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The direct measurement of the external loads acting on a mechanical component repre-
sents often a challenge in many engineering applications. In this context, the attention
of many researchers is focused on the field of inverse load identification. Several tech-
niques are proposed in literature to address this problem by means of experimental
methodologies, often coupled with simulation solutions. In this paper, a Kalman-based
methodology is considered, which solves the problem of inverse load identification in a
predictive manner. The common issue of most of the techniques is the selection of an opti-
mal set of sensors which gives the best load estimation. In the Kalman-filtering framework,
an Optimal Sensor Placement (OSP) strategy has been proposed by the authors and it aims
to find the best set of sensors in terms of system observability, which is the minimum
requirement of a stable estimation. However, this does not guarantee the most accurate
load estimation. In this contribution, two alternative metrics are proposed, based on: i)
steady-state error covariance of the estimation, ii) estimator bandwidth, with respect to
the available set of measurements. Both criteria will be included in the existing OSP to
improve the sensors selection. A comparison of the three strategies for multiple input/state
estimation is discussed on an industrial-scale Finite Element Model, in order to show the
improvement in the accuracy of the estimated quantities.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of inverse load identification is an active research topic in the field of structural mechanics since several
years [1–5]. In mechanical, aerospace or civil applications, indirect load identification is of great importance in many in-
service situations when the installation of transducers in the load path is intrusive or too expensive, and the load measure-
ment cannot be obtained directly. In such cases, one interesting possibility is to identify the loads from a set of easy-to-
measure responses combined with a numerical model. This is exactly the opposite framework of a forward problem, which
evaluates the outputs from given inputs. The solution of the inverse load identification problem can be achieved in time or
frequency domain [5], using test-based [6] or simulation-based [7–10] techniques. In this paper, the attention is focused on
time-domain identification within the framework of estimators. Currently, the most widespread and used estimation algo-
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rithms are based on the Kalman Filtering (KF) [11,12], which can act as an optimal estimator [13]: for linear systems under
the assumption of unbiased random uncertainty, the state-estimates converge to an expected value which minimizes the
state covariances. The application of the KF requires the combination of both simulated and measured data. Among the broad
range of Kalman filtering techniques [14–17], the Augmented Kalman Filter (AKF) [12] has recently been demonstrated to be
particularly effective in the framework of load identification [17–23] on complex industrial cases. On a mechanical compo-
nent, the AKF aims to identify the behavior of the system in terms of external loads (forces and torques) and full-field
responses (e.g. strain, acceleration, displacement), starting from a (limited) set of response measurements (output) along
the structure. Lourens et al. [17] present an application of AKF in structural dynamics, underlining the importance of using
collocated or non-collocated measurements in the estimation process. Naets et al. [21] investigate the accuracy of the esti-
mation paying attention to the stability of the filter. The presented studies proved that the type of measurements (e.g. accel-
eration, strain) influences the accuracy and stability of the estimation. In order to obtain a stable estimation, a number of
position-level (i.e. positions, strains) outputs equal or greater to the number of forces to be identified is required. Accelera-
tion measurements alone will lead to instability resulting from the unobservability of the system. Recent contributions
[24,25] showed also the applicability of the AKF for the identification of generalized and equivalent forces.

The selection of the optimal type and location of sensors is a common issue in experimental design and inverse identi-
fication problems. Recently, Mohamed et al. [26] proposed an optimal sensor placement method for damage identification.
The problem is formulated to minimize the a posteriori KF estimation error in the discrete-time formulation and it selects
the optimal sensors using a recursive gradient-based screening starting from the full model. Maes et al. [27] define an opti-
mal sensors layout for load identification by satisfying the conditions of stability and direct invertibility, which lead respec-
tively to a minimum set of position-level and acceleration-level sensors equal to the number of forces to be estimated. The
proposed approach is based on the modal characteristics of the system and it has been demonstrated in [28]. Tamarozzi et al.
[29] proposed a different approach defined as Optimal Sensor Placement (OSP) strategy aimed to select the optimal type
(position/acceleration/strain), number and location of the sensors needed to identify a certain set of external loads. This
OSP strategy is based on three main steps [29]:

� Generation of a pool of potential sensors: random selection of limited set of sensors over the structure.
� Coarse screening: remove sensors with lower sensitivity to the input(s) to be identified.
� Observability screening: selection of sensors with highest contribution to condition number of a system observability
metric.

The steps are explained in more details in [29,18]. As remarked in the last point, the focus of this method is dedicated merely
to the condition number of a system observability metric. Observability is a minimum requirement to obtain a stable esti-
mation through Kalman filtering techniques [13]. The effectiveness of this strategy for AKF estimation has been demon-
strated on numerical [29] and experimental cases [20,18]. However, this approach does not allow to assess the trade-off
resulting from the noise on different sensor types, and cannot take into account the impact of the sensor selection on the
dynamic range of the obtained estimates.

In this work a novel Advanced Optimal Sensor Placement (AOSP) is developed and presented, which enables a more accu-
rate a priori assessment of the impact of sensor selection. Two key metrics are proposed for the sensor selection:

� evaluation of the steady-state estimation error covariance matrix;
� evaluation of the sensor bandwidth through the transfer function between real and estimated inputs.

Within the present work, the improvement of the estimation process through the AKF is investigated in terms of used sen-
sors. The proposed framework is numerically validated both in single and multiple input estimation cases, to illustrate the
effectiveness of the filter in combination with the presented AOSP strategy. Furthermore, potential limitations of the AOSP
are analyzed in details.

