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SeqSleepNet: End-to-End Hierarchical Recurrent

Neural Network for Sequence-to-Sequence

Automatic Sleep Staging
Huy Phan∗, Fernando Andreotti, Navin Cooray, Oliver Y. Chén, and Maarten De Vos

Abstract—Automatic sleep staging has been often treated as a
simple classification problem that aims at determining the label
of individual target polysomnography (PSG) epochs one at a
time. In this work, we tackle the task as a sequence-to-sequence
classification problem that receives a sequence of multiple epochs
as input and classifies all of their labels at once. For this
purpose, we propose a hierarchical recurrent neural network
named SeqSleepNet1. At the epoch processing level, the network
consists of a filterbank layer tailored to learn frequency-domain
filters for preprocessing and an attention-based recurrent layer
designed for short-term sequential modelling. At the sequence
processing level, a recurrent layer placed on top of the learned
epoch-wise features for long-term modelling of sequential epochs.
The classification is then carried out on the output vectors at
every time step of the top recurrent layer to produce the sequence
of output labels. Despite being hierarchical, we present a strategy
to train the network in an end-to-end fashion. We show that
the proposed network outperforms state-of-the-art approaches,
achieving an overall accuracy, macro F1-score, and Cohen’s
kappa of 87.1%, 83.3%, and 0.815 on a publicly available dataset
with 200 subjects.

Index Terms—automatic sleep staging, hierarchical recurrent
neural networks, end-to-end, sequence-to-sequence.

I. INTRODUCTION

Humans spend around one-third of their lives sleeping,

this process is crucial to protect the mental and physical

health of an individual [1]. Sleep disorders are becoming

an alarmingly common health problem, affecting millions of

people worldwide. A survey conducted in the US between

1999 and 2004 reveals that 50-70 million adults suffer from

over 70 different sleep disorders and 60 percent of adults report

having sleep problems a few nights a week or more [2], [3].

Sleep scoring [4], [5] is a fundamental step in sleep

assessment and diagnosis and requires the analysis of 30-

second polysomnography (PSG) epochs to determine their

sleep stages. In clinical environments, sleep staging is mainly

performed manually by human experts following developed

guidelines [4], [5]. The scoring procedure is labor-intensive,

time-consuming, costly, and prone to human errors. Therefore,

a large body of work aims to automate this task [6]–[15].
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Furthermore, there is an growing need of home-based sleep

monitoring [16]–[19] to provide scalable monitoring solutions

that would benefit a greater population and provide a platform

for epidemiological studies. In order to achieve this two pri-

mary ingredients are needed. First, user-friendly, comfortable,

long-term capable, clinical-grade wearable Electroencephalog-

raphy (EEG) devices are required. A number of such devices

were developed and validated, such as in-ear EEG [18]–[20]

and around-the-ear EEG [16], [21]. Second, reliable automatic

sleep staging methods are equally indispensable.

In the last few years, the research community has wit-

nessed an influx of deep learning methods used for automatic

sleep staging in replacement of conventional feature-based

machine learning approaches. Deep learning methods offer

several advantages over the conventional ones and have been

successful in numerous other domains. First, since public

sleep data are rapidly growing (i.e. hundreds to thousands of

subjects are becoming a norm), deep networks are efficient in

handling a large amount of data by repeatedly learning from

small batches of data to converge to the final model. Second,

their power in learning features automatically from low-level

signals makes hand-crafting several intricate features no longer

necessary. Several types of deep network architectures exist

and have been proposed for automatic sleep scoring: Convo-

lutional Neural Networks (CNNs) [8], [10], [11], [13]–[15],

Deep Belief Networks (DBNs) [22], Auto-encoder [23], Deep

Neural Networks (DNNs), and Recurrent Neural Networks

(RNNs) [24]. Combinations of different architectures, such

as DNN+RNN [25] and CNN+RNN [9], [12] have also been

exploited. With the deep learning methods evolving, automatic

sleep staging performance has been boosted considerably as

state-of-the-art results have been reported on several datasets

[8], [9], [12], [13].

There are many ways to characterize existing works in

automatic sleep staging, such as single-channel versus multi-

channel and shallow learning vs deep learning. Here, we

pursuit an approach that categorizes them into classification

schemes based on the number of input epochs and output

labels during classification. To this end, prior works can be

grouped into one-to-one, many-to-one, one-to-many schemes

as illustrated in Figure 1 (a)-(c), respectively. Following the

one-to-one scheme, a classification model receives a single

PSG epoch as input at a time and produces a single corre-

sponding output label [14], [15], [24], [26]. Although being

straightforward, this classification scheme cannot take into

account the existing dependency between PSG epochs [4], [8],
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Figure 1: Illustration of the classification schemes used for automatic sleep staging. (a) one-to-one, (b) many-to-one, (c)

one-to-many, and (d) the proposed many-to-many.

[27], [28]. As an extension of the one-to-one, the many-to-

one scheme augments the classification of a target epoch by

additionally combining it with its surrounding epochs to make

a contextual input. This scheme has been the most widely used

in prior works, not only those relying on more conventional

methods [29], [30] but also modern deep neural networks [9]–

[11], [13], [23], [25]. The work in [8] showed that while

the contextual input does not always lead to performance

improvement regardless of the choice of classification model,

it also suffers from the modelling ambiguity and high com-

putational overhead. The one-to-many scheme is orthogonal

to the many-to-one scheme and was recently proposed in [8]

with the concept of contextual output. Under this scheme, a

multitask model receives a single target epoch as input and

jointly determines both the target label and the labels of its

neighboring epochs in the contextual output. This scheme

is still able to leverage the inter-epoch dependency while

avoiding the limitations of the contextual input in the many-

to-one-scheme. More importantly, the underlying multitask

model has the capability to produce an ensemble of decisions

on a certain epoch which can be then aggregated to yield a

more reliable final decision [8]. However, a common drawback

of both many-to-one and one-to-many schemes is that they

cannot accommodate a long context, e.g. tens of epochs.

In this work, we seek to overcome this major limitation

and unify all aforementioned classification schemes with the

proposed many-to-many approach illustrated in Figure 1(d).

Our goal is to map an input sequence of multiple epochs

to the sequence of all target labels at once. Therefore, the

automatic sleep staging task is framed as a sequence-to-

sequence classification problem. With this generalized scheme,

we can circumvent disadvantages of other schemes (i.e. short

context, modelling ambiguity, and computational overhead)

while maintaining the one-to-many’s advantage regarding the

availability of decision ensemble. It should be stressed that

the sequence-to-sequence problem formulated here does not

simply imply a set of one-to-one mappings between one epoch

in the input sequence and its corresponding label in the output

sequence. In contrast, due to the inter-epoch dependency, a

label in the output sequence may inherently interact with all

epochs in the input sequence via some intricate relationship

that need to be modelled. To accomplish sequence-to-sequence

classification we present SeqSleepNet, a hierarchical recur-

rent neural network architecture. SeqSleepNet is composed

of three main components: (1) parallel filterbank layers for

preprocessing, (2) an epoch-level bidirectional RNN coupled

with the attention mechanism for short-term (i.e. intra-epoch)

sequential modelling, and (3) a sequence-level bidirectional

RNN for long-term (i.e. inter-epoch) sequential modelling.

