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Abstract

Building integrated photovoltaic (BIPV) systems provide an opportunity for

renewable energy generation in the built environment. In order to quantify

the BIPV potential, numerical models of varying levels of complexity have

been developed. This paper investigates how the complexity of BIPV mod-

els affects their predictions. The study starts with a detailed multi-physics

BIPV model that combines a high-resolution one-diode model with physics-

based thermal and airflow models. Next, simplifications are introduced into

the model. The model predictions are compared to experimental data from a

BIPV curtain wall installed in a test building in Leuven, Belgium. The results

show that the detailed BIPV model is capable of estimating the BIPV daily

energy yield with an average difference of 6.2 % (2.0 % for clear sky days)

and the back-of-module temperature with an average difference of 1.74 ◦C.

The use of a linear power model instead of a high-resolution one-diode model

affects the average differences, but not significantly: 8.7 % for daily energy
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yield predictions (4.5 % for clear sky days) and 1.71 ◦C for temperature pre-

dictions. The use of two different empirical temperature correlations instead

of a physics-based approach increases the average temperature difference to

3.5 and 4.4 ◦C. The average difference in daily energy yield increases to 10.2

and 10.4 %, respectively (5.9 and 5.5 % for clear sky days). These findings

indicate that the detailed version of multi-physics BIPV model provides the

best agreement with experimental data, but it is still possible to reduce the

model complexity with acceptable accuracy.

Keywords: Building integrated photovoltaic (BIPV), Built environment,

Facades, Field data, Solar energy, Renewable energy
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1. Introduction

One of the major challenges concerning the mitigation of climate change

effects is the reduction of the energy consumption and CO2 emissions related

to the building sector. For this reason, the building sector is at the core of

energy policies in several countries [1–3]. Within the European Union (EU),

the Energy Performance of Buildings Directive (EPBD) states that all new

buildings have to comply with the near zero energy building (NZEB) concept

by 2020 [4]. The recent EU Clean Energy package substantiates the targets

for renewable energy and energy efficiency, with a particular focus on energy

performance in buildings [5]. Tackling energy issues in the built environment

generally involves three actions [6]: (1) improving the thermal performance of

the buildings, while (2) providing renewable energy to cover their remaining

energy demand and (3) adopting more energy-efficient end-use appliances.

Photovoltaic (PV) systems are considered a key technology to comply

with building energy regulations [7], contributing to increase the renewable

energy share in the built environment. PV systems are normally used in the

built environment as additional elements attached to the building envelope,

the so-called building applied photovoltaics (BAPV). BAPV modules are

mounted on supporting structures that are, in turn, attached to the building

[8]. BAPVs are often installed on the roof of buildings [8], in an arrangement

that does not necessarily follow the existing architecture [9]. For aesthetic

reasons, BAPVs are not common in building facades [10].

A promising solution to cope with the aesthetic concerns related to BAPV

is the incorporation of PV as a building material, a concept defined as build-

ing integrated photovoltaic (BIPV) [8, 11]. Rather than being added to the
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building, BIPV elements are part of the building envelope, which facilitates

their assimilation into the building architecture [8, 9, 12]. BIPV elements

are fundamentally multifunctional, generating electricity while performing

one or more functions of conventional building elements, such as thermal

insulation, weather tightness, sun shading, and/or acoustic insulation. This

multifunctionality is particularly interesting for building renovations, since

the integration of PV cell/films in high performance building components of-

fers the possibility to improve the building energy performance and increase

the share of renewable energy in the built environment [10, 12, 13].

Over the recent years, a significant research effort has been invested into

the development of BIPV models, as reviewed in [14–17]. Yet, only a few

studies compare different BIPV models. A comparison between BIPV models

for roof applications is presented in [18]; however, the analysis focuses on

thermal aspects only. Guidelines for BIPV modelling and simulation in the

context of building simulations are also scarce in the literature. The work

in [19] describes important phenomena affecting the BIPV performance and

suggests improvements for BIPV modelling. However, these suggestions are

not verified against experimental data. A recent comprehensive report by

the Photovoltaic Power Systems Programme (PVPS) of the International

Energy Agency (IEA) reviews existing tools for BIPV design and simulation

[20]. Their focus is on the BIPV value chain, including BIPV-specific tools

and PV design tools adapted for specific BIPV cases. However, building

performance simulation (BPS) tools are not considered.

The present paper evaluates BIPV models with varying degree of com-

plexity through a systematic comparison to experimental data. The focus
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is on building performance simulations. The comparative analysis starts

with a detailed multi-physics BIPV model proposed previously by the au-

thors [21]. The combination of the following key features distinguishes the

multi-physics BIPV model from BIPV models available in the literature: (1)

high-resolution electrical modelling, enabling the simulating shading effects

inter and intra-module; (2) detailed physics-based thermal and airflow mod-

elling, enabling the simulation of different BIPV configurations; (3) thermal

coupling between the BIPV module and the building indoor environment,

enabling the assessment of the whole building performance.

Next, simplifications are introduced to the detailed multi-physics BIPV

model. The impact of each intervention is quantified and compared to the

experimental data. Both electrical and thermal aspects are analysed. The

first simplification replaces the high-resolution diode-based model by a lin-

ear power model, while the second simplification replaces the physics-based

thermal and airflow model by empirical temperature correlations proposed

in the literature for BIPV facades. A third approach that only considers the

irradiance level and the nominal efficiency of the BIPV module is taken as

reference, as it requires the least amount of information. Additional analyses

quantify the impact of different assumptions for the modelling of shading

effects intra-module, the influence of the maximum power point tracker algo-

rithm on the model predictions, and the impact of increasing the airflow rate

on the BIPV performance. From these analyses, recommendations for BIPV

modelling in the context of building performance simulations are drawn.

The relevance of this analysis lies in the progressive assimilation of dy-

namic building simulations by consulting and engineering companies due
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to the need to comply with building energy regulations and certificates.

The process of designing a building is usually constrained by both time and

data/information availability (at least at the beginning of the process). Given

these constraints, this paper addresses the question of whether it would be

possible to reduce the complexity of BIPV models without compromising its

predictions, and what would be the implications of choosing one modelling

approach over the other. To the best knowledge of the authors, such system-

atic comparison including experimental data to evaluate BIPV models in the

context of building performance simulations has not been presented yet, in

particular, using both electrical and thermal measurements. Another impor-

tant aspect of this paper is the use of experimental data from a real-size BIPV

curtain wall element integrated into a test building. The building integration

guarantees realistic interior and exterior operating conditions (e.g. realistic

outdoor and indoor temperature conditions, realistic wind flow around the

building). Such realistic experimental setup in terms of size and building

integration is not common in BIPV research studies. BIPV setups are not

always real-size BIPV modules, e.g. [22–24], nor part of a realistic building

structure, e.g. [18, 22–26].

The paper is organised as follows. Section 2 describes the BIPV curtain

wall element, including the experimental instrumentation and the measuring

campaign. Section 3 describes the multi-physics BIPV model and compares

the model predictions to the experimental data from the BIPV setup de-

scribed in Section 2. Next, Section 4 investigates how the model complexity

influences its predictions and provides recommendations for BIPV modelling

and simulation. Finally, Section 5 discusses the limitations of this work and
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Section 6 concludes the paper.

2. BIPV experimental setup

2.1. BIPV curtain wall element

The BIPV component investigated in this paper consists of a full-size

curtain wall (CW) element. CW elements are non-load bearing components,

which means that they do not provide structural support to the building.

Instead, a freestanding structural frame constructed with beams and columns

carries the structure load of the building. Such construction type enables

the realisation of multi-story high-rise buildings, which are mostly used for

commercial or office activities. Being able to exploit the facades of buildings

for energy generation has two important advantages. First, the roof area

available for energy generation may not be sufficient to cover the building

energy demand, not only in commercial buildings [27], but also in multi-store

residential buildings [13]. Second, the vertical inclination of building facades

profile a more uniform generation profile over the day, helping to balance the

mismatch between supply and demand [28, 29].

