pulp regeneration used autologous DPSCs^{67-70,73,74} mostly combined with collagen-based scaffolds^{67,69,73,74} in mature single-rooted upper and lower teeth^{69,70,73,74}. However, the role of neoangiogenesis was solely investigated in dog, since cells were constantly conditioned or associated with angiogenetic factors. One could assume that such a difference in

regenerative environments between animal models influenced the duration of the regenerative process⁸⁴ since functional dentin-pulp complex was obtained after 4 months in pig⁶⁷ and in 2 weeks to 6 months in dog^{68-70,73,74}.

Tooth regeneration

The challenging regeneration of tooth organ, which depends on the recombination of dental mesenchymal and epithelial stem cells, has been demonstrated in several animal models^{19,103,104}. However, it has been shown that the dental functionality can only be assessed in large animals^{19,103}.

In this review, tooth regeneration was reported in numerous porcine models⁷⁶⁻⁸¹ and in only one canine model⁸². In particular, in pig, consistently with literature^{87,105,106}, two procedures were studied: tooth-root and whole tooth regeneration. Functional bio-root formation was reported after implantation of HA/TCP/DPSC/PDLSC sheets⁷⁸. Positives outcomes were obtained also combining TDM with minipig DFCs^{76,77}. Whole single-rooted tooth regeneration was achieved by allo-transplanted re-associated tooth germs into minipigs jaws associated with systemic infusion of pBMMSCs as well as recellularized dTBs seeded with porcine dental epithelial cells, human dental pulp cells, and human umbilical vein endothelial cells, with an average follow-up of 6 months^{80,81}.

In line with porcine models, premolar regeneration was achieved, in dog, 6 months after transplantation of bioengineered tooth germs made with autologous germs cells, in the lower jaw. Periodontal functionality was eventually confirmed by 4 weeks long orthodontic traction⁸².

Defects characteristics

The reported oral tissues defects were mostly acute^{25-35,37-39,41-48,53,56,57,59,62,63,65-72,74,75}. Indeed, surgically made lesions imply standardized configuration, clear understanding of the regenerative process and reduced experimental time. However, these models reproduce simplified regenerative environments⁸⁹.

The bacterial component of oral pathologies was considered in few chronic^{36,40, 61,64,73} or acute-chronic^{49-52,54,55,58,60} models of periimplantitis, periodontitis and pulp necrosis.

Certainly, these models, requiring time-consuming procedures, result in a variable degree of standardization of the defect, complicating the comparisons between studies⁸⁹.

Stem cells trends

The pertinence of an animal model for oral tissue-engineering also relies on the potentiality to study different stem cell populations/sources. Thus, the accessibility to autologous stem cells as well as the feasibility of allogenic grafts are crucial criteria of choice.

Similar trends of cell-based bone regeneration were reported in all large animal models with comparable results. In fact, most of the studies demonstrated increased bone formation in critical size defects using autologous BMSCs, ADCs or MSCs principally seeded into b-TCP, PLGA or demineralized bone matrix scaffolds^{25,26,28-32,34,35,37-45,47,48}.

Unlike the ovine models, in pig and dog large jaws reconstruction and peri-implant defects were also successfully treated by implanting autologous or human ADSCs and/or MSCs coseeded with endothelial progenitor cells associated with b-TCP and/or PLGA^{25,28-30,32,33,40,42-}⁴⁴ as well as autologous or human stem cells from dental tissues alone or combined with b-TCP or HA/collagen^{27,36,46}.

A substantial discrepancy between trends of periodontal defects regeneration was found; in fact, in pig hMSCs, hPDLSCs and hSCAPS^{49,51,52,54,55} were mostly involved, while in dog and sheep mostly autologous mesenchymal stem cells or periodontal ligament stem cells and no SCAPs were used^{57-61,63-65}. Moreover, porcine stem cells were mostly injected or used as sheets^{49,51,52,54,55}, whereas in dog and sheep they were implanted combined with a large variety of grafting materials^{57-61, 63-65} which even more complicate comparisons within studies^{28,89}.

Regarding pulp and root or whole tooth regeneration, in both porcine and canine models mostly autologous dental stem cells^{66-71,73-79,82} were used which is coherent with the manageable accessibility to this source of cells in animals showing similar loco-regional anatomy and dental eruption physiology with humans^{6,7,25}.

Regeneration assessment

Regeneration assessment is essential for the validation of tissue-engineering procedures. A pertinent large animal model should allow an appropriate follow-up duration for a given procedure as well as the quali-quantification of the newly formed tissues and their relation with the surrounding structures^{7,25}.

In the porcine, canine and ovine studies included in this systematic review, mineralized as well as non-mineralized oral tissues regeneration was assessed within periods even up to 13,5 months and the analysis was performed by similar approaches in the three models.

Overall, most of the studies reported histological, histomorphometric and/or 2D/3D imaging analysis^{25-40,42-60,62-73}. Regardless for the μ CT, which is an *ex-vivo* technique, imaging assessment was made by technologies currently used in patients such as intraoral 2D radiography, CT, CBCT and MRI. Furthermore, reiterative blood and urine tests, impossible in murine, were reported⁷⁴, which highlights the importance of large animals for mimicking clinical conditions^{5,25}.

However, specific animals' characteristics, data/means unavailability and the necessity to contain the number of samples, according to the 3Rs principle, give raise to some technical boundaries restraining tissues assessment^{5,25,66,107}.

For example, immunohistochemistry was not constantly performed in pig or dog and not reported at all in sheep models; indeed, some tissue-specific markers cannot be revealed, because of the lack of suitable antibodies. Moreover, due to their size, specimens require even up to several months for the demineralization prior to histological analysis. Thus, aggressive acids or techniques used to accelerate the process can impair antigenic sites and limit antibodies bond^{66,107}.

Risk of bias

Overall, the included studies presented a low risk of bias in terms of animals' selection (notably ARRIVE guidelines were respected), attrition and reporting. However, poor reporting in terms of performance and detection affected evaluations and synthesis of results. Thus, SYRCLE guidelines should be followed especially for randomization protocols,

animal housing facilities and blinding, which could improve homogeneity of large animal models' trials in oral cell-based regeneration.

