
muppets: Multipurpose Table Segmentation

Gust Verbruggen1, Lidia Contreras-Ochando2, Cèsar Ferri2,
José Hernández-Orallo2, and Luc De Raedt1

1 KU Leuven, Department of Computer Science, Leuven, Belgium
Leuven.AI — KU Leuven Institute for AI, Leuven, Belgium

{gust.verbruggen,luc.deraedt}@kuleuven.be
2 Valencian Research Institute for Artificial Intelligence (vrAIn)

Universitat Politècnica de València, Spain
{liconoc,cferri,jorallo}@dsic.upv.es

Abstract. We present muppets, a framework for partitioning cells in
a table in segments that fulfil the same semantic role or belong to the
same semantic data type, similar to how image segmentation is used to
group pixels that represent the same semantic object in computer vision.
Flexible constraints can be imposed on these segmentations for different
use cases. muppets uses a hierarchical merge tree algorithm, which allows
for efficiently finding segmentations that satisfy given constraints and only
requires similarities between neighbouring cells to be computed. Three
applications are used to illustrate and evaluate muppets: identifying
tables and headers, type detection and discovering semantic errors.
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1 Introduction

Tables allow users to store and represent information in a general and familiar way.
Data that is often stored in tables includes measurements, data science pipelines,
logs, relational and non-relational databases. Such tables are intrinsically more
complex than the grid of their values, as they may include parts that play different
roles or are associated with different domains. Unfortunately, they rarely come
with metadata describing these roles and domains.

An example of a table with cells of different roles and data types is shown
in Figure 1. Humans easily recognise the syntactic and semantic structure in
this table, and automatically identify the coloured segments that we see on the
right. In data processing and analysis, understanding how a table is segmented
in different regions is a prerequisite for processing it. Unfortunately, this is still
mostly done manually.

The problem of segmenting a table takes inspiration from image segmentation.
Images are usually composed of different objects that we would like to delineate
automatically. The goal is to assign a label to every pixel, such that those with
the same label share the same features and are different from the rest [22, 19].
The imposed contiguity constraint makes image segmentation a specific kind of
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This Line is being used as a header

ID Date Amount Quantity Status
0042 16-Oct-17 $23.99 123 Closed Jansen
7731 15-Jan-17 $49.99 Pending Rho
8843 9-Mar-17 129 45 Gupta
3013 12-Feb-17 15 Pending Harrison
4431 1-Jul-17 $99.99 1 Closed Yang

(a) Segmentation of table in data, header
and metadata.

This Line is being used as a header

ID Date Amount Quantity Status
0042 16-Oct-17 $23.99 123 Closed Jansen
7731 15-Jan-17 $49.99 Pending Rho
8843 9-Mar-17 45 Gupta
3013 12-Feb-17 15 Pending Harrison
4431 1-Jul-17 $99.99 1 Closed Yang

(b) Segmentation in data domains. It is easy
for humans to see that the last two columns
are semantically different domains.

Fig. 1: Examples of different structures of tables.

clustering. Additional constraints make these segments go from small superpixels
to other more complex regions of the image. Image segmentation is a very
clear and distinctive problem with many applications, such as object detection,
scene understanding and compression. Table segmentation is similar to image
segmentation, but instead of clustering pixels, we are clustering cells in segments
that belong to the same data type or play the same semantic role.

Given that so much data is stored in tables and spreadsheets, and that image
segmentation has been studied for decades, it is surprising that the problem of
table segmentation has not received much attention outside of specific applications.
The key contribution of this paper is that we introduce a generic, multipurpose
framework for table segmentation. It can use any distance function between
cells and can represent a wide range of constraints on the shape and position of
segments. More specifically, we make the following contributions:

1. We introduce the problem of table segmentation subject to a set of constraints.
2. We combine a concrete class of constraints, a heuristic algorithm for finding

segmentations that satisfy these constraints and a method for scoring them
into a flexible framework called muppets.

3. We show how table segmentation, and muppets in particular, can be applied
to a range of problems, such as identifying tables and headers, type detection
and discovering semantic errors.

The following three sections respectively describe these contributions.

2 Table segmentation

A table T is an n × m grid of cells. We define a segment S ⊆ T as a set of
orthogonally connected cells in this table. A segmentation S of T is a partitioning
into mutually disjoint segments S = {S1, S2, . . . , Sk} such that ∪iSi = T . This
corresponds to a clustering of the cells of the table in which the elements in each
cluster are orthogonally connected.