In Section 2, the augmented formulation of a second order structural dynamic system and the reference observability
based optimal sensor placement for load identification are briefly presented. Following, the Advanced Optimal Sensor Place-
ment is introduced and described in the two proposed formulations in Section 3. Finally, Section 4 presents a numerical val-
idation of the proposed AOSP scheme on the input estimation of a rear twistbeam suspension, and demonstrates the superior
estimation performance for sensor selected using the newly proposed AOSP scheme.
2. Problem Statement

Optimal Sensor Placement is here referred to as a selection strategy which aims to find the optimal type and location of
sensors used for input-estimation through Augmented Kalman filtering techniques. In order to understand the main princi-
ple of the OSP and introduce the AOSP, the augmented state-space formulation of a dynamic system is first summarized in
Section 2.1. In Section 2.2, the refernce OSP is described with main focus on the observability screening, and advantages and
limitations are highlighted.
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2.1. Augmented Kalman Filter for joint state-input estimation on a dynamic system

The equations of motion for a mechanical dynamic system in the continuous time-invariant first-order state-space for-
mulation [30] are:
_x tð Þ ¼ Ax tð Þ þ Bu tð Þ
y tð Þ ¼ Hx tð Þ þ Du tð Þ

�
; x ¼ q _q½ �T ; ð1Þ
where x 2 R2nd , where nd is the number of degrees-of-freedom (DoF), defines the state vector, q 2 Rnd represents the gener-
alized coordinates of the system and u 2 Rn

i (ni = number of external loads) is the input vector. A 2 R2nd�2nd and B 2 R2nd�ni

are represented as the following real matrices:
A ¼ 0 I
�M�1K �M�1C

� �
; B ¼ 0

M�1Sf

� �
; ð2Þ
with M 2 Rnd�nd ;K 2 Rnd�nd and C 2 Rnd�nd as mass, stiffness and damping matrix respectively, and Sf 2 Rnd�ni is a selection
matrix of position(s) and DoF(s) related to the external load(s). The second equation of Eq. (1) defines the system measure-
ments, where y 2 Rn

o (no = number of output) is the output vector, while H 2 Rno�nd and D 2 Rno�ni depend on the output
response type, e.g. acceleration, position, strain [23].

In order to derive the AKF equations, the augmented state-space model is defined for the linear time-invariant system in
Eq. (1), such that the unknown inputs u can also be considered as states. The unknown input dynamics are modelled as a
random walk model due to a general lack of additional prior information on the input behavior. For the discretization of this
input model we employ a zero-order hold scheme, such that the resulting augmented state model equations become:
_x� ¼ A�x�

y ¼ H�x�

�
; x� ¼ x u½ �T ; A� ¼ A B

0 0

� �
; H� ¼ H D½ �; ð3Þ
where x� 2 R ndþnið Þ and A� 2 Rna�na (na ¼ 2nd þ ni) are respectively the augmented state and system matrix. For a mechanical
dynamic system:

� if both measurements and external inputs are known, the standard formulation of the Kalman Filter [11,12] can be
applied to Eq. (1) in order to estimate the state vector.

� if the measurements are known and no information about the external input is available, the augmented formulation of
the Kalman Filter [17] can be applied to Eq. (3)

From the latter statement, we can already underline that one can rely on the AKF to solve the inverse load identification only
if the input location/direction is known.

The discrete-time formulation of the augmented state-space model of Eq. (3) is:
x�
k ¼ A�

dx
�
k�1

yk ¼ H�x�
k

(
; ð4Þ
where A�
d 2 Rna�na is the time-discrete form of the augmented matrix A� and its formulation depends on the chosen dis-

cretization scheme [31]. In the remainder of the presented theoretical analyses, we will use the continuous-time description
from Eq. (3), but for the actual Kalman filter evaluation the discrete time model Eq. (4) is employed.

The observability of an inverse problem is a requirement for a stable estimation through the AKF and can be summarized
as following ([32,21]):

� the number of DoFs of the structural model has to be equal or greater than the number of external loads to be estimated:
nd P ni;

� the number of position/strain measurements has to be greater than the number of external loads to be estimated: ny P ni.

2.2. Optimal sensor placement strategy

An OSP strategy aims to select the optimal location, number and type of sensors needed to solve the inverse load iden-
tification through the AKF. In the frame of augmented Kalman filtering an OSP was initially developed for linear systems
[29,33] and further extended for non-linear systems in [20], and this approach will serve as the reference OSP in this work.
Moreover, in this contribution only linear systems are investigated. In order to perform the reference and proposed OSP, we
start from two important assumptions:

� A-priori knowledge of location and direction of the loads to be identified is available;
� The minimum number of position-level sensors is equal or greater than the number of loads to be identified, which is
necessary guarantee stability [21].
3
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A scheme of the reference OSP is shown in Fig. 1 and a detailed description can be found in [29,18]. The steps grouped in the
blue block are referred in this contribution to as Training. Once a reduced set of sensors is selected from the coarse screening
in terms of type and location, the matrix H of the measurements can be defined. Each row of this matrix is scaled to have a
maximum unity value. In this way, the following step (based on the Popov - Belevitch - Hautus PBH [34] criterion) will not
privilege one sensor type with respect to another because of the different unit and/or different order of magnitude. The Train-
ing in Fig. 1 aims to bring a reduced but still sufficiently large amount of sensors to the last selecting step, i.e. observability
screening. The latter is the key step of the reference OSP strategy and it is chosen to satisfy the stability of the AKF, which is
guaranteed by the observability of the system, as stated in Section 2.1. The observability screening will be explained in
details in the next subsection and investigated in terms of robustness of the strategy in Section 3.
2.2.1. Observability screening
The key idea of the reference OSP proposed in [29] is to define a combination of sensors evaluating its performance in

terms of a scalar that quantifies how ”observable” the system is. The observability metric used for this scope is the PBH cri-
terion, which can be applied directly to the continuous timemodel or to the discrete time model as well. The two models will
differ on the definition of the eigenvalues, which for one case are expected to be on the right half-plane for stable systems
and in the other case in the unit circle. The stability of the system will not change from the continuous to the discrete time
model if an appropriate discretization scheme is used. For the system of Eq. (3), the PBH observability matrix OPBH is defined
as:
OPBH sð Þ ¼ sI� A�

H�

� �
; ð5Þ
In Eq. (5), the matrix A� can be replaced with A�
d if the system of Eq. (4) is considered. A system is observable if the observ-

ability matrix OPBH is of full column rank for all s in the complex plane. More in particular this implies that the system observ-
ability needs to be verified at each eigenfrequency of the augmented system, which includes natural frequencies of the
structure as well as the eigenvalues associated to the input dynamics. A random walk model is introduced for the unknown
load, since no information about the input entering the system is available:
_u tð Þ ¼ 0þwu tð Þ: ð6Þ
In Eq. (6), wu is a stochastic process with a covariance matrix Qu 2 Rni�ni . The validation on the usage of a zeroth-order ran-
domwalk model for inverse load identification and a detailed explanation on how to set the value of Qu matrix can be found
in [18,20,21]. The eigenvalue associated to the input model in Eq. (6), which could lead to stability issues, is at 0Hz.

