Received: 31 August 2018

Revised: 2 February 2020

Accepted: 25 June 2020

DOI: 10.1111/jfr3.12651

ORIGINAL ARTICLE

WILEY

Chartered Institution of ~ Journal of
Water and Environmental
Management

Impact of seasonal changes in vegetation on the river model
prediction accuracy and real-time flood control

performance

Evert Vermuyten |

Department of Civil Engineering, KU
Leuven, Hydraulics Section, Heverlee,
Belgium

Correspondence

Prof. Patrick Willems, Department of Civil
Engineering, KU Leuven, Hydraulics
Section, Kasteelpark Arenberg 40, BE-
3001, Belgium.

Email: patrick.willems@kuleuven.be

Funding information

Flanders Innovation & Entrepreneurship;
Agentschap voor innoveren en
ondernemen

1 | INTRODUCTION
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Vicent Wolfs | Patrick Willems

Abstract

The vegetation along a river reach varies throughout a year. Seasonal vegeta-
tion affects the hydrodynamic behaviour of the river system. Accordingly,
flood studies should take this temporal variation into account. This also applies
to real-time flood forecasting and control. This paper studies the impact of sea-
sonal vegetation when considering real-time flood control performance, based
on a model predictive control (MPC) scheme. The scheme makes use of a con-
ceptual river model to limit the computational times, as well as a reduced
genetic algorithm (RGA) for the optimization of the flood control gates. The
impact of seasonal vegetation on the conceptual model accuracy was analysed
and a flexible data assimilation approach developed, to adjust the model pre-
dictions to different vegetation scenarios. This method can successfully
improve the efficiency of a control strategy, by strongly predicting and reduc-
ing the impact of seasonal vegetation changes on river conditions.
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strongly improves the management of these economically
costly natural disasters in comparison to classic program-

In many parts of the world, the number of river floods
have steadily increased during the last decades (EM-
DAT, n.d.; MEA, 2005; MIRA, 2013). The rising urbanisa-
tion (Hawley & Bledsoe, 2011; Huang, Cheng, Wen, &
Lee, 2008; Poelmans, Van Rompaey, Ntegeka, &
Willems, 2011) and the increasing trend of extreme rain-
fall events due to climate change (IPPC, 2014; Lehner,
Doll, Alcamo, Henrichs, & Kaspar, 2006; Vansteenkiste
et al., 2014; Willems et al., 2012) are two ongoing trends
associated with this increase. Intelligent control of river
systems by means of model predictive control (MPC)

mable logic controller (PLC) based control strategies
(Barjas-Blanco et al., 2010; Breckpot, Agudelo, Meert,
Willems, & De Moor, 2013; Chiang & Willems, 2015).
MPC is a model-based approach that uses rainfall fore-
casts and predictions of river flow conditions to optimise
the retention basin regulation, for example, the controlla-
ble gate levels, in real-time, based on a given objective.
Several successful applications of improved reservoir
operation by MPC can be found in the literature (Ficchi
et al., 2016; Galelli, Goedbloed, Schwanenberg, & van
Overloop, 2014; Schwanenberg, Xu, Ochterbeck, Allen, &
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Karimanzira, 2014; Tian, van Overloop, Negenborn, &
van de Giesen, 2015). They use target water levels, flood
volumes, flood durations or even flood damages, and con-
straints on gate movements as objectives.

Recently, Vermuyten, Meert, Wolfs, and Willems
(2018a) presented a successful and fast alternative
approach replacing classic MPC controllers by combining
MPC with a reduced genetic algorithm (RGA). They con-
sider the economic damage cost of flooding, a penalty to
minimise the overtopping of the retention basin dikes and
an additional control objective to keep the water levels in
the retention basins as low as possible. Based on fast con-
ceptual river models (Wolfs, Meert, & Willems, 2015),
RGA-MPC reduces the damage cost between 2 and 31%
for the Demer basin in Belgium in comparison to the cur-
rent PLC based regulation under the assumption of perfect
model predictions. Model-based optimization techniques
such as MPC, however, strongly depend on the accuracy
of the river model applied. Model mismatches and rainfall
forecast errors can have an important impact on the flood
forecast accuracy of these models and consequently on the
flood control performance of MPC (Brandimarte & Di
Baldassarre, 2012; Walker et al., 2003). Uncertainties
related to the hydrodynamic river model components
result in deviations between the predictions used in the
MPC based optimization process and the actual river
system observations. Vermuyten, Meert, Wolfs, and
Willems (2018b) investigated these deviations and the
resulting loss in flood control performance. The proposed
flexible data assimilation approach compensates for on
average 75% of this loss.