Assumptions can often be made about structural properties of tables. In
spreadsheets, for example, cells of the same type are typically arranged in
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rectangular regions [2]. These assumptions are encoded as Boolean constraints
on the segmentations.

Multiple segmentations of a table can satisfy any given constraint, but the
target segmentation will have some additional, desired properties. For example,
in our muppets framework, we will aim for the cells within each segment to be
similar according to some criterium. Analogous to internal evaluation methods
for determining the number and quality of clusters, we thus want to assign a
score to each segmentation that represents how well it exhibits these properties.
The problem of table segmentation can now be defined as follows.

Given – a table
– a constraint
– a scoring function

Find a set of segmentations for the table that satisfy the constraint and that
are ranked according to score.

In the next section, we present a versatile framework for table segmentation by
describing a class of constraints, a scoring function and a heuristic algorithm for
finding segmentations that satisfy the constraint and have a high score.

3 The muppets framework

Our muppets framework consists of three key ingredients: (1) a class of supported
constraints, (2) a scoring function based on the similarity between cells and (3) a
heuristic search algorithm. The following sections describe these ingredients.

3.1 Constraints

A constraint C in muppets consists of two parts. First, there are constraints on
the possible shapes each segment in a segmentation is allowed to take. This is
formalised as a Boolean function shape(S) which yields true if segment S satisfies
the constraint and false otherwise. All segments in the output segmentation must
satisfy the constraint. The most common shape constraint is a rectangular one,
which is true if the bounding box around a segment is equal to the segment itself.

Second, muppets supports constraints on the spatial configuration of segments
in a segmentation. This is formalised as a position constraint that must hold
between pairs of segments Si and Sj with i 6= j. To specify these position
constraints, we resort to the well-known qualitative spatial relationships [1]
that are illustrated in Figure 2a. Each segment Si is projected on its x- and
y-coordinates, which yields two intervals on which the relations listed in Figure 2b
can be specified. In this paper, we consider first-order logic formulae over qualified
variables, as shown in Example 2. This can be extended to constraints on particular
segments, for example, to allow interactively specifying constraints [9].

Example 1. The spatial configuration of two segments S1 and S2 is shown in
Figure 2a. We can see that on the x axis it holds that S1 meets S2 and on the y
axis it holds that S1 before S2. If no axis is specified, it should hold for both.
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(a) Two segments and their projection.
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(b) Interval algebra relations.

Fig. 2: Illustration of positional constraints using interval algebra.

Example 2. We can define a tabular constraint by allowing only rectangular
segments and prohibiting any of {overlaps, starts, finishes, during} to hold, or

∀S1, S2 : ¬((S1 overlaps S2) ∨ (S1 starts S2) ∨ (S1 finishes S2) ∨ (S1 during S2))

All segments then either align in one dimension or are completely disconnected.
Similarly, a less strict subtabular constraint can be defined as follows.

∀S1, S2 : ¬((S1 overlaps S2) ∨ (S1 during S2))

3.2 Score

The scope of possible values in table cells is virtually endless and deciding whether
two values belong to the same segment is heavily dependent on context. We
therefore allow any distance function d(c1, c2) between two cells c1 and c2 to be
supplied as an argument. As in clustering, our goal is then to have a segmentation
in which similar cells are in the same segment and vice versa. Internal cluster
evaluation methods can be used to score segmentations.

Some of these distances are expensive to compute, for example, because they
require search queries [6]. We present a scoring function that exploits the spatial
configuration of tables and only performs (n− 1)(m− 2) distance computations
between neighbouring cells, as opposed to the O(n2m2) computations required
for popular evaluations such as the silhouette index [20].

Let 〈c1, c2〉 represent the edge between two neighbouring cells c1 and c2. A
boundary b(S1, . . . , Sn) between segments {S1, . . . , Sn} is the set of edges 〈ci, cj〉
such that ci ∈ Sk, cj ∈ Sl and k 6= l. We can assign a score to a boundary b as
the average distance between cells on either side of all edges that it contains

s(b) = avg
〈ci,cj〉∈b

d(ci, cj). (1)

where avg denotes the mean of the values that it ranges over and avg∅ = 0.
We compute the inter-segment score se(S) of a segmentation S as the score of

the boundary between all segments. The intra-segment score sa(S) is computed
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c1 c2 c3
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Fig. 3: (left) Table and segmentation, (middle) boundary between segments of the
segmentation and (right) edges between neighbouring cells within each segment.

as the average distance of neighbouring cells within each segment. These are
combined in the segmentation score

s(S) = se(S)− sa(S) = s(b(S))− avg
S∈S

avg
〈ci,cj〉∈S

d(ci, cj) (2)

that we want to maximise.