CONCLUSION

The development of large animal models for oral tissue engineering is crucial for human application. Pig, dog and sheep are the most relevant species allowed by current regulation, but they can have significant drawbacks, including functional dissimilarities when compared to the human craniofacial and dental anatomy.

Porcine models, the most similar with humans, were successfully developed for bone and periodontium regeneration, but very little was demonstrated about dentin-pulp complex. Interestingly, tooth/tooth root regeneration was reported only in pig, except for one canine study.

Canines are indeed the most transversal models as they showed positive outcomes for the regeneration of bone, in particular in implantology, as well as periodontium and dentinpulp complex; however, canines substantially differ from humans and ethical concerns arise from their involvement.

Ovines are the least developed models, as they emerged as an alternative to dog and pig. Besides the economic and ethical advantages, these animals display essential dissimilarities with humans. Hence, ovine were mainly used for bone and very little for periodontium regeneration.

If a consistency was found in defects specificities and cells trends among different species animal models of bone, dentin-pulp complex or tooth regeneration, a variability appeared in periodontium.

Indeed, methods of regeneration assessment were more elaborate in porcines and canines than in ovines.

Overall, preclinical models display specific properties to take into account for oral tissues engineering. Thus, studies of different regenerative procedures should be related to the choice of the most pertinent large animal model for a given cell-based therapeutics.

AUTHORS' CONTRIBUTION

Conceptualization, F.M. and S.V.; writing/original draft preparation, F.M.; writing/review and editing, F.M., S.V., M.E., B.S., C.C. and R.J.

FUNDING STATEMENT

This research received no external funding.

DISCLOSURE STATEMENT

No competing financial interests exist

ACKNOLEDGMENTS

We would like to thank Elisabeth Dursun for her support as well as Fondation des Maladies Rares.

References

- 1. Smirani R, Rémy M, Devillard R, Naveau A. Engineered prevascularization for oral tissue grafting: a systematic review. Tissue Eng Part B Rev. 2020;26:383-398.
- Matichescu A, Ardelean LC, Rusu LC, Craciun D, Bratu EA, Babucea M, Leretter M. Avanced biomaterials and techniques for oral tissue engineering and regeneration-a review. Materials (Basel). 2020;13:5303.
- Hutchings G, Moncrieff L, Dompe C et al. Bone regeneration, reconstruction and use of osteogenic cells; from basic knowledge, animal models to clinical trials. J Clin Med. 2020;9:139.
- Ong CS, Yesantharao P, Huang CY, Mattson G, Boktor J, Fukunishi T, Zhang H, Hibino N.
 3D bioprinting using stem cells. Pediatr Res. 2018;83:223-231.
- 5. McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech 2018;11.
- 6. Štembírek J, Kyllar M, Putnová I, Stehlík L, Buchtová M. The pig as an experimental model for clinical craniofacial research. Lab Anim 2012;46:269-79.
- 7. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1-10.
- Weinberg MA, Bral M. Laboratory animal models in periodontology. J Clin Periodontol. 1999;26:335-40.
- Ripamonti U, Herbst NN, Ramoshebi LN. Bone morphogenetic proteins in craniofacial and periodontal tissue engineering: experimental studies in the non-human primate Papio ursinus. Cytokine Growth Factor Rev. 2005;16:357-68.
- 10. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625-30.
- 11. Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9:1205-16.
- 12. La Noce M, Paino F, Spina A et al. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent. 2014;42:761-8.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384)

24

- Liu M, Lv Y. Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model. Nanomaterials (Basel). 2018;8:999.
- 14. Fawzy El-Sayed KM, Dörfer CE. Animal models for periodontal tissue engineering: a knowledge-generating process. Tissue Eng Part C Methods. 2017;23:900-925.
- Magan A, Ripamonti U. Biological aspects of periodontal tissue regeneration: cementogenesis and the induction of Sharpey's fibres. SADJ. 2013;68:304-6, 308-12, 314 passim.
- Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34:645-51.
 - 17. Gong T, Heng BC, Lo EC, Zhang C. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016;2016:9204574.
 - Del Fabbro M, Lolato A, Bucchi C, Taschieri S, Weinstein RL. Autologous platelet concentrates for pulp and dentin regeneration: a literature review of animal studies. J Endod. 2016;42:250-7.
 - 19. Onda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010;52:541-52.
 - Schulz KF, Altman DG, Moher D; CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332.
 - Directive 63/2010/EU of the European Parliament and of the Council of 22 September
 2010 on the protection of animals used for scientific purposes (Official Journal of the European Union L 276 of 20/10/2010).
 - 22. Olsson IAS, Silva SPD, Townend D, Sandøe P. Protecting animals and enabling research in the european union: an overview of development and implementation of directive 2010/63/EU. ILAR J. 2016;57:347-357.
 - 23. Vasbinder MA, Locke P. Introduction: global laws, regulations, and standards for animals in research. ILAR J. 2016;57:261-265.

- 24. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
- Caballero M, Morse JC, Halevi AE et al. Juvenile swine surgical alveolar cleft model to test novel autologous stem cell therapies. Tissue Eng Part C Methods 2015;21:898-908.
- 26. Konopnicki S, Sharaf B, Resnick C et al. Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model. J Oral Maxillofac Surg 2015;73:1016.e1-1016.e11.
- 27. Kuo TF, Lee SY, Wu HD, Poma M, Wu YW, Yang JC. An in vivo swine study for xenografts of calcium sulfate-based bone grafts with human dental pulp stem cells (hDPSCs). Mater Sci Eng C Mater Biol Appl 2015;50:19-23.
- 28. Bhumiratana S, Bernhard JC, Alfi DM, Yeager K, Eton RE, Bova J, Shah F, Gimble JM, Lopez MJ, Eisig SB, Vunjak-Novakovic G. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 2016;8:343ra83.
- 29. Tee BC, Desai KG, Kennedy KS, Sonnichsen B, Kim DG, Fields HW, Mallery SR, Schwendeman SP, Sun Z. Reconstructing jaw defects with MSCs and PLGAencapsulated growth factors. Am J Transl Res 2016;8:2693-704.
- 30. Caballero M, Jones DC, Shan Z, Soleimani S, van Aalst JA.Tissue engineering strategies to improve osteogenesis in the juvenile swine alveolar cleft model. Tissue Eng Part C Methods 2017;23:889-899.
- 31. Cui Y, Lu C, Chen B et al. Restoration of mandibular bone defects with demineralized bone matrix combined with three-dimensional cultured bone marrow-derived mesenchymal stem cells in minipig models. J Mater Sci Mater Med 2018;29:147.
- 32. Mu S, Tee BC, Emam H, Zhou Y, Sun Z. Culture-expanded mesenchymal stem cell sheets enhance extraction-site alveolar bone growth: An animal study. J Periodontal Res 2018;53:514-524.
- 33. Bressan E, Botticelli D, Sivolella S et al. Adipose-derived stem cells as a tool for dental implant osseointegration: an experimental study in the dog. Int J Mol Cell Med 2015;4:197-208.