Besides model parameter and structure uncertainties,
also changes in the river bed roughness result in devia-
tions between model predictions and observations and
thus in a loss of flood control performance. This river bed
roughness has an important influence on the flow regime
along the river network and differs strongly between win-
ter and summer conditions. In general, the bed rough-
ness depends on several factors (Kummu, 2002;
Moeskops, 2007). One of these factors is the vegetation in
the river bed, which has a strong seasonal variation. An
increased vegetation growth results in a higher bed
roughness and, accordingly, in higher water levels
(De Doncker, 2010). The roughness also depends on the
water depth (Wu, Shen, & Chou, 1999; Zhang, Li, &
Shen, 2013). These effects were studied before and the
seasonality of the river bed roughness coefficient cali-
brated to discharge and water level measurements by
Keupers, Nguyen, and Willems (2015). That research also
shows that even after such calibration large uncertainties
remain.

This paper studies the influence of seasonal vegeta-
tion growth on the real-time flood control performance.
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For this, first the impact of this seasonal vegetation on
the model accuracy of the conceptual model is analysed.
Next, a revised conceptual model is set up that can
account for the temporally varying vegetation growth.
This new conceptual model is then used to assess the
impact of seasonal vegetation on the flood control perfor-
mance. Based on the data assimilation methods pres-
ented in Vermuyten et al. (2018b), the loss in control
performance due to this vegetation uncertainty is tested.

2 | STUDY AREA

This paper focuses on the basin of the Herk river, located
in the north-east of Belgium. The Herk basin can be seen
as a rain-fed system as the river flows are very sensitive
to rainfall. The region has faced many floods of which
the flood of September 1998 was the most severe one.
This flood had an approximate return period of 100 years
and caused a total loss of 16 million EUR (HIC, 2003) in
Belgium. In response to the long history of floods, the
authorities of Flanders have installed several hydraulic
structures and flood retention basins to reduce the flood
risk in this very flood prone region.

The Herk subbasin consists of the rivers Kleine Herk
in the north and Grote Herk in the south (Figure 1). The
inline retention basin has a storage capacity of
700,000 m* and protects the city of Stevoort. The water
flow is regulated by means of three hydraulic structures.
A full hydrodynamic river model of this subbasin has
been implemented by the Flemish Environment Agency
(VMM), based on detailed cross-section data. This model
was implemented in the InfoWorks RS software and
includes the main floodplains, retention basin and
hydraulic structures.

A
SApH Re/temion basin

Herk

A Hydraulic structure
®  QObservation

L 1

1 km

FIGURE 1
with the retention basin, the hydraulic structures and the city of

River network of the Herk study area, together

Stevoort
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3 | MATERIALS AND METHODS

3.1 | Conceptual modelling

The full hydrodynamic river model available in the
InfoWorks RS software for the study area is computation-
ally too slow for optimization applications. Instead, fast
conceptual models created semi-automatically by means of
the Conceptual Model Developer (CMD) tool of Wolfs
et al. (2015) are used. According to the storage cell concept,
the network topology is simplified by dividing the entire
network into distinct units. The resulting surrogate model
or emulator is less detailed than the full hydrodynamic river
model, but computationally much more efficient. Since the
number of locations with water level and discharge obser-
vations available is too limited, direct calibration of the con-
ceptual model to these data is not possible (Meirlaen,
Huyghebaert, Sforzi, Benedetti, & Vanrolleghem, 2001;
Vanrolleghem, Benedetti, & Meirlaen, 2005). Therefore, the
conceptual model is calibrated based on the simulation
results with the full hydrodynamic model. A brief descrip-
tion of the 10 calibration and validation events used in this
study is given in Table 1, together with the maximum total
rainfall-runoff peak discharge. The model was first cali-
brated to the largest recent historical events (E1-E6), where
after the model was validated and fine-tuned based on more
extreme events than the recent historical ones. Two types of
more extreme events were generated: based on synthetic
hydrographs (E7-E), by applying a factor 1,3 to the largest
historical event (E9) and by assuming that the largest his-
torical event is followed by another event of the same mag-
nitude (E10).
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Several successful applications of conceptual models
such as river flood modelling and mapping, integrated
catchment modelling and recently real-time flood control
can be found in the literature (De Vleeschauwer
et al., 2014; Meert, Pereira, & Willems, 2016; Vermuyten
et al., 2018a, 2018b; Wolfs, Tran Quoc, & Willems, 2016;
Wolfs, Van Steenbergen, & Willems, 2012).