Example 3. A segmentation Se and its boundary are shown in Figure 3. The
inter- and intra-segment scores are computed as follows.

se(Se) =
1
5
(d(c1, c2) + d(c4, c5) + d(c7, c8) + d(c5, c8) + d(c6, c9))

sa(Se) =
1
7
(d(c1, c4) + d(c4, c7) + d(c2, c5) + d(c3, c6) + d(c2, c3) + d(c5, c6) + d(c8, c9))

3.3 Algorithm

We combine a divisive and an agglomerative step to heuristically search for
segmentations that satisfy the given constraints and have high scores. Let St

be the unknown target segmentation—a segmentation that ideally maximises
Equation 2. Our algorithm consists of three main steps. First, in the divisive step,
we look for a segmentation So such that (an approximation of) St can be obtained
by joining as few segments of So as possible. Second, in the agglomerative step,
we merge segments to search for segmentations that satisfy the given constraints.
Finally, the resulting segmentations are ranked.

Divide Inspired by superpixels in image segmentation, we want to find small
groups of highly similar cells by iteratively splitting one segment. Let S be an
ns ×ms segment in the current segmentation Si. There are (ns − 1)(ms − 1)
straight boundaries that divide S in two segments. The best candidate boundary
for splitting S is the one for which Equation 1 is maximal, indicating that cells on
both sides of the boundary are dissimilar. Let b(S) be the set of these candidate
boundaries. We define the splitting score of a boundary b ∈ b(S) as

ssplit(b) = s(b)− avg
b′∈b(S)

s(b′) + std
b′∈b(S)

s(b′) (3)

where the boundary score s(b) is adjusted for variations in the similarity between
values of different types. This allows for comparing of splitting scores across
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(a) Example of the divisive step. The final split and any subsequent splits will be based
on a very slow splitting score.

(b) Graphical example of a single step of the merge algorithm with w = 3. Only
candidate joins that satisfy the shape constraint are part of the merge tree. Of those,
the three best candidates are added to the stack and will be expanded in the future.

Fig. 4: Graphical example of oversegmentation and merging steps using a tromino
shape constraint and no position constraint.

different segments, as we expect the distance between cells of different types
to have varying magnitudes. In other words, we look for a boundary with an
unusually large boundary score for its segment. The divisive algorithm then works
by iteratively splitting the segment with the highest scoring boundary along this
boundary. It stops when the score of the chosen boundary becomes too small.

Merge Starting from the segmentation So that was found in the previous step,
we can iteratively merge segments to look for segmentations that satisfy the
constraints. This corresponds to a merge tree as used for object segmentation
in images [18]. In this tree, each node is a segmentation and its children are
obtained by merging two neighbouring segments. Rather than full enumeration,
we perform a heuristic beam stack search [21] with constraint checking.

Let Si be the current segmentation popped from the stack. Using breadth-first
search, we search the neighbourhood of every segment S ∈ Si for the lowest
number k < km of segments that can be merged with S to create a new segment
that satisfies the shape constraint, where km is a hyperparameter. Merging k
segments at once amounts to following k − 1 edges in the merge tree, but the
intermediate nodes are never explicitly considered. Each of these combinations
of k + 1 candidate segments is scored using Equation 1 and the w best ones are
pushed to the stack, with w another hyperparameter. The algorithm is initialised
with only So on the stack and stops when the stack is empty.

Example 4. An example of both divide and merge of a segmentation problem is
shown in Figure 4. The shape constraint is that every segment must consist of
exactly three orthogonally connected cells, there is no position constraint.
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Similarity Description

embedding Cosine similarity between sum-of-word-vectors.
alignment Global alignment similarity between strings with lowercase, uppercase

and digits substituted a, A and 0, respectively.
compressed alignment Same as alignment, but with subsequent, identical characters compressed

into a single one.
prefix Longest prefix similarity.
postfix Longest postfix similarity.
longest common substring Longest common substring similarity.