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384)

26

- 34. DU C, Yao C, Li N, Wang S, Feng Y, Yang X. Cell sheet-engineered bones used for the reconstruction of mandibular defects in an animal model. Exp Ther Med 2015;10:2216-2220.
- Huang J, Tian B, Chu F et al. Rapid maxillary expansion in alveolar cleft repaired with a tissue-engineered bone in a canine model. J Mech Behav Biomed Mater 2015;48:86-99.
- 36. Park SY, Kim KH, Gwak EH et al. Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis. J Biomed Mater Res A 2015;103:38-47.
- 37. Alvira-González J, Sánchez-Garcés MÀ, Cairó JR, Del Pozo MR, Sánchez CM, Gay-Escoda C. Assessment of bone regeneration using adipose-derived stem cells in critical-size alveolar ridge defects: an experimental study in a dog model. Int J Oral Maxillofac Implants 2016;31:196-203.
- 38. Wang F, Li Q, Wang Z. A comparative study of the effect of Bio-Oss[®] in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting. J Oral Pathol Med 2017;46:528-536.
- 39. Xu L, Zhang W, Lv K, Yu W, Jiang X, Zhang F. Peri-Implant Bone Regeneration Using rhPDGF-BB, BMSCs, and β-TCP in a canine model. Clin Implant Dent Relat Res 2016;18:241-52.
- 40. Xu L, Sun X, Bai J et al. Reosseointegration following regenerative therapy of tissueengineered bone in a canine model of experimental peri-implantitis. Clin Implant Dent Relat Res 2016;18:379-91.
- 41. Zeng JJ, Guo P, Zhou N, Xie QT, Liao FC. Treatment of large bone defects with a novel biological transport disc in non-vascular transport distraction osteogenesis. Int J Oral Maxillofac Surg 2016;45:670-7.
- 42. Khojasteh A, Fahimipour F, Jafarian M et al. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor. J Biomed Mater Res B Appl Biomater 2017;105:1767-1777.

- 43. Sánchez-Garcés MÀ, Alvira-González J, Sánchez CM, Barbany Cairó JR, Del Pozo MR, Gay-Escoda C. Bone regeneration using adipose-derived stem cells with fibronectin in dehiscence-type defects associated with dental implants: an experimental study in a dog model. Int J Oral Maxillofac Implants 2017;32:e97-e106.
- 44. Shafieian R, Matin MM, Rahpeyma A et al. Effects of human adipose-derived stem cells and platelet-rich plasma on healing response of canine alveolar surgical bone defects. Arch Bone Jt Surg 2017;5:406-418.
- 45. Wang F, Zhou Y, Zhou J et al. Comparison of intraoral bone regeneration with iliac and alveolar BMSCs. J Dent Res 2018;97:1229-1235.
- 46. Washio K, Tsutsumi Y, Tsumanuma Y et al. In vivo periodontium formation around titanium implants using periodontal ligament cell sheet. Tissue Eng Part A 2018;24:1273-1282.
- 47. Ardjomandi N, Duttenhoefer F, Xavier S, Oshima T, Kuenz A, Sauerbier S. In vivo comparison of hard tissue regeneration with ovine mesenchymal stem cells processed with either the FICOLL method or the BMAC method. J Craniomaxillofac Surg 2015;43:1177-83.
- 48. Gallego L, Pérez-Basterrechea M, García-Consuegra L et al. Repair of segmental mandibular bone defects in sheep using bone marrow stromal cells and autologous serum scaffold: a pilot study. J Clin Periodontol 2015;42:1143-51.
- 49. Cao Y, Liu Z, Xie Y et al. Adenovirus-mediated transfer of hepatocyte growth factor gene to human dental pulp stem cells under good manufacturing practice improves their potential for periodontal regeneration in swine. Stem Cell Res Ther 2015;6:249.
- 50. Fawzy El-Sayed KM, Mekhemar MK, Beck-Broichsitter BE et al. Periodontal regeneration employing gingival margin-derived stem/progenitor cells in conjunction with IL-1ra-hydrogel synthetic extracellular matrix. J Clin Periodontol 2015;42:448-57.
- 51. Liu D, Wang Y, Jia Z et al. Demethylation of IGFBP5 by histone demethylase KDM6B promotes mesenchymal stem cell-mediated periodontal tissue regeneration by enhancing osteogenic differentiation and anti-inflammation potentials. Stem Cells 2015;33:2523-36.

- 28
- 52. Hu J, Cao Y, Xie Y et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice. Stem Cell Res Ther 2016;7:130.
- 53. Basan T, Welly D, Kriebel K et al. Enhanced periodontal regeneration using collagen, stem cells or growth factors. Front Biosci (Schol Ed) 2017;9:180-193.
- 54. Li G, Han N, Zhang X et al. Local injection of allogeneic stem cells from apical papilla enhanced periodontal tissue regeneration in minipig model of periodontitis. Biomed Res Int 2018;2018:3960798.
- 55. Li G, Han N, Yang H et al. SFRP2 promotes stem cells from apical papilla-mediated periodontal tissue regeneration in miniature pig. J Oral Rehabil 2020;47 Suppl 1:12-18.
- 56. Venkataiah VS, Handa K, Njuguna MM et al. Periodontal regeneration by allogeneic transplantation of adipose tissue derived multi-lineage progenitor stem cells in vivo. Sci Rep 2019;9:921.
- 57. Lee JS, Kim HS, Park SY et al. Synergistic effects of a calcium phosphate/fibronectin coating on the adhesion of periodontal ligament stem cells onto decellularized dental root surfaces. Cell Transplant 2015;24:1767-79.
- 58. Nagahara T, Yoshimatsu S, Shiba H et al. Introduction of a mixture of β-tricalcium phosphate into a complex of bone marrow mesenchymal stem cells and type I collagen can augment the volume of alveolar bone without impairing cementum regeneration. J Periodontol 2015;86:456-64.
- 59. Liu Z, Yin X, Ye Q et al. Periodontal regeneration with stem cells-seeded collagenhydroxyapatite scaffold. J Biomater Appl 2016;31:121-31.
- 60. Luo J, Xu J, Cai J, Wang L, Sun Q, Yang P. The in vitro and in vivo osteogenic capability of the extraction socket-derived early healing tissue. J Periodontol 2016;87:1057-66.
- 61. Zhu M, Miao B, Zhu J, Wang H, Zhou Z. Transplantation of periodontal ligament cell sheets expressing human β-defensin-3 promotes anti-inflammation in a canine model of periodontitis. Mol Med Rep 2017;16:7459-7467.
- 62. Shi H, Zong W, Xu X, Chen J. Improved biphasic calcium phosphate combined with periodontal ligament stem cells may serve as a promising method for periodontal regeneration. Am J Transl Res 2018;10:4030-4041.