The BIPV-CW was assembled by a facade constructor taking into account

the requirements for building envelope components (air and rain tightness,

thermal insulation, aesthetics, fire resistance, etc.). As indicated in Figure

1a,b, a commercial-size PV module composes the top part of the element,

while a triple-glazing argon-filled window composes the bottom part (see

dimensions in Figure 1d). The BIPV element presents a naturally-ventilated

cavity with lateral ventilation openings, as shown in Figure 1c. To ensure

realistic operating conditions, the BIPV-CW element is integrated into the
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southwest facade of the Vliet test building in Leuven, Belgium (50◦52’ N,

4◦41’ E), as shown in Figure 2a. The Vliet building is an isolated low-rise

building with a rectangular footprint (Figure 2b), mostly free of shading from

the surroundings.

The schematic representation of the BIPV-CW element is presented in

Figure 1d. The following four layers compose the upper part of the BIPV-CW

(from the outside to the inside): glass-glass PV module, air cavity, insulation

panel and plywood panel. The air cavity is 7 cm deep; eight circular openings

(1 cm in diameter each) located at the lateral sides of the frame allow the

ambient air to flow through the cavity (Figure 1c). The insulation consists

of a 15 cm layer of mineral wool. The plywood is 2 cm thick and is used

for finishing purposes. Note that the BIPV-CW element is insulated over its

perimeter to reproduce the realistic situation in which the element is part of

a full building facade.

The PV module used in the BIPV curtain wall is composed of 60 monocrys-

talline silicon (c-Si) solar cells encapsulated in a transparent EVA (ethylene

vinyl acetate) layer at the front and a black EVA layer at the back. The

encapsulated cells are covered by 4 mm glass layers at the front and at the

back. The power output of the module was measured as 244 W under stan-

dard test conditions (STC). The PV module characteristics are summarised

in Table 1.
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Figure 1: The BIPV-CW element: (a) front picture, (b) side picture, (c) ventilation

openings, and (d) front and mid-section schemes of the BIPV-CW element.

Table 1: Characteristics of the PV module.

Measured power at STC (PSTC) 244 WP

PV module area (Amodule) 1.09 x 1.64 m2

Current temperature coefficient (aT) 0.05 %/K

Voltage temperature coefficient (bT) -0.33 %/K

Power temperature coefficient (gT) -0.42 %/K
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Figure 2: (a) The BIPV facade of the Vliet test building with the BIPV-CW indicated by

the yellow rectangle. Note that the facade includes other BIPV modules, which are not

considered in this paper. (b) Surroundings of the Vliet test building (Google maps).

2.2. Instrumentation

The BIPV setup provides measurements to characterise both the weather

conditions and the BIPV performance (measured power and temperature).

The weather dataset is an input to the BIPV model to estimate the BIPV

performance (predicted power and temperature). Predictions of power and

temperature are then compared to the measurements. Table 2 summarises
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the characteristics and accuracy of the measurement equipment. Further

information about the measurements are given next.

2.2.1. Weather conditions

The weather data consists of irradiance, ambient temperature and wind

conditions. A meteorological station on the building roof records the ambient

temperature every one minute (Figure 2b). The wind speed and direction

are recorded every five minutes by a ultrasonic anemometer installed at 10 m

above the ground and approximately 20 m from the BIPV facade (Figure 2b).

The ultrasonic anemometer was replaced by a new one in November 2018. A

pyranometer located next to the BIPV-CW measures the solar irradiance on

the facade every ten seconds (as indicated in Figure 2b, the pyranometer is

installed in a vertical position with its back against the facade). Note that,

in order to be used as input data in the BIPV model, the weather variables

with a time resolution higher than 10 s are interpolated using Akima splines

such that the first derivative is continuous.

2.2.2. BIPV performance

Commercial equipment from Femtogrid Energy Solutions is used to con-

trol the BIPV-CW operation. A Femtogrid Solar Power Optimiser PO330

keeps the module at maximum power point (MPP) and increases the output

voltage to feed the power to the DC/AC Femtogrid Inverter 2400. From the

inverter, the power is injected into the grid. The Femtogrid Inverter 2400 is

rated for an input DC power range between 500-3000 W. Since the output

power of the BIPV-CW element ranges from 0 to 240 W, the inverter oper-

ates below 10 % of the rated input power, resulting in a lower efficiency. For
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Table 2: Characteristics and accuracy of the measurement equipment.

Variable Equipment/Sensor
Time

resolution
Accuracy

Ambient

temperature
Hygroclip 2L 60 s ± 0.2 ◦C

Wind speed

(2004-Nov/2018)

Ultrasonic anemometer

Gill Windmaster
300 s

0-20 m/s 1.5 %

20-35 m/s 1.5-3 %

35-60 m/s 3 %

Wind direction

(2004-Nov/2018)

Ultrasonic anemometer

Gill Windmaster
300 s

<25 m/s ± 2◦

>25 m/s ± 4◦

Wind speed

(Nov/2018-Apr/2020)

Ultrasonic anemometer

Thies Clima
300 s

65 m/s 0.1 m/s rms

>5 m/s 635 m/s 1 % rms

>35 m/s 665 m/s 2 % rms

>65 m/s 685 m/s 3 % rms

Wind direction

(Nov/2018-Apr/2020)

Ultrasonic anemometer

Thies Clima
300 s

>1 m/s 635 m/s ± 1◦

>35 m/s 665 m/s ± 2◦

>65 m/s 685 m/s ± 4◦

Solar irradiance
Thermopile pyranometer

type CMP Kipp & Zonen
10 s <3 %

Surface

temperatures

Thermocouple Type T

Class 1
1 s ± 0.5 ◦C

BIPV power PO330 rated 300 W DC ∼2 s <1%

this reason, the AC energy fed into the grid is not considered in this study.

Instead, this work focuses on the DC power provided by the PV module to

the power optimiser, which is recorded (approximately) every two seconds

(measured by the same equipment).

As presented in Figure 3, the temperature at different positions over the
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BIPV-CW module is monitored using type-T surface contact thermocouples.

The following three surfaces are defined (Figure 3b): (S1) back-of-module

glass surface (inside the cavity); (S2) insulation layer (inside the cavity);

(S3) plywood layer (facing the building interior). On each layer, twelve ther-

mocouples are attached (Figure 3c): five on the right side (R), five on the

middle (M), and two on the left side (L). The thermocouples are distributed

uniformly over the height (4 to 8 in Figure 3a,c). The thermocouples are of

Type T Class 1, with a standard accuracy of ± 0.5 ◦C, as presented in Table

2). All surface temperatures are recorded every second.

Extra care was taken during the installation of the thermocouples. As

recommended in [30–33], the following measures have been taken to mitigate

installation errors: the thermocouples were tightly attached to the surface

(using a small amount of tape) to reduce contact errors, and the wires of the

thermocouples were placed parallel to the respective expected isotherm (at

each vertical position).

2.3. Measuring campaign

Experimental data from five periods are used in this paper, a total of 127

days. The climatic conditions recorded over these periods are summarised

in Table 3. The dataset includes both clear sky and overcast days, as well

as summer and winter conditions. It should be noted that the verification of

physics-based models is less dependent on a large dataset (in opposition to

data-driven modelling approaches).

13



Figure 3: Thermal characterisation of the BIPV-CW element: (a) mid-section view with

vertical identification of thermocouples (see Figure 1d), (b) detail indicating the surfaces

S1, S2 and S3, and (c) Thermocouples network on each of the surfaces S1, S2, and S3.

Table 3: Weather conditions during the measuring campaign.