Table 1: Individual similarity functions used for training a mixed similarity.

4 Evaluation

We now evaluate applicability and flexibility of muppets on three use cases. In
these experiments, we use the ranking of segmentations produced by muppets.

4.1 Single column type detection

Automatically discovering the statistical and semantic types of data in tables is a
valuable tool in data preparation and information retrieval. Accordingly, methods
have been presented that predict the type of a column [3, 4]. These methods
expect the values in a column to have the same type. If this is not the case, they
will not work or perform worse.

By generating tables where data of the same type is not in one column, we
show that muppets is capable of detecting segments in this context. Figure 5a
shows configurations of such tables. Segments of the same pattern are populated
with values of a single type, randomly sampled from half of the columns used to
evaluate the Sherlock [13] type detection system.

The other half of these domains was used to train a mixed syntactic and
semantic distance function. For two cells c1 and c2, we first compute a feature
vector ~d(c1, c2) from k individual distance functions {d1, . . . , dk} and train a
probabilistic classifier to predict whether c1 and c2 are taken from the same
domain. Given two new values, their similarity is the probability of classifying
them as being from the same domain. All considered similarity functions are
shown in Table 1.

We show two results of running muppets with this trained similarity measure
and a tabular constraint on 60 generated problems in Figure 5b. First, we show
the rank of the perfect segmentation. Second, we also show the rank of the first
segmentation in which no values of different types are in the same segment. Each
segment then contains values of a single type, their types can be detected, and
the segmentation is thus useful. In almost all cases, the correct segmentation is
obtained as the highest ranked one. When this does not happen, we see that the
similarity fails to distinguish some domains, because they contain syntactically
distinct values or embeddings do not capture their semantics.
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(a) Example table configurations
where type detection fails without
segmentation.
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(b) Distribution of ranks of perfect segmentations
and first segmentation in which all values of the
same domain are in the same segment.

Fig. 5: Example of table configurations and results of detecting segments when
generating tables from these configurations.

4.2 Semantic error detection

Error detection in spreadsheets typically happens on the basis of formulas, as
these are prone to mistakes [11]. Such errors are called spreadsheet smells and
approaches to find them often detect blocks of data that are influenced by the
same formula [14]. Other errors can occur as well, however, such as copy and
paste errors or artefacts of misaligned data. We call these semantic errors, as
they require understanding of the semantics of a cell. This experiment shows how
a noisy semantic similarity between words can be used by muppets to detect
such semantic errors in spreadsheets.

After finding a segmentation, we compute the average distance d̄(c) of every
cell c ∈ S to all other cells in the same segment. Additionally, we compute the
average similarity d̄(S) between all pairs of cells in the segment. The error score
of a cell c ∈ S is then d̄(c)− d̄(S). A high error score indicates that the cell is not
like other elements in the same segment, and thus probably an error. Figures 6b
and 6c show a heat map of the error scores for all cells in Table 6a in case of
absence and presence of the segmentation as a 2× 2 checkerboard.

The experiment is then performed as follows. We generate tables with errors
by filling a table template with data from a pair of data domains and randomly
replacing a single cell with a value from the other domain. Domain pairs are
selected either two columns from the same dataset, such as movies and genres, or
from the same column but with a distinct property, such as athletes from different
sports. The full list of domain pairs is shown in Table 2. They were chosen to
be syntactically indistinguishable. Three fairly weak semantic similarities are
considered: the normalised web distance [6] using either Wikipedia or ChatNoir
as search engines—that can be queried for free—and embedding similarity with
spaCy [12] using the en_core_web_lg model.

All cells are then ranked by their error score. The distribution of ranks of
the actual error for 60 iterations is shown in Figure 7. All similarity measures
are able to correctly identify close to a third of errors. We also show the lowest
rank obtained for every iteration using either of the three similarities, correctly
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Different columns Different property

Domain 1 Domain 2 Domain 1 Domain 2

baseball players football players male gymnasts female gymnasts
soccer players soccer clubs American gymnasts Russian gymnasts
car manufacturer car type fencers boxers
movie studio movie genre
Pokémon name Pokémon type
countries flavours

Table 2: Domain pairs for semantic error detection.