The network is trained in an end-to-end manner. End-to-end

network training is desirable in deep learning as an end-to-

end network learns the global solution directly in contrast

to multiple-stage training that estimates local solutions in

separate stages. The power of end-to-end learning has been

proven many times in various domains [31]–[36]. Moreover,

end-to-end training is more convenient and elegant.

Our proposed method bears resemblance to some existing

works. Learning data-driven filters with a filterbank layer

has been shown to be efficient in our previous works [8],

[24], [26]. However, instead of training a filterbank layer

separately with a DNN, here multiple filterbank layers for

multichannel input are parts of the classification network and

are trained end-to-end. There also exists a few multiple-output

network architectures proposed for automatic sleep staging,

nevertheless, they are either limited to accommodate a long-

term context [8] or need to be trained in multiple stages

rather than end-to-end [9], [25]. In addition, these works

used CNNs or DNNs for epoch-wise feature learning while,

in the proposed SeqSleepNet, we employ a recurrent layer

coupled with the attention mechanism for this purpose. Given

the sequential nature of sleep data, the sequential modelling

capability of RNNs [37], [38] make them potential candidates

for this purpose but have been left uncharted. On one hand,

we demonstrate that the sequential features learned with the

attention-based recurrent layer result in a better performance

than the convolutional ones. On the other hand, using our

end-to-end training strategy, we also build end-to-end variants

of these multiple-output networks as baselines and show

that the proposed DeepSleepNet significantly outperforms all

these baselines and set state-of-the-art performance on the

experimental dataset.
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II. MONTREAL ARCHIVE OF SLEEP STUDIES (MASS)

DATASET

The public dataset Montreal Archive of Sleep Studies

(MASS) [39] was used for evaluation. MASS is a considerably

large open-source dataset which were pooled from different

hospital-based sleep laboratories. It consists of whole-night

recordings from 200 subjects aged between 18-76 years (97

males and 103 females), divided into five subsets (SS1 - SS5).

Each epoch of the recordings was manually labelled by experts

according to the AASM standard [4] (SS1 and SS3) or the

R&K standard [5] (SS2, SS4, and SS5). We converted different

annotations into five sleep stages {W, N1, N2, N3, and REM}
as suggested in [40], [41]. Furthermore, those recordings with

20-second epochs were converted into 30-second ones by

including 5-second segments before and after each epoch. In

our analysis, we used the entire dataset (i.e. all five subsets),

following the experimental setup suggested in [8]. Apart from

an EEG channel, an EOG and EMG channel were included to

complement the EEG as they have been shown to be valuable

addition sources for automatic sleep staging [8], [11]–[14],

[42], [43]. We adopted and studied combinations of the C4-

A1 EEG, an average EOG (ROC-LOC), and an average EMG

(CHIN1-CHIN2) channels in our experiments. The signals,

originally sampled at 256 Hz, were downsampled to 100 Hz.

III. SEQSLEEPNET: END-TO-END HIERARCHICAL

RECURRENT NEURAL NETWORK

The proposed SeqSleepNet for sequence-to-sequence sleep

staging is illustrated in Figure 2. Formally, given a

sequence of PSG epochs of length L represented by

(S1,S2, . . . ,SL), the goal is to compute a sequence of outputs

(y1,y2, . . . ,yL) that maximizes the conditional probability

p(S1,S2, . . . ,SL |y1,y2, . . . ,yL).

An epoch in the input sequence consisting of C channels

(i.e. EEG, EOG, and EMG in this work), are firstly trans-

formed into a time-frequency image S of C image chan-

nels. Parallel filterbank layers [24], [26] are tailored to learn

channel-specific frequency-domain filterbanks to preprocess

the input image for frequency smoothing and dimension

reduction. Furthermore, after channel-specific preprocessing,

all image channels are concatenated in the frequency direction

to form an image X. The image X itself can be interpreted as

a sequence of feature vectors which correspond to the image

columns. The epoch-level attention-based bidirectional RNN

is then used to encode the feature vector sequence of the epoch

into a fixed attentional feature vector ā. Finally, the sequence

of attentional feature vectors Ā = (ā1, ā2, . . . , āL) obtained

from the input epoch sequence are modelled by the sequence-

level bidirectional RNN situating on top of the network hier-

archy to compute the output sequence Ŷ = (ŷ1, ŷ2, . . . , ŷL).

It should be noted that, in the SeqSleepNet, the filterbank

layers are tied (i.e. shared parameters) between all epochs’

local features (i.e. spectral image columns) and the epoch-level

attention-based bidirectional RNN layer are tied between all

epochs in the input sequence.

A. Time-Frequency Image Representation

The constituent signals of a 30-second PSG epoch (i.e. EEG,

EOG, and EMG) are transformed into power spectra via short-

time Fourier transform (STFT) with a window size of two

seconds and 50% overlap. Hamming window and 256-point

Fast Fourier Transform (FFT) are used. Logarithm scaling is

then applied to the spectra to convert them into log-power

spectra. As a result, a multi-channel image S ∈ R
F×T×C is

obtained where F = 129, T = 29, and C = 3 denote the

number of frequency bins, the number of spectral columns

(i.e. time indices), and the number of channels.

B. Filterbank Layers

We tailor a filterbank layer for learning frequency-domain

filterbanks as in our previous works [24], [26]. The learned

filterbank is expected to emphasize the subbands that are

more important for the task at hand and attenuate those less

important. However, instead of training a separate DNN for

this purpose, the filterbank layers are parts of the classification

network SeqSleepNet and are learned end-to-end. Moreover,

due to the different signal characteristics of EEG, EOG, and

EMG, it is reasonable to learn C channel-specific filterbanks

with C separate filterbank layers.

Considering the c-th filterbank layer with respect to the c-th

image channel Sc ∈ R
F×T where 1 ≤ c ≤ C and assuming

that we want to learn a frequency-domain filertbank of M

filters where M < F , the filterbank layer in principle is a

fully-connected layer of M hidden units. The weight matrix

Wc ∈ R
F×M of this layer plays the role of the filterbank’s

weight matrix. Since a filterbank has characteristics of being

non-negative, band-limited, and ordered in frequency, it is

necessary to enforce the following constraints [44] for the

learned filterbank to have these characteristics:

Wc
fb = f+(W)⊙T. (1)

Here, f+ denotes a non-negative function to make the elements

of W non-negative, in this study the sigmoid function is

adopted. T ∈ R
F×M
+ is the constant non-negative matrix to

enforce the filters to have limited band, regulated shape and

ordered by frequency. Similar to [26], we employ a linear-

frequency triangular filterbank matrix for T. The ⊙ operator

denotes the element-wise multiplication.