In a conceptual model, the river network is schema-
tized by reservoirs interconnected by means of hydraulic
structures. The volume in each reservoir is calculated
based on a mass balance equation and the flows over the
hydraulic structures. These volumes are transformed to
water levels at one or more locations along the river reach
represented by each reservoir by means of hypsometric
curves. The flows over the hydraulic structures and the dif-
ferent control objectives are calculated based on these
water levels. Rainfall-runoff discharges originating from
measured or synthetic hydrographs or hydrological models
serve as inputs to the conceptual river model. In this study,
the probability distributed model PDM (Moore, 1985,
2007) is used as rainfall-runoff model, similar as in the
original full hydrodynamic InfoWorks RS model.

3.2 | Seasonal vegetation

During the years, several roughness formulas have been
defined and values for the coefficients assessed in order
to represent the river bed roughness. This study makes
use of the Manning's roughness coefficient, which is used
in the InfoWorks RS models of the Demer basin to model
the river bed roughness. The bed roughness does not only

TABLE 1 Overview of the 10 calibration and validation events with total rainfall-runoff peak discharges for the Herk study area
Total rainfall-runoff

Event Description peak discharge (m>/s)
El Sept 1998 Historical period of heavy rainfall. 46
E2 Aug 2003 Historical period of drought, followed by a small rainfall event. 25
E3 Dec 1999-Jan 2000 Historical period of heavy rainfall. 30
E4 Jan-Feb 1995 Historical period of heavy rainfall. 27
E5 Jan-Feb 2002 Historical period of heavy rainfall. 30
E6 Nov 2010 Historical period of heavy rainfall. 35
E7 Synthetic hydrograph Synthetic hydrograph starting with a very dry period, followed by a 42

VMM heavy rainfall event, developed by VMM.
E8 Synthetic hydrograph Synthetic hydrograph with a return period of 1,000 year, developed by 74

T1000 VMM.
E9 Sept 1998 x 1.3 Artificial period of heavy rainfall, created by multiplying the historical 93

period of Sept 1998 with a factor of 1.3.

E10 2 X Sept 1998 Artificial period of heavy rainfall, created by duplicating the historical 62

event of Sept 1998 in time.
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have a spatial variation, but also a temporal variation and
is moreover dependent on the water depth. This study
focuses on the temporal variation, which cannot be auto-
matically considered in the InfoWorks RS modelling soft-
ware. In order to consider different vegetation scenarios,
different InfoWorks RS models with adjusted settings for
the Manning coefficient have to be used.

In a conceptual model, the river bed roughness can-
not be changed directly. In order to consider a different
vegetation scenario, the Manning's roughness coeffi-
cients have to be changed in the InfoWorks RS model
and the conceptual model needs to be recalibrated
based on the simulation results with this adjusted
model.

The conceptual models considered on the basis of the
real-time flood control are calibrated based on the
InfoWorks RS models with average vegetation growth
settings. In this way, the conceptual models are supposed
to be usable throughout the whole year. The effect of this
approximation is investigated in the results section.

3.3 | Model predictive control and
reduced genetic algorithm

The RGA-MPC approach developed by Vermuyten
et al. (2018a) for real-time flood control applies model
predictive control (MPC) to the fast conceptual river
model in combination with a reduced genetic algo-
rithm (RGA) for optimising the future gate positions.
This optimization minimises the flood damage along
the river network based on the conceptual model pre-
dictions of the future system states. This allows the
controller to anticipate on future rainfall and flow con-
ditions while taking the interactions between the dif-
ferent hydraulic structures into account. This proactive
MPC controller outperforms the local reactive PLC
based control strategy, as shown in Vermuyten
et al. (2018a).

