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Abstract
Circularly polarized (CP) extreme ultraviolet- and x-ray radiation is an essential tool for
analyzing the magnetic properties of materials. Elliptically polarized high harmonic generation
(HHG) has been demonstrated by focusing bi-chromatic (800+ 400 nm wavelengths),
counter-rotating CP laser pulses into gas targets (Fleischer et al 2014 Nat. Photonics 8 543).
More recent theoretical studies indicate that a bi-circular laser driver can also work in both
under- and overdense plasmas with analogous selection rules to those in gases: for example,
every third harmonic is suppressed and adjacent harmonics have opposite helicity for
counter-polarized CP ω0 and 2ω0 pumps. In this work, an analytical theory of bi-circular HHG
from underdense plasmas is formulated which provides quantitative predictions of harmonic
efficiency scaling, selectivity and helicity for both co- and counter-polarized drivers of arbitrary
frequency ratio. This is compared to a fully non-linear, one-dimensional fluid model and
particle-in-cell simulations, showing good agreement with both.

Keywords: circularly polarized harmonic generation, high harmonic generation in plasmas,
extreme-ultraviolet and attosecond pulses

(Some figures may appear in colour only in the online journal)

1. Introduction

Conversion of laser light to multiples of its fundamental
frequency, or high harmonic generation (HHG), has been

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

studied and applied as a means of producing coherent
extreme-ultraviolet (EUV) and attosecond pulses for some
time now. HHG can occur both in gas and plasma tar-
gets through non-linear interaction between a laser field and
bound (gas) or free (plasma) electrons. In a gas target this
process occurs via recombination of ionized electrons with
the parent ions, which is commonly described by a three-step
model [1, 2, 3]. In a fully ionized plasma target, HHG arises
through acceleration and deceleration of free electrons in the
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field of the laser. Interest in producing short-wavelength light
by this means began soon after invention of the first lasers
in 1960 [4], when a number of theoretical studies appeared
devoted to laser interaction with matter and feasibility of har-
monic generation by non-linear Thomson scattering [5].

The first experiments using gas targets date back to the late
1980s [6, 7], when picosecond laser pulses were focused into a
jet of noble gas. To date, this method has been refined consid-
erably to become one of the choice techniques for producing
EUV light with a tabletop laser [8]. There are many ways of
improving HHG efficiency, such as phase-matching [9], poly-
chromatic drive [10], or extending the cutoff frequency [11],
but the single-shot photon yield—or harmonic intensity at a
particular wavelength—is ultimately limited by ionization of
the gas at high laser intensity.

HHG can also occur in a fully ionized gas target (under-
dense plasma) in the relativistic regime, a fact that promp-
ted a series of early analytical studies [12–15] using one-
dimensional (1D) perturbational models which predicted
rather low efficiencies. For this reason most theoretical and
experimental attention has since been devoted to studying
plasma harmonics from overdense foil targets [16], where dif-
ferent mechanisms prevail depending on the laser pulse con-
trast ratio [17–19]. Underdense plasmas have mainly been
examined for low-order harmonics [20] but have the advant-
age of being experimentally easier to handle with the same
optical setup as for gas-generated HHG, thus benefiting from
continuous target medium replenishment more suited to kHz
laser operation than solid targets.

Recently, generation of circularly polarized (CP) harmon-
ics has gained particular attention because their properties
open up a wide range of new studies and applications, such
as: photoelectron emission from chiral molecules [21, 22],
probing of ultrafast molecular decay dynamics [23], angle-
resolved photoemission spectroscopy (ARPES) [24], magnet-
ically induced spin reorientation phenomena [25, 26], x-ray
magnetic circular dichroism (XMCD) measurements [27, 28],
tomographic reconstruction of CP high-harmonic fields [29],
and magnetic imaging [30].

Normally, harmonics are completely suppressed when
using a CP driver pulse both in gas and plasma media. In the
former case, bound electrons ionized by a CP electric field
will not return to the atom and so recombination events with
associated high-energy photon emission cannot take place. In
an ionized medium, electrons remain on circular orbits with
constant speed, suppressing the high-frequency density fluctu-
ations and relativistic nonlinearities driven by linearly polar-
ized (LP) light which act as the primary harmonic source.

Generation of efficient CP harmonics in gas was first
demonstrated by Fleischer et al in a breakthrough experi-
ment [31] using two bichromatic drivers. This work has since
prompted a flurry of activity, including the demonstration of
bright, phase-matched CP high harmonics [32], non-collinear
[33] generation of CP high harmonics, harmonic generation
driven by time-delayed, few-cycle ω-2ω pulses [34] and with
controlled helicity for ω-2ω and ω-3ω fields [35]. The
selectivity of gas harmonics has been recently studied by
Venzke et al [36]. Obliquely incident, counter-rotating CP

laser pulses have been used by Hernandez-Garcia et al [37]
as a means of generating isolated attosecond pulses. Bi-
circular harmonic generation can be used to probe dynamical
symmetry [38, 39].

Polarization control of harmonic generation on a plasma
surface with the aim of obtaining a single attosecond x-ray
pulse was first proposed by Baeva et al [40]. Subsequently,
CP harmonic generation from a relativistic plasma mirror was
studied by Chen et al [41] andMa et al [42] using an obliquely
incident CP pulse. The idea of mixing bi-chromatic pulses as
proposed in gas harmonic generation has also been explored
numerically for overdense plasmas at ultrarelativistic laser
intensities [43] and analytically for underdense plasmas and
more moderate laser amplitudes [44].

In this paper we examine the harmonic generation mech-
anism from free electrons in a plasma target, and in partic-
ular, explore options for achieving CP EUV light with high
efficiency and selectivity of the harmonic number. Due to the
small wavelength of higher harmonics in the nanometer (nm)
range, compared to optical laser wavelengths (400+ 800 nm),
numerical study of this phenomenon normally demands very
high resolution particle-in-cell (PIC) simulation and therefore,
computation time. A new, complementary non-linear plasma
fluid approach is introduced here which offers a faster, noise-
free, hi-fidelity alternative to PIC while retaining the essen-
tial harmonic generation physics. This model is able to guide
both experiments and more complete multi-dimensional PIC
simulations.