Presenting the image Sc to the filterbank layer, we obtained

an output image Xc ∈ R
M×T given by

Xc = Wc
fb
T
Sc. (2)

All together, filtering the C-channel input image

S ∈ R
F×T×C in frequency direction with C filterbank

layers results in the C-channel output image X ∈ R
M×T×C

which has smaller size in frequency dimension. Eventually,

we concatenate the image channels of X in frequency

direction to make X a single-channel image of size MC×T .

C. Short-term Sequential Modelling

Many approaches to extract features that represent an epoch

exist. Apart from a large body of hand-crafted features [29],
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Figure 2: Illustration of SeqSleepNet, the proposed end-to-end hierarchical RNN for sequence-to-sequence sleep staging.

automatic feature learning with deep learning approaches

are becoming more common [9]–[12], [14], [22]–[26], [45]–

[47]. Here, we employ a bidirectional RNN coupled with the

attention mechanism [48], [49] to learn sequential features for

epoch representation. Due to the RNN’s sequential modelling

capability, it is expected to capture temporal dynamics of input

signals to produce good features [24].

For convenience, we interpret the image X after the fil-

terbank layers as a sequence of T feature vectors X ≡
(x1,x2, . . . ,xT ) where each xt ∈ R

MC , 1 ≤ t ≤ T , is

the image column at time index t. We then aim to read the

sequence of feature vectors into a single feature vector using

the attention-based bidirectional RNN.

The forward and backward recurrent layers of the RNN

iterate over individual feature vectors of the sequence in

opposite directions and compute forward and backward se-

quences of hidden state vectors Hf = (hf
1,h

f
2, . . . ,h

f
T ) and

Hb = (hb
1,h

b
2, . . . ,h

b
T ), respectively, where

hf
t = H(xt ,h

f
t−1), (3)

hb
t = H(xt ,h

b
t+1), 1 ≤ t ≤ T. (4)

In (3) and (4), H denotes the hidden layer function. Long

Short-Term Memory (LSTM) [37] and Gated Recurrent Unit

(GRU) cell [38] are most commonly used for H. LSTM

cell and GRU cell have been shown to perform comparably

on many machine learning tasks, however, the latter has

less parameters and is therefore more computational-efficient

than the former [50]. Here, we employ the latter which is

implemented by the following functions:

rt = sigm (Wsrst +Whrht−1 + br) , (5)

zt = sigm (Wszst +Whzht−1 + bz) , (6)

h̄t = tanh (Wshst +Whh (rt ⊙ ht−1) + bh) , (7)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̄t, (8)

where the W variables denote the weight matrices and the b

variables are the biases. The r, z, and h̄ variables represent the

reset gate vector, the update gate vector, and the new hidden

state vector candidate, respectively.

The RNN produces the sequence of output vectors A =
(a1,a2, . . . ,aT ) where at is computed as

at = Wha[h
b
t ⊕ hf

t] + ba, (9)

where ⊕ represents vector concatenation.

The attention layer [48], [49] is then used to learn a

weighting vector to combine these output vectors at different

time steps into a single feature vector. The rationale is that

those parts of the sequence which are more informative should

be associated with strong weights and vice versa. Formally, the

attention weight αt at the time index t is computed as

αt =
exp (f(at))∑T

i=1
exp (f(ai))

. (10)

Here, f denotes the scoring function of the attention layer and

is given by

f(a) = aTWatt, (11)
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where Watt is the trainable weight matrix. The attentional

feature vector ā is obtained as a weighting combination of

the recurrent output vectors:

ā =

T∑

t=1

αiat. (12)

The attentional feature vector ā is used as the representation

of the PSG epoch in the next sequence-level modelling.

D. Long-term Sequential Modelling

Processing the input sequence (S1,S2, . . . ,SL) with the

filterbank layers in Section III-B and the attention-based

bidirectional RNN layer in Section III-C results in a sequence

of attentional feature vectors Ā = (ā1, ā2, . . . , āL) where āl,

1 ≤ l ≤ L, is given in (12). The sequence-level bidirectional

RNN is then used to model the sequence of epoch-wise feature

vectors to encode long-term sequential information across

epochs. Similar to the bidirectional RNN used for short-term

sequential modelling in Section III-C, its forward and back-

ward sequences of hidden state vectors H̃f = (h̃f
1, h̃

f
2, . . . , h̃

f
L)

and H̃b = (h̃b
1, h̃

b
2, . . . , h̃

b
L) are computed using (3) and (4)

with Ā = (ā1, ā2, . . . , āL) now playing the role of the input

sequence. Again, GRU cells [38] are used for its forward and

backward recurrent layers.

The sequence of output vectors O = (o1,o2, . . . ,oL) is

then obtained where ol, 1 ≤ l ≤ L, is computed as

ol = W̃ho[h̃
b
l ⊕ h̃f

l] + b̃o. (13)

Each output vector ol is presented to a softmax layer for

classification to produce the sequence of classification outputs

Ŷ = (ŷ1, ŷ2, . . . , ŷL), where ŷl is a output probability

distribution over all sleep stages.

E. Sequence Loss

In the proposed sequence-to-sequence setting, we want

to penalize the network for misclassification of any el-

ement of an input sequence. Given the input sequence

(S1,S2, . . . ,SL) with the ground-truth one-hot encoding vec-

tors (y1,y2, . . . ,yL) and the corresponding sequence of clas-

sification outputs (ŷ1, ŷ2, . . . , ŷL), the sequence loss reads as

follows (note that the sequence loss Es is normalized by the

sequence length L):

Es(θ) = −
1

L

L∑

l=1

yl log (ŷl (θ)) . (14)

The network is trained to minimize the sequence loss over

N training sequences in the training data:

E(θ) = −
1

N

N∑

n=1

Es
n(θ) +

λ

2
‖θ‖22, (15)

where Es
n is given in (14). Here, λ denotes the hyper-

parameter that trades off the error terms and the ℓ2-norm

regularization term.

F. End-to-End Training Details

In the proposed SeqSleepNet, the input unit of a filterbank

layer is a spectral column of an epoch’s time-frequency image,

that of the epoch-level attention-based bidirectional RNN is

such an entire image, and that of the top sequence-level

RNN is a sequence of attentional feature vectors encoding

the input epoch sequence. In order to train the network end-

to-end, we adaptively manipulate the input data, i.e. folding

and unfolding, at different levels of the network hierarchy.