The RGA heuristic optimization method considers
only a subset of the possible gate operation positions at
future time moments as optimization variables, strongly
reducing the number of possible solutions. Each RGA
optimization starts with an update of the initial condi-
tions of the prediction model in order to represent the
actual system states. The algorithm then generates possi-
ble future control strategies, so-called gate level
(GL) scenarios. These GL scenarios are generated ran-
domly or the best control strategy so far is mutated. Each
newly generated control strategy is applied to the concep-
tual river model and the results are compared with those
of the best regulation so far. The best control strategy
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with respect to the control objectives is selected and used
during the next iteration until the stopping criteria are
being met. This RGA converges faster towards a near-
optimal solution than a standard genetic algorithm. More
details about the RGA-MPC technique can be found in
Vermuyten et al. (2018a).

3.4 | Data assimilation

Due to its receding horizon strategy, MPC has some “inher-
ent robustness” towards uncertainties (De Nicolao,
Magni, & Scattolini, 1996; Magni & Sepulchre, 1997;
Mayne, Rawlings, Rao, & Scokaert, 2000). The impact of
large uncertainties will, however, be unacceptable as this
inherent robustness is limited. Therefore, an efficient real-
time control system should not only consist of an efficient
optimization algorithm, but also of efficient model updating
and uncertainty propagation techniques (Sarma, Durlofsky,
Aziz, & Chen, 2006). Data assimilation (DA) methods sys-
tematically eliminate the deviations between predictions
and observations (Hutton, Kapelan, Vamvakeridou-
Lyroudia, & Savic, 2014a, 2014b; Hutton, Vamvakeridou-
Lyroudia, Kapelan, & Savic, 2011; Liu et al., 2012). They are
also often applied in real-time flood forecasting systems.

State estimators update the initial states of the river
model to match observations and improve the prediction
accuracy of the river model. This improvement will, how-
ever, wash out with increasing lead time (Madsen &
Skotner, 2005). Therefore, it is recommended to use these
state estimators in combination with prediction error
methods (Vermuyten et al., 2018b). Prediction error
methods apply an error correction scheme to the forecast
simulation based on an analysis of the past model resid-
uals in order to improve the prediction accuracy. Figure 2
shows the flowchart of the reduced genetic algorithm
with data assimilation.

This paper analyses the performance of several state
estimators and predictions error methods with respect to
seasonal vegetation uncertainty. Considered state estima-
tors are: instant updating IU, total instant updating TIU
(Vermuyten et al., 2018b), the well-known moving hori-
zon estimator MHE (Haseltine & Rawlings, 2005; Liu
et al., 2012; Rawlings & Bakshi, 2006) and the ensemble
Kalman filter EnKF (Evensen, 1994). Considered predic-
tion error methods are two prediction error models of
Van Steenbergen, Deschamps, Willems, Boeckx, and
Mostaert (2013) PEM1 and PEM2 and the recently intro-
duced flexible prediction error method Flex PEM by
Vermuyten et al. (2018b). For a detailed description of
these data assimilation methods, the reader is referred to
Vermuyten et al. (2018b).
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FIGURE 2 Flowchart of the reduced genetic algorithm with
data assimilation (blue). (WL refers to water level; and GL to gate
level)

3.5 | Real-time control performance
Vermuyten et al. (2018b) tested the above data assimi-
lations methods with respect to hydrodynamic model
uncertainty. This paper combines these methods with
MPC in order to investigate their effect on the real-time
control performance when considering vegetation
uncertainty. Their performance is compared against
two benchmarks: ideal MPC and no DA. Ideal MPC
represents the best obtainable solution as the controller
has perfect knowledge about the future system states.
No DA introduces vegetation uncertainty in the control
problem by considering a different vegetation scenario
in the conceptual model used for the optimization than
in the model representing the actual river system. No
DA is used as a second benchmark as it represents an
MPC regulation without feedback from observations.
MPC DA also introduces vegetation uncertainty, but
data assimilation methods are considered in order to
reduce the performance loss due to this uncertainty.
The following formula is used to evaluate the perfor-
mance of the different data assimilation methods,
based on the total damage costs of the MPC
optimizations:
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D -D
PI= ( no DA MPC DA) +100 (1)
(Dno DA _DideaIMPC)

with PI the performance improvement [%] and D the
total damage cost [€] (Vermuyten et al., 2018a). A good
data assimilation method will have a performance
improvement close to 100%, which means that the loss in
control performance due to the vegetation uncertainty is
almost completely compensated by the data assimilation
method.