2. Analytical fluid model: harmonic selection rules,
helicity and efficiency

Starting from the standard EM wave equation for the vec-
tor potential, we observe that harmonics are generated by the
source term in the right hand-side of the equation,

∇2A− 1
c2
∂2A
∂t2

=−µ0J, (1)

therefore, to determine the harmonic content of the radiation,
the fully non-linear current J= enep/γm must be evaluated,
which in turn amounts to solving for the longitudinal dens-
ity perturbation and the relativistic factor. In order to fully
determine the density we need three additional equations: the
Lorentz force equation together with Poisson’s equation and
the continuity equation, which in one dimension for arbitrary
amplitudes ne, ϕ and px can be written as:

∂px
∂t

+ cu
∂px
∂x

= c
∂ϕ

∂x
− c

2γ
∂A2

⊥
∂x

,

∂2ϕ

∂x2
= k2p(ne− 1),

∂ne
∂t

=−c∂(neu)
∂x

, (2)

where px represents the dimensionless longitudinal
momentum (normalized to mc), u= px/γ the corresponding
fluid velocity (c), ϕ the scalar potential (mc2/e), A⊥ the laser
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wave vector amplitude (mc/e) and ne is the electron density
normalized to the background ion density (n0).

Henceforth we will assume that the laser driving force
∂A2

⊥/∂x in equation (2) consists of two bi-colour CP pulses
travelling in the x-direction with arbitrary amplitudes which
can be represented by the transverse wave vectors:

A1 = (0,
A0√
2
cosθ,

A0√
2
sinθ),

A2 = (0,
A ′
0√
2
cosθ ′,± A ′

0√
2
sinθ ′), (3)

where θ = ω0t− k0x, θ ′ = qω0t− kqx and q is an integer
which is the frequency ratio of the two co- (+) or counter-
polarized (−) laser pulses. The present work will mainly con-
sider drivers with a ratio q= 2 corresponding to the commonly
available laboratory laser configuration ω0 and 2ω0.

Keeping this ratio arbitrary for now, we first observe that:

A2 = (A1 +A2) · (A1 +A2),

=
A2
0

2
+
A ′2
0

2
+A0A

′
0

{
cosΘ+

cosΘ− , (4)

where Θ± = θ± θ ′. For counter-polarized pulses, the driv-
ing term is cosΘ+; in the case of co-polarized pulses, this is
cosΘ−.

This implies that the fluid momentum px, density ne and
scalar potential all oscillate with harmonics of the driver, so
that we can expand each fluid quantity accordingly:

ne = 1+ ϵn1 cosΘ
± + ϵ2n2 cos2Θ

± +O(ϵ3),

ϕ= ϵϕ1 cosΘ
± + ϵ2ϕ2 cos2Θ

± +O(ϵ3),

px = ϵp1 cosΘ
± + ϵ2p2 cos2Θ

± +O(ϵ3). (5)

Likewise, the relativistic parameter γ−1 expanded up toO(ϵ2)
order is:

γ−1 =
(1− u2)1/2

(1+A2
⊥)

1/2

=

(
1− p2x/γ

2
0

)1/2(
γ20 +A0A

′
0 cosΘ

±
)−1/2

= γ−1
0

[
1+ ϵ2

(
3A2

0A
′2
0

16γ40
− p21

4γ20

)
− ϵ

A0A ′
0

2γ20
cosΘ±

+ ϵ2
(
3A2

0A
′2
0

16γ40
− p21

4γ20

)
cos2Θ± +O(ϵ3)

]
, (6)

where ε is an ordering parameter such that the driving term is
considered to be O(ϵ) and γ0 = 1+A2

0/2+A ′2
0 /2. Substitut-

ing these expansions into equation (2) leads to a set of algeb-

raic equations which can be solved by iteration. In the first
iteration, the O(ϵ) equations yield:

Lorentz force: −Ω±
q p1 = cK±

q ϕ1 − cK±
q
A0A ′

0

2γ0
, (7)

Poisson’s equation: ϕ1 =−
k2p

K±
q

2 n1, (8)

Continuity equation: p1 =
Ω±
q γ0

cK±
q
n1, (9)

where K±
q = (k0 ± kq), Ω±

q = (q± 1)ω0 and kp = ωp/c the
plasma wave number. Substituting p1 and ϕ1 into (7) gives an
explicit expression for the O(ε) plasma density amplitude:

n±
1 =

c2K±
q

2

Ω±
q

2 −ω ′2
p

(
A0A ′

0

2γ20

)
, (10)

for counter- (+) and co-polarized (−) pulses. The correspond-
ing first order currents are then:

Jcountery = ω2
p(1+ n+1 cosΘ+)γ−1Ay ≈ ω ′2

p Ay

+
(α+ − 1)

2
√
2

ω ′2
p

(
A0A ′2

0

2γ20

)
(cosθ+ cos(2θ ′ + θ))

+
(α+ − 1)

2
√
2

ω ′2
p

(
A2
0A

′
0

2γ20

)
(cosθ ′ + cos(θ ′ + 2θ)),

Jcounterz = ω2
p(1+ n+1 sinΘ+)γ−1Az ≈ ω ′2

p Az

+
(α+ − 1)

2
√
2

ω ′2
p

(
A0A ′2

0

2γ20

)
(sinθ− sin(2θ ′ + θ))

+
(α+ − 1)

2
√
2

ω ′2
p

(
A2
0A

′
0

2γ20

)
(−sinθ ′ + sin(θ ′ + 2θ)),

(11)

for counter polarized pulses and,

Jcoy = ω2
p(1+ n−1 cosΘ−)γ−1Ay ≈ ω ′2

p Ay

+
(α− − 1)

2
√
2

ω ′2
p

(
A0A ′2

0

2γ20

)
(cosθ+ cos(2θ ′ − θ))

+
(α− − 1)

2
√
2

ω ′2
p

(
A2
0A

′
0

2γ20

)
(cosθ ′ + cos(θ ′ − 2θ)),

Jcoz = ω2
p(1+ n−1 sinΘ−)γ−1Az ≈ ω ′2

p Az

+
(α− − 1)

2
√
2

ω ′2
p

(
A0A ′2

0

2γ20

)
(sinθ+ sin(2θ ′ − θ))

+
(α− − 1)

2
√
2

ω ′2
p

(
A2
0A

′
0

2γ20

)
(sinθ ′ − sin(θ ′ − 2θ)),

(12)

for co-polarized pulses, where α± = c2K±
q

2
/(Ω±

q
2 −ω ′2

p )

and ω ′2
p = ω2

p/γ0. Note that in the low density limit (ωp ≪
ω0), the coefficient α± − 1 term reduces to (ω ′

p /Ω
±
q )2, mean-

ing that the first order non-linear current will scale asO(ω ′
p )

4,

3



Plasma Phys. Control. Fusion 63 (2021) 035023 Z M Chitgar et al

or the square of the electron density, just as in the original ana-
lyses of third harmonic generation via a single-frequency, LP
laser [13, 14, 45].