For simplicity, let us assume the single-channel input, and

therefore, the network has only one filterbank layer. Since the

network, in practice, is trained with a mini batch of data at

a time, assume that at each training iteration we use a mini-

batch of S sequences, each consists of L epochs. For a recall,

each epoch itself is represented by an time-frequency image

of size T ×F (cf. Section III-A) which will be interpreted as

a sequence of T image columns when necessary. We firstly

unfold the S input sequences to make a set of S × L × T

image columns, each of size F , to present to the filterbank

layer. After the filterbank layer, we obtain a set of S × L ×
T image columns but now each has a size of M . This set

of image columns are then folded to form a set of S × L

images, each of size T × M , to feed into the epoch-level

attention-based bidirectional RNN. This layer encodes each

image into an attentional feature vector, resulting in a set of

S × L such feature vectors. Eventually, this set of feature

vectors are folded into a set of S sequences, each consists of

L attentional feature vectors, to present to the sequence-level

bidirectional RNN for sequence-to-sequence classification.

IV. ENSEMBLE OF DECISIONS AND PROBABILISTIC

AGGREGATION

Since SeqSleepNet is a multiple-output network, advancing

the input sequence of size L by one epoch when evaluating it

on a test recording will result in an ensemble of L decisions at

every epoch (except those at the recording’s ends). Fusing this

decision ensemble leads to a final decision which are usually

better than individual ones [8].

We use the multiplicative aggregation scheme which are

shown in [8] to be efficient for this purpose. The final posterior

probability of a sleep stage yt ∈ L = {W,N1,N2,N3,REM}
at a time index t is given by

P (yt) =
1

L

t∏

i=t−L+1

P (yt | Si). (16)

where Si = (Si,Si+1, . . . ,SL−1) is the epoch sequence

starting at i. In order to avoid possible numerical problems

when the ensemble size is large, it is necessary to carry out

the aggregation in the logarithm domain. The equation (16) is

then re-written as

logP (yt) =
1

L

t∑

i=t−L+1

logP (yt | Si). (17)

Eventually, the predicted label ŷt is determined by likeli-

hood maximization:

ŷt = argmax
yt

logP (yt) for yt ∈ L. (18)
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Table I: Parameters of the proposed network.

Parameter Value

Sequence length L {10, 20, 30}

Number of filters M 32

Size of hidden state vector 64

Size of the attention weights 64

Dropout rate 0.25

Regularization parameter λ 10
−3

V. EXPERIMENTS

A. Experimental Setup

We conducted 20-fold cross validation on the MASS

dataset. At each iteration, 200 subjects were split into training,

validation, and test set with 180, 10, and 10 subjects, respec-

tively. During training, we evaluated the network after every

100 training steps and the one yielded the best overall accuracy

on the validation set was retained for evaluation. The outputs

of 20 cross-validation folds were pooled and considered as a

whole for computing the sleep staging performance.

B. Network Parameters

The network was implemented using TensorFlow v1.3.0

framework [51]. The network parameters are shown in Table I.

Particularly, we experimented with different sequence length

of {10, 20, 30} epochs, which is equivalent to {5, 10, 15}
minutes, to study its influence. The network was trained for 10

epochs with a minibatch size of 32 sequences. The sequences

were sampled from the PSG recordings with a maximum

overlapping (i.e. L − 1 epochs), in this way, we generated

all possible epoch sequences from the training data.

Beside ℓ2-norm regularization in (15), dropout [52] was

employed for further regularization. Recurrent batch normal-

ization [53] was also integrated to the GRU cell to improve

its convergence. The network training was performed using

Adam optimizer [54] with a learning rate of 10−4.

C. Baseline Networks

In order to assess the efficiency of the proposed SeqSleep-

Net, apart from existing works, we developed three novel end-

to-end baseline networks2 for comparison:

End-to-end ARNN (E2E-ARNN): As illustrated in Figure

3a, E2E-ARNN is the combination of the filterbank layers

and the epoch-level attention-based bidirectional RNN of the

proposed SeqSleepNet, and therefore, is purposed for short-

term sequential modelling. The objective is to assess the effi-

cacy of the attention-based bidirectional RNN in epoch-wise

feature learning. This baseline follows the standard one-to-one

classification scheme, receiving a single epoch as input and

outputting the corresponding sleep stage. The classification is

accomplished by presenting the attentional output to a softmax

layer. The network was trained with the standard cross-entropy

loss. A similar attention-based bidirectional RNN was demon-

strated to achieve good performance on a single-channel EEG

setting in our previous work [26]. However, here the filterbank

2Source code is available at http://github.com/pquochuy/SeqSleepNet

learning and the sleep stage classification are jointly learned

in an end-to-end manner. We used similar parameters as the

SeqSleepNet’s epoch-level processing block, except for the

size of the attention weights which was set to 32. In addition,

the network was trained for 20 epochs and was validated every

500 steps during training.

Multitask E2E-ARNN: Inspired by multitask networks for

sleep staging in [8], this multitask network extends the E2E-

ARNN baseline above to jointly determine the label of the

input epoch and to predict the labels of its neighboring epochs.

Therefore, this multiple-output baseline offers ensemble of

decisions which was aggregated using the method described

in Section IV. We used a context output size of 3 as in [8].

End-to-end DeepSleepNet (E2E-DeepSleepNet): Supratak

et al. [9] recently proposed DeepSleepNet and reported good

performance on the MASS’s subset SS3 with 62 subjects.

This network comprises a deep CNN for epoch-wise feature

learning topped up with a deep bidirectional RNN for cap-

turing stage transitions. As described in [9], these two parts

were trained in two separate stages to yield good performance.

Here, we developed an end-to-end variant of DeepSleepNet,

illustrated in Figure 3b, and trained the model end-to-end using

a similar strategy described in Section III-F. We will show that

E2E-DeepSleepNet achieves a comparable performance (if not

better) as that reported in [9]. The network parameters were

kept as in the original version [9], however, we experimented

with a sequence length of {10, 20, 30} epochs to have a

comprehensive comparison with the proposed SeqSleepNet.

D. Experimental Results

1) Sleep stage classification performance: We show in

Table II a comprehensive performance comparison of the

proposed SeqSleepNet, the developed baselines, as well as

published results on the MASS dataset. We report performance

of a system using overall metrics, including accuracy, macro

F1-score (MF1), Cohen’s kappa (κ), sensitivity, and specificity.

Performance on individual sleep stages are also assessed via

class-wise sensitivity and selectivity as recommended in [40].

The systems are grouped into single-output or multiple-output

to ease the interpretation.