4 | RESULTS

4.1 | Prediction accuracy

In order to investigate the influence of seasonal vegeta-
tion, two vegetation scenarios are considered: average
and summer vegetation growth. The average vegetation
scenario was already modelled by the original InfoWorks
RS model and the corresponding conceptual model. For
the summer vegetation scenario, the Manning coeffi-
cients in the InfoWorks RS model are increased to model
the increased vegetation growth and thus bed roughness.
The conceptual model is recalibrated based on the simu-
lation results of this modified InfoWorks RS model.
Three events are considered: events E1, E7, and E8. Dur-
ing the recalibration process, the hydraulic structure
parameters and hypsometric curves are adjusted, while
the model structure is preserved.

The purpose of the model accuracy assessment pres-
ented in this section is twofold. In the first place, the loss
in model accuracy towards seasonal vegetation is investi-
gated. Second, it is tested if a quick recalibration of the
conceptual model in which the model structure is pre-
served is capable of reducing this accuracy loss or whether
a complete recalibration is required. For this, three differ-
ent accuracy assessments are conducted. First, the model
accuracy of the original conceptual model, with average
vegetation growth, is assessed in comparison to the origi-
nal InfoWorks RS model, also with average vegetation
growth. Second, the accuracy of the original conceptual
model is assessed in comparison to the modified
InfoWorks RS model with summer vegetation growth.
Finally, the accuracy of the recalibrated conceptual model,
with summer vegetation growth, is assessed in comparison
to the InfoWorks RS model with summer vegetation
growth. Table 2 summarises the considered models for
these three model accuracy assessments.

The model accuracy assessment consists of a compari-
son between the water levels in the conceptual model
with those in the detailed InfoWorks RS model. Figure 3
presents the results of the three model accuracy
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assessments when applying the PLC based regulation
obtained in InfoWorks RS as a time series in the concep-
tual model. The left graph of Figure 3 shows the model
error of the maximum water level at all modelled loca-
tions for the three considered calibration events, while
the right graph analyses the model error in the full 5-min
water level time series by means of the root-mean-square
error (RMSE). A distinction is made between water level
locations in the river reaches and in the floodplains.

The model accuracy of the conceptual model with
average vegetation growth, evaluated after comparison
with the InfoWorks RS model with average vegetation
growth is discussed in Vermuyten et al. (2018b). It was
concluded that the conceptual model is a good represen-
tation of the detailed InfoWorks RS model. Therefore,
model accuracy assessment MO is used as a reference,
representing a good model accuracy.

Model accuracy assessment M1 compares the simulation
results of the conceptual model representing average vegeta-
tion growth with those of the InfoWorks RS model with sum-
mer vegetation growth. It is clear from Figure 3 that the
model accuracy strongly deteriorates in this case; the error of
the maximum water level and the RMSE both strongly
increase. In general, the conceptual model tends to underes-
timate the maximum water levels in the system, as can be
seen from the left graph in Figure 3. It is concluded that the
original conceptual model is not able to cover the impact of
summer vegetation on the river system behaviour.

In order to improve the model accuracy for summer
vegetation growth, the conceptual model is recalibrated
based on the simulation results of the InfoWorks RS

TABLE 2 Overview of the considered models for the three
model accuracy assessments with respect to seasonal vegetation

Conceptual model InfoWorks RS model
MO Average vegetation Average vegetation
M1 Average vegetation Summer vegetation
M2 Summer vegetation Summer vegetation
40 60
5 o = 40
=
= S,
: 3
£ =
S -40 © 20
L
-80 0
Floodplains River

Floodplains
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model with summer vegetation growth. The conceptual
model structure is persevered from the original concep-
tual model. Model accuracy assessment M2 compares the
results of this recalibrated conceptual with those of the
InfoWorks RS model with summer vegetation growth. It
can be seen from Figure 3 that the acquired model accu-
racy is much better than in accuracy assessment M1 and
slightly worse than in MO. When comparing accuracy
assessment M2 with MO, a higher model accuracy is
expected in M2 as the concerning conceptual model is
specifically calibrated for the three considered events,
while in MO the conceptual model is calibrated for
10 events. On the other hand, however, the conceptual
model structure in M2 is not optimised for the river sys-
tem behaviour with summer vegetation growth, which is
expected to result in a lower model accuracy for M2. In
general, the obtained model accuracy in M2 and MO is
very similar. It is concluded that the recalibrated concep-
tual model is able to represent the river system behaviour
with summer vegetation growth. Accordingly, a quick
recalibration of the original conceptual model is suffi-
cient to account for summer vegetation growth. The
model structure does not need to be optimised, but can
be retained from the original conceptual model.