May/18 Jan/20 Feb/20 Mar/20 Apr/20

Total number of days 24 27 22 26 28

Number of clear sky days 7 3 2 10 17

Solar irradiation

[W/m2]

Average 146.1 83.4 102.0 201.2 285.2

Maximum 907.5 722.1 931.4 981.7 899.6

Ambient temperature

[◦C]

Average 18.9 6.5 8.0 7.7 12.8

Maximum 30.4 13.5 18.2 17.7 25.8

Minimum 3.8 -2.2 -0.9 -2.7 -2.3

Wind speed

[m/s]

Average 0.9 2.3 3.4 2.5 1.7

Maximum 5.0 7.2 10.3 7.0 6.1

14



3. Multi-physics BIPV model

The multi-physics BIPV model combines a high-resolution electrical model

to physics-based thermal and airflow models. The combination of the fol-

lowing key features distinguishes the multi-physics BIPV model from BIPV

models available in the literature: (1) high-resolution electrical modelling,

enabling the simulating shading effects inter and intra-module; (2) detailed

physics-based thermal and airflow modelling, enabling the simulation of dif-

ferent BIPV configurations; (3) thermal coupling between the BIPV module

and the building indoor environment, enabling the assessment of the building

performance. Furthermore, the model was developed as an external building

wall component within IDEAS library, a Modelica-based library for transient

simulations of thermal and electrical systems at both building and feeder level

[34, 35]. The building models available in IDEAS are described in [35], in-

cluding an updated intercomparison with BESTEST and a verification based

on IEA EBC Annex 58.

Figure 4 illustrates the coupling between the electrical and thermal mod-

els is achieved by using the PV temperature (TPV,1, TPV,2, ..., TPV,n) to

calculate the power output in the electrical model, which is in turn imposed

as a heat sink on the PV layer (P1, P2, ..., Pn). The airflow through the

BIPV cavity (ṁ) couples the thermal and airflow models. Figure 4 further

illustrates how the BIPV model is coupled to the building model (Tint,1, Q1;

Tint,2, Q2; ...; Tint,n,Qn). The resulting system of equations is iteratively

solved by the multi-step solver DASSL with a default tolerance of 10E-04 for

the state variables.

The multi-physics BIPV model is based on the modelling approach pre-
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Figure 4: BIPV modelling approach (adapted from [21]).

sented earlier by the authors in [21]. In this previous work by the authors,

the modelling approach was used to model a different BIPV configuration (a

well-ventilated mini-module with 18 c-Si cells). In order to model the poorly

ventilated BIPV-CW in the present work, a new airflow model was devel-

oped. The thermal and electrical models remain the same, but are adapted

to the size and material characteristics of the BIPV-CW element. The next

subsections describe the thermal, airflow and electrical models, focusing on
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aspects that are relevant for the present paper. A detailed description of the

modelling approach can be found in [21].

3.1. Thermal modelling

The BIPV thermal conditions are defined by the balance between the

incoming solar irradiance, the power conversion, the heat transfer to the ex-

terior environment, the heat transfer to the building interior, and the airflow

caused by natural ventilation. Figure 5 shows the main variables and heat

transfer fluxes defining a BIPV control volume in the multi-physics BIPV

model. The control volume includes the PV module, the cavity, and the

building wall (which consists of an insulation layer). Table 4 presents the

material properties used in the simulations.

The exterior heat transfer is composed of convective heat transfer between

the exterior surface and the ambient air (Qc,ext) and radiative heat transfer

between the exterior surface and both the sky dome (Qr,sky) and the ground

(Qr,gr). Similarly, the interior heat transfer is composed of convective heat

transfer between the interior surface and the interior air (Qc,int) and radiative

heat transfer between the interior surface and the other surfaces composing

the building zone (Qr,int). Inside the cavity, convective heat transfer occurs

between the air volume and the cavity surfaces (Qcav,1 and Qcav,2) and ra-

diative heat transfer occurs between the cavity surfaces (Qr,cav). All the heat

exchanges in Figure 5 are described in detail in [21].
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Figure 5: (a) BIPV control volume, where G is solar irradiance, P is power, T is tempera-

ture, Q represents the different heat transfer flux, and ṁ is the airflow rate (not to scale;

adapted from [21]). (b) Main dimensions of one control volume (to scale, for reference).

Table 4: Material properties of the BIPV module.

Glass PV cell Mineral wool

Thickness [m] 0.003 0.0001 0.15

Thermal conductivity [W/mK] 0.96 710 0.036

Specific heat capacity [J/kgK] 750 710 840

Density [kg/m3] 2500 2330 110

Solar absorptivity [-] 0.95 - -

Long-wave emissivity [-] 0.9 - 0.8
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3.2. Airflow modelling

As illustrated in Figure 4, the airflow through the BIPV cavity intercon-

nects the BIPV control volumes. To estimate the airflow rate, ṁ, a power

law is used:

ṁ = raQ = CDPn (1)

where Q is the volumetric flow rate, ra is the air density, DP is the driving

pressure differential, C is the flow coefficient and n is the flow exponent. C

and n define the so-called pressure characteristics of the BIPV element.

In this work, C and n are obtained using the hydraulic network method.

The method defines the total pressure drop over the BIPV element, DPcav,

as a function of the volumetric flow rate, Q, as follows [36, 37]:

DP = y
raQ2

2
(2)

where y is a coefficient that represents all pressure losses in the BIPV element

and ra is the air density.

The hydraulic network method divides the BIPV module in a sequence

of resistances, which represent friction losses and local losses (e.g. openings).

By definition, y represents this sequence of resistances, including friction and

local losses, as follows [36, 37]:

DP =

(
l

H

Dh

( 1

Ac

)2
+

k∑
i=1

xi

( 1

Ai

)2
)
raQ2

2
, (3)

where the first term inside the brackets corresponds to the well-established

Darcy-Weisbach formula to estimate friction losses, with l the friction factor,

H is the cavity height, Dh is the cavity hydraulic diameter, and Ac is the

cavity cross-sectional area. The second term concerns the sum of the k local
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losses occurring in the cavity, where xi and Ai are the loss factor and the

equivalent area, respectively, corresponding to each local loss. For more

information about the hydraulic network method, the reader is addressed to

[36, 37].

For the BIPV-CW element, local losses are caused by the pressure drop

at the openings on each side of the element (Figure 1b,c). An equivalent

resistance is defined to represent the four openings at the bottom and the

four at the top, each one corresponding to four resistances in parallel (i.e.

xeq=xop/4). This assumption is reasonable since the distance between the

individual orifices is significantly smaller than the distance between top and

bottom of the cavity (a few centimetres vs. 1.5 m). In addition, in view

of the important local loss caused at these small openings, further friction

losses inside the cavity are assumed negligible.

For each side of the BIPV-CW element, with an equivalent opening at

the bottom and another one at the top (2 xeq), Equation 2 becomes:

DP = 2xeq

( 1

Aop

)2 raQ2

2
(4)

where Aop is the opening area. This equation describes the airflow at one

of the sides of the BIPV-CW element. The total airflow is twice the value

obtained from Equation 4, which is then assumed uniform in the cavity.

The losses at one opening, xop, can be generally expressed as a function

of the driving pressure, DP [37]:

xop =
2

raC2
dDP2n–1

(5)

where Cd is the discharge coefficient, which represents the cavity (friction
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and turbulent) losses, and n is the flow exponent, which represents the flow

regime (laminar or turbulent).

With a diameter of 10 mm as described in Section 2.1, the ventilation

openings in the BIPV-CW are considered as sharp-edged orifices. For sharp-

edged orifices, Cd = 0.611 and n = 0.5 have been theoretically determined

by Kirchhoff for turbulent flow [38, 39]. The work in [39] demonstrates ex-

perimentally that these values apply to orifices with a ratio length/diameter

smaller than 0.25, which is the case for the BIPV-CW element.