In the second iteration, equation (2) is solved to O(ϵ2) for
ne, ϕ and px by substituting the expansions from equation (5)
and then gathering all second order terms. This gives a new set
of algebraic equations analogous to equations (7)–(9):

− 2Ω±
q p2 +

cK±
q p

2
1

2γ0
= 2cK±

q ϕ2 + cK±
q
A2
0A

′2
0

8γ30
(13)

ϕ2 =−
k2p

4K±
q

2 n2 (14)

p2 =
Ω±
q γ0

cK±
q
n2 + p1

A0A ′
0

4γ20
− n1p1. (15)

We see immediately that these expressions also contain n1 and
p1, for which we can substitute the solutions already found
from equations (9) and (10). In this way, equations (13)–(15)
can be solved for the second order density amplitude:

n±
2 =

2Ω±
q

2
(α±2 −α±)+ c2K±

q
2
(α̃±2 − 1)

4Ω±
q

2 −ω ′2
p

(
A0A ′

0

2γ20

)2

,

(16)

where α̃± = (Ω±
q /cK

±
q )α.

Inspection of these coefficients reveals that there appear to
be contributionsO(ω ′

p )
2, but it turns out that these end up can-

celling other terms of the same order in the non-linear cur-
rent, finally leaving a leading contribution scaling as (ω ′

p )
6

to this order. Putting together the results from equations (6),
(10) and (16) we can now calculate complete expressions for
Jy,z = ω2

p(1+ n)γ−1Ay,z up to O(ϵ2) in the low density limit,
or ωp ≪ ω0:

Jcountery ≈ ω ′2
p Ay+

1

2
√
2

ω ′4
p

Ω+
q
2

(
A0A ′2

0

2γ20

)
(cosθ+ cos(2θ ′ + θ))

+
1

2
√
2

ω ′4
p

Ω+
q
2

(
A2
0A

′
0

2γ20

)
(cosθ ′ + cos(θ ′ + 2θ))

+
3

8
√
2

ω ′6
p

Ω+
q
4

(
A3
0A

′2
0

4γ40

)
cos(2θ ′ + 3θ)

+
3

8
√
2

ω ′6
p

Ω+
q
4

(
A2
0A

′3
0

4γ40

)
cos(3θ ′ + 2θ)+O(ϵ3),

(17)

Jcounterz ≈ ω ′2
p Az+

1

2
√
2

ω ′4
p

Ω+
q
2

(
A0A ′2

0

2γ20

)
(sinθ− sin(2θ ′ + θ))

+
1

2
√
2

ω ′4
p

Ω+
q
2

(
A2
0A

′
0

2γ20

)
(−sinθ ′ + sin(θ ′ + 2θ))

+
3

8
√
2

ω ′6
p

Ω+
q
4

(
A3
0A

′2
0

4γ40

)
sin(2θ ′ + 3θ)

− 3

8
√
2

ω ′6
p

Ω+
q
4

(
A2
0A

′3
0

4γ40

)
sin(3θ ′ + 2θ)+O(ϵ3),

(18)

Jcoy ≈ ω ′2
p Ay+

1

2
√
2

ω ′4
p

Ω−
q
2

(
A0A ′2

0

2γ20

)
(cosθ+ cos(2θ ′ − θ))

+
1

2
√
2

ω ′4
p

Ω−
q
2

(
A2
0A

′
0

2γ20

)
(cosθ ′ + cos(θ ′ − 2θ))

+
3

8
√
2

ω ′6
p

Ω−
q
4

(
A3
0A

′2
0

4γ40

)
cos(2θ ′ − 3θ)

+
3

8
√
2

ω ′6
p

Ω−
q
4

(
A2
0A

′3
0

4γ40

)
cos(3θ ′ − 2θ)+O(ϵ3), (19)

Jcoz ≈ ω ′2
p Az+

1

2
√
2

ω ′4
p

Ω−
q
2

(
A0A ′2

0

2γ20

)
(sinθ+ sin(2θ ′ − θ))

+
1

2
√
2

ω ′4
p

Ω−
q
2

(
A2
0A

′
0

2γ20

)
(sinθ ′ − sin(θ ′ − 2θ))

− 3

8
√
2

ω ′6
p

Ω−
q
4

(
A3
0A

′2
0

4γ40

)
sin(2θ ′ − 3θ)

+
3

8
√
2

ω ′6
p

Ω−
q
4

(
A2
0A

′3
0

4γ40

)
sin(3θ ′ − 2θ)+O(ϵ3). (20)

Inspection of the phases of the non-linear current components
(Jy,z ≡ nAy,z) in equations (17)–(20) immediately reveals that
the combination of bi-colour pumps, whether counter- or co-
polarized, always results in CP harmonics. Moreover, the heli-
city of the harmonics is determined automatically through the
relative sign of each current component: for counter-polarized
pulses, the terms θ, θ ′ + 2θ, 2θ ′ + 3θ, have the same helicity
(LCP) and are counter-polarized relative to θ ′, 2θ ′ + θ, 3θ ′ +
2θ (RCP). In other words, for the q= 2 case (ω0 + 2ω0

pumps), modes ω0, 4ω0, 7ω0 are LCP, whereas 2ω0, 5ω0, 8ω0

are RCP. For co-polarized drivers, 2θ ′ − θ, 3θ ′ − 2θ, has the
same helicity (LCP) as the main pumps, θ and θ ′, which are
counter-polarized relative to θ ′ − 2θ, 2θ ′ − 3θ, (RCP). For
q= 2 this results in same helicity (LCP) forω0, 2ω0, 3ω0, 4ω0.
Selection rules for this and higher values of the pump fre-
quency ratio q are summarized in table 1.

It is worth taking a moment to consider the origin of the
selection rules which arise using bi-circular pulses. To do
this, we extend the expansion of the γ−1 term in the current
(equation (6)) to arbitrary order:

γ−1 = γ−1
0

[
1− p2x

2γ20
+

∞∑
m=2

(−1)m−1(2m− 3)!
m!22m−2(m− 2)!