4.2 | Real-time flood control
performance

The previous section has shown that the original concep-
tual model is not able to adequately represent the river
system behaviour during periods of summer vegetation
growth. This section analyses the real-time flood control
performance of MPC when the conceptual model with
average vegetation growth is used in the optimization
process during periods of summer vegetation in the
actual river system. For this, closed-loop optimizations
are performed in which the original conceptual model
(average vegetation growth) is used as prediction model

FIGURE 3 Conceptual
model error assessments (MO,
M1, and M2) considering the
full hydrodynamic InfoWorks
RS models as reference: Error in
the maximum water levels (left
graph) and root-mean-square
error (RMSE) of the continuous
5-min water level series (right
graph) in floodplains and river
reaches after PLC regulation.
Note: to make the graphs more

River legible, outliers were not plotted
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while the recalibrated conceptual model (summer vegeta-
tion growth) represents the actual river system. Several
data assimilation methods are considered in order to take
the model uncertainty due to seasonal vegetation into
account.

Figure 4 shows the performance improvement of the
different data assimilation methods averaged over the
eight damage relevant events for the Herk study area and
the total damage cost reduction by each data assimilation
method summed over the events. A performance improve-
ment of 0% corresponds to MPC without data assimilation,
while a performance improvement of 100% corresponds to
ideal MPC. In ideal MPC, the conceptual model with sum-
mer vegetation growth is also used for the prediction
model, which results in perfect system knowledge and rep-
resents the best attainable solution. Rainfall forecast
uncertainty is not considered in this analysis.

It can be noticed that for both the MHE and the
EnKF, the combinations with respectively PEM2 and
PEM1 result in a slightly higher average performance
improvement, but a lower total damage cost reduction.
This indicates that the combinations with PEM2 and
PEM1 perform in general better for less severe flood
events with a low damage cost, while the data assimila-
tion methods with only a state estimator perform better
for severe flood events with a high damage cost. Further-
more, similar performance improvements are obtained
with these data assimilation methods as with IU
and TIU.

Most data assimilation methods have an average per-
formance improvement of around 50%. Combining the
MHE or EnKF with the flexible PEM, however, results in
a strong increase in real-time flood control performance.
The average performance improvement of these two
methods is close to 80% and the total damage cost reduc-
tion is almost twice as high as those of the other data
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assimilation methods. Also for each individual event, the
combination of the MHE or EnKF with the flexible PEM
strongly increases the performance improvement and
shows the best real-time control performance. Based on
these results, it is concluded that these two methods out-
perform the other data assimilation methods. This con-
firms the conclusions made in Vermuyten et al. (2018b)
with respect to hydrodynamic model uncertainty. The
reason for this improved real-time control performance is
the more thorough analysis of the hindcast period by the
flexible PEM and the selection of an appropriate predic-
tion error model. Especially during periods of severe
flooding, this approach shows clear benefits in compari-
son to the other considered data assimilation methods.

In general, all data assimilation methods with the
EnKF result in a better real-time control performance
than the corresponding ones with the MHE. Further-
more, the computational time of the EnKF is lower than
that of the MHE. Therefore, the combination of the
EnKF and the flexible PEM is selected as the most appro-
priate data assimilation method to take model uncer-
tainty due to seasonal vegetation into account. Based on
real-time observations, this approach compensates on
average for 80% of the real-time control performance loss
due to seasonal vegetation. In this way, the conceptual
model representing average vegetation growth can be
used throughout the whole year and there is no need to
make use of a recalibrated model. Accordingly, there is
no need to foresee a bank of models representing differ-
ent vegetation scenarios and there is no need to switch
between these different models as the data assimilation
approach automatically adjusts for the current vegetation
scenario. An additional advantage is that also the spatial
variation of the vegetation is automatically corrected by
the data assimilation method. The combination of differ-
ent vegetation scenarios along the river network would

Total damage
reduction by DA [€]