The airflow driving pressure is caused by two distinct effects: wind and

buoyancy effects. In the multi-physics BIPV model, the resulting buoyancy-

induced pressure is computed over all the air volumes in Figure 4, using the

following equation:

DPb = g

[
rextH –

n∑
i=1

rihi

]
(6)

where g is the gravity force, rext is the exterior air density, H is the total

height of the air column inside the cavity, ri is the air density of each BIPV

control volume, and hi is the height of each BIPV control volume of a total

of n control volumes. The air volumes are considered as well-mixed volumes.

In the BIPV-CW element, the ventilation openings are relatively sheltered

from the wind flow due to their position on the sides of the BIPV-CW element

as shown in Figure 1. For this reason, wind effects are not considered as a

driving force for the cavity flow and only buoyancy is modelled. Note that

in this work, the wind effects on the exterior convective heat transfer are

considered and take into account the wind speed and direction, as well as

the building geometry and building surface (roof and windward, leeward, and

side facades) [21].
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3.3. Electrical modelling

With a good compromise between simplicity and accuracy [40–42], the

one-diode model is adopted in this work. As illustrated in Figure 4, each PV

cell is described by an individual diode-based circuit; the cell-level circuits are

connected to each other to compose the electrical model of the BIPV module.

Such high-resolution approach enables the simulation of intra-module shading

effects and provides the possibility of including e.g. bypass diodes between

strings. This approach has been used before. However, it has been used either

in combination with a simplified thermal model (e.g. [22, 43–47]), or for the

simulation of stand-alone PV modules (e.g. [43, 44, 48, 49]), while this paper

uses a detailed physics-based model to estimate the PV cell temperature and

employs the model to simulate a BIPV-CW element.

The power extracted from a PV module depends on the load connected

to it. In real applications, a maximum power point tracker (MPPT) is used

to maximise the power output by varying the load connected to the module.

To simulate the MPPT, this work employs a perturb-and-observe (P&O) al-

gorithm based on [50]. The P&O algorithm adjusts the PV electric operating

point according to a given time step. The one-diode model parameters used

for a single cell are presented in Table 5. For a detailed description of the

electrical model, the reader is addressed to [21].

3.4. Additional assumptions

As described in Section 2.1, the BIPV-CW element is insulated over its

perimeter, which reduces the peripheral heat transfer to the exterior. For

this reason, edge effects are not considered in the model. Also, a uniform
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Table 5: Single cell one-diode parameters.

Parameter Value Unit

Short-circuit current, ISC (measured) 8.6 A

Open-circuit voltage, VOC (measured) 0.63 V

Series resistance, RS, value for c-Si cells 0.006425 W

Shunt resistance, Rsh, assumption for c-Si cells ∞ W

Ideality factor, m, assumption for c-Si cells 1 -

airflow (both with respect to velocity magnitude and flow direction) is as-

sumed over the width and depth of the cavity (as described in Section 3.2).

Consequently, PV cells at a given height have the same temperature, regard-

less their position at the right, left or at the middle of the BIPV module

(R, L or M, respectively). These assumptions are in agreement with the ex-

perimental data, which reveal only a minor reduction in temperature from

the middle to the sides of the module, indicating that the element is well

insulated from the exterior and that the local effects of ventilation on the

lateral sides are rather limited. Note that temperature variations over the

height of the module caused by ventilation are considered in the model. A

final remark is that the building interior is not modelled in detail. Instead,

a convective-radiative boundary condition is imposed on the insulation layer

(S3 in Figure 3) to represent the heat transfer from/to the building and a

constant value of 25 ◦C is assumed for the interior air temperature. In view

of the high thermal resistance of the relatively thick insulation layer, the

thermal resistance of the plywood panel is neglected.
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3.5. Simulation parameters

As mentioned previously, this work uses a multi-step solver, which means

that the solver adapts the time step of the simulation according to the dy-

namics of the system. Since the MPPT is much faster than the thermal

dynamics of the problem, the MPPT ultimately determines the time step of

the simulation. In this work, the MPPT is set to operate at the lower time

resolution in the weather dataset (i.e. 10 s for solar irradiance input). This

means that the simulation time step is also 10 s. Within the 10 s period,

the dynamics of the system can be neglected, as will be demonstrated later

in Section 4.1.2. Note that the weather inputs with a time resolution higher

than 10 s are interpolated using Akima splines such that the first derivative

is continuous.

3.6. Comparison to experimental data

3.6.1. Performance indicators

This section evaluates the capability of the multi-physics BIPV model to

estimate the daily energy yield and the temperature at different locations

of the BIPV-CW element. The daily energy yield values are obtained from

the numerical integration of power predictions and measurements. The pre-

dicted and measured energy yield values are compared to each other in both

absolute and relative terms. The results are presented based on the mean

absolute error (MAE), mean relative error (MRE), and relative root mean

squared error (rRMSE). Temperature results are presented in terms of MAE

and RMSE, since absolute indicators are more appropriate for temperature

evaluations. To calculate temperature indicators, the model predictions and
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measurements are averaged over one minute. Temperature results are eval-

uated based on surface-average value as well as at different positions over

the BIPV height. Based on the scheme presented in Figure 3c, the surface-

average temperature is defined as the average of the thermocouples attached

to the surface on the right, middle and left. The thermocouples R5, R6 and

R7 are used as approximation for the temperature at the levels L5, L6 and

L7, which are not monitored.

3.6.2. Results

Figure 6 compares the multi-physics BIPV model to the measurements for

six consecutive sunny days in May 2018. The weather conditions (Figure 6a),

the power (Figure 6b) and surface-average temperatures (Figure 6c,d) are

shown. For clear sky days, a good agreement between the measurements and

the model predictions is visually verified in Figure 6. The average difference

in power for these six days is less than 1 W. The average differences in

temperature are -1.8 ◦C and -2.1 ◦C for the back-of-module and insulation

surfaces, respectively (S1 and S2 in Figure 3). The measurement accuracy is

not shown in Figure 6 for the sake of clarity, but is presented in Table 2.

Next, the daily energy yield is quantified for both the model and the

measurements. These results are presented in Figure 7 for 15 consecutive

days in May 2018, including the days depicted in Figure 6. For the clear

sky days such as May 4-9, the energy yield predictions are fairly close to the

measured values (Figure 7). In contrast, the difference between modelled

and measured energy yield is relatively higher for cloudy days, such as May

12, 14 and 15.

Table 6 summarises the daily energy yield results for all periods in the
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Figure 6: Comparison between multi-physics BIPV model and measurements: (a) plane-

of-array (POA) irradiance and ambient temperature, (b) power, (c) back-of-the-module

surface-average temperature (S1), and (d) insulation surface-average temperature (S2). In

these plots, Difference = (Measurements - Model).
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measuring campaign. In general, the average indicators for the daily energy

yield predictions are of the same order of magnitude for all periods. MAE

values vary between 9.8 and 37.1 Wh, MRE values between 2.3 and 12 %,

and rMSE values between 3.0 and 20.3 % (rRMSE quantifies the spread of

the residuals). January shows slightly lower MAE values, which are related

to lower irradiance levels rather than to the model accuracy, as reflected

in higher MRE and rRMSE values (Table 6). For the whole dataset, the

average MAE, MRE and rRMSE are 19.7 Wh, 6.2 % and 11.0 %, respectively

(Table 6). Furthermore, the model performs better for clear sky days. This

is evident when relative indicators are compared: clear sky days present a

MRE of 2.0 % and rRMSE of 2.6 %, compared to 6.2 % and 12.8 % for the

rest of the dataset (Table 6).