(
px
γ0

)2m]

×
[ ∞∑
m=0

(−1)m(2m)!
m!24m

(
A0A ′

0

γ20

)m

cosmΘ±
]
. (21)

Note that cosmΘ± term in γ−1 expands to cosmΘ har-
monics. Multiplying this term by the density oscillating at the

4
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Table 1. Selection rules deduced from equations (17)–(20).

LCP RCP LCP RCP
θ, θ ′ + 2θ, 2θ ′ + 3θ θ ′, 2θ ′ + θ, 3θ ′ + 2θ θ, θ ′, 2θ ′ − θ, 3θ ′ − 2θ θ ′ − 2θ, 2θ ′ − 3θ

q= 2 ω0, 4ω0, 7ω0 2ω0, 5ω0, 8ω0 ω0, 2ω0, 3ω0, 4ω0 —
q= 3 ω0, 5ω0, 9ω0 3ω0, 7ω0, 11ω0 ω0, 3ω0, 5ω0, 7ω0 —
q= 4 ω0, 6ω0, 11ω0 4ω0, 9ω0, 14ω0 ω0, 4ω0, 7ω0, 10ω0 2ω0, 5ω0

q= 5 ω0, 7ω0, 13ω0 5ω0, 11ω0, 17ω0 ω0, 5ω0, 9ω0, 13ω0 3ω0, 7ω0

driver frequencies results in generation of mΘ± = m(q± 1)
harmonics. If we now expand Ay = a1 cosθ+ a2 cos2θ
+ · · ·+ am cosmθ, the product of (1+ n)γ−1 with Ay auto-
matically excludes (q± 1)m harmonic terms. This general-
izes the selection rules: only harmonics with mode number
(q+ 1)m± 1 can be generated in case of counter-rotating
pulses or (q− 1)m± 1 when the pumps are co-polarized. The
(−1)m factor contributes the sign of each term and therefore
the helicity of harmonics. Expanding γ−1 one can show that
for counter-polarized pulse all (q+ 1)m+ 1 are left circularly
polarized (LCP) and (q+ 1)m− 1 harmonics are right cir-
cularly polarized (RCP). In case of co-polarized pulses the
(q− 1)m+ 1 harmonics have the same helicity as the main
pumps (LCP), opposite to the helicity of the (q− 1)m− 1
harmonics. We also note that these findings are consist-
ent with the work of Sharma et al [44], who examined the
non-linear current up to O(ϵ) in our notation, or harmonics
(q+ 1)m± 1⩽ 5.

We now proceed to calculate the harmonic amplitudes.
Substituting the Ay = a1 cosθ+ a2 cos2θ+ · · ·+ am cosmθ in
equation (1) gives the dispersion relation:

m2ω2
0 −ω ′2

p = k2mc
2

ω2
0 −ω ′2

p = k20c
2,

(22)

where m⩾ 2. The harmonic non-linear (NL) current for
counter- and co-polarized pulses according to equations (17)–
(20) will be:

JNLθ ′±2θ ≈
1

2
√
2

ω ′4
p

Ω±
q

2

A2
0A

′
0

2γ20

{
+cos(θ ′ ± 2θ)
±sin(θ ′ ± 2θ)

,

JNL2θ ′±θ ≈
1

2
√
2

ω ′4
p

Ω±
q

2

A0A ′2
0

2γ20

{
+cos(2θ ′ ± θ)
∓sin(2θ ′ ± θ)

,

JNL2θ ′±3θ ≈
3

8
√
2

ω ′6
p

Ω±
q

4

A3
0A

′2
0

4γ40

{
+cos(2θ ′ ± 3θ)
±sin(2θ ′ ± 3θ)

,

JNL3θ ′±2θ ≈
3

8
√
2

ω ′6
p

Ω±
q

4

A2
0A

′3
0

4γ40

{
+cos(3θ ′ ± 2θ)
∓sin(3θ ′ ± 2θ)

, (23)

with cos terms indicating the y- and sin terms the z-component
of the non-linear current density. To obtain the harmonic effi-
ciency we equate equation (23) with the matching reson-
ant cosmΘ term on the left-hand side of the expanded wave

equation (1). This will lead to corresponding steady-state har-
monic amplitudes:

aθ ′±2θ ≈
1

4× 2
√
2

(
ωp

Ω±
q

)2 A2
0A

′
0

2γ30
,

a2θ ′±θ ≈
1

4× 2
√
2

(
ωp

Ω±
q

)2 A0A ′2
0

2γ30
,

a2θ ′±3θ ≈
3

4× 8
√
2

(
ωp

Ω±
q

)4 A3
0A

′2
0

4γ60
,

a3θ ′±2θ ≈
3

4× 8
√
2

(
ωp

Ω±
q

)4 A2
0A

′3
0

4γ60
, (24)

which by extrapolating the series, suggests a general rule for
the leading contribution (see also the appendix) to the amp-
litude of each harmonic to arbitrary order of:

aLCP(q+1)m+1 =
(2m)!

4m+1
√
2m!2

(
ωp

Ω+
q

)2m(Am+1
0 A ′m

0

2mγ 3m
0

)
,

aRCP(q+1)m+q =
(2m)!

4m+1
√
2m!2

(
ωp

Ω+
q

)2m(Am
0 A

′m+1
0

2mγ 3m
0

)
, (25)

for m∈ [0, 1, 2,…] when pulses are counter-polarized.
Whereas for co-polarized pulses the leading contribution (see
also the appendix) in the amplitude of each arbitrary harmonic
number will be:

aLCP(q−1)m+q =
(2m)!

4m+1
√
2m!2

(
ωp

Ω−
q

)2m(Am
0 A

′m+1
0

2mγ 3m
0

)
,

aRCP(q−1)m−1 =
(2m)!

4m+1
√
2m!2

(
ωp

Ω−
q

)2m(Am+1
0 A ′m

0

2mγ 3m
0

)
, (26)

for m∈ [0, 1, 2,…] and a−1 ≡ a1. From now on we limit our
calculations to counter-polarized case. The power scaling is
obtained using the electric field strength of the harmonic Pn ∝
In ∝ E2

n ∝ ω2
na

2
n:

P(q+1)m+1

P0
≈

(
(q+1)m+1
(q+1) 2m

)2(
(2m)!
(m!)2

)2(
ωp

ω0

)4m
A2m+2
0 A ′2m

0

26m+5(A2
0 + q2A ′2

0 )γ 6m
0

,

P(q+1)m+q

P0
≈

(
(q+1)m+q
(q+1) 2m

)2(
(2m)!
(m!)2

)2(
ωp

ω0

)4m
A2m
0 A ′2m+2

0

26m+5(A2
0 + q2A ′2

0 )γ 6m
0

.