Impact of short-term sequential modelling. The efficiency

of short-term sequential modelling is highlighted by the supe-

rior performance of the E2E-ARNN baseline over those of

the single-output systems. Compared to the best single-output

CNN opponent (i.e. 1-max CNN [8]) on the entire MASS

dataset, the E2E-ARNN baseline yields improvements of 0.9%
on overall accuracy. It also largely outperforms other single-

output CNN architectures by 2.9% to 5.7%. Performance gains

can also be consistently seen on other metrics. It should be

highlighted that the E2E-ARNN baseline adheres to the very

standard one-to-one classification setup and does not make

use of contextual input with multiple epochs as in many other

CNN opponents, such as those proposed by Chambon et al.

[13] and Tsinalis et al. [10].

Single output vs multiple output. Comparing the multi-

output systems, the proposed SeqSleepNet outperforms other

systems and set state-of-the-art performance on the MASS
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Figure 3: Illustration of the developed baselines. In (b), conv. (n,w,s) denotes a convolutional layer with n 1-D filters of size

w and stride s. max pool. (w,s) denotes a 1-D max pooling layer with kernel size w and stride s. fc (n) represents a fully

connected layer with n hidden units. Finally, bi-LSTM (n,m) represents a bidirectional LSTM cell with size of its forward and

backward hidden state vectors of n and m, respectively. Further details of these parameters can be found in [9].

Table II: Performance obtained by the proposed SeqSleepNet, the developed baselines, and existing works on the MASS

dataset. We mark the proposed SeqSleepNet in bold, the developed baselines in italic, and existing works in normal font.

SeqSleepNet-L indicates a SeqSleepNet with sequence length of L, a similar notation is used for E2E-DeepSleepNet baseline.

Method
Feature

type

Num. of

subjects
Overall metrics Class-wise sensitivity Class-wise selectivity

Acc. κ MF1 Sens. Spec. W N1 N2 N3 REM W N1 N2 N3 REM

M
u

lt
i-

o
u

tp
u

t
S

y
st

em
s SeqSleepNet-30 ARNN + RNN learned 200 87.1 0.815 83.3 82.7 96.2 89.0 59.7 90.9 80.2 93.5 90.7 65.1 88.9 84.2 90.7

SeqSleepNet-20 ARNN + RNN learned 200 87.0 0.815 83.3 82.8 96.3 89.4 60.8 90.7 80.3 92.9 90.0 65.1 89.1 84.0 90.8

SeqSleepNet-10 ARNN + RNN learned 200 87.0 0.814 83.2 82.4 96.2 88.6 59.9 91.2 79.4 93.0 91.3 64.9 88.6 85.1 90.2

E2E-DeepSleepNet-30 CNN + RNN learned 200 86.4 0.805 82.2 81.8 96.1 89.2 55.8 90.5 83.1 90.3 88.8 62.6 88.8 82.0 91.1

E2E-DeepSleepNet-20 CNN + RNN learned 200 86.2 0.804 82.2 82.0 96.1 88.4 57.0 89.9 84.1 90.4 89.0 62.1 89.0 81.1 91.2

E2E-DeepSleepNet-10 CNN + RNN learned 200 86.3 0.804 82.0 81.6 96.1 88.4 55.6 90.3 83.4 90.6 88.8 62.0 89.0 82.3 90.2

M-E2E-ARNN ARNN learned 200 83.8 0.767 77.7 77.0 95.3 85.0 37.4 89.2 79.2 94.2 86.5 61.4 86.5 82.6 81.9

Multitask 1-max CNN [8] CNN learned 200 83.6 0.766 77.9 77.4 95.3 84.6 41.1 88.5 79.7 93.3 86.3 55.2 86.9 83.0 83.3

DeepSleepNet2 [9] CNN + RNN learned 62 (SS3) 86.2 0.800 81.7 - - - - - - - - - - - -

Dong et al. [25] DNN + RNN learned 62 (SS3) 85.9 - 80.5 - - - - - - - - - - - -

S
in

g
le

-o
u

tp
u

t
S

y
st

em
s E2E-ARNN ARNN learned 200 83.6 0.766 78.4 78.0 95.3 86.6 43.7 87.8 80.9 91.2 86.3 57.6 87.2 82.3 82.4

1-max CNN [8] CNN learned 200 82.7 0.754 77.6 77.8 95.1 84.8 46.8 86.4 82.0 88.6 86.2 49.8 87.4 80.2 84.2

Chambon et al. [13] CNN learned 200 79.9 0.726 76.7 80.0 95.0 81.1 64.2 76.2 89.6 89.0 86.7 41.0 92.4 73.1 82.6

DeepSleepNet1 [9] CNN (only) learned 200 80.7 0.725 75.8 75.5 94.5 80.0 51.9 85.5 69.0 91.1 87.5 46.2 85.3 84.9 79.7

Tsinalis et al. [10] CNN learned 200 77.9 0.680 70.4 69.4 93.5 82.3 30.5 86.8 61.7 85.8 77.5 44.7 80.6 80.0 80.0

Chambon et al. [13] CNN learned 61 (SS3) 83.0 - - - - - - - - - - - - - -

DeepSleepNet1 [9] CNN (only) learned 62 (SS3) 81.5 - - - - - - - - - - - - - -

Dong et al. [25] DNN (only) learned 62 (SS3) 81.4 - 77.2 - - - - - - - - - - - -

Dong et al. [25] RF hand-crafted 62 (SS3) 81.7 - 72.4 - - - - - - - - - - - -

Dong et al. [25] SVM hand-crafted 62 (SS3) 79.7 - 75.0 - - - - - - - - - - - -

dataset with an overall accuracy, MF1, and κ of 87.1%,

83.3%, and 0.815, respectively. On the entire MASS dataset,

it leads to an accuracy gain of 0.7% absolute over the E2E-

DeepSleepNet baseline which is the best competitor. Given

that the top recurrent layers behave similarly on two net-

works (although SeqSleepNet has only one recurrent layer

on the sequence level as well as smaller size of hidden

state vectors), the improvement is likely due to the good

epoch-wise sequential features learned by the epoch-level

processing block of SeqSleepNet. On individual sleep stages,

SeqSleepNet and the E2E-DeepSleepNet are comparable for

Wake and N2 while the former shows its prominence on N1
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Figure 4: (a) The confusion matrix of SeqSleepNet-20 (C1), (b) the confusion matrix of the E2E-ARNN baseline (C2), and

(c) the difference of two confusion matrices C1 − C2.

which is usually very challenging to be recognized due to its

similar characteristics to other stages and its low prevalence.

Interestingly, in REM, SeqSleepNet is superior on sensitivity

but inferior on selectivity compared to E2E-DeepSleepNet.