Figure 7: Daily energy yield results for 15 days in May 2018: Comparison between mea-

surements and multi-physics BIPV model. Difference = (Measurements - Model).

Differences in daily energy yield predictions between clear sky and cloudy

days may be partially attributed to differences in time resolution between
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Table 6: Average daily energy indicators for all periods. The selection of clear sky days

was carried out visually, considering days that are similar to May 4-9 in Figure 6

Energy yield

[Wh]

MAE

[Wh]

MRE

[%]

rRMSE

[%]

May/18 789.3 37.1 5.0 6.6

Jan/20 213.5 9.8 12.0 20.6

Feb/20 280.8 13.5 6.8 8.3

Mar/20 587.2 21.6 5.2 6.4

Apr/20 893.2 17.6 2.3 3.0

Whole dataset 545.7 19.7 6.2 11.0

Clear sky days 1055.2 20.7 2.0 2.6

Except clear sky days 351.9 19.3 7.9 12.8

the power measurements, which are recorded approximately every two sec-

onds, and the input weather data, particularly the irradiance data, which

is recorded with a ten-second resolution. This means that actual variations

occurring within this period are not present in the input dataset, resulting

in somewhat larger errors for days with highly varying radiation. Another

possible cause of deviations is that the model does not differ between diffuse

and direct irradiance, since the total irradiance on the facade is used as input.

Figure 8 presents the temperature profiles at the bottom and top of the

BIPV-CW cavity, with bottom corresponding to height 4 and top to height

8 (see Figure 3). The temperature of the two cavity surfaces S1 and S2 is

shown. This figure shows the measured temperatures and the differences

between predictions and measurements; the predicted temperature profiles

are not included for the sake of readability. Next, Table 7 summarises the
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Figure 8: Temperature at the top and bottom of the BIPV-CW module: (a) back-of-

module temperature (S1) and (b) insulation temperature (S2). Bottom and top correspond

to height 4 and 8 in Figure 3. In these plots, Difference = (Measurements - Model). Note

that the predicted temperature profiles are not shown for the sake of readability.

daily average MAE values for the temperature at the top and bottom, as well

as for the surface-average temperature (both S1 and S2), for all periods in the

dataset. These results show that the model is able to estimate fairly well the

temperature at the bottom and at the top for both surfaces composing the

cavity, i.e. the back-of-module and the insulation layer. The daily average

MAE remains mostly below 2.5 ◦C and RMSE mostly below 3 ◦C in all cases

(Table 7).
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Table 7: Summary of S1 and S2 temperature results: Average MAE and average RMSE

(calculated over 1 minute).

Surface-average Top – M8 Bottom – M4

Period
MAE

[◦C]

RMSE

[◦C]

MAE

[◦C]

RMSE

[◦C]

MAE

[◦C]

RMSE

[◦C]

Surface S1: Back of the module

May/18 1.74 2.50 1.77 2.61 2.04 2.81

Jan/20 1.94 2.38 2.14 2.64 2.40 2.89

Feb/20 1.39 2.07 1.52 2.18 1.74 2.38

Mar/20 1.88 2.83 1.99 2.90 2.22 3.10

Apr/20 1.97 2.76 2.20 3.14 2.14 2.90

Surface S2: Insulation inside the cavity

May/18 1.83 2.50 1.68 2.38 1.92 2.53

Jan/20 1.85 2.34 1.57 2.03 1.39 2.03

Feb/20 1.17 1.75 1.06 1.71 1.33 2.22

Mar/20 1.84 2.95 1.70 2.90 1.62 2.63

Apr/20 1.93 2.81 1.90 2.74 2.99 4.77
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4. Evaluation of model complexity

Starting from the detailed multi-physics BIPV model discussed so far, this

section quantifies the impact of two modelling simplifications concerning the

electrical and thermal-airflow models. This section also analyses the impact

of secondary assumptions/parameters related to the electrical model (shading

and MPPT) and thermal-airflow model (ventilation).

4.1. Electrical modelling

For this analysis, the one-diode model in the original multi-physics BIPV

model is replaced by a linear power model. The physics-based thermal and

airflow models described in Section 3.1 and 3.2 are maintained. This combi-

nation is illustrated in Figure 9. In this case, the coupling between thermal

and electrical effects still holds. However, the simulation of intra-module

shading effects is not possible anymore, because the power model does not

consider mismatches between cells.

The power model is based on the following equation:

P = hSTC

[
1 + gT(TPV – 25)

]
GA (7)

where hSTC is the efficiency at STC, gT is the temperature coefficient for

power, TPV is the PV cell temperature, G is the plane-of-array irradiance,

and A is the PV area. The values for hSTC and gT are obtained from

Table 1. As illustrated in Figure 9, the cell temperature, TPV, is defined by

the thermo-electrical coupling between the physics-based thermal and airflow

models and the power model. Note that using the power model at the cell

level is not common in the literature, but was needed here for the correct

coupling to the physics-based thermal and airflow models.
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Figure 9: First simplification: power model instead of the one-diode model; physics-based

thermal and airflow models remain (in relation to the scheme in Figure 4).

Figure 10 presents the profiles of power and (back-of-module) tempera-

ture for four sunny days in May. Figure 11 presents the results in terms of

daily energy yield as well as the MAE for the back-of-module temperature.

All results are summarised in Table 8. A third model is included in this

analysis as reference, where the temperature effects in the power model are

not considered (from Eq. 7, Pref = hSTCGA).

For the days depicted in Figures 10 and 11, barely any difference is ob-

served between the multi-physics (one-diode) model and the power model.

For the whole dataset, the power model presents MAE and MRE values of

29.7 Wh and 8.7 %, respectively (Table 8). These values are higher compared
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to the one-diode model MAE and MRE of 19.7 Wh and 6.2 %, respectively

(Table 8). With respect to back-of-module temperature (TBoM), both multi-

physics (one-diode) model and power models provide equally good results:

1.74 and 1.71 ◦C. A similar trend is observed for clear sky days, but in this

case the errors are relatively smaller for both models. For clear sky days, the

power model MAE and MRE values are 47.6 Wh and 4.6 % (compared to

20.7 Wh and 2.0 % for the multi-physics (one-diode) model). In contrast, if

temperature effects are not considered (Power model, no T effects), the BIPV

energy potential is significantly overestimated. At peak power production,

differences up to 30 W are observed in Figure 10a (about 20 % overesti-

mation compared to the measurements). With respect to daily energy yield

predictions, not considering temperature effects leads to underestimations up

to approximately 20 % on sunny days (Figure 11b) and 12.7 % on average

(Table 8).

These results suggest that the linear power model (including temperature

effects) could be a suitable choice for a non-shaded BIPV module (although

with slightly higher errors). The main advantage of employing the power

model is the decrease in total simulation time, since a larger time step can

be used (will be explained later in Section 4.1.2). However, a power model is

not suitable for the simulation of shading effects, since it does not consider

mismatch losses. Shading is treated in the next subsection.

4.1.1. Shading effects

This section compares different modelling assumptions to quantify the

power loss caused by partial shading. Six cases are defined in Figure 12 to il-

lustrate how shading can be implemented in BIPV models. The case without
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Figure 10: Impact of the electrical model: (a) power, and (b) back-of-module surface-

average temperature.
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Figure 11: Impact of the electrical model: (a) daily energy yield, (b) difference in daily

energy yield between measurements and models, and (c) MAE of back-of-module average

temperature
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Table 8: Impact of the electrical model: daily energy yield (DEY) and back-of-module

temperature (TBoM) predictions (whole dataset and clear sky days).