(27)
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3. Nonlinear fluid model

In order to confirm that the findings deduced from the pre-
ceding analytical study are equally applicable to higher har-
monic orders, and to gain deeper insight into the propagation
dynamics of CP harmonics from underdense plasmas, we have
developed a fully non-linear 1D3V plasma fluid model. This
is constructed by combining a dispersion-free EMwave solver
with the well-known 1D solution for the longitudinal plasma
wakefield. In the following we describe the algorithm in detail
before applying it to verify some of the results of the preceding
theoretical analysis.

3.1. The directional splitting field solver

Unlike the FDTD scheme where the following normalized
Maxwell’s equations are solved explicitly in each grid point
at each time step ∆t:

Bn+1/2 −Bn−1/2

∆t
=−c∇×En, (28)

En+1 −En

∆t
= c∇×Bn+1/2 − Jn+1/2, (29)

in the directional splitting (DS) scheme, fields are integrated
along their propagation direction on a single computational
grid [46]. Equations (28) and (29) can then be rewritten as:

(
∂

∂t
± c

∂

∂x

)
±Fy =∓1

2
Jy,(

∂

∂t
± c

∂

∂x

)
∓Fz =∓1

2
Jz, (30)

where ±Fy = (Bz±Ey)/2 and ±Fz = (By∓Ez)/2. Therefore,
the electromagnetic field is updated based on the combination
of westward (+F) and eastward (−F) propagating waves:(

F+
y,z

)n+1

i+1
=
(
F+
y,z

)n
i
− ∆t

2

(
Jy,z

)n+1/2

i+1/2
,(

F−
y,z

)n+1

i
=
(
F−
y,z

)n
i+1

+
∆t
2

(
Jy,z

)n+1/2

i+1/2
, (31)

and current densities are space-centred with:

(
Jy,z

)n+1/2

i+1/2
=

1
2

[
(Jy,z)i+1 +(Jy,z)i

]n+1/2
. (32)

E- and B-fields are updated at each grid point and time-step
using directional fields:

Ey =
+Fy−−Fy,

−Ez = +Fz−−Fz,

By =
+Fz+

−Fz,

Bz =
+Fy+

−Fy. (33)

Making use of the identity py,z = eAy,z in this geometry, we
observe that we can apply the DS integration scheme a second

time to obtain the vector potential and thus the transverse elec-
tron fluid momentum:(

Ay,z
)n+1

i
=
(
Ay,z

)n
i+1

− 2∆t
(
F+
y,z

)n+1/2

i+1/2
, (34)

and finally current density will be updated using the fluid
momentum:

(
Jy,z

)n
i
=
(
vy,z

)n
i

(
ne
)n
i
=

(
py,z

)n
i

(
ne
)n
i

γ ni
, (35)

where γ = (1+ p2⊥)
1/2/(1−βx)

1/2 with βx the normalized
longitudinal plasma velocity and p2⊥ = p2y + p2z .

3.2. Plasma oscillation: quasi-static approximation

The field solver introduced in section 3.1 updates the EM-field
via the transverse source terms Jy and Jz which contain contri-
butions from the transverse momentum of the electrons in the
laser contribution and the longitudinal plasma oscillation ne.
As shown in section 2, in this context the density oscillation
acts to nearly cancel the contribution from the relativistic γ
factor, reducing the final harmonic amplitude, so it is essential
to treat this component accurately. In 1D geometry, the density
can be found by solving Poisson’s equation at each iteration of
the EM field. To do this we adopt the quasi-static approxima-
tion (QSA) of Esarey et al [45] to calculate the scalar poten-
tial in a coordinate system moving with the laser pulse with an
arbitrary group velocity vg, so that τ = t, ξ= x− vgt, ∂x = ∂ξ
and ∂t = ∂τ − vg∂ξ. Poisson’s equation then becomes [45,
47]:

∂2ϕ

∂ξ2
= k2pγ

2
g

{
βg(1+ϕ)

[(1+ϕ)2 − γ−2
g (1+ a2)]1/2

− 1

}
, (36)

where

ψ =

(
1− 1+ a2

γ2g(1+ϕ)2

)1/2

, (37)

βg =
√
1− ne/nc the normalized group velocity, γg its cor-

responding Lorenz factor; ϕ and a the normalized scalar and
vector potential, respectively. Within the QSA, the normal-
ized density and the velocity can be found from algebraic
expressions involving the intermediate ψ parameter thus:

n= γ2gβg

(
1
ψ
−βg

)
; βx =

βg−ψ

1−βgψ
. (38)

Therefore, the current densities Jy,z = enepy,z/γ in each EM
field-solver iteration of equation (30) will be found after updat-
ing not only the py and pz, but also βx, which in turn contributes
to the new γ:

γ = γ⊥γ∥ =
(1+ p2y + p2z )

1/2

(1−β2
x )

1/2
. (39)

To maintain consistency with the earlier theoretical ana-
lysis, our fluid model solves the Poisson’s equation in the low
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density limit where ne ≪ nc, βg → 1, so that equations (37)
and (38) reduce to:

ψ =
1+ a2

(1+ϕ)2
; n=

ψ+ 1
2

; β =
1−ψ

1+ψ
. (40)

3.3. Fluid model results

Here the results of the fluid code introduced in the previous
section are presented. The simulations are made for an under-
dense plasma slab of ∼49 µm with 10 µm distance from left
boundary in a box of total length 120 µm. For the pump fre-
quency ratio of q= 2, based on the selection rules deduced in
section 2, every third harmonic for counter-polarized pumps
should be suppressed, whereas all harmonics should be present
for co-polarized pumps. Figure 1 shows the numerical res-
ult for an underdense plasma with ne = 0.1nc and a com-
bined laser intensity of Itotal = Iω + I2ω = 1.1× 1018 W cm−2

with duration of cτ = 9 µm FWHM where I2ω0/Iω0 = 2.0
and q= 2. As can be seen the charge density oscillates pre-
dominantly at 3ω0 for counter and ω0 for co-polarized case.
This is the O(ϵ) density perturbation in equation (5). Sig-
natures of higher order contributions are visible in the cur-
rent density spectra, with every third harmonic suppressed for
counter-polarized pumps, but generation of all harmonics for
co-polarized pumps—figures 1(a), (b) and (d). Figures 1(c)
and (e) show the total electric field at the time where the pulses
reach the middle of the target for counter- and co-polarized
pulses, respectively.