This result suggests that SeqSleepNet is less conservative than

E2E-DeepSleepNet on recognizing REM, i.e. it recognizes

more but slightly lower-fidelity REM epochs. The opposite is

observed on N3. Regarding the family of multitask networks,

although the advantage of contextual output [8] is reflected

by the improvement of these networks, i.e. the multitask

CNN and the M-E2E-ARNN baseline, over their single-output

peers, the limit of the contextual output size [8] makes their

performance incomparable to those of the SeqSleepNet and the

E2E-DeepSleepNet both of which can accommodate a much

longer context, thanks to the capability of their sequence-level

recurrent layers.

Benefits of long-term sequential modelling. The perfor-

mance boost made by the proposed SeqSleepNet and the E2E-

DeepSleepNet over their single-output counterparts also shed

light into the power of long-term sequential modelling for

automatic sleep staging. Averaged over all experimented se-

quence lengths, an accuracy gain of 3.4% absolute is obtained

by SeqSleepNet over the E2E-ARNN baseline. Likewise,

an average accuracy improvement of 5.6% yielded by the

E2E-DeepSleepNet baseline over its bare CNN version (i.e.

DeepSleepNet1 [8]) can also be seen. Previous works, e.g.

Supratak et al. [9] and Dong et al. [25] also presented a

similar finding on the MASS subset SS3. However, the state-

of-the-art performance of the proposed SeqSleepNet and the

developed E2E-DeepSleepNet are obtained with end-to-end

training, implying the unnecessity of multi-stage training [9],

[25].

In order to reveal the cause of improvement made by long-

term sequential modelling, we further examine its effects on

performances of individual classes. To this end, we computed

the confusion matrix of the proposed SeqSleepNet with the

sequence length of L = 20 (denoted as C1), the confusion

matrix of the E2E-ARNN baseline (denoted as C2), and

inspect the difference between them, i.e. C1−C2. In C1−C2,

both positive diagonal entries and negative off-diagonal entries

indicate improvements of SeqSleepNet over the E2E-ARNN

baseline. It turns out that, long-term sequential modelling

results in significant improvement on N1 with its accuracy

boosted by 17.2% while subtle influence is seen on other

sleep stages. This achieved accuracy on the challenging N1

stage is also better than those reported in previous works [8],

[9], [13], [25]. These results suggests that long-term sequential

modelling is more important than specific changes in the sleep

stages.

2) Hypnogram: Figure 5 further shows the output hypno-

gram and the posterior probability distribution per stage of

sleep of a subject of the MASS dataset (subject 22 of subset

SS1). It can be seen that the output hypnogram aligns very well

with the corresponding ground truth. Often, the network makes

errors at the short stage transition epochs. More specifically,

on the entire MASS dataset, out of misclassified epochs

made by SeqSleepNet-20, 44.0% are transitioning and the rest

56.0% are non-transitioning. However, when we inspected the

transitioning set (constituting 16.6% of the data) and the non-

transitioning set (constituting 83.4% of the data) seperately, an

error rate of 34.5% is seen on the former whereas that of the

latter is four times lower, only 8.7%. This result suggests that

the transitioning epochs are much harder to correctly classified

compared to the non-transitioning ones. The rationale is that

the transitioning epochs often contain information of two or

three sleep stages, not to mention that the way we converted

20-second epochs to 30-second ones (cf. Section II) makes

the stage overlap even worse. As a result, these present stages

are active as indicated in the probability distribution in Figure

5, however, we had to pick one of them as the final discrete

output label for the sleep staging task.

3) Influence of the sequence length and the network’s depth:

It can be seen from the results in Table II that the sequence

length equal or greater than 10 has minimal impact on the

network performance. This observation is generalized for both

SeqSleepNet and the E2E-DeepSleepNet as their accuracies

vary in a negligible margin of 0.1% when L = {10, 20, 30}.

We carried out an additional experiment to study the in-

Table III: Influence of SeqSleepNet’s recurrent depth on the

overall accuracy.

Recurrent depth
Sequence length

L = 10 L = 20 L = 30

1 87.0 87.0 87.1

2 86.8 87.0 87.1
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Figure 5: Output hypnogram (a) produced by the proposed SeqSleepNet (L = 20) for subject 22 of the MASS dataset compared

to the ground-truth (b). The errors are marked by the × symbol. The posterior probability distribution over different sleep

stages is shown in (c).

fluence of the deepness of SeqSleepNet’s recurrent layers.

We constructed the SeqSleepNet with two layers for both its

epoch-level and sequence-level recurrent layers. A deep RNN

was formed by stacking the GRU cells one on another as in

[24], [55]. The overall accuracy of this network is shown

in Table III alongside that of the SeqSleepNet which has

recurrent depth of 1. The results reveal that increasing the

number of recurrent layers does not change the network’s

accuracy when the sequence length is sufficiently large, i.e.

L = 20, 30. With L = 10, an accuracy drop of 0.2% is

noticeable. A possible explanation is that, with short sequence

length, the stronger network with the recurrent depth of 2

is more prone to overfitting than the simpler one with the

recurrent depth of 1. This effect is not observed with larger

sequence lengths as heavier multitasking helps to regularize

the networks better.

4) Visualization of the learned attention weights: To shed

light on how the SeqSleepNet has picked up features to

distinguish one sleep stage from others, Figure 6 shows the

attention weights for five specific epochs of different sleep

stages. As expected, for the Wake epoch, the attention weights

are particularly large in the region of high brain activities and

muscle tone which are common characteristics discriminating

Wake against other sleep stages. Similarly, for the REM epoch,

more attention weights are put on ocular activities which are

REM representative. Interestingly, attention layers also capture

typical features of the N2 and N3 epoch as stronger weights

are seen with occurrences of K-complex and slow brain waves,

respectively.

VI. DISCUSSION

With the good performance demonstrated, the proposed

SeqSleepNet has the potential to automate and replace manual

sleep scoring [4], [5]. Although SeqSleepNet’s overall perfor-

mance is just approximately 1% better than that of the runner-

up DeepSleepNet, it is worth noticing that this improvement

is not evenly distributed over all sleep stages (cf. Table II).

While the networks perform more or less comparably on

some stages (e.g. N2 and Wake), SeqSleepNet significantly

outperforms DeepSleepNet on other stages (e.g. N1 and REM).

This result might also be clinically meaningful as performing

well on N1 and REM sleep makes SeqSleepNet potentially

useful for diagnosis and assessments of many types of sleep

disorders, such as narcolepsy [56] and REM-Sleep Behavior

Disorder (RBD) [57]. It is unlikely that SeqSleepNet trained

on the MASS dataset, a cohort of healthy subjects, would

directly work well on subjects with sleep disorders due to

their different sleep architectures and characteristics compared

to the healthy controls. However, a SeqSleepNet pre-trained

with a large healthy cohort like the MASS dataset could serve

as a starting point to be finetuned for another cohort of sleep

pathologies, especially when the target cohort is of small size.