- 63. Rezaei M, Jamshidi S, Saffarpour A et al. Transplantation of bone marrow-derived mesenchymal stem cells, platelet-rich plasma, and fibrin glue for periodontal regeneration. Int J Periodontics Restorative Dent 2019;39:e32-e45.
- 64. Zhou Q, Gu X, Dong J et al. The use of TLR2 modified BMSCs for enhanced bone regeneration in the inflammatory micro-environment. Artif Cells Nanomed Biotechnol 2019;47:3329-3337.
- Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal Tissue Engineering with a Multiphasic Construct and Cell Sheets. J Dent Res 2019;98:673-681.
- 66. Mangione F, EzEldeen M, Bardet C et al. Implanted dental pulp cells fail to induce regeneration in partial pulpotomies. J Dent Res 2017;96:1406-1413.
- 67. Zhu X, Liu J, Yu Z et al. A miniature swine model for stem cell-based de novo regeneration of dental pulp and dentin-like tissue. Tissue Eng Part C Methods 2018;24:108-120.
- 68. Chen YJ, Zhao YH, Zhao YJ et al. Potential dental pulp revascularization and odonto-/osteogenic capacity of a novel transplant combined with dental pulp stem cells and platelet-rich fibrin. Cell Tissue Res 2015;361:439-55.
- 69. Murakami M, Hayashi Y, Iohara K, Osako Y, Hirose Y, Nakashima M. Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration. Cell Transplant 2015;24:1753-65.
- 70. Iohara K, Fujita M, Ariji Y et al. Assessment of pulp regeneration induced by stem cell therapy by magnetic resonance imaging. J Endod 2016;42:397-401.
- 71. Jia W, Zhao Y, Yang J, Wang W, Wang X, Ling L, Ge L. Simvastatin promotes dental pulp stem cell-induced coronal pulp regeneration in pulpotomized teeth. J Endod 2016;42:1049-54.
- 72. Bakhtiar H, Mirzaei H, Bagheri MR et al. Histologic tissue response to furcation perforation repair using mineral trioxide aggregate or dental pulp stem cells loaded onto treated dentin matrix or tricalcium phosphate. Clin Oral Investig 2017;21:1579-1588.

- 30
- 73. El Ashiry EA, Alamoudi NM, El Ashiry MK, Bastawy HA, El Derwi DA, Atta HM. Tissue engineering of necrotic dental pulp of immature teeth with apical periodontitis in dogs: radiographic and histological evaluation. J Clin Pediatr Dent 2018;42:373-382.
- 74. Iohara K, Utsunomiya S, Kohara S, Nakashima M. Allogeneic transplantation of mobilized dental pulp stem cells with the mismatched dog leukocyte antigen type is safe and efficacious for total pulp regeneration. Stem Cell Res Ther 2018;9:116.
- 75. El-Zekrid MH, Mahmoud SH, Ali FA, Helal ME, Grawish ME. Healing capacity of autologous bone marrow-derived mesenchymal stem cells on partially pulpotomized dogs' teeth. J Endod 2019;45:287-294.
- 76. Chen G, Chen J, Yang B et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials 2015;52:56-70.
- 77. Luo X, Yang B, Sheng L et al. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine. Biomaterials 2015;57:59-72.
- 78. Gao ZH, Hu L, Liu GL et al. Bio-Root and implant-based restoration as a tooth replacement alternative. J Dent Res 2016;95:642-9.
- 79. Yang KC, Kitamura Y, Wu CC, Chang HH, Ling TY, Kuo TF. Tooth germ-like construct transplantation for whole-tooth regeneration: an in vivo study in the miniature pig. Artif Organs 2016;40:E39-50.
- 80. Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized tooth bud scaffolds for tooth regeneration. J Dent Res 2017;96:516-523.
- 81. Wu Z, Wang F, Fan Z et al. Whole-tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng Part A 2019;25:1202-1212.
- 82. Ono M, Oshima M, Ogawa M et al. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci Rep 2017;7:44522.
- 83. Zhang Z. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med. 2011;5:401-13.

- 84. Gorin C, Rochefort GY, Bascetin R et al. Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med 2016;5:392-404.
- 85. Devlin H. Early bone healing events following rat molar tooth extraction. Cells Tissues Organs. 2000;167:33-7.
- Abukawa H, Shin M, Williams WB, Vacanti JP, Kaban LB, Troulis MJ. Reconstruction of mandibular defects with autologous tissue-engineered bone. J Oral Maxillofac Surg. 2004;62:601-6.
- 87. Abukawa H, Zhang W, Young CS et al. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg. 2009;67:335-47.
- 88. Zheng Y, Liu Y, Zhang CM, Zhang HY, Li WH, Shi S, Le AD, Wang SL. Stem cells from deciduous tooth repair mandibular defect in swine. J Dent Res. 2009;88:249-54.
- 89. Donos N, Park JC, Vajgel A, de Carvalho Farias B, Dereka X. Description of the periodontal pocket in preclinical models: limitations and considerations. Periodontol 2000 2018;76:16-34.
- Ribitsch I, Baptista PM, Lange-Consiglio A et al. Large animal models in regenerative medicine and tissue engineering: to do or not to do. Front Bioeng Biotechnol. 2020;8:972.
- 91. Valbonetti L, Berardinelli P, Scarano A et al. Translational value of sheep as animal model to study sinus augmentation. J Craniofac Surg. 2015;26:737-40.
- 92. Altaii M, Broberg M, Cathro P, Richards L. Standardisation of sheep model for endodontic regeneration/revitalisation research. Arch Oral Biol 2016;65:87-94.
- 93. Ackermans NL, Martin LF, Codron D et al. Confirmation of a wear-compensation mechanism in dental roots of ruminants. Anat Rec (Hoboken) 2020.
- 94. Diogenes A, Hargreaves KM. Microbial modulation of stem cells and future directions in regenerative endodontics. J Endod 2017;43:S95-S101.
- 95. Nakashima M, Iohara K, Bottino MC, Fouad AF, Nör JE, Huang GT. Animal models for stem cell-based pulp regeneration: foundation for human clinical applications. Tissue Eng Part B Rev 2019;25:100-113.