Figure 2 shows examples of the corresponding harmonic
spectra computed using the fluid code for pump frequency
ratios q= 2, 3, 4, 5, with same total laser intensity and tar-
get density. As expected from section 2, for counter-polarized
(solid red line) only (q+ 1)m± 1 and for co-polarized (blue
dashed line) (q− 1)m± 1 appear; modes not adhering to these
rules are forbidden. Note that the efficiency (power scal-
ing Pn/P0 as defined in section 2) in case of co-polarized
pulses falls off more rapidly with harmonic number than in
the counter-polarized case.

We have also compared the harmonic efficiencies from
the fluid model and the analytical model equation (27) for
counter-polarized pulses, figure 3. For a total laser intens-
ity I= 1.1× 1018 W cm−2 and five target densities ne/nc =
0.0005,0.005,0.01,0.03,0.05, we confirm that increasing the
density also increases the efficiency with the expected scal-
ing. Furthermore, the decrease in harmonic efficiency from
fourth and fifth harmonic to seventh and eighth is the same
for both numerical and analytical model, figure 3(a). For both
models, harmonic efficiency increases with increasing laser
intensity from 1.1× 1017 to 1.1× 1019 W cm−2 for the same
target density (n= 0.05nc), although it saturates for strongly
relativistic laser intensities, figure 3(b). Although the analyt-
ical model has been formulated for weakly relativistic laser
intensities, the numerical fluid model is valid for any arbitrary
laser intensity, which allows us to test the validity and applic-
ability of the former in this regime.

Figure 1. Fluid model results of harmonic generation in an
underdense gas target of ne = 0.1nc using Itotal = Iω + I2ω
= 1.1× 1018 W cm−2 with duration cτ = 9 µm FWHM and
I2ω/Iω = 2.0, for counter- (a)–(c) and co-polarized (d), (e) pulses;
(a) charge density (blue line) and current density oscillation (red
line). (b), (d) Fourier transformed charge and current densities on a
logarithmic scale. (c), (e) Normalized transverse electric field at the
time where the pulses are at the middle of the target.

3.4. Free electron trajectory

Gas target harmonic generation is highly dependant on re-
combination of electrons and the atom. In the field of a CP
laser pulse, electrons do not have the chance to recombine with
the atom. Using bi-colour counter-rotating pulses, electron re-
combination is only possible because of the special return tra-
jectory [28, 32]. By contrast, a free electron can generate har-
monics in a bi-circular field without necessarily returning back
to its origin. In this case, harmonic generation occurs by elec-
trons being accelerated and decelerated during one cycle of
their trajectory.

In order to illustrate this fundamental difference between
harmonic generation in gas and plasma media, it is help-
ful to examine single electron trajectories. We start from
Lorentz equation dp/dt=−e(E+ v×B) and associated
energy equation d(γmc2)/dt=−e(v ·E), where γ = (1+
p2x + p2⊥)

1/2. Integrating the transverse and longitudinal com-
ponents of the Lorentz force for an electromagnetic wave
described by equation (3) leads to the well-known general
solution for the normalizedmomenta [48] p⊥ = A; px = p2⊥/2,
if we assume that the electron is at rest (px = p⊥ = 0,γ = 1)
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Figure 2. Fluid model results for selection rules for different values
of frequency ratio q. The red solid line shows the counter-polarized
efficiency spectra and blue dashed line the co-polarized case for: (a)
q= 2, where counter polarized pulses generate 3m±1 harmonics
and co-polarized m± 1; (b) q= 3, counter-polarized 4m±1,
co-polarized 2m±1; (c) q= 4, counter-polarized: 5m±1,
co-polarized 3m±1; (d) q= 5, counter-polarized 6m±1,
co-polarized 4m±1. The spectra are on a logarithmic scale. Note
that harmonic fall-off, in particular for the co-polarized case, is
quite rapid. This causes higher order harmonics (m or ε higher than
3 for this specific laser and target configuration) to fall below the
background level.

Figure 3. Power efficiency comparison of the fluid model (solid
line) with analytical model (dashed line) on a logarithmic scale for
4, 5, 7, 8th harmonic when q= 2; (a) dependency on the target
density for Itotal = 1.1× 1018 W cm−2, (b) dependency on total
laser intensity for ne = 0.05nc.

before the laser arrives. For the bi-circular pulses defined in
equation (3), this results in the following explicit expressions
for the momentum components:

px =
A2
0

4
+
A ′2
0

4
+
A0A ′

0

2
cos(θ± θ ′),

py =
A0√
2
cosθ+

A ′
0√
2
cosθ ′,

pz =
A0√
2
sinθ∓ A ′

0√
2
sinθ ′, (41)

Integration of equations (41) gives the electron orbit in the field
of two counter- and co-polarized pulses of different frequen-
cies and arbitrary amplitude:

x=
A2
0

4
θ+

A ′2
0

4
θ ′ +

A0A ′
0

2(q+ 1)
sin(θ± θ ′),

y=
A0√
2
sinθ+

A ′
0√
2q

sinθ ′,

z=− A0√
2
cosθ± A ′

0√
2q

cosθ ′. (42)

Figure 4 illustrates the electron trajectories in the bi-colour CP
field of two pulses with four different intensity ratios I2ω/Iω =
16,2,1,1/4. For each pair, the left hand-side figure displays
the superposition of the laser electric fields where t0 marks the
starting point and the colour scale indicates the time evolution.
The figures on the right show the electron trajectory coloured
according to the electron energy, thus revealing acceleration
and deceleration points through a laser cycle. Although har-
monics are generated based on the selection rules in section 2
for all intensity ratios, the electron does not generally return
to its original transverse position except for the special case
I2ω/Iω = 16—figure 4(a) and (b). This is easy to show from
the solution in equation (42), where for q= 2 the electron orbit
has y= z= 0 at phases θ= 0, 2π/3 and 4π/3 only if A0 = 2A ′

0 .
Of course, the electron also experiences a longitudinal drift
just as it does for single-pulse irradiation.