DEY

Average

[Wh]

DEY

MAE

[Wh]

DEY

MRE

[%]

TBoM

MAE

[◦C]

Whole dataset

Measurements 545.7 - - -

Multi-physics model (one-diode) 542.8 19.7 6.2 1.74

Power model 553.7 29.7 8.7 1.71

Power model, no temperature effects 578.0 53.4 9.0 -

Clear sky days

Measurements 1055.2 - - -

Multi-physics model (one-diode) 1072.2 20.7 2.0 1.47

Power model 1102.8 47.6 4.5 2.70

Power model, no temperature effects 1188.6 133.4 12.7 -
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shading is taken as reference. The first intra-module case (IM1) considers

that one string (20 cells) receives 50 % less irradiance, while the other two

strings are not shaded. The second intra-module case (IM2) imposes shading

on the second string as well: two strings receive 50 % less irradiance and the

remaining string is not shaded. The “module level” approach distributes the

irradiance equally over all cells in the module, i.e. the irradiance at cell level

is averaged at module level. The case module level 1 (ML1) corresponds to

the conditions in IM1, while ML2 corresponds to IM2. Last, the conserva-

tive (CS) approach considers that all strings receive 50 % less irradiance (i.e.

all cells receive the amount of irradiance as the least irradiated cell). These

cases are simulated using the multi-physics BIPV model in its original form,

i.e. using the high-resolution one-diode model. Note that this is a numerical

exercise that uses generic cases to compare shading modelling assumptions.

Figure 13 presents the BIPV power for a clear sky day and the daily

energy yield over several days for the cases defined in Figure 12. As expected,

the conservative approach (CS) provides the lowest power output, followed

closely by cases IM2 and IM1. ML2 and ML1 come next, with higher power

outputs. Compared to the reference case, the daily energy yield reduces by

about 51 % for the CS case, 48 % for IM1, 45 % for IM2, 17 % for ML1,

and 34 % for ML2. These results indicate that the conservative CS case

is a rather good approximation for both intra-module cases, predicting a

slightly higher reduction in energy yield (about 51 %) compared to the intra-

module cases IM1 and IM2 (about 48 % and 45 % reduction, respectively).

In contrast, the “equivalent shading” approach does not seem appropriate to

represent intra-module cases, as it underestimates the shading effects, with
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Figure 12: Generic cases used to illustrate how shading can be implemented in BIPV

models.

energy predictions significantly higher compared to the partial shading results

(about 17 and 34 % compared to 45 and 48 %). This result is relevant because

the CS case can be used with the power model, since all cells operate under

the same conditions. The IM cases require the use of an one-diode model

to account for current mismatch losses between cells. In turn, the one-diode

model requires a MPPT algorithm to find the operating point of the BIPV

module, which leads to an increase in total simulation time. If the use of
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a one-diode model is necessary for a more accurate simulation of shading

effects (or another reason such as the need to obtain the current-voltage

characteristics of the module), then the total simulation time becomes an

important constraint. The next analysis explains and quantifies the influence

of the MPPT algorithm on the simulation time and on the model predictions.

Figure 13: Comparison between modelling approaches to simulate shading effects: (a)

power output for a clear sky day, and (b) daily energy yield predictions.

4.1.2. MPPT and simulation time step

As briefly mentioned in Section 3.5 the multi-physics BIPV model em-

ploys a multi-step solver. From the multi-step solver perspective, the sam-
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pling nature of the MPPT algorithm leads to time events, i.e. moments in

time at which the system conditions change. A time event is triggered every

time the MPPT algorithm acts on the system (which depends on the MPPT

sampling time). At these time events, the entire system of equations needs

to be solved, including thermal couplings (between the electrical and thermal

model as well as between BIPV and the building). Therefore, the sampling

time of the MPPT algorithm ultimately defines the (maximum) time step of

the simulation. From now on, the terms sampling time and simulation time

step are treated interchangeably.

Ideally, the simulation time step should be able to capture the changes

in the input data as well as the dynamics of the problem. However, shorter

time steps imply longer calculation periods. The question here is whether it

is possible to reduce the total simulation time by increasing the maximum

time step (limited by the MPPT sampling time) without compromising the

model predictions. For this analysis, four time steps are defined: 10 s, 60 s,

300 s and 600 s. Note that 10 s corresponds to the resolution of the solar

irradiation data, 60 s to the ambient temperature, and 300 s to the wind

conditions. A time step of 600 s is included as it corresponds to the best

resolution of standard weather files for building performance simulations.

This analysis is purely numerical, and thus measurements are not included.

Figure 14 shows the total daily energy yield for 14 days in May for all time

steps. Table 9 summarises the influence of the time step on daily energy yield

predictions and CPU time. The relative differences are calculated based on

the reference time step of 10 s. These results indicate that raising the time

step from 10 to 60 s barely affects the daily energy yield predictions, with
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differences below 0.2 %. The impact on the CPU time is rather significant:

the simulation with a time step of 60 s takes only 22 % of the time needed for

a simulation with 10 s. The results for 300 s are also acceptable, with average

reduction in daily energy yield below 1 % and a further reduction in CPU

time by 7 %. The major differences in energy yield predictions occur only

when the time step is raised to 600 s, likely due to the loss of information on

the dynamics of the system. This result is in agreement with findings in [51]

and [52], which highlight the inability of temporal resolutions above 600 s to

capture the (BI)PV dynamics.

Figure 14: Influence of time step on the model predictions: (a) daily energy yield, and (b)

difference in daily energy yield compared to a time step of 10 s.
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Table 9: Impact of the time step on daily energy yield predictions and CPU time.

Relative reduction in daily energy yield compared to the reference

10 s 60 s 300 s 600 s

Reference (100 %) <0.2 % <1 % <6 %

CPU time (percentage with respect to the reference CPU time)

10 s 60 s 300 s 600 s

Reference (100 %) 22 % 7 % 5 %

4.2. Thermal and airflow modelling

This section investigates whether the thermal and airflow modelling ap-

proach used in the multi-physics BIPV model can be simplified. For that,

the high-resolution one-diode model described in Section 3.3 is maintained,

while the physics-based thermal-airflow model is replaced by empirical cor-

relations from the literature, as illustrated in Figure 15. These empirical

temperature correlations provide a single temperature value to represent the

whole PV module, which is imposed to all the cells in the electrical modelling

to obtain the power output of the module. This means that thermal and elec-

trical models are decoupled. The simulation of intra-module shading effects

is still possible, because the high-resolution one-diode model is maintained

(i.e. mismatch losses are considered).

Two (semi-)empirical correlations are considered in this paper. The first

correlation is the one proposed by Ross et al. [53], which defines the module

temperature as:

TPV = Ta + kG, (8)

where Ta is the ambient temperature, k is an empirical coefficient that de-

pends on the level of integration into the building, and G is the plane-of-array

42



solar irradiance. For facade integration, a coefficient k = 0.0538 ◦Cm2/W is

proposed in [54] based on the experimental data presented in [55].

The second semi-empirical correlation was proposed by Skoplaki et al.

[56]. It includes the influence of the wind speed, being defined as follows:

TPV = Ta + wG
[ 0.32

8.9 + 2Vf

]
, (9)

where Ta is the ambient temperature, w is the mounting coefficient, G is

the plane-of-array solar irradiance, and Vf is the free stream wind speed.

For facade integration, a coefficient w = 2.4 is derived by [56]. Note that w

is derived from k and, therefore, also corresponds to the experimental data

presented in [55]. In the present work, the wind speed measured at 10 m

height in the open field upstream of the building is used as Vf .

Figure 15: Second simplification: Empirical temperature correlations instead of physics-

based thermal and airflow models; one-diode model remains (in relation to Figure 4).
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Temperature deviations are presented in Figure 16 for 15 days in May

2018. Results for the back-of-module temperature (TBoM) for the whole

data set are summarised in Table 10. The multi-physics model provides the

lowest differences in temperature, generally underestimating the measure-

ments (Figure 16b). On average, both empirical temperature correlations

present higher MAE for the back-of-module temperature: 3.5 and 4.4 ◦C for

Ross’ and Skoplaki et al.’s correlations, respectively, compared to 1.7 ◦C for

the multi-physics model (Table 10).