SeqSleepNet also comes with some disadvantages. First, as

a sequence-to-sequence model, the network needs to access

entire sequences of multiple epochs to perform classification.

This could delay online and realtime applications, such as

sleep monitoring [16], [17]. Second, the class-wise results in

Table II show opposite behaviors of SeqSleepNet and Deep-

SleepNet on N3 and REM. This suggests that DeepSleepNet

could compensate SeqSleepNet to improve performance on

these two stages. It is therefore worth exploring their possible

combinations to leverage their respective advantages.

VII. CONCLUSIONS

We proposed to treat automatic sleep staging as a sequence-

to-sequence classification problem to jointly classify a se-

quence of multiple epochs at once. We then introduced a
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Figure 6: Attention weight learned by SeqSleepNet (L = 20) for specific epochs of different sleep stages. Note that we

generated the spectrograms with finer temporal resolution (2-second window with 90% overlap) for visualization purpose.

hierarchical recurrent neural network, i.e. SeqSleepNet, run-

ning on multichannel time-frequency image input to tackle

this problem. The network is composed of parallel filter-

bank layers for preprocessing the image input, an epoch-

level attention-based bidirectional RNN layer to encode se-

quential information of individual epochs, and a sequence-

level bidirectional RNN layer to model inter-epoch sequential

information. The network was trained end-to-end via dynamic

folding and unfolding the input sequence at different levels

of network hierarchy. We show that while sequential features

learned for individual epochs by the epoch-level attention-

based bidirectional RNN are more favourable than those

learned by different CNN opponents, further capturing the

long-term dependency between epochs by the top RNN layer

leads to significant performance improvement. The proposed

SeqSleepNet outperforms not only existing works but also the

strong baselines developed for comparison, setting state-of-

the-art performance on the entire MASS dataset.

ACKNOWLEDGEMENT

The research was supported by the NIHR Oxford Biomed-

ical Research Centre, Wellcome Trust (grant 098461/Z/12/Z),

and the Engineering and Physical Sciences Research Council

(EPSRC – grant EP/N024966/1).

REFERENCES

[1] J. M. Siegel, “Clues to the functions of mammalian sleep,” Nature, vol.
437, no. 27, p. 1264–1271, 2005.

[2] Institute of Medicine, Sleep Disorders and Sleep Deprivation: An Unmet

Public Health Problem. Washington DC: The National Academies
Press, 2006.

[3] A. C. Krieger, Ed., Social and Economic Dimensions of Sleep Disorders,

An Issue of Sleep Medicine Clinics. Elsevier, 2017.
[4] C. Iber, S. Ancoli-Israel, A. L. Chesson, and S. F. Quan, “The AASM

manual for the scoring of sleep and associated events: Rules, terminol-
ogy and technical specifications,” American Academy of Sleep Medicine,
2007.

[5] J. A. Hobson, “A manual of standardized terminology, techniques and
scoring system for sleep stages of human subjects,” Electroencephalog-

raphy and Clinical Neurophysiology, vol. 26, no. 6, p. 644, 1969.
[6] S. J. Redmond and C. Heneghan, “Cardiorespiratory-based sleep staging

in subjects with obstructive sleep apnea,” IEEE Trans. Biomedical

Engineering, vol. 53, pp. 485–496, 2006.
[7] E. Alickovic and A. Subasi, “Ensemble SVM method for automatic sleep

stage classification,” IEEE Trans. on Instrumentation and Measurement,
vol. 67, no. 6, pp. 1258–1265, 2018.

[8] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos, “Joint
classification and prediction CNN framework for automatic sleep stage
classification,” IEEE Trans. Biomedical Engineering (TBME), 2018.

[9] A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: A model
for automatic sleep stage scoring based on raw single-channel EEG,”
IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 25,
no. 11, pp. 1998–2008, 2017.

[10] O. Tsinalis, P. M. Matthews, Y. Guo, and S. Zafeiriou, “Automatic
sleep stage scoring with single-channel EEG using convolutional neural
networks,” arXiv:1610.01683, 2016.

[11] K. Mikkelsen and M. De Vos, “Personalizing deep learning models for
automatic sleep staging,” arXiv Preprint arXiv:1801.02645, 2018.

[12] J. B. Stephansen, A. N. Olesen, M. Olsen, A. Ambati, E. B. Leary, H. E.
Moore, O. Carrillo, L. Lin, F. Han, H. Yan, Y. L. Sun, Y. Dauvilliers,
S. Scholz, L. Barateau, B. Hogl, A. Stefani, S. C. Hong, T. W. Kim,
F. Pizza, G. Plazzi, S. Vandi, E. Antelmi, D. Perrin, S. T. Kuna, P. K.
Schweitzer, C. Kushida, P. E. Peppard, H. B. D. Sorensen, P. Jennum,
and E. Mignot, “Neural network analysis of sleep stages enables efficient
diagnosis of narcolepsy,” Nature Communications, vol. 9, no. 1, p. 5229,
2018.



THIS ARTICLE HAS BEEN PUBLISHED IN IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 11

[13] S. Chambon, M. N. Galtier, P. J. Arnal, G. Wainrib, and A. Gramfort, “A
deep learning architecture for temporal sleep stage classification using
multivariate and multimodal time series,” IEEE Trans. on Neural Systems

and Rehabilitation Engineering, vol. 26, no. 4, pp. 758–769, 2018.
[14] F. Andreotti, H. Phan, N. Cooray, C. Lo, M. T. M. Hu, and M. De

Vos, “Multichannel sleep stage classification and transfer learning using
convolutional neural networks,” in Proc. EMBC, 2018, pp. 171–174.

[15] F. Andreotti, H. Phan, and M. De Vos, “Visualising convolutional neural
network decisions in automatic sleep scoring,” in Proc. Joint Workshop

on Artificial Intelligence in Health (AIH), 2018, pp. 70–81.
[16] K. B. Mikkelsen, J. K. Ebajemito, M. A. Bonmati-Carrion, N. Santhi,

V. L. Revell, G. Atzori, C. della Monica, S. Debener, D. Dijk, A. Sterr,
and M. de Vos, “Machine-learning-derived sleep-wake staging from
around-the-ear electroencephalogram outperforms manual scoring and
actigraphy,” Journal of Sleep Research, p. e12786, 2018.

[17] D. Looney, V. Goverdovsky, I. Rosenzweig, M. J. Morrell, and D. P.
Mandic, “Wearable in-ear encephalography sensor for monitoring sleep.
preliminary observations from nap studies,” Annals of the American

Thoracic Society, vol. 13, no. 12, pp. 32–42, 2016.
[18] V. Goverdovsky, D. Looney, and P. K. D. P. Mandic, “In-ear EEG from

viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring,”
IEEE Sensors Journal, vol. 16, pp. 271–277, 2016.