4. Comparison to PIC simulation

Additional numerical confirmation of our findings comes from
1D and 2D PIC simulations performed using the EPOCH
code [49]. All 1D (2D) simulations were made using a 120 µm
(120× 40 µm2) box discretized by a computational grid
with dimensions nx= 60 000 (nx× ny = 60000× 2000). An
underdense preionized helium plasma of ∼49 µm length is
placed at 10 µm from the left boundary with 100 particles
per cell and immobile ions. The laser pulse has 0.8 µm
wavelength and duration of τ = 30 fs. The target densities
are n= 0.005nc,0.05nc and the laser has normalized intens-
ities a0 = 0.2, 0.7. To get the harmonic spectra, the trans-
mitted pulse is allowed to propagate beyond the right edge
of the plasma, where it is then Fourier transformed (x to
k) in order to reduce the transient noise within the plasma.
This is the equivalent of taking the frequency spectrum of
a time-series collected from a probe placed in the vacuum
region, which is the procedure used for numerical fluid
model.

The chosen frequency ratio is q= 2, where we expect gen-
eration of 3m±1 harmonics. According to the figure 5, 1D PIC
simulation confirms the selection rules predicted in sections 2
and 3. Increasing the density increases the efficiency of the
harmonics as expected from equation (27), see red and green
spectra in figure 5. Higher laser intensities result in higher har-
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Figure 4. Electron trajectory in the field of bi-colour counter-polarized CP pulses; (a), (b) I2ω/Iω = 16.0, (c), (d) I2ω/Iω = 2.0, (e), (f)
I2ω/Iω = 1.0, (g), (h) I2ω/Iω = 0.25, where in each pair left figure shows the field superposition of pulses (the colour shows the time
evolution) and right figure the electron trajectory (the colour illustrates the electron energy).

Figure 5. Selection of 1D PIC simulation results showing
harmonics efficiencies in logarithmic scale for different target
densities ne/nc = 0.05, 0.005 and laser pulse intensities of
I= 1.1× 1017 W cm−2 and I= 1.1× 1018 W cm−2. The
frequency ratio of q= 2 results in suppression of every third
harmonic.

monic efficiencies as well, green and blue spectra. However,
for the higher laser intensities, increasing the target density
increases the noise level and harmonics are not distinguished.
This is because parametric instabilities such as Raman scatter-
ing and relativistic self-modulation will play an increasingly
dominant role for high intensity/density combinations. In fact
sidebands at ω0 ±ωp and 2ω0 ±ωp are clearly visible around
the pumps for the ne/nc = 0.05 case, which is a classic signal
of forward Raman scattering. Note that Raman scattering is
in principle also included in the fluid model, but grows from
a much lower level than in the PIC simulation. Despite these

Figure 6. Comparison of the harmonics efficiencies on a
logarithmic scale from the analytical model in section 2, numerical
fluid model, PIC code and Sharma et al [44] for target density of
ne = 0.05nc and total laser intensity of Itotal = 1.1× 1018 W cm−2.

quantitative differences, the selection rules are as predicted;
with every third harmonic absent in this case.

Finally, the numerical results from fluid model and PIC
code are compared to the analytical results from section 2 and
Sharma et al [44] and the results are shown in figure 6. For
fourth and fifth harmonics, the efficiency computed by PIC
simulation and fluid model are in a fair agreement with our
analytical model, but discrepancies start to appear at higher
frequencies, which might be due to neglect or suppression of
parametric instabilities in the fluid model compared to PIC.
Similar differences between analytical and PIC results for
higher-order LP-generated harmonics were previously noted
by Mori [13]. We note that Sharma et al predicts higher values
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Table 2. Comparison of harmonic efficiency (Pn/P0) for analytical and numerical models for target density of ne = 0.05nc and total laser
intensity of Itotal = 1.1× 1018 W cm−2. The values here correspond to the harmonic efficiencies in figure 6 and not the maximum possible
values of each harmonic.

Harmonic # Equation (27) Reference [44] Fluid 1D PIC 2D PIC

4 7.6× 10−10 8.6× 10−8 6.4× 10−10 6.1× 10−9 2.1× 10−9

5 6.1× 10−10 6.8× 10−8 7.2× 10−10 1.5× 10−9 1.3× 10−9

7 7.4× 10−17 — 6.7× 10−18 6.6× 10−12 6.4× 10−12

8 4.9× 10−17 — 5.6× 10−18 1.4× 10−11 3.9× 10−12

Figure 7. Comparison of the dephasing length from numerical fluid
model (red), PIC code (blue) and analytical fluid model described in
section 2 (green), for fourth (solid lines) and fifth harmonic (dashed
lines). The harmonic efficiencies are in logarithmic scale.

for 4ω0 and 5ω0—table 2, which may be partly due to their
omission of the γ0 relativistic correction.

5. Dephasing length

According to the dispersion relation in section 2 the phase
velocity of harmonics vϕm = ωm/km exhibit differences inside
the plasma depending on the harmonic number. After a certain
dephasing length, harmonics and their pump waves will be π
out of phase which ultimately results in an oscillatory rather
than constantly growing solution [13, 44, 45]. For the casewith
q= 2, as discussed in section 2, every third harmonic is sup-
pressed. This behaviour is demonstrated in figure 7, where har-
monics up to fifth from the analytical model, numerical fluid
model, and the PIC code are plotted.

Dephasing happens after a propagation distance π/∆km,
where for the fourth, fifth, seventh and eighth counter-
polarized driven harmonics gives rise to the following rela-
tions:

θ4 = 2θ+ θ ′ →∆k4 = 2k0 + k2 − k4,

θ5 = θ+ 2θ ′ →∆k5 = k0 + 2k2 − k5,

θ7 = 3θ+ 2θ ′ →∆k7 = 3k0 + 2k2 − k7,

θ8 = 2θ+ 3θ ′ →∆k8 = 2k0 + 3k2 − k8, (43)

Table 3. Comparison of dephasing length (in µm) for analytical
and numerical models. Parameters are the same as in table 2.

Harmonic # Theory Fluid 1D PIC

4 7.03 7.40 7.75
5 8.81 9.06 9.69
7 4.10 4.50 —
8 4.70 5.00 —

where km is computed from equation (22). In fact the ∆km
is the difference between the harmonic wave number in the
plasma and vacuum. Therefore, the higher order harmonics
dephasing length can be calculated, as shown in table 3, which
compares the dephasing lengths calculated from equation (43)
with the values measured from the numerical fluid model and
PIC code, respectively.

