From computation to comparison of tensor decompositions*

lgnat Domanov' and Lieven De Lathauwer!

Abstract. Decompositions of higher-order tensors into sums of simple terms are ubiquitous. We show that in
order to verify that two tensors are generated by the same (possibly scaled) terms it is not necessary to
compute the individual decompositions. In general the explicit computation of such a decomposition
may have high complexity and can be ill-conditioned. We now show that under some assumptions the
verification can be reduced to a comparison of both the column and row spaces of the corresponding
matrix representations of the tensors. We consider rank-1 terms as well as low multilinear rank terms
(also known as block terms) and show that the number of the terms and their multilinear rank can
be inferred as well. The comparison relies only on numerical linear algebra and can be done in a
numerically reliable way. We also illustrate how our results can be applied to solve a multi-label
classification problem that appears in the context of blind source separation.

Key words. multilinear algebra, higher-order tensor, multi-label classification, multilinear rank, canonical poly-
adic decomposition, PARAFAC, block term decomposition
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1. Introduction. Decompositions of tensors of order N (i.e., N-way arrays of real or com-
plex numbers) into a sum of simple terms are ubiquitous. The most common simple term is a
rank-1 tensor, i.e. a nonzero tensor whose columns (resp. rows, fibers, etc.) are proportional.
The corresponding decomposition into a minimal number of terms is known as Canonical
Polyadic Decomposition (CPD).

It is well-known that for N = 2, that is, in the matrix case, the decomposition in a
minimal number of rank-1 terms is not unique unless the matrix itself is rank-1: indeed,

any factorization A = XMX®T with full column rank factors X1 = [xgl) xg)] and
X3 = [x§2) e xg)] generates a valid decomposition A = xgl)X?)T +-- -—l—xg)xg)T, where R

is the rank of A, and this decomposition is not unique. On the other hand, if X(*) and /or X3
are subject to constraints (e.g., triangularity or orthogonality), then the decomposition can be
unique, but from an application point of view the imposed constraints can be unrealistic and
the rank-1 terms not interpretable as meaningful “data components”. In contrast, for N > 3,
that is, in the higher order tensor case, the unconstrained CPD is easily unique (see, for
instance, [8, 9, 21, 22| and the references therein). Its uniqueness properties make the CPD a
fundamental tool for unique retrieval of data components, latent variable analysis, independent
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2 |. DOMANOV AND L. DE LATHAUWER

component analysis, etc., with countless applications in chemometrics [6], telecommunication,
array processing, machine learning, etc. [10, 11, 30, 32].

The higher order setting actually allows the recovery of terms that are more general than
rank-1 terms. A MultiLinear (ML) rank-(Lj, Lo, ...) term is a tensor whose columns (resp.
rows, fibers, etc.) form a matrix of rank L; (resp. Lo, L3, etc.). Like CPD, a decomposition
into a sum of ML rank-(Lq, Lo, ... ) terms (also known as block term decomposition) is unique
under reasonably mild assumptions (see [13, 23, 24] and the references therein), so that it has
found applications in wireless communication [16], blind signal separation [14, 20|, etc.

Tensor decompositions can be considered as tools for data analysis that allow one to break
a single (tensor) data set into small interpretable components. It is known that, in general, the
explicit computation of the CPD and the decomposition into a sum of ML rank-(Lj, Lo, . ..)
terms may have high complexity and can be ill-conditioned [1, 2, 5]. In other words, the
mildness of the uniqueness conditions comes with a numerical and a computational cost.

In this paper we consider tensor decompositions from a different perspective that is closer
to pattern recognition. Namely, we consider the following “tensor similarity” problem:

e How to verify that two I X --- X In tensors are generated by the same (possibly scaled)
rank-1 terms?
e More generally, how to verify that two I7 X --- X I tensors are generated by the same
(possibly scaled) ML rank-(Ly, Lo, ...) terms?
For brevity, our presentation will be in terms of the more general variant. The simpler (C)PD
variant will follow as a special case (see, for instance, Theorem 2.1).

An obvious approach would be to compute the decompositions of all tensors and then to
compare them. This has two drawbacks. First, as mentioned above, the explicit computation
of the decompositions may have high complexity and can be ill-conditioned. Second, the
approach may fail if the tensors are generated by the same (possibly scaled) terms in cases
where the decompositions are not unique.

In this paper we will not compute the tensor decompositions. We will pursue a different
approach, starting from the following trivial observation: if

(1.1) a tensor B is a sum of (possibly scaled) terms from the decomposition of a tensor A,
then
(1.2) col(B(ge;s7) € col(Age,g)) for all proper subsets S of {1,..., N},

where col(-) denotes the column space of a matrix, S¢ denotes the complement of the set S,

and A (ge,q) denotes the ( [[ In) x (][] I) matrix representation of A (see subsection 4.2
nese nes
for a formal definition of A(ge,5)). Actually we will explain that (1.2) implies (1.1) (in a way

that requires some more technical detail). A clear advantage of the approach based on the
implication (1.2)=(1.1) is that the conditions in (1.2) rely only on numerical linear algebra
and can be verified in a numerically reliable way. While the implication (1.1)=-(1.2) is trivial,
the implication (1.2)=-(1.1) is not.

The main contribution of this paper is to show that, with some technicalities, (1.2) implies
(1.1). As a matter of fact, we will need only N conditions in (1.2) for this, namely the

This manuscript is for review purposes only.



79

30

82

104
105
106
107
108
109
110
111
112
113

FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 3

conditions

(1.3) COl(B(nc;n)) - CO](A(nC;n))7 n e {1, R ,N},

and we will show that the Il'l"IN X I, matrices A(e.,) and Byye,p) in (1.3) can be used to

compute the number of terms in the decompositions of A and B as well as their multilinear
ranks. We also consider a more general case where the inclusions in (1.3) are only known to
hold for some n in {1,..., N}.

It is well known that in the case of CPD i) each of the subspaces col(A (c.,)) determines
the number of rank-1 terms in the CPD of A (i.e., the rank of A) and ii) that the inclusion
col(B(ne;n)) € col(A(peyn)) in (1.3) implies that the rank-1 terms in the CPD of A and B can
be matched so that their fibers are proportional in all modes that are complementary to n
[7, Proposition 14.45|, [31, Theorem 3.1.1.1], [26, Theorem 2.4|. At first sight it may seem
that this implies that if all N inclusions in (1.