The observability metric proposed in the last step of the reference OSP strategy does not directly use the PBH rank, as this
is a numerically ambiguous metric, but the matrix condition number [37,38], which quantifies how close the matrix is to
rank deficiency. The observability metric is proposed as following:
Om ¼ 1
ni � cond OPBH 0ð Þð Þ ð7Þ
where ni is the number of loads to estimate. There are two reasons why the PBH matrix is evaluated only at 0Hz:

� The reference OSP mainly aims to identify the input loads and the corresponding problematic dynamics is at this
frequency;

� For a real structural dynamic system, the normal modes are all damped and this leads to a detectable system, i.e. its unob-
servable modes are detectable [13], which is sufficient if the user is interested in input identification [32].
Fig. 1. Optimal Sensor Placement strategy.
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If the matrix H includes different type of sensors, the evaluation of Eq. (7) can lead to the criterion privileging one type with
respect to another (e.g. accelerometers instead of strains) because of different units and order of magnitude for the different
quantities. In [18,29], the scaling of each row of H is proposed in order to obtain a unit-less matrix andmeaningfully compare
the rows of H associated to each sensor. The optimal set of sensors is then chosen as greedy optimization algorithm [35,36]:
starting from the reduced number of sensors selected after the Training, one sensor per iteration is removed from the pool if
its removal implies the lowest decrease in Om. The final selection is identified when the decrease of Om reaches a certain
threshold fixed by the user.

2.3. An example of observability screening

A simple example is proposed on a serial 10 DoFs mass-spring system, shown in Fig. 2.
Fig. 3 shows the decrease in Om, evaluated as in Eq. (7), for a decreasing number of sensors.
Starting from a set of measurements including position sensors on all the available DoFs, the observaility screening of

Section 2.2.1 is applied and sequentially removes one sensor per iteration. In Fig. 3a, the decreasing trend is different if
the measurements are expressed in [m], [mm] or scaled quantities (as applied in [18,29]). This implies that, if the user
defines a threshold of observability decreasing to select the minimum set of sensors, the final selection will be different
depending on which unit the measurements are expressed, which is clearly not a desired behavior. Indeed, if for example
a threshold of 80% is chosen, the observability metric select a different number of sensors if the model is expressed in
[m] or in [mm]. In the first case, three sensors are selected while in the second case, only one sensor is chosen. The case
shown in Fig. 3a is related to a mass-normalized numerical model. If another model normalization is adopted, another trend
is obtained and shown in Fig. 3b. In conclusion the index expressed in Eq. 7 defines ‘how much’ a system is observable
depending upon the scaling of measurements and physical system, and then naturally calls into question how this scaling
should be practically done. The main reason resides in the fact that the concept of observability is generally meant to be
a binary trait of a system. Thus it is in principle possible to state if a system is observable or not, but quantifying a ‘degree’
of observability is a much more complex issue. Moreover, this reference OSP does not account for the different noise char-
acteristics for different sensors, or model uncertainties, which often drives sensor selection in practice.

The following subsection presents several approaches which can be adopted to improve the optimal sensor placement
such that a more robust framework is obtained and to circumvent the issues described here.

3. Advanced optimal sensor placement strategy

In this work we propose a novel Advanced Optimal Sensor Placement strategy (AOSP) which revolves around two key
properties which are important for any, real or virtual sensor selection:

� Expected noise levels: evaluating a sensor set performance by solving the Riccati equation [39] for the steady-state error
covariance P and choosing the sensors which minimize the estimation error. As stated by Kalman and Bucy in [12] and
detailed described in [13], the Kalman Filter estimation is optimal in the sense that minimizes the filtering error, i.e error
covariance. The minimization of the nonlinear Riccati equation allows the definition of the optimal Kalman gain and leads
thus to the best estimation. Nevertheless, other parameters, e.g. set of measurements, can affect the minimization of the
error covariance, as will be explained in Section 3.1,

� Expected dynamic range: evaluating a sensor set performance by defining the frequency-domain transfer function between
the true inputs entering the state-space system and the estimated ones. The selection resides in the sensors whose cor-
responding transfer function is the most relevant for the estimation.

The above metrics are proposed to replace the observability screening in Section 2.2.1 defining two versions of the Advanced
Optimal Sensor Placement (AOSP), based respectively on the Input Error Covariance (IEC) or Transfer Function (TF). As shown
in Fig. 4, the novelty of the two approaches is after the Training, including the measurements scaling. It will be verified that
the proposed approaches are not affected by scaling issues as was the case for the reference OSP. In the following sections,
these two metrics will be explained in details and then included in the AOSP.

3.1. Steady-state error covariance

Recalling Eq. (3), the linear stochastic formulation of the continuous-time augmented state-space model is:
Fig. 2. 10 DoFs mass-spring system.
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Fig. 3. Observability index decrease (percentage value of Om indicator) obtained by the removal of position sensors through the observability screening for a
10 DoFs mass-spring system is considered.

Fig. 4. Standard OSP and AOSP block scheme.
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_x� ¼ A�x� þw�

y ¼ H�x� þ v

�
; ð8Þ
Vectors w� and v are mutually uncorrelated Gaussian variables (augmented process and measurement noise), with associ-
ated covariance matrices Q � ¼ E w�

l w
�T
l

� �
P 0 and R ¼ E vlvT

l

� �
P 0 respectively. Q � is defined as a block diagonal matrix

composed by Q and Qu, that are the covariance matrices referred to the model and input uncertainties respectively. Given
these quantities, the filter supports the state estimation even when the precise nature of the model system is unknown [40].
An important remark is about the formulation of Q �: for all the studies presented in this paper, it is assumed that Q � Q u, as
in [18,20,21], implying that the structural model is relatively accurate with respect to the in zero-order hold input model.
The main source of uncertainty therefore is Q u, and Q � can be approximated as:
Q � ¼ 0 0
0 Q u

� �
; ð9Þ
R and Q � are important parameters that characterize the AKF.
The continuous-time equivalent of the Kalman filter is also known as the Kalman-Bucy filter [12]:
_̂x� tð Þ ¼ A�x̂� tð Þ þ Kkal tð Þ y tð Þ �H�x̂� tð Þð Þ
_P tð Þ ¼ A�P tð Þ þ P tð ÞA�T þ Q � � Kkal tð ÞRKkal tð ÞT
Kkal tð Þ ¼ P tð ÞHTR�1;