32

- 96. Nakashima M, Iohara K, Murakami M, Nakamura H, Sato Y, Ariji Y, Matsushita K. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: a pilot clinical study. Stem Cell Res Ther. 2017;8:61.
- 97. Yoneda N, Noiri Y, Matsui S, Kuremoto K, Maezono H, Ishimoto T, Nakano T, Ebisu S, Hayashi M. Development of a root canal treatment model in the rat. Sci Rep. 2017;7:3315.
- 98. Nakatomi M, Quispe-Salcedo A, Sakaguchi M, Ida-Yonemochi H, Okano H, Ohshima H. Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol. 2018;149:383-391.
- 99. Iohara K, Zheng L, Ito M et al. Regeneration of dental pulp after pulpotomy by transplantation of CD31(-)/CD146(-) side population cells from a canine tooth. Regen Med. 2009;4:377-85.
- 100. Iohara K, Imabayashi K, Ishizaka R et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1. Tissue Eng Part A. 2011;17:1911-20.
- 101. Iohara K, Murakami M, Takeuchi N et al. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med. 2013;2:521-33.
- 102. Zheng Y, Wang XY, Wang YM, Liu XY, Zhang CM, Hou BX, Wang SL. Dentin regeneration using deciduous pulp stem/progenitor cells. J Dent Res. 2012;91:676-82.
- 103. Otsu K, Kumakami-Sakano M, Fujiwara N et al. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 2014;5:36.
- Oshima M, Tsuji T. Whole tooth regeneration as a future dental treatment. Adv Exp Med Biol. 2015;881:255-69.
- 105. Sonoyama W, Liu Y, Fang D et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.
- 106. Zhang W, Abukawa H, Troulis MJ, Kaban LB, Vacanti JP, Yelick PC. Tissue engineered hybrid tooth-bone constructs. Methods. 2009;47:122-8.
- 107. Yamamoto-Fukud T, Shibata Y, Hishikawa Y et al. Effects of various decalcification protocols on detection of DNA strand breaks by terminal dUTP nick end labelling. Histochem J 2000;32:697-702.

Figures legends

Figure 1. Pig anatomy- Cone Beam CT. A) Skull: lateral view. B) Skull: frontal view. C) Lower incisor region. D) Lower canine. E) Lower premolars region. F) Lower molar anatomy.

Scale bar: 1 cm.

Figure 2. Dog anatomy- Cone Beam CT. A) Skull: lateral view. B) Skull: frontal view. C) Lower incisor region. D) Lower canine. E) Lower premolars region. F) Lower molar anatomy.

Scale bar: 1 cm.

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) Tissue Engineering

Downloaded by K.U.Leuven from www.liebertpub.com at 05/16/21. For personal use only.

34

Figure 3. Sheep anatomy- Cone Beam CT. A) Skull: lateral view. **B)** Skull: frontal view. **C)** Upper jaw dental pad and lower incisor regions. **D)** Diastema (absence of the canine between incisors and premolars). **E)** Lower premolars region. **F)** Lower molar anatomy.

Scale bar: 1 cm.

36

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) Downloaded by K.U.Leuven from www.liebertpub.com at 05/16/21. For personal use only. Tissue Engineering

This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Figure 4. Flowchart of the manuscript selection process.

Figure 5. Risk of bias assessment evaluated according to the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE). Selection bias: baseline characteristics. Performance bias: random housing. Detection bias: random outcome assessment; blinding. Attrition bias: incomplete outcome data. Reporting bias: selective outcome reporting.

AN M	NIMAL IODEL	SIMILARITIES	DISSIMILARITIES WITH HUMANS	ADVANTAGES	DISADVANTAGES
POI	RCINES	 Size of the body Jaws bone anatomy, morphology, healing, remodeling and mechanical properties Mineral density and concentration of lamellar bone Jaws blood supply Diphyodonty, dental formula, eruption sequence 	 Denser jawbone trabecular system Continuously growing canine 	- Reduced ethical issues	- Voluminous size - Uncooperative behavior
CA	NINES	 Growth, physiology and pathology Bone turnover, composition and mechanical properties Diphyodonty, 	 Size and shape of the oral cavity Denser and more resistant jaws bone 	- Extensive knowledge of the model for orofacial tissues engineering - Easy handling	- Ethical issues

	dental anatomy,			
	dental formula			
OVINES	es dental formula - Size of the body - Diphyodonty, dental formula and shape of permanent teeth	 Ruminant digestion pH of saliva Absence of upper incisors, upper and lower canines Jawbone density and biomechanical properties Age related bone structure 	 Reduced ethical issues Extensive availability Easy handling Less expensive housing 	 Lack of literature Limits of comparisons between studies using different ages animals

Tissue Engineering Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

Table 2. Bone regeneration.