The fluid code has a number of advantages over the PIC
code in this context: first, the fluid code utilizes a electromag-
netic field-solver based on the DS scheme (see section 3.1),
which has much less numerical dispersion than the FDTD
scheme used here for the EPOCH code [46]. The biggest factor
however is the avoidance of particle-grid mapping needed in
PIC to obtain the currents, effectively eliminating the usual
cause of noise. High noise levels are transmitted to the har-
monics, making it difficult to determine the dephasing length
accurately, unless much higher resolution or computationally
expensive, higher-order schemes are used.

Not surprisingly, the short dephasing length is consistent
with that found in the early work on HHG from underdense
plasmas [13, 14, 45]. Various schemes have been proposed
to overcome this limitation such as density ripples to allow
pumps and harmonic to ‘coast’ back into phase [15, 50, 51],
or non-collinear driver pulses with the help of higher-order
modes in a focused beam [20].

6. Discussion and conclusion

One of the main outcomes of this study is the construction
of a non-linear analytical model for the properties of harmon-
ics driven by bi-circular pumps. The model predicts a general
set of selection rules in which harmonic orders (q+ 1)m± 1
appear for counter-polarized CP laser drivers and orders
(q− 1)m± 1 in case of co-polarized drivers, which is a nat-
ural consequence of a density oscillation driven at (q± 1)mω0.
These results are confirmed both by fluid model results and
PIC simulations. For the case when the frequency of the
second pulse is twice as high as the first pulse, q= 2, these
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selection rules lead to suppression of every third harmonic
when the pulses are counter-polarized but permit the gener-
ation of all harmonics for co-polarized pulses. These find-
ings are consistent with the selection rules given by Sharma
et al [44] for low-order harmonics 3, 4 and 5.

We note that although the harmonic generation mechanism
in plasmas is physically distinct from that responsible for gas
harmonics, the selection rules appear to be the same [32]. Fur-
ther simulations show that these selection rules also apply to
the case of an overdense plasma slab at normal laser incid-
ence, confirming the results obtained previously [43]. How-
ever, according to our analytical model, harmonic selectivity
in plasma is a natural consequence of the non-linear current
composition, and is not something that requires symmetry
effects and/or corresponding conservation laws as argued by
Chen [43].

Due to strong dependence of the harmonic power on the
plasma density, Pm/P0 ∝ (ne/n0)2m, the harmonic efficiency
falls off rapidly for higher order harmonics which makes their
experimental detection quite challenging. For a femtosecond
laser with total power of 1 TW and a plasma density of ne =
0.05nc, the number of photons decreases from ~109 for the
fourth and fifth harmonics to ~104 for seventh and eighth,
and next higher orders are accordingly at least four orders of
magnitude lower (ne/n0)2 ∼ 10−4. Therefore, in a single-shot
mode, a UV spectrometer may only be able to pick up lower
order harmonics. One the other hand, the CP harmonic effi-
ciency could potentially be increased by making use of one or
more of the phase-matching schemes noted above in section 5.

Although a rigorous extension of our model to overdense
plasmas is a topic for future work, we note that the selection
rules summarized in table 1 should still apply to a thin over-
dense slab or near-critical plasma targets, the main difference
being that there will also be reflected as well as transmitted CP
harmonics.

The non-linear fluid model introduced here already offers
a fast, hi-fidelity tool for studying harmonic generation in
a regime difficult to access with conventional PIC codes,
although we still observe some quantitative discrepancies with
the latter. For a resolution of 2 nm in a simulation box of
120 µm the 1D non-parallel fluid model currently implemen-
ted in Python takes one order of magnitude less computation
time comparing to the 1D PIC code. The same 2D simula-
tion with 2 nm resolution in laser propagation direction and
20 nm in transverse direction consume three orders of mag-
nitude more computation time than the 1D PIC simulation.
Good agreement with analytical theory in the 1D limit paves
the way for extending this approach to two or even three spa-
tial dimensions, which would enable phase-matching schemes
to be investigated in more realistic optical geometry.
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Appendix A

When calculating the non-linear current components for
counter-polarized driving pulses, we use ε as an ordering para-
meter to separate the laser-driven density oscillation and sub-
sequent higher order fluid response—see section 2. This order-
ing parameter effectively translates to m in equations (25)
and (26): εi≡m where i,m∈ [0, 1, 2, 3,…]. In each iteration,
four terms appear; (q+ 1)m± 1 and (q+ 1)m± q. For an arbit-
rary pulse frequency ratio of q, only the (q+ 1)m+ 1 and
(q+ 1)m+ q terms generate the new pairs of harmonics in
each iteration; for example, for q= 2 the four terms will be
3m±1 and 3m±2. For m= 0, the 3m+1 and 3m+2 terms gen-
erate the driving pulses, and for m= 1, 3m+1 and 3m+2 gen-
erate the next pair of harmonics which are 4 and 5. By con-
trast, the terms 3m−2 and 3m−1 contribute a correction to
the first and second harmonics which are O(ϵ) smaller than
their primary contributions from the previous iteration. These
terms, which we regard as higher order corrections to their cor-
responding leading terms can be generalized as follows:

aLCP(q+1)m−q =
(2m)!

4m+1
√
2m!2

(
ωp

Ω+
q

)2m(Am+1
0 A ′m

0

2mγ 3m
0

)
,

aRCP(q+1)m−1 =
(2m)!

4m+1
√
2m!2

(
ωp

Ω+
q

)2m(Am
0 A

′m+1
0

2mγ 3m
0

)
, (A1)

for m∈ [1, 2, 3,…], where (q+ 1)m− q is the correc-
tion to (q+ 1)m+ 1 and (q+ 1)m− 1 is the correction to
(q+ 1)m+ q. In fact in equations (17)–(20), we have only
included themain contributions for the higher order harmonics
except the driver harmonics, i.e., θ and θ ′. The same consid-
erations apply for the co-polarized pulses, whose corrections
will be, respectively:

aLCP(q−1)m+1 =
(2m)!

4m+1
√
2m!2

(
ωp

Ω−
q

)2m(Am
0 A

′m+1
0

2mγ 3m
0

)
,

aRCP(q−1)m−q =
(2m)!

4m+1
√
2m!2

(
ωp

Ω−
q

)2m(Am+1
0 A ′m

0

2mγ 3m
0

)
, (A2)

for m∈ [1, 2, 3,…] and a−1 ≡ a1. For an underdense plasma,
these terms are smaller than the leading terms by a factor of
∼ (ωp/ω0)

2 for a chosen laser amplitude. Therefore, these cor-
rections have been omitted when comparing the analytical res-
ults with numerical results.
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