ð10Þ
where Kkal represents the Kalman gain. Even though this continuous time method is not appropriate for a practical computer
implementation, it is very convenient for the theoretical analysis of the estimator properties, as presented in this work. In
this work, the continuous-time formulation is considered to evaluate the steady-state error covariance problem, but the
discrete-time formulation could also be used. In the discrete time case, a correct selection of the discretization scheme is
required to avoid inaccuracies in the covariance estimation [41], so by considering only the continuous time model in this
work, we circumvent this potential issue. The second equation of Eq. (10) describes the state covariance evolution and the
steady-state value, i.e. _P tð Þ ¼ 0, for a time-invariant system, leads to:
6
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0 ¼ A�P tð Þ þ P tð ÞA�T þ Q � � P tð ÞH�TR�1
� �

R P tð ÞH�TR�1
� �T

; ð11Þ
which is known as the Continuous Algebraic Riccati Equation (CARE) [39,42] and its solution allows to evaluate the con-
verged steady state error covariance for the estimators. Several approaches exist in literature to solve the CARE [43,44],
and these methods are generally available in technical computing packages [45,46]. Eq. (11) allows for an optimal state esti-
mation by means of the trace minimization of the error covariance matrix P. The minimization defines the optimal Kalman
gain Kkal [13]. With reference to the augmented state x� in Eq. (3), the covariance matrix P is defined as:
P ¼ Pxx Pxu

Pux Puu

� �
; ð12Þ
where Puu ¼ E û� uð Þ û� uð ÞT expresses the expected covariance of the unknown input error. In the case of structural
dynamics, when different types of input loads are considered, e.g. forces f and torques m, the augmented state x� can be
expressed as:
x� ¼ x u½ �T ¼ x f m½ �T ; ð13Þ

and consequently:
Puu ¼ Pff Pfm

Pmf Pmm

� �
: ð14Þ
The diagonal terms of this matrix are the variances of the estimation error for each input of the systems. These are a key
point in the sensor selection proposed for the IEC criterion discussed in Section 3.1.1. In the framework of an AKF, this choice
resides in the direct connection between the noise obtained by a virtual sensor, i.e. estimated output, and the estimated aug-
mented state covariance. The latter quantity also gives information about the system observability: if a system is unobserv-
able, the solution of Eq. (11) diverges to infinity; if the system is observable, the solution of Eq. (11) converges to a finite
value.

From Eq. (11), one can already observe that this metric takes into account the noise level of each measurement as well as
the input uncertainty, expressed respectively by R and Q �, as in Eq. (9). The question that could arise from a metric based on
the error covariance is if it also effectively circumvents the unit scaling issue for the measurements, as was encountered in
the reference OSP shown i Section 2.3. To assess this, we consider a rescaled measurement matrix Ha defined as Hmultiplied
by a scaling factor a:
H�
a ¼ aH�; a > 0 : ð15Þ
The corresponding sensor covariance becomes:
Ra ¼ a2R ð16Þ

We can now substitute this rescaled sensor model in Eq. (11):
0 ¼ A�Pþ PA�T þ Q � � PH�T
a R�1

a

� �
Ra PH�T

a R�1
a

� �T

¼ A�Pþ PA�T þ Q � � PaH�T 1
a2 R

�1
� �

a2R PaH�T 1
a2 R

�1
� �T

¼ A�Pþ PA�T þ Q � � PH�TR�1
� �

R PH�TR�1
� �T

ð17Þ
We could trivially generalize this proof to the case where a is a diagonal matrix, such that it is clear that different scalings
could be applied to the different sensors. As in Eq.(17), all contributions from a cancel out, the steady-state value of P is not
influenced by the measurement scaling, and therefore provides a more robust selection metric than the observability based
criterion. In the following subsection, the steady-state estimator covariance is proposed as a sensor selection metric, i.e.
Input Error Covariance (IEC), to replace the observability screening step proposed in the reference OSP.

3.1.1. Input Error Covariance (IEC) metric
In order to replace the observability screening of the reference OSP strategy, a performance indicator such as the one pro-

posed in Eq. (7) has to be defined. The reduced set of sensors entered in the IEC step are the ones available after the Training,
explained in Section 2.2. A greedy strategy is still adopted to sequentially select the sensors through the IEC. The general idea
of the proposed scheme is to find a predefined number of sensors which lead to the minimal uncertainty on the estimated
inputs Puu. This should ideally enforce the optimal estimation of the Kalman Filter in its augmented formulation. Indeed, it is
known that even if the Kalman gain is defined as optimal, a set of measurements which leads to a non-convergence of the
solution exists. The minimization of the input error covariance can thus help in a more stable and accurate estimation since
the input is jointly estimated with the system states and a non-convergent input estimation will lead to a non-convergence
of the entire solution. In this sense, the input error covariance can be seen also as regularization parameter of the AKF: even if
it can not be tuned a priori or during the estimation process, its value during the estimation plays an important role in the
7
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convergence of the filter. The following steps are proposed to use the IEC metric for optimal sensor selection starting from a
set of n0

s possible sensors:

1. Evaluation of Eq. (11) by using all the n0
s sensors selected in the Training Hn0s 2 Rn0s� ndþnið Þ. The resulting matrix defines the

reference estimation error covariance P0
uu.

2. Greedy selection: at each iteration k, a set of sensors with corresponding measurement matrix Hn0s�k 2 R n0s�kð Þ� ndþnið Þ will

lead to a steady-state covariance Pk
uu. The removal of a single sensor from iteration k to kþ 1 is performed by evaluating

the Pk
uu for the removal of each sensor g 2 Hn0s�k, resulting in Pk;g

uu . The sensor �g whose removal leads to the lowest increase

of the trace of Pk;g
uu matrix will will be excluded from the sensor set Hn0s��k 2 R n0s��kð Þ� ndþnið Þ at the next iteration �k ¼ kþ 1.

The excluded sensor had the smallest contribution to the error covariance. This removal selection is outlined in Algorithm
1. The iterations continue until the selection reaches a desired number of �ns sensors predefined by the user.