AUTHOR/YEAR	CLINICAL CONTEXT	FOLLOW- UP	CELLS/SCAFFOLD	ASSESSMENT			
Porcine models							
Caballero <i>et al.,</i> 2015 ²⁵	Alveolar cleft*	30 days	pUC-MSCS /nano-microfiber PLGA	Histology Immunohistochemistry CT			
Konopnicki <i>et al.,</i> 2015 ²⁶	Mandible inferior border bone defect*	8 weeks	pBMPCs/3D printed b-TCP- polycaprolactone	Histology Immunohistochemistry Histomorphometry			
Kuo <i>et al.,</i> 2015 ²⁷	Mandibular corner critical size bone defect*	8 weeks	hDPSCs/b-TCP	Histology Histomorphometry			
Bhumiratana <i>et</i> al., 2016 ²⁸	Ramus and condyle critical size bone defect*	6 months	pASCs/ decellularized bovine trabecular bone	Histology µCT			
Tee <i>et al.,</i> 2016 ²⁹	Mandible lateral aspect critical size bone defect*	12 weeks	pMSCs /PGLA	Histology CT / μCT			

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Tissue Engineering

40

				41
			pUC-MSCS	Histology
Caballero <i>et al.,</i>	Alveolar		/nano-microfiber	Immunohistochemistry
2017 ³⁰	cleft*	90 Days	PLGA	СТ
				Mechanical tests
	Mandible			
	inferior	4 weeks	pBMSCs/DBM	Histology
Cui <i>et al.,</i> 2018 ³¹	border			UCT
	critical size			μετ
	bone defect*			
				Histology
22	Mandible		pMCSs sheets	Florescence
Mu et al., 2018 ³²	extraction	6 weeks		microscopy
	socket			Histomorphometry
Canine models				
	Mandible			
Brossan et al	premolar-		hADCs / HA-TCP	Histology
2015 ³³	molar region	4 weeks		
2013	peri-implant			Histomorphometry
	bone defect*			
	Mandible			Histology
Du <i>et al.,</i> 2015 ³⁴	body bone	16 weeks	cBMSCs/ PLGA	Histomorphometry
	defect*			Machanical analysis
Huang <i>et al.,</i> 2015	Alveolar	12 weeks	cBMSCs/ b-TCP	Histology
35	cleft*		,	Histomorphometry
1		1	1	1

Tissue Engineering Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Downloaded by K.U.Leuven from www.liebertpub.com at 05/16/21. For personal use only.

⁄/1

Park <i>et al.,</i> 2015 ³⁶	Mandible premolar- molar region peri-implant bone defect**	3 months	BMP2-dPDLSCs / HA-collagen	Histology Histomorphometry
Alvira-Gonzalez <i>et</i> <i>al.,</i> 2016 ³⁷	Mandible premolar- molar region critical size alveolar ridge bone defect*	3 months	cADSCs/ fibronectin-TCP	Histology Histomorphometry
Wang <i>et al.,</i> 2016 ³⁸	Bilateral sinus lift	6 months	cBMSCs/ HA	Histology Histomorphometry µCT Microhardness test
Xu <i>et al.,</i> 2016 ³⁹	Mandible premolar region peri- implant bone defect*	12 weeks	rhPDGF- cBMSCs/ b-TCP	Histology Histomorphometry CLSM Fluorescence microscopy
Xu <i>et al.,</i> 2016 ⁴⁰	Mandible premolar region peri- implant bone defect**	10 months	BMP2or GFP- cADSCs/TCP	Histology Histomorphometry 2D radiographies µCT

42

				43
Zeng <i>et al.,</i> 2016 41	Mandible segmental defect*	8 weeks	cBMSC sheets/FDB	Histology Immunohistochemistry 2D radiographies
Khojasteh <i>et al.,</i> 2017 ⁴²	Mandible bone defect*	8 weeks	cEPCs/ b-TCP coated with PLGA microspheres releasing VEGF	Histology Histomorphometry
Sánchez-Garcés <i>et</i> al., 2017 ⁴³	Mandible peri-implant bone defect*	3 months	cADSCs/ TCP- fibronectin	Histology Histomorphometry
Shafeian <i>et al.,</i> 2017 ⁴⁴	Mandible critical size bone defect*	8 weeks	PRP-assisted hADSCs/ HA-TCP	Histology, Histomorphometry µCT 2D radiographies
Wang <i>et al.,</i> 2018 ⁴⁵	Mandible peri-implant bone defect*	12 weeks	Alveolar cBMSCs/ b-TCP	Histology Histomorphometry BIC
Washio <i>et al.,</i> 2018 ⁴⁶	Mandible peri-implant bone defect*	11 weeks	cPDLSCs sheets	Histology, Histomorphometry
Ovine models				
Ardjomandi <i>et al.,</i> 2015 ⁴⁷	Sinus lift	16 weeks	oMSCs/ BBM	Histology, Histomorphometry

Tissue Engineering Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Downloaded by K.U.Leuven from www.liebertpub.com at 05/16/21. For personal use only.

43

				44
Collogo et al	Mandible		oBMSCs/	Histological
2015 ⁴⁸	segmental	32 weeks	autologous	Histomorphometry
2015	bone defect*		serum	CT/ µCT
	1			

*: acute defect model; **: chronic defect model; ***: acute-chronic defect model.

pUC-MSCS: porcine umbilical cord-mesenchymal stem cells; **PLGA:** poly-co-glycolic acid; **CT:** computed tomography; **3D:** tridimensional; **pBMPCs:** porcine bone marrow progenitor cells; **b-TCP:** beta tricalcium phosphate; **hDPSCs:** human dental pulp stem cells; **pASCs:** porcine adipose-derived stromal/stem cells; **μCT:** micro-CT; **pMSCs:** porcine marrow stem cell; **pBMSCs:** porcine bone marrow stem cells; **DBM:** demineralized bone matrix; **hADCs:** human adipose-derived cells; **HA:** hydroxyapatite; **TCP:** tricalcium phosphate; **cBMSCs:** canine bone marrow stem cells; **BMP2:** bone morphogenetic protein 2; **dPDLSCs:** dog periodontal ligament stem cells; **cADCs: canine** adipose-derived cells ; **rhPDGF:** recombinant human platelet derived growth factor; **CLSM:** confocal laser scanning microscopy; **GFP:** green fluorescence protein; **FDB:** freeze-dried bone; **2D:** bidimensional; **EPCs:** endothelial progenitor cells; **VEGF:** vascular endothelial growth factor; **PRP:** platelet rich plasma; **hADSCs:** human adipose derived stem cells; **BIC:** bone to implant contact; **cPDLSCs:** canine periodontal ligament stem cells; **oMSCs:** ovine mesenchymal stem cells; **BMM:** bovine bone mineral; oBMSCs: ovine bone marrow stem cells.