Belgium Netherlands Vanilla Strawberry
Spain Poland Pistachio Banana
Cookie dough Peppermint Germany Russia
Greece Cherry Austria Spain

(a) Table following a 2×2 checkerboard
pattern with a semantic error. (b) no segmentation (c) segmentation

Fig. 6: Table with a semantic error and its error scores (b) without and (a) with
the segmentation using embedding similarity.

identifying 43 out of 60 errors. In cases where the actual error was not ranked
first, unexpected values often confused the similarity measure. For example, in
the car manufacturers and types domain, the word “pickup” yields high error
scores due to its double meaning.

4.3 Table and header detection

A popular tool for working with tables is a Python package called pandas.
It provides functions read_csv and read_excel for reading tables from their
respective formats. Important parameters are skiprows that controls what part of
the file to load and header and index_col for selecting the structural properties
of the table. For example, the table in Figure 1 requires skiprows=2, header=0
and index_col=0 for loading it correctly. Searching for the tags [pandas] and
[csv] on StackOverflow, we found 20 questions about loading a table, where the
appropriate values for these parameters was the solution.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Rank of error
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20

40
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u
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ce
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Embedding

Wikipedia

Chatnoir
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Fig. 7: Distribution of the ranks of errors when sorting by their error score.
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Parameter Tab Sub Rec Any

skiprows 19 20 20 20
header 17 17 18 19
index_col 12 16 19 19

All 12 15 17

Table 3: Parameter detection results. Fig. 8: Cuts based on boundaries.

We use muppets to estimate the parameters for these tables as follows. First,
we use the compressed alignment similarity from Table 1 and one of the tabular,
subtabular or rectangular constraints to obtain the highest ranked segmentation.
From this segmentation, horizontal and vertical cuts are made along all boundaries
of segments, as visualised in Figure 8. The header and skiprows parameters are
respectively chosen to be the lowest horizontal cut and the lowest horizontal cut
above which is a row that is mostly empty. On the remaining rows, index_col
is chosen as the leftmost vertical cut such that the columns left of it are a valid
index and thus contain unique rows.

For the different position constraints, Table 3 shows how often each individual
parameter and all parameters together were correctly recovered, and whether
it was estimated correctly using any of the constraints. Only two parameter
values were never recovered. Imposing more position constraints results in coarse
segmentations and information is lost. Estimating index_col either fails because
both index and subsequent column are numerical and the distance is to small, or
because the ground truth has no index_col and there is a vertical cut between
columns of different types. Similarly, header either fails because data and headers
are too similar or because empty cells cause superfluous segments in the data
regions. In these unsuccessful cases, it is the similarity that fails to capture
semantic meaning.

5 Related Work

A first line of related work is layout detection in spreadsheets, where the goal
is to infer the layout of a spreadsheet and use it to extract data. Rather than
distinguishing between cells, these systems take a predictive approach and try to
detect their functional role—for example, whether they contain data, metadata,
derived values or headers. One approach is to train a classifier using a manually
curated set of syntactic and stylistic features on annotated data [16]. A more recent
approach first trains context and style embeddings on unsupervised data and then
uses these embeddings to make predictions with a recurrent architecture [10].

These cell roles can then be used to infer the layout using heuristics [8],
graphs [15] or a genetic approach [17]. Segmentation is complementary to these
approaches for detecting finer grained layouts in the data region, which we used
to perform semantic error detection and improve semantic role detection. On a
related note, the problem of detecting tables in spreadsheets [7] or CSV files [5]
has recently received some attention.
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Table segmentation is related to statistical and semantic type detection,
where the goal is to find the data type of a set of values. Unlike our unsupervised
segmentation approach, type detection generally works in a predictive setting,
where the goal is to classify the statistical type of columns or to annotate them
with semantic types [4, 3]. As data is assumed to be grouped in sets of values that
share a distinctive type, table segmentation can serve as a preprocessing step.

6 Conclusion and future work

We presented the flexible muppets framework for the new problem of partitioning
a table in segments that fulfil the same role. The framework is parametrised
by a distance function between cells, which allows it to be used for different
use cases. Three use cases were introduced in which muppets either solves a
new problem or complements existing approaches: detecting the types of cells,
detecting semantic errors and easily loading tables.

Two direct pointers for future work are learning a general similarity measure
between cells and learning the constraints from annotated tables. Both are
aimed at making muppets applicable for new use cases, such as data wrangling.
Different search strategies can also be explored. For example, an evolutionary
approach might be less likely to suffer from local errors that prevent the correct
segmentation from being found—at the cost of performance.
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