The choice to predefine the number of sensors (rather than the required accuracy) is inspired by engineering practice where
often the number of deployable sensors is limited by the number of channels available on the signal acquisition system.
Algorithm 1: IEC sensors selection
Fig. 5. Transfer function from estimated to real input loads.
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1. Execute the iterative process to find the �ns optimal sensors:	 


2. for k ¼ 0 : n0

s � �ns
3. given the measurement matrix Hn0
s�k evaluate CARE of Eq. (11)� �
4. Pk
uu ¼ care Hn0

s�k
5. Iterate on the subset of sensors n0
s � k� 1:	 

6. for g ¼ 1 : n0
s � k� 1
7. remove sensor g from Hn0s�k to obtain Hn0
s�k�1, with g R n0

s � k� 1
	 
� �
8. Pk;g
uu ¼ care Hn0

s�k�1
9. Evaluate the sensor �g which gives the lowest contribution to the covariance matrix:� � � �� �

10. �g :¼ min trace Pk

uu � trace Pk;g
uu
11. remove sensor �g from Hn0
s�k to obtain Hn0s ��k, with �k ¼ kþ 1
Remark 1. when nl input loads are considered, e.g. forces and torques, the diagonal terms of the covariance matrix Puu will
have different physical meaning and units. In order to ensure a consistent quantity in the evaluation of the trace matrix, each

diagonal term j at each iteration k is normalized with respect to the corresponding value in the initial covariance matrix P0
uu

as following:
Pk;g
uu;j ¼

Pk;g
uu;j

P0
uu;j

; j ¼ 1; . . . ;nl ð18Þ
The non-dimensional terms are then mediated in order to obtain the following metric in order to replace the trace of the
covariance:
Pk;g ¼

Xnl
j¼1

Pk;g
uu;j

nl
ð19Þ
3.2. Input estimation bandwidth: Transfer Function (TF) between real and estimated input

This section aims to determine the transfer function between the load inputs applied to the dynamic system (quantity to
be estimated) and the estimated inputs through the AKF in order to assess the expected dynamic performance of the input
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estimator. The estimator is analyzed here in the Laplace domain, defining s ¼ ix ¼ 2pi/ (/ frequency content expressed in
Hz). As shown in Fig. 5 the full transfer function (TF) Tûu of the estimated and real input loads consists of two main
contributions:

� Tyu real output - real input transfer function from the physical plant;
� Tûy estimated input - real output transfer function from the AKF estimation.

It is important to remark for the following steps that the steady-state Kalman Filter [13] is considered for this analysis. This
allows to work with time-invariant TFs. From past experience it has also been shown that the estimator covariance rapidly
converges, such that the assumption of a steady-state filter behavior is valid [21,18]. In Fig. 6, the transfer function from
Fig. 5 is shown in more detail.

The TF of the physical plant can be described as:
Tyu sð Þ ¼ HS sð Þ S sð Þs� AS sð Þð Þ�1Bþ D; ð20Þ

such that
y sð Þ ¼ Tyu sð Þu sð Þ: ð21Þ

In this Eq. 20, the matrix S sð Þ is introduced and it describes the conversion of a general second order dynamic system into a
first order state-space formulation in the Laplace domain. This additional transformation is necessary to account for the
dynamic dependence between the displacement and velocity states which are now combined in a single state vector, as
described in more detail in App. A. The matrix S sð Þ is expressed as:
S sð Þ ¼ I 0
0 Is

� �
: ð22Þ
Ideally the plant transfer function would be obtained from the physical system directly. However, in practice this is not
explicitly possible to determine Tyu directly. As a surrogate for the real TF, we propose to employ the same system model
as employed for the Kalman filter to evaluate the TF. Even though this generally leads to an overly optimistic view on the
final KF performance, it is typically the only information which is available and will allow to assess the best-case scenario
for the estimator.

Next we can define the transfer function for the AKF:
Tûy sð Þ ¼ HuS
� sð Þ S� sð Þs� A�S� sð Þ þ GH�S� sð Þð Þ�1G; ð23Þ
such that
û sð Þ ¼ Tûy sð Þy sð Þ; ð24Þ

and the second order transformation matrix S� sð Þ is (see App. A):
S� sð Þ ¼
I 0 0
0 Is 0
0 0 I

264
375: ð25Þ
G is the steady-state Kalman gain matrix, which can be derived from the steady-state error covariance P1 obtained from Eq.
(11), such that:
G ¼ P1 H�ð ÞTR�1 : ð26Þ

Moreover,Hu in Eq. (23) is a boolean matrix whose purpose is the selection of the TF related to the input state included in the
augmented variable x̂�. Recalling the augmented state in Eq. (3):
û ¼ Hux̂� ¼ 0 0 I½ �
q̂
_̂q
û

264
375; ð27Þ
and combining the two TFs from Eq. (20) and Eq. (23), the relation between the estimated input load û and the real input
load u can be approximated (assuming the known system model):
Tûu sð Þ ¼ Tûy sð ÞTyu sð Þ; û sð Þ ¼ Tûu sð Þu sð Þ ð28Þ

For a perfect estimator the TF should have a completely flat spectrum with gain 1, and without cross-coupling between the
different inputs. However, in practice dynamic model limitations, sensor restrictions and limited tuning capabilities of the
AKF scheme will inhibit this perfect behavior. In order to show that the presented TF analysis is not influenced by output
9



Fig. 6. Block scheme of the estimation process in Laplace domain: state-space model as input of the AKF.
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scaling, the same approach proposed in Section 3.1 is adopted. Considering a scaling factor a, the following scaled matrices
can be defined:
Ha ¼ aH; ð29Þ
Da ¼ aD; ð30Þ
Ga ¼ P1

a H
T
aR

�1
a : ð31Þ
From Eq. (17) it is known that the steady-state covariance is not influenced by the scaling such that P1
a ¼ P1, and hence:
P1
a H

T
aR

�1
a ¼ 1

a
PHTR�1; ð32Þ

¼ 1
a
G: ð33Þ
By substituting the latter matrices in Eq. (28), it is easy to verify that the TF is not influenced by measurements scaling.
Finally it is important to highlight that both H and H� are assumed constant and frequency independent in the current anal-
ysis. This implies that the presented scheme does not account for the band-pass characteristics or internal dynamics some
sensors may have. For the current work we assume that those dynamic properties are typically unknown to the developer of
the estimator. However if this information is indeed available in model form, it would be possible to include this as well in
the presented framework to allow for a more accurate sensor selection.

In the following subsection a metric, i.e. the Transfer Function Identity index (TFI), based on the analyzed TF is proposed
to replace the observability screening of the OSP in oder to find the optimal set of sensors which gives the best input esti-
mation in the desired frequency range. The method will be generalized for multiple-input estimation.