Table 3. Periodontium regeneration.

AUTHOR/YEAR	CLINICAL	FOLLOW-	CELLS/SCAFFOLD	ASSESSMENT
	CONTEXT	UP		
Porcine models				
Cao <i>et al.,</i> 2015 49	Mesial mandible and maxillary first molar 3 walls bone defect***	12 weeks	hPDLSCs transfected with HGF	Clinical examination Histology Histomorphometry CT
Fawzy El-Sayed <i>et al.,</i> 2015 ⁵⁰	Mesial mandible and maxillary premolar- molar 3 walls bone defect***	16 weeks	pMSCs/ (HyA- sECM)	Clinical examination Histology CT
Liu <i>et al.,</i> 2015 ⁵¹	Mesial mandible first molar 3 walls bone defect***	12 weeks	Injected IGFBP5- hMSCs	Clinical examination photography histology
Hu <i>et al.,</i> 2016 ⁵²	Mesial mandible and maxillary first molar 3 walls bone defect***	12 weeks	hDPSCs sheets or injection	Clinical examination Histology CT

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

				46
	Mandible third premolar and			Histology
Basan <i>et al.,</i>	first molar		pPDLSCs/	Fluorescence
2017 ⁵³	class II	120 days	collagen	microscopy
	furcation			Histomorphometry
	defect*			insteller prometry
	Mesial			Clinical examination
	mandible first			Histology
Li <i>et al.,</i> 2018 ⁵⁴	molar 3 walls	12 weeks	hSCAPs	
	bone			Histomorphometry
	defect***			СТ
	Mesial			Clinical examination
	mandible first	12 weeks	SFRP2-hSCAPs	Histology
Li <i>et al.,</i> 2019 ⁵⁵	molar 3 walls			
	bone			Histomorphometry
	defect***			СТ
	Mandible			Histology
Venkataiah <i>et</i>	premolars		pADMPC/ fibrin	
al., 2019 ⁵⁶	class II	4 weeks	gel complex	Histomorphometry
	furcation			μCT
	defect*			
Canine models				
	Tooth		cPDLSCs/	
Lee <i>et al.,</i> 2015 ⁵⁷	reimplantation		decellularized	Histology
	onto maxillary	8 weeks	dental root +	uСТ
	extraction		(CaP)-fibronectin	μοι
	socket		coating	
Nagahara <i>et al.,</i>	Mandible first,	8 weeks	cBMMSC/	Histology

				47
2015 58	second and		atelocollagen-b-	Immunohistochemistry
	third		ТСР	TRAP
	premolars			Histomorphometry
	class III			
	furcation			
	defect***			
	Mandible		cBMSCs/HA-	Histology
Liu at al 2016 ⁵⁹	alveolar	6 months	collagen	Histomorphomotry
Liu <i>et ul.,</i> 2010	buccal plate	omontins	U U	mstomorphometry
	defect*			μCT
			ESEHT- PAB	
Luo <i>et al.,</i> 2016	Mandible class		/ not specified	Histology
60	Il furcation	8 weeks	two graft	Histomorphometry
	defect***		materials	, , , , , , , , , , , , , , , , , , , ,
			materiale	
	Mandible and			
	maxillary third			
7hu at a/ 2017	premolar,		Data dafansin 2	Histology
2nu <i>et di.,</i> 2017 ₆₁	fourth	8 weeks	Beta-derensin-3-	Histology,
	premolar and		CPDLCS sneets	immunonistochemistry
	first molar			
	defect**			
	Mandible			
	second			Hstology
Shi <i>et al.,</i> 2018 ⁶²	premolars	12 weeks	hPDLCs/ BCP	flurescence
	buccal plate			microscopy µCT
	dehiscence*			
Rezaei <i>et al.,</i>	Mandible and	8 weeks	GFP transfected	Histology
		1		

				48
2019 ⁶³	maxillary		cBMMSCs/ fibrin	Histomorphometry
	premolars		glue and PRP	
	class II			
	furcation			
	defect*			
Zhou <i>et al.</i> 2019	Mandible	2 weeks	TRL2-	Histology
64	defect**		cBMSCs/collagen	μCΤ
Ovine model		I		
Vaquette <i>et al.</i> 2019 ⁶⁵	Mandible premolar- molar buccal plate dehiscence*	10 weeks	oPDLSCs and oBMSCs sheets/ polycaprolactone biphasic scaffold	Histology Histomorphometry µCT

*: acute defect model; **: chronic defect model; ***: acute-chronic defect model.

hPDLSCs: human periodontal ligament stem cells; HGF: hepatocyte growth factor; CT: computed tomography; pMSCs: porcine mesenchymal stem cells; HyA-sECM: hyaluronic acid-synthetic extracellular matrix; IGFBP5: insulin like growth factor binding protein 5; hMSCs: human mesenchymal stem cells; pPDLSCs: porcine periodontal ligament stem cells; hSCAPs: human stem cells from apical papilla; SFRP2: secreted frizzled-related protein 2; pADMPC: adipose-derived multi-lineage progenitor cells; µCT: micro computed tomography; cPDLSCs: canine periodontal ligament stem cells; CaP: calcium phosphate; cBMMSC: canine bone marrow mesenchymal stem cells; b-TCP: beta tricalcium phosphate; TRAP: tartrate-resistant acid phosphatase; cBMSCs: canine bone marrow stem cells; HA: hydroxyapatite; ESEHT: extraction socket early healing tissue stem cells; PAB: proper alveolar bone; cPDLCs: canine periodontal ligament cells; BCP: biphasic calcium phosphate; GFP: green fluorescent protein; PRP: platelet rich plasma; TRL2: toll-like receptor 2; oPDLSCs: ovine periodontal ligament stem cells; oBMSCs: ovine bone marrow

Tissue Engineering

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof.

stem cells

Table 4. Dentin-pulp complex regeneration.