U o 320 000
TIU o 270 000
MHE o 320 000
MHE + PEM2 o 260 000
MHE + Flex PEM o 680 000
FIGURE 4 Average performance
improvement for eight different data EnKF o 390 000
assimilation (DA) methods to account EnKF + PEM1 o 330 000
for seasonal vegetation, together with EnKF + Flex PEM o 730 000
the summed total damage cost reduction
by the data assimilation method, for the 6 1(') 0

eight damage relevant events

Average performance improvement [%]
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FIGURE 5 Relative and absolute

MPC DA Ideal MPC total damage cost reduction by ideal
E1 00 1130000 1170000 MPC and MPC DA in comparison to the
PLC based control strategy when
E3 © 75 0 considering seasonal vegetation, for the
E4 o} 57 000 57 000 eight damage relevant events
E5 O 24 000 24 000
E6 o 700 000 702 000
E7 O O 1030000 1120000
E8 o0 1220000 1 350000
E10 o0 1190 000 1 260 000
L J
0 100

Total damage cost reduction [%]

require an immense bank of models, which is impracti-
cal. Different vegetation scenarios along the river net-
work are, however, detected by the data assimilation
method and an appropriate correction is applied at each
location. Also the variation depending on the water depth
is most likely to be automatically accounted for by the
data assimilation method.

Figure 5 analyses the damage cost reduction by MPC
in comparison to the current PLC based control strategy.
Two MPC controllers are considered: ideal MPC, rep-
resenting the best attainable solution by MPC, and MPC
DA, in which the EnKF is applied in combination with
the flexible PEM to account for model uncertainty due to
seasonal vegetation. A damage cost reduction of 100%
corresponds to a total damage cost of 0 EUR, while a
damage cost reduction of 0% corresponds to the damage
cost after applying the PLC based regulation.

For the less severe flood events (E3-E6), ideal MPC as
well as MPC DA result in a damage cost reduction close
to 100%. This means that no or only limited flooding
occurs during these events when applying MPC. Only for
event E3, MPC DA performs worse than the PLC based
regulation, which has a damage cost close to 0 EUR. Due
to the model uncertainty, however, MPC DA leads to a
small damage cost of only 75 EUR, which is of course
negligible. As the damage cost of the PLC based regula-
tion is very low, this results in a large relative damage
cost increase. Situations like these can be avoided by
adapting the control objectives to provide some extra
margin towards the occurrence of flood damage. Never-
theless, it can be concluded that for these four events
MPC DA approaches the performance of ideal MPC as
the impact of the seasonal vegetation is almost
completely compensated for by the data assimilation
method.

For the more severe flood events (E1, E7, E8, and
E10), the introduction of seasonal vegetation results in a

larger loss in real-time control performance. The applied
data assimilation approach, however, strongly reduces
this loss, as shown in Figure 4. This results in high dam-
age cost reductions by MPC DA in comparison to the
PLC based regulation, as can be seen in Figure 5. Of
course, these reductions are lower than in the case of
ideal MPC, but the differences are limited thanks to the
applied data assimilation method.

In general, MPC DA reduces the loss in real-time con-
trol performance due to seasonal vegetation by means of
data assimilation and outperforms the current PLC based
control strategy for all considered events.

5 | CONCLUSIONS

This study focused on the impact of model uncertainty
due to seasonal vegetation growth, on the prediction
accuracy and real-time flood control performance. Dur-
ing summer, an increase in vegetation results in a higher
river bed roughness and consequently higher water
levels. Seasonal vegetation can lead to inaccurate model
prediction errors and lead to a deterioration of the con-
ceptual model accuracy. In order to take the summer veg-
etation growth into account, a new conceptual model
was calibrated based on the results of a detailed
InfoWorks RS model with adjusted roughness coeffi-
cients. A quick recalibration of the existing conceptual
model in which the original model structure was retained
turned out to be sufficient to achieve a good level of
model accuracy. The influence of seasonal vegetation on
the real-time flood control performance can be limited by
applying an appropriate data assimilation approach. The
combination of the moving horizon estimator or the
ensemble Kalman filter with the flexible prediction error
method reduces on average 80% of the damage loss due
to seasonal vegetation. Consequently, there is no need to
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switch between different models for different vegetation
scenarios as the conceptual model which represents aver-
age vegetation growth can be used throughout the whole
year in combination with data assimilation. Moreover,
data assimilation can automatically correct the spatial
variability of the vegetation. Despite a small loss in real-
time control performance due to seasonal vegetation,
MPC still strongly outperforms the current PLC based
control strategy thanks to data assimilation.
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