3.2.1. Transfer Function Identity index (TFI) metric
The target in the sensor selection is a unity value of Tûu sð Þ in the frequency range of interest, which will lead to an identity

matrix for multiple-input estimation: Tûu sð Þ ¼ I.
From Eq. (28) a general transfer matrix for an equal number of applied and estimated inputs can be defined as:
Tûu sð Þ ¼

T11 sð Þ T12 sð Þ . . . T1nl sð Þ
T21 sð Þ . .

. ..
.

..

. . .
. ..

.

Tnl1 sð Þ . . . . . . Tnlnl sð Þ

26666664

37777775; ð34Þ
with nl = number of total loads to be estimated. We define the so-called identity index II sð Þ to assess the similarity of the TF
Tûu to a unity matrix at a given pulsation s:
II sð Þ ¼

Xnl
j¼1

j1� jTjj
ûu sð Þjj

nl
þ

Xnl
j¼1

Xnl
i¼1;i–j

jTji
ûu sð Þj

nl nl � 1ð Þ ð35Þ
The identity index II sð Þ assumes a value equal to 0 when the condition Tûu sð Þ ¼ I is met. The first term of Eq. (35) expresses
the average difference of the diagonal terms with respect to the target value of one. The final term introduces a penalization
for the requirement on zero valued off-diagonal terms, by accounting for the average absolute value of the off-diagonal
terms.

The following steps can then be defined for an optimal sensor selection:

� Definition of the frequency range of interest �/ ¼ /1;/2½ �;
10
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� Greedy selection strategy: at each iteration k, a set Hn0s�k 2 R n0s�kð Þ� ndþnið Þ of sensors will give a transfer function Tk
ûu /ð Þ and

a corresponding identity index IkI /ð Þ. The frequency spectrum of IkI /ð Þ is then averaged along / in order to obtain a unique
index �IIk. The recursive removal of one sensor from iteration k to kþ 1 is performed by evaluating the identity index for

each removal of sensor g 2 Hn0s�k, resulting in �IIk;g . The sensor �g whose removal gives the lowest variation of the mean

index �IIk;g will not be included in the set Hn0s��k 2 R n0s��kð Þ� ndþnið Þ at the next iteration �k ¼ kþ 1, because it means that sensor
gives the lowest contribution to identity index. This removal selection is indicated in Algorithm 2. The iterations will con-
tinue until the selection of a desired number of �ns sensors fixed by the user.
Remark 2. When multiple inputs of different type, e.g. forces F and torques M, are considered in the estimation, the ele-
ments of the TF matrix in Eq. (28) are not dimensionally-consistent:
û sð Þ ¼
bF sð ÞcM sð Þ

" #
¼

TbFF sð Þ TbFM sð Þ
TbMF

sð Þ TbMM
sð Þ

" #
F sð Þ
M sð Þ

� �
ð36Þ
Recalling the identity index in Eq. (35), it is possible to observe that the inconsistency is in the summation of the cross-terms
of Tûu sð Þ. It is also true that this unit inconsistency is not meaningful for the sensors selection, since an accurate estimation
should theoretically provide off-diagonal terms with negligible values. If it does not happen, the estimation accuracy is com-
promised, since Tûu – I and thus ûjj – ujj.
Algorithm 2: TFI sensors selection
11
1. Define the frequency range of interest �/ ¼ /1;/2½ �.

2. Execute the iterative process to find the �ns optimal sensors:	 


3. for k ¼ 0 : n0

s � �ns
4. Given the measurement matrix Hn0
s�k, evaluate Tk

ûu of Eq. (28) and the identity index:
5. IkI /ð Þ ¼
Pnl

j¼1
j1�jTk;jj

ûu
sð Þjj

nl
þ
Pnl

j¼1

Pnl
i¼1;i–j

jTk;ji
ûu

sð Þj
nl nl�1ð Þ� �
6. �IIk ¼ mean IkI /ð Þ j/

7. Iterate on the subset of sensors n0

s � k� 1:

8. for g ¼ 1 : n0

s � k� 1
	 

9. remove sensor g from Hn0s�k to obtain Hn0
s�k�1, with g R n0

s � k� 1
	 


;

10. evaluate Tk
ûu; g of Eq. (28) and the identity index Ik;gI /ð Þ;� �
11. �IIk;g ¼ mean Ik;gI /ð Þ j/

12. Evaluate the sensor �g which gives the lowest contribution to the mean identity index:	 


13. �g :¼ min �IIk � �IIk;g
14. remove sensor �g from Hn0
s�k to obtain Hn0s ��k, with �k ¼ kþ 1
4. Numerical validation

In order to evaluate the effectiveness of the two metrics based on IEC and TFI in the context of input estimation, a two
numerical experiments are performed and compared with the results obtained from the reference OSP. First the academic
10 mass-spring-damper system from Section 2.3 is reconsidered in Section 4.1, and next a full scale complexity structural
system, modelled through a finite-element approach, is considered in Section 4.2.

4.1. Academic 10-mass-spring-damper system

The aim of this numerical example is to show the robustness of the two proposed metrics with respect to the changing of
system and measurements units. In Section 2.3, a 10DoFs mass-spring-damper system has been considered in order to show
the sensitivity of the PBH metric with respect to scaling issues, leading to non-consistent results. Recalling the system in
Fig. 2 and considering one unknown external force acting on massm10, 10 displacement sensors are first included in the eval-
uation of the steady-state covariance P and the transfer function Tûu. The results with respect to different scale factors are
shown in Fig. 7 in terms of transfer function, verifying what is stated and proof numerically in Section 3.2. The values at each
frequency is constant when different scaling factors are applied. The same conclusion can be easily found for the steady-state
covariance value.



Fig. 7. Transfer function Tûu obtained by using 10 displacement sensors. On the left, comparison of the results for the mass-normalized system and i)
sensors expressed in meters, ii) sensors expressed in millimiters, iii) scaled sensors. On the rigth, sensors expressed in meters and system i) mass-
normalized, ii) without normalization.
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In Fig. 7, a unit value of the transfer function can be observed only at 0Hz. By selecting an acceleration sensor on massm10,
the unit value covers higher frequencies as shown in Fig. 8, which means that an improvement of the estimated input can be
obtained by using a different set of sensors. A smaller value of covariance Puu obtained with this set of sensors is shown in
Fig. 9 and compared with the higher value from the set of sensors with only displacement measurements. Fig. 8 also shows
the robustness of the metric with respect to scaling factors even with the usage of mixed type of sensors. The same compar-
ison can be performed on the covariance value, which results to be insensitive to the scaling as well.