AUTHOR/YEAR	CLINICAL	FOLLOW-	CELLS/SCAFFOLD	ASSESSMENT
	CONTEXT	UP		
Porcine models	;		I	
	Partial pulp			
	regeneration on			Histology
Manaiana at	mature multi-	3 weeks	pDPCs/ nanopeptide hydrogel	Immunohistochemistry Histomorphometry
\sim 2017 66	rooted			
al., 2017	posterior			
	mandible and			μСТ
	maxillary teeth*			
Zhu <i>et al.,</i> 2018 ⁶⁷	Total pulp regeneration on mature multi- rooted posterior mandible and maxillary teeth*	4 moths	pDPSCs/ HyA or Collagen hydrogel	Histology Immunohistochemistry 2D radiographies
Canine models				
Chen <i>et al.,</i> 2015 ⁶⁸	Total pulp regeneration on mature upper premolars and lower double- rooted premolars*	8 weeks	cDPSCs/ PRF granules	Histology Histomorphometry
Murakami <i>et</i>	Total pulp	2 weeks	(G-CSF)cMDPSCs,	Histology

50

Characteristics of large animal models for current cell-based oral tissue regeneration. (DOI: 10.1089/ten.TEB.2020.0384) This paper has been peer-reviewed and accepted for publication, but has yet to undergo copyediting and proof correction. The final published version may differ from this proof. Downloaded by K.U.Leuven from www.liebertpub.com at 05/16/21. For personal use only. Tissue Engineering

Page 51 of 54

					51
	al., 2015 ⁶⁹	regeneration on		(G-CSF)cMBMSCs,	Histomorphometry
		mature upper		(G-CSF)cMADSCs	In situ hybridization
		and lower		/ atelocollagen	Immunohistochemistry
		incisors*			
-	lohara <i>et al.,</i> 2016 ⁷⁰	Total pulp regeneration on mature lower	180 days	(G-CSF)cMDPSCs/ atelocollagen	Histology MRI
		third incisors*			
	Jia <i>et al.,</i> 2016 71	Partial pulp regeneration on immature upper and lower premolars*	10 weeks	SIM + cDPSCs +absorbable gelatin sponge	Histology 2D radiographies
	Bakhtiar <i>et al.,</i> 2017 ⁷²	Pulp chamber floor perforation on mature upper and lower premolars*	3 months	cDPSCs/TDM or TCP	Histology Histomorphometry
	El Ashiry <i>et</i> al., 2018 ⁷³	Total pulp regeneration on immature necrotic upper incisors with periapical periodontitis**	4 months	cDPSCs / chitosan hydrogel + VEGF- 2, PDGF, NGF, BMP7	Histology 2D radiographies

				52
lohara <i>et al.,</i> 2018 ⁷⁴	Total pulp regeneration on mature upper and lower incisors*	12 weeks	cMDPSCs with DLA/atelocollagen	Histology Blood tests Urine tests
El-Zekrid <i>et</i> <i>al.,</i> 2019 ⁷⁵	Partial pulp regeneration on mature upper and lower multi-rooted teeth*	9 weeks	Injected cBMSCs	Histology

*: acute defect model; **: chronic defect model; ***: acute-chronic defect model.

pDPC: porcine dental pulp cells; **μCT:** micro computed tomography; **pDPSCs:** porcine dental pulp stem cells; **HyA:** Hyaluronic acid; **2D:** bidimensional; **PRF:** platelet rich fibrin; **(G-CSF)cMDPSCs:** granulocyte-colony stimulating factor mobilized dental pulp stem cells; **(G-CSF)cMBMSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** granulocyte-colony stimulating factor canine mobilized bone marrow stem cells; **(G-CSF)cMADSCs:** protein-7; **DLA:** dog leukocyte antigen; **cBMSCs:** canine bone marrow stem cells.

Downloaded by K.U.Leuven from www.liebertpub.com at 05/16/21. For personal use only

52

Table 5. Tooth/ too	th root regeneration.
---------------------	-----------------------

	CLINICAL	FOLLOW-	CELLS/SCAFFOLD	ACCECCIMENIT
	CONTEXT	UP		ASSESSIVILIVI
Porcine models				
Chen <i>et al.,</i> 2015 ⁷⁶	Tooth root regeneration on lower premolar region	12 weeks	GFP transfected pDFCs/TDM	Histology Immunohistochemistry µCT
Luo <i>et al.,</i> 2015 ⁷⁷	Tooth root regeneration on lower premolar region	6 moths	pDFCs/TDM	Clinical examination 2D radiographies Histology Immunohistochemistry µCT
Gao <i>et al.,</i> 2016 ⁷⁸	Tooth root regeneration on lower incisors region	6 months	hDPSC + hPDLSC sheets/HA-TCP	Clinical examination CT/ µCT Biomechanical tests Elemental analysis
Yang <i>et al.,</i> 2016 ⁷⁹	Whole tooth regeneration on lower premolar and molar	13,5 months	pDPSCs + epithelial cells from gingiva/ gelatin- chondroitin- hyaluronan	Histology Immunohistochemistry 2D radiographies
Zhang et al.,	Whole tooth	6 months	pECs+hDPCs +	Histology

				54
2017 80	regeneration		hUVEC/ dTBs	Immunohistochemistry
	on lower			μСТ
	canine and			
	premolar			
	region			
	Whole tooth		Re-associated	
	regeneration	150 days	human tooth	Histology
Wu et al., 2019	on upper		germs cells and	Immunohistochemistry
81	incisor, canine		systemically	СТ
	and premolar		infused	СВСТ
	region		hBMMSCs	
Canine model				
	Whole tooth	180 days		Histology
	regeneration	(+ 30 days of orthodontic	Canine tooth buds cells	СВСТ/µСТ
0no <i>et al.,</i> 2017 ⁸²	on lower			SEM
	premolar			Epergy-dispersive V-
	region	treatment)		ray spectroscopy

GFP: green fluorescent protein; **pDFCs**: porcine dental follicles cells; **TDM**: treated dentin matrix; **μCT**: micro computed tomography; **2D**: bidimensional; **hDPSC**: human dental pulp stem cells; **hPDLSC**: human periodontal ligament stem cells; **HA-TCP**: hydroxyapatite-tricalcium phosphate; **CT**: computed tomography; **pDPSCs**: porcine dental pulp stem cells; **pECs**: porcine epithelial cells; **hDPCs**: human dental pulp cells; **hUVECs**: human umbilical vein endothelial cells; **dTBs**: decellularized tooth buds; **hBMMSCs**: human bone marrow mesenchymal stem cells; **CBCT**: cone beam computed tomography; **SEM**: scanning electron microscopy.