The values for k and w used in Ross’ and Skoplaki et al.’s correlations

correspond to a poorly ventilated BIPV module. This means that both

correlations are expected to perform well for BIPV modules operating in

similar conditions, i.e. BIPV with poor ventilation, as is the case for the

BIPV curtain wall treated in this paper. For clear sky days, such as May

5-9, for which both Ross’ and Skoplaki et al.’s correlations provide fairly

good temperature estimations (Figure 16c and d). However, for days with

highly varying irradiance (such as May 1-3), the Ross’ correlation presents

temperature deviations up to ± 30 ◦C from the measurements (Figure 16c).

In the case of the Skoplaki et al.’s correlation, differences in temperature can

exceed 40 ◦C (Figure 16d). One reason for that is that Ross’ and Skoplaki

et al.’s correlations do not consider thermal dynamics. Therefore, variations

in the irradiance are directly reflected in their temperature predictions (see

Eqs. 8 and 9). For the Skoplaki et al.’s correlation, variations in wind speed

also affect temperature predictions, which is particularly visible during clear

sky days, such as May 5-9. In contrast, the multi-physics model is a dynamic

model, in which fluctuations in irradiance are attenuated by the thermal
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capacity of the BIPV-CW module.

Figure 16: Impact of the temperature model: (a) Measured back-of-module surface-

averaged temperature (S1), (b) temperature difference between the measurements and

the physics-based model, and (c,d) same as (b) for the Ross’ and Skoplaki’s models.

Daily energy yield results are presented in Figure 17. Results for the

whole data set are summarised in Table 10. For reference, the results for
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the power model without temperature effects are repeated in this section

(Pref = hSTCGA). The multi-physics model presents the best agreement with

experimental data. Ross’ and Skoplaki et al.’s correlations present results of

the same order of magnitude: MAE of 33.9 and 34.2 Wh, respectively, and

MRE of 10.2 and 10.4 %, respectively. For clear sky days, average MRE

is below 6 % for both Ross’ and Skoplaki et al.’s correlations. Again, not

considering temperature effects leads to underestimations up to about 20 %

(Figure 17) and of 12.7 % on average (Table 8).

Figure 17: Impact of the temperature model: (a) daily energy yield, and (b) difference in

daily energy yield compared to the measurements.

Power as a function of the difference between back-of-module tempera-

ture and ambient temperature is presented in Figure 18. It is important to
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note that both the multi-physics and the linear power models are combined

with physics-based thermal-airflow models, while the multi-physics and Ross

and Skoplaki et al.’s correlations are combined with high-resolution one-diode

models. These plots show that models using a physics-based thermal-airflow

approach are closer to the measurements, while models based on empirical

temperature correlations tend to overestimate the PV temperature, which

leads to underestimations of power output. The higher temperature estima-

tions are also reflected on the average daily energy yield predicted by these

models: 508.5 and 505.4 Wh for Ross and Skoplaki et al.’s correlations, re-

spectively, compared to 542.8 Wh predicted by the multi-physics model and

545.7 Wh calculated from the experimental data (Table 10).

In addition to the deviations in daily energy yield and temperature pre-

dictions discussed previously, empirical temperature correlations are not par-

ticularly suitable for the simulation of different BIPV configurations. Since

ambient temperature and irradiance are the only variables in these empirical

temperature correlations, design modifications in terms of material properties

or cavity ventilation cannot be simulated. In the next section, cavity venti-

lation is used as an example to illustrate the advantage of a physics-based

approach.
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Figure 18: Power as a function of back-of-module surface-average temperature: (a) Multi-

physics model, (b) Power model, (c) Ross’ correlation, and (d) Skoplaki et al.’s correlation.

Data averaged over 10 min.
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Table 10: Impact of the temperature model: daily energy yield (DEY) and back-of-module

temperature (TBoM) predictions (whole dataset). Results for the power model without

temperature effects are included for comparison.

DEY

Average

[Wh]

TBoM

MAE

[◦C]

DEY

MAE

[Wh]

DEY

MRE

[%]

Whole dataset

Measurements 545.7 - - -

Multi-physics model (physics-based) 542.8 1.7 19.7 6.2

Ross 508.4 3.5 33.9 10.2

Skoplaki et al. 505.4 4.4 34.2 10.4

Power model, no temperature effects 578.0 - 53.4 9.0

Clear sky days

Measurements 1055.2 - - -

Multi-physics model (physics-based) 1072.2 1.5 20.7 2.0

Ross 1005.7 6.5 62.9 5.9

Skoplaki et al. 1002.4 6.4 58.0 5.5

Power model, no temperature effects 1188.6 - 133.4 12.7
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4.2.1. Importance of physics-based modelling

To illustrate the flexibility of a physics-based model, the impact of en-

hancing ventilation on the performance of the BIPV curtain wall element

is presented here. To emulate increasing ventilation rates, the following C

values are simulated: 10, 200, 500 and 800 ACH/Pan, where the unit ACH

quantifies the cavity air changes per hour (see Equation 1). These C values

are in agreement with pressure characteristics of traditional building elements

experimentally determined by different authors [21, 37, 57]. For practical

building calculations, the use of n = 0.7 has been suggested [58, 59], which is

adopted in this work. In addition, wind effects are included as driving force

in the airflow calculation, assuming that the openings are perpendicular to

the wind flow, as explained in [21].

The resulting airflow rate and back-of-module temperature are presented

in Figure 19. As expected, a higher C value increases the airflow rate through

the cavity (Figure 19a), leading to lower temperatures (Figure 19b). For the

clear sky days, a reduction in temperature of about 10 ◦C is observed for

C = 500 and C = 800 compared to C = 10 (Figure 19b). The decrease in

temperature leads to higher daily energy yields, as shown in Figure 20. For

clear sky days such as May 4-8, an increase in daily energy yield within 2.0-

3.7 % is observed when the C value increases from 10 to 200, 500 and 800

(Figure 20b). The most significant increase in daily energy yield is achieved

when the C value increases from 10 to 200. The energy gain from C = 200 to

500 and then to 800 is relatively lower. Although the increase in daily energy

yield might seem relatively small, the decrease in temperature may have a

significant impact on the module lifetime: a 1 ◦C decrease in the operating
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temperature could extend the module’s lifetime by about 7 %, or 2 years

[60]. Moreover, being able to estimate the airflow rate is important for the

evaluation of BIPV/thermal (BIPV/T) systems, in which the BIPV module

is integrated with other energy systems, such as a heat pump or a drying

system.

The Ross’ correlation and the power model without temperature effects

are included in Figure 20 only as reference, since they do not consider the

physical characteristics of the BIPV module. Figure 20a shows that the

Ross’ correlation is closer to the reference case of C = 10, which represents

a relatively poorly ventilated BIPV module. In fact, the coefficient k used in

the Ross’ correlation (Equation 8) was derived from experimental data of a

poorly ventilated BIPV facade, as described in [55]. This explains why the

Ross’ correlation can be a good approximation for the BIPV-CW in this work.

Moreover, Figure 20a also shows that not considering temperature effects

leads to overestimations in daily energy yield compared to all ventilated cases.

This means that power losses related to temperature should be considered

even for well-ventilated BIPV modules.
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Figure 19: Impact of increasing C value on the (a) airflow rate, (b) back-of-module average

temperature with zoom in mid-afternoon May 7.
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Figure 20: Impact of increasing C value: (a) daily energy yield, and (b) difference in daily

energy yield compared to C = 10 (only ventilated cases).