In this example, we assume to know Q and R, but a numerical experimental validation could explain the influence of both
matrices. However, the investigation of this effect is out of the scope of this contribution. In the next section, a more complex
system is considered for the validation of the optimal sensor selection.
4.2. Numerical validation on a Finite Element Model (FEM)

A linear FEM of a rear twistbeam suspension [47,18] shown in Fig. 10 is used for this purpose. It is defined by shell mesh
with 50533 4-node quadrilateral elements. The loads are applied at the central point of the right side wheel, indicated as
input point. The other tyre and the bushings are clamped. The target is the estimation of 6 loads, i.e. 3 forces and 3 torques,
applied at the input point along x, y and z directions (reference in Fig. 10). As stated in Section 1, a minimum number of 6
position-level sensors, e.g. positions or strains, are needed to obtain a stable estimation. The target of this example is to find
a set of 6 optimal strain measurements.

Four set of loads are investigated: i) sinusoidal loads with zero-phase (amplitude and frequency are listed in Table 1), ii)
sweep sine loads with frequency varying from 1 Hz to 20 Hz in 5 s, iii) white noise signals, iv) impulse loads. These loads are
Fig. 8. Transfer function Tûu obtained by using 10 displacement sensors and 1 acceleration. Comparison of the results with sensors expressed in meters and
system i) mass-normalized, ii) without normalization.
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Fig. 9. Steady-state error covariance Pûu value obtained by using i) 10 displacement sensors and ii) 10 displacement and 1 acceleration sensors.

Fig. 10. FEM of the rear twistbeam suspension.

Table 1
Sine loads parameters.

Load Amplitude A Frequency /

F1 300 [N] 1 [Hz]
F2 30 [N] 1 [Hz]
F3 250 [N] 1 [Hz]

T1 10000 [N mm] 1 [Hz]
T2 65000 [N mm] 1 [Hz]
T3 7000 [N mm] 1 [Hz]
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firstly applied to execute a forward simulation and collect output responses. Gaussian noise is then added on these data and
the input estimation is performed considering the loads as unknowns. Loads at low frequency are presented, but same con-
siderations about results can be made at other frequencies since a linear model is considered. The Q u value was selected
using the same approach adopted in [18]. The formula is the following:
Q u ¼ Dt � �xu � �auð Þ2 ; ð37Þ
with �xu and �au as indicative expected value of the frequency and the amplitude of the input shape, chosen by the user.
As described in Section 2.2, before the final selection based upon PBH, IEC and TFI metrics, the Training procedure is per-

formed. A starting pool of 2000 strain sensors is randomly placed on the component and the selection is then reduced to 87
13



Fig. 11. Strain sensors position for the 3 criteria. The black marker indicates the input point.

Fig. 12. Evolution of the selection indexes.
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post-Training sensors. The selected frequency range for the TFI criteria is /1 ¼ 0:1;/2 ¼ 5½ � Hz, with frequency step D/ ¼ 0:1
Hz. In Section 4.2.1, the results on the input estimation are shown for the two load cases and in Section 4.3 the effect of mod-
elling errors is assessed.
14



Fig. 13. SNR of the set of sensors selected by the three metrics.

Fig. 14. .
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4.2.1. Input estimation
The location of the sensors selected by PBH, IEC and TFI is shown in Fig. 11. It’s possible to observe that both IEC and TFI

select sensors in similar positions. It should also be noted that, since each of the starting virtual sensors represents a biaxial
strain gauge, it may happen that a criteria selects one or both measurement directions for a given sensor. In Fig. 11, the PBH
criterion shows 6 selected monoaxial strain sensors, while both IEC and TFI select 5 monoaxial and 1 biaxial strain sensors.

The selection indexes for the 3 criteria are shown in Fig. 12. It’s possible to observe that their behavior is coherent with
the effect of the removal of a sensor. Om decreases, while P and II increase. The red markers in Fig. 12 indicate the value of the
indexes at the last selection loop.

� Sinusoidal loads
The results of the input estimation obtained using the sensors selected by the PBH criterion are shown in Fig. 14a for sine
signals: the shape of the sinusoidal inputs is accurately estimated, but zooming in it’s possible to observe that there’s con-
siderable noise on the estimation (Fig. 14b). The inaccuracy of the estimated signal is produced by the selection of noisy
sensors. An example of sensor chosen by the PBH criterion is shown in Fig. 14c: the amount of noise on the strain signals
compromises the accuracy of the estimation. In Fig. 13, the signal-to-noise ratio (SNR) of the set of sensors selected by the
three metrics is compared (expressed in decibel dB). The SNR is evaluated as Ps

Pn
, where Ps and Pn are the signal and noise

power.
This problem does not occur in the case of both IEC and TFI selection: the corresponding estimation results are shown in
Fig. 15 and Fig. 16. The inputs are estimated with good accuracy and this is due to the fact that the sensors selected by
both criteria have higher signal-to-noise ratio. Since both IEC and TFI consider matrix R and Q u, they are able to select the
sensors that assure the most accurate output, thus leading to a lower amount of noise on the input estimation. The nor-
malized input estimation errors are shown in Fig. 17. Each error is normalized using the difference between the real
input’s maximum and minimum value.
Evaluating II /ð Þ for the selected sensors combinations at �/ ¼ 1Hz (Fig. 18), it’s possible to observe that the numerical
value for the index corresponds to the accuracy of the estimations: II �/

	 

is close to 0:02 for IEC and TFI, while PBH results

in II �/
	 


> 0:1. Testing the system under different conditions, it emerged that an optimal threshold value for the index is
II �/
	 


< 0:05: if the selection results in an index less then this value, the inaccuracy on the estimation increases. Given
these values, the performance of the set of sensors selected by IEC and TFI is due to the fact that their corresponding trans-
fer function matrix is closer to an identity matrix if compared with the one obtained through the PBH.

� Sine sweep loads
The three metrics are compared for a sine sweep signal varying from 1 Hz to 20 Hz in 5 s. The results of the sine sweep
loads are shown in Fig. 19–21 and the obtained behavior is in accordance to the results obtained for the single sine load.
One remark needs to be underlined for TFI estimation: the sensors have been selected in the frequency range [0.1, 5] Hz,
Fig. 15. Inputs estimation performed using the sensors selected by IEC criterion.
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Fig. 16. Inputs estimation performed using the sensors selected by TFI criterion.