[19] P. Kidmose, D. Looney, M. Ungstrup, M. Lind, and D. P. Mandic,
“A study of evoked potentials from ear-EEG,” IEEE Trans Biomedical

Engineering, vol. 60, no. 10, pp. 2824–2830, 2013.
[20] D. Looney, P. Kidmose, C. Park, M. Ungstrup, M. L. Rank,

K. Rosenkranz, and D. P. Mandic, “The in-theear recording concept:
User-centered and wearable brain monitoring,” IEEE Pulse, vol. 3, no.
32–42, 2012.

[21] K. B. Mikkelsen, S. L. Kappel, D. P. Mandic, and P. Kidmose, “EEG
recorded from the ear: Characterizing the ear-EEG method,” Front

Neurosci. 2015; 9: 438., vol. 9, no. 438, 2015.
[22] M. Längkvist, L. Karlsson, and A. Loutfi, “Sleep stage classification

using unsupervised feature learning,” Advances in Artificial Neural

Systems, vol. 2012, pp. 1–9, 2012.
[23] O. Tsinalis, P. M. Matthews, and Y. Guo, “Automatic sleep stage scoring

using time-frequency analysis and stacked sparse autoencoders,” Annals

of Biomedical Engineering, vol. 44, no. 5, pp. 1587–1597, 2016.
[24] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos,

“Automatic sleep stage classification using single-channel eeg: Learning
sequential features with attention-based recurrent neural networks,” in
Proc. EMBC, 2018, pp. 1452–1455.

[25] H. Dong, A. Supratak, W. Pan, C. Wu, P. M. Matthews, and Y. Guo,
“Mixed neural network approach for temporal sleep stage classification,”
IEEE Trans. on Neural Systems and Rehabilitation Engineering, vol. 26,
no. 2, pp. 324–333, 2018.

[26] H. Phan, F. Andreotti, N. Cooray, O. Y. Chén, and M. De Vos,
“DNN filter bank improves 1-max pooling CNN for single-channel EEG
automatic sleep stage classification,” in Proc. EMBC, 2018, pp. 453–456.

[27] T. Sousa, A. Cruz, S. Khalighi, G. Pires, and U. Nunes, “A two-
step automatic sleep stage classification method with dubious range
detection,” Computers in Biology and Medicine, vol. 59, pp. 42–53,
2015.

[28] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, and Y.-S. Cheng, “A rule-based
automatic sleep staging method,” in Proc. EBMC, 2011, pp. 6067–6070.

[29] K. A. I. Aboalayon, M. Faezipour, W. S. Almuhammadi, and S. Mosleh-
pour, “Sleep stage classification using EEG signal analysis: A compre-
hensive survey and new investigation,” Entropy, vol. 18, no. 9, p. 272,
2016.

[30] A. Patanaik, J. L. Ong, J. J. Gooley, S. Ancoli-Israel, and M. W. L.
Chee, “An end-to-end framework for real-time automatic sleep stage
classification,” Sleep, vol. 41, no. 5, p. zsy041, 2018.

[31] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, “End to end learning for self-driving cars,” arXiv preprint

arXiv:1604.07316, 2016.
[32] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and

P. Kuksa, “Natural language processing (almost) from scratch,” Journal

of Machine Learning Research, p. 2493–2537, 2011.
[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D.

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and
M. Lanctot, “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, p. 484–489, 2016.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012, pp.
1097–1105.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, p. 529–533, 2015.

[36] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” Journal of Machine Learning Research,
vol. 17, pp. 1–40, 2016.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computing, vol. 9, no. 8, pp. 1735–1780, 1997.
[38] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” in Proc. EMNLP, 2014, pp.
1724–1734.

[39] C. O’Reilly, N. Gosselin, J. Carrier, and T. Nielsen, “Montreal archive
of sleep studies: An open-access resource for instrument benchmarking
& exploratory research,” Journal of Sleep Research, pp. 628–635, 2014.

[40] S. A. Imtiaz and E. Rodriguez-Villegas, “Recommendations for per-
formance assessment of automatic sleep staging algorithms,” in Proc.

EMBC, 2014, pp. 5044–5047.
[41] ——, “An open-source toolbox for standardized use of PhysioNet Sleep

EDF Expanded Database,” in Proc. EMBC, 2015, pp. 6014–6017.
[42] T. Lajnef, S. Chaibi, P. Ruby, P. E. Aguera, J. B. Eichenlaub, M. Samet,

A. Kachouri, and K. Jerbi, “Learning machines and sleeping brains:
Automatic sleep stage classification using decision-tree multi-class sup-
port vector machines,” Journal of Neuroscience Methods, vol. 250, pp.
94–105, 2015.

[43] C. S. Huang, C. L. Lin, L. W. Ko, S. Y. Liu, T. P. Su, and C. T. Lin,
“Knowledge-based identification of sleep stages based on two forehead
electroencephalogram channels,” Frontiers in Neuroscience, vol. 8, p.
263, 2014.

[44] H. Yu, Z.-H. Tan, Y. Zhang, Z. Ma, and J. Guo, “DNN filter bank
cepstral coefficients for spoofing detection,” IEEE Access, vol. 5, pp.
4779–4787, 2017.

[45] P. Koch, H. Phan, M. Maass, F. Katzberg, and A. Mertins, “Recurrent
neural network based early prediction of future hand movements,” in
Proc. EMBC, 2018, pp. 4710–4713.

[46] P. Koch, H. Phan, M. Maass, F. Katzberg, R. Mazur, and A. Mertins,
“Recurrent neural networks with weighting loss for early prediction of
hand movements,” in Proc. EUSIPCO, 2018, pp. 1152–1156.

[47] H. Phan, L. Hertel, M. Maass, P. Koch, R. Mazur, and A. Mertins,
“Improved audio scene classification based on label-tree embeddings and
convolutional neural networks,” IEEE/ACM Trans. on Audio, Speech,

and Language Processing, vol. 25, no. 6, pp. 1278–1290, 2017.
[48] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to

attention-based neural machine translation,” in Proc. EMNLP, 2015, pp.
1412–1421.

[49] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv Preprint arXiv:1409.0473,
2015.

[50] J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” arXiv

preprint arXiv:1412.3555, 2014.
[51] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-

geneous distributed systems,” arXiv:1603.04467, 2016.
[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research (JMLR), vol. 15, pp.
1929–1958, 2014.

[53] T. Cooijmans, N. Ballas, C. Laurent, Ç. Gülçehre, and A. Courville, “Re-
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