4.3. Summary and recommendations

A detailed modelling of electrical, thermal and airflow aspects as em-

ployed in the multi-physics BIPV model has two implications. First, the
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high-resolution electrical model employed for the simulation of intra-module

shading effects demands significant computational resources. Second, the

physics-based thermal and airflow models require information about the

BIPV geometry, dimension, bill of materials, cavity losses, wind flow, etc.

These requirements may not correspond to the needs of certain BIPV stake-

holders that may benefit from a faster simulation environment, even if it

means a compromise in terms of accuracy and/or flexibility. These require-

ments may also depend on the building design stage.

A key aspect for successful BIPV projects is to consider BIPV at the

early stage in the building design [27]. At these initial stages, BIPV models

should provide a fast estimate with a limited amount of data (e.g. area

and efficiency). In this case, a power model combined with an empirical

temperature correlation such as the ones by Ross and Skoplaki et al. are

an option. Not including temperature effects is not recommended, as it

results in overestimation of the BIPV output. For the particular BIPV-CW

investigated in this paper, this can result in daily energy yield overestimations

up to 20 % in clear sky days. Furthermore, a conservative approach could be

used to consider shading losses (as presented in Section 4.1.1). A shading loss

analysis using a simplified method such as proposed in [61] is also an option.

The use of simplified models enables the simulation of different scenarios,

without requiring a high level of detail or expertise, in terms of data or

shading calculation, which could frustrate the interest in BIPV.

At the final stages of the building design, a more detailed description of

the building and the BIPV system is already available. Here, the suggestion is

a two-step approach. The first step is the evaluation of the BIPV thermal per-
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formance within a building simulation framework. The recommended combi-

nation is the coupling between a power model and physics-based thermal and

airflow models, with a conservative approach for the shading events. This re-

duces the total simulation time, since a high-resolution electrical model is not

needed. The second step is the detailed assessment and optimisation of the

electrical architecture of the whole system, including strings configuration,

batteries, converters, etc. For this analysis, a high-resolution circuit-based

approach and a detailed shading analysis are recommended, e.g. [22, 46].

To reduce computation time, the BIPV temperature calculated in the first

step could be used as boundary condition for the temperature-dependent

one-diode model. An empirical temperature correlation is also an option if

the BIPV module is similar to the BIPV-CW in this work.

5. Discussion

Limitations of this work and suggestions for future work are discussed,

concerning:

(1) BIPV setup and dataset used for validation: The results and

recommendations presented in this paper concern the particular BIPV-CW

element and experimental dataset described in this paper. Performing simi-

lar comparative analyses for different BIPV modules operating under differ-

ent climatic conditions is essential to further verify these recommendations.

Nevertheless, it must be noted that physics-based models are less depen-

dent on the amount of data used for experimental validation (compared to

data-driven and empirical correlation approaches);

(2) Input data uncertainty: Although this paper focuses on exper-
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imental validation and comparison of different models, the uncertainty in

the input data is also a concern. In a previous work by the authors [62],

a probabilistic framework was developed to investigate the sensibility of the

multi-physics BIPV model to variations in its inputs. The main findings indi-

cate that exterior heat transfer and cavity ventilation are important aspects

to consider in BIPV models;

(3) Electrical modelling: Despite the good agreement with experimen-

tal data, the electrical model could still be improved. For example, more

advanced methods can be used to describe the one-diode parameters as a

function of the PV operating conditions, as discussed in e.g. [41, 42, 63–65].

The use of a two-diode model is also often proposed as an improvement over

the one-diode approach (e.g. [41, 42, 63–65]). More recently, data-driven

approaches have also gained attention (e.g. [66–69]). However, an issue com-

monly raised concerning more complex numerical techniques is the risk of

non-convergence in case of inappropriate initial values [41, 42]. Similarly,

data-driven approaches require availability of data beforehand;

(4) Shading effects: A limitation of this study is that the impact of

shading events could not be assessed using the experimental data obtained.

However, this kind of comparison using experimental data has been carried

out before in the literature (e.g. [22, 47]). These studies show that high-

resolution one-diode approaches such as the one employed in this work are

capable to provide accurate power predictions for PV modules under shading

events. Nevertheless, future work could focus on extending the validation

dataset to include shading events. For example, the shading cases proposed

in Section 4.1.1 could be emulated in the BIPV-CW setup;
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(5) Thermal modelling: Despite the relatively good agreement between

results obtained using empirical temperature correlations and experimental

data for the poorly-ventilated BIPV-CW, empirical correlations are only suit-

able to simulate BIPV configurations similar to the ones they have been de-

rived from. In fact, an earlier work by the authors demonstrates that the

empirical temperature correlations by Ross and Skoplaki et al. fail to pre-

dict the temperature of a well-ventilated BIPV module [21]. However, so far,

only a few studies have provided empirical temperature correlations for fa-

cade BIPV applications (e.g. [55, 70]). If empirical temperature correlations

are to be used, data from different types of BIPV modules operating under

different conditions need to be collected. Ongoing work by the authors aims

to provide empirical coefficients (k in Eq. 8) for the Ross model for a range

of BIPV modules;

(6) Cavity ventilation: The results in this paper indicate that an in-

crease in daily energy yield up to 3.6 % can be achieved. This improvement

might seem minor, but the associated decrease in back-of-module temper-

ature of about 10 ◦C helps to mitigate degradation effects, improving the

module’s lifetime. Moreover, these results are only an indication of the po-

tential energy gain associated with enhanced ventilation. Detailed thermal

and flow analysis are needed to better understand the impact of ventilation

on the temperature of BIPV modules. These detailed analyses can help to

identify hot spots and suitable cooling techniques, such as fins or staggering

configurations. Ongoing work by the authors combines computational fluid

dynamics with experimental data for this purpose.

(7) Building performance simulations: It is important to highlight
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that the multi-physics BIPV model presented in this paper is part of a com-

prehensive simulation framework for the performance assessment of build-

ings. Different analysis can be performed using this integrated simulation

environment. For example, the model has been used in previous publications

by the authors to evaluate different electrical architectures for the building

grid, including different levels of battery penetration [71] and to investigate

the performance of BIPV facades under different climates [72].

6. Conclusion

This paper investigates how the complexity of a building integrated pho-

tovoltaic (BIPV) model affects its predictions in terms of energy yield and

(back-of-module) temperature. Experimental data from a real-size c-Si BIPV

curtain wall element are used to evaluate the models. The relevance of this

analysis lies in the need for sound recommendations for BIPV modelling,

taking into account the diversity of BIPV stakeholders with their specific

needs in terms of simulation time and data availability.

Starting from a detailed multi-physics BIPV model that combines a high-

resolution one-diode model with physics-based thermal and airflow models,

the main findings in this paper suggest that it is possible to reduce the

complexity of a BIPV model, as follows:

(1) a linear power model may be an option to replace the one-diode model

for unshaded c-Si BIPV modules, such as the BIPV curtain wall treated

here. For clear sky days, the linear power model provides daily energy yield

estimations with an average error of 4.5 % (compared to 2 % for the detailed

multi-physics BIPV model);
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(2) empirical temperature correlations can be a good approximation to

estimate the BIPV daily energy yield, replacing the physics-based approach,

provided that the BIPV configuration is similar to the experimental data used

to derive the correlation. For clear sky days, the two empirical temperature

correlations used in this work provide daily energy yield estimations with an

average error of 5.9 and 5.5 % (compared to 2 % for the detailed multi-physics

BIPV model);

(3) a physics-based thermal-airflow model combined with either a one-

diode model or a linear power model is able to predict both the BIPV daily

energy yield and temperature with relatively good accuracy. A physics-based

approach is particularly suitable for parametric analysis (such as varying

ventilation conditions or the size of the BIPV module);

(4) not considering power losses caused by variations in cell temperature

can lead to significant overestimation of the BIPV energy potential, up to

about 20 % on clear sky days.
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