Fig. 17. Normalized error on each estimated input through sensors selected by PBH, IEC and TFI criteria.
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which does not include all the frequencies excited by the input signal. More accurate results can be obtained by increas-
ing this range. As example, Fig. 22 shows the comparison on the input load Force 2 between the estimated load for a train-
ing frequency range [0.1, 5] Hz and the one obtained by selecting the sensors in a training frequency range up to 30 Hz.

� White noise signals
The improvement on the input estimation can be observed on the white noise case in Fig. 23. The variance and mean
value of the input signals are listed in Table 2. Fig. 23 shows the results in frequency domain f in terms of error � evaluated
as follows:
17



Fig. 18. Identity index evaluated at �/ ¼ 1Hz for the 3 criteria: the numerical value reflects the accuracy of the estimations.

Fig. 19. Sine sweep: inputs estimation performed using the sensors selected by PBH criterion.
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� ¼ jlog u fð Þð Þ � log û fð Þð Þj ð38Þ

For illustrative purpose, Fig. 24–26 show that the overall estimation of the six loads in time domain significantly improve.
� Impulse loads
For completeness of the results, the impulse loads case is considered for the estimation and the results are shown in
Fig. 27–29. The conclusions on the improvement of the estimation are in line with the previous examples and thus remain
unchanged.

4.3. Modelling errors

In this section, the effect of having modelling errors is investigated on the input estimation. The model used in the filter is
still the same as in Section 4.2.1, thus the optimal sensor selection is not changed. The measurements used in the filter as
reference data are instead generated by simulating the same model with a percentage error on the Young Modulus (E) of
the material. Fig. 30 shows the evolution of the Root-Mean-Square-Error (RMSE) on forces and torques estimation obtained
18



Fig. 20. Sine sweep: inputs estimation performed using the sensors selected by IEC criterion.

Fig. 21. Sine sweep: inputs estimation performed using the sensors selected by TFI criterion.
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by increasing the percentage error of E on the set of measurements. It is possible to observe that if the modelling errors
increase, the accuracy on the estimation decreases for all the metrics. This is because, as the modelling errors increase,
the assumption of the input model as only source of uncertainties fails. However, the performance of the three criteria is
not the same: IEC and TFI shows to be more robust to modelling errors for most of the loads.
19



Fig. 22. Force 2 estimation performed using the sensors selected by TFI criterion in a frequency range [0.1-5]Hz and [0.1-30]Hz.

Table 2
White noise signal parameters.

Load Variance Mean

F1 9:15E04 [N2] �1:10 [N]
F2 9:09E02 [N2] 0:28 [N]
F3 6:19E04 [N2] 0:62 [N]

T1 9:96E07 [N2 mm2] �135:26 [N mm]
T2 4:26E09 [N2 mm2] 1:54E03 [N mm]
T3 4:92E07 [N2 mm2] 0:52 [N mm]

Fig. 23. White noise signal: error in frequency domain between the reference and the estimated load.
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Fig. 24. White noise signal: inputs estimation performed using the sensors selected by PBH criterion.

Fig. 25. White noise signal: inputs estimation performed using the sensors selected by IEC criterion.
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5. Conclusions

This paper presents a novel approach for the optimal selection of sensors used for load identification of mechanical
dynamic systems. An improvement on the existing Optimal Sensor Placement in the framework of AKF is proposed, replacing
the observability screening criterion with more reliable approaches. Two Advanced Optimal Sensor Placement strategies are
21



Fig. 26. White noise signal: inputs estimation performed using the sensors selected by TFI criterion.

Fig. 27. Impulse loads: inputs estimation performed using the sensors selected by PBH criterion.
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proposed: one based on the estimation error covariance (IEC) and the other based on the frequency domain transfer function
(TFI) between the real and the estimated input. The main issue in the usage of the observability screening is in the type of
sensors considered and also in the used units. The latter concerns both the units of the model itself and also the measure-
ment equations. It is demonstrated through an example that, if position measurements expressed in [m] or [mm] are
included in the selection, two different results are obtained in terms of optimal locations. Both IEC and TFI metrics are
not affected by scaling problems. The effectiveness of the proposed approaches is shown through a numerical example on
22



Fig. 28. Impulse loads: inputs estimation performed using the sensors selected by IEC criterion.

Fig. 29. Impulse loads: inputs estimation performed using the sensors selected by TFI criterion.
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an industrial FE model. Multiple load estimation (3 forces and 3 torques) is performed using three different sets of sensors
obtained from the two novel metrics and the existing observability screening. The results show that the estimation given by
the OSP strategy is highly noisy. This can be explained underlying another issue related to this sensor selection. Indeed, it
does not take into account for process and measurement covariances. The proposed approaches include intrinsically this
information and it results in more accurate load estimation. Future investigation aims to test IEC and TFI metrics for multiple
loads estimation on a real test case. Different load scenarios will be considered, e.g. out- and in-phase or random excitation,
to evaluate the robustness of the methods.
23



Fig. 30. RMSE value of the estimated loads for different modelling errors.
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Appendix A. Laplace transform for second order system expressed as first order system

Starting from the equation of motion of a second order mechanical dynamic system:
M€x tð Þ þ C _x tð Þ þ Kx tð Þ ¼ u tð Þ ð39Þ

the first order model is:
_x tð Þ
€x tð Þ

� �
¼ 0 I

�K=M �C=M

� �
x tð Þ
_x tð Þ

� �
þ 0

I

� �
u tð Þ ð40Þ
Eq. (39) and (40) are both expressed in time-domain. The corresponding first order model in Laplace Domain is:
sx sð Þ
s2x sð Þ

� �
¼ 0 I

�K=M �C=M

� �
x sð Þ
sx sð Þ

� �
þ 0

I

� �
u sð Þ ð41Þ
from which one can derive the matrix S sð Þ:

I 0
0 sI

� �
sx sð Þ
sx sð Þ

� �
¼ 0 I

�K=M �C=M

� �
I 0
0 sI

� �
x sð Þ
x sð Þ

� �
þ 0

I

� �
u sð Þ ð42Þ
Repeating the same steps for the augmented formulation, it is easy to derive also the augmented matrix S� sð Þ.
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.ymssp.
2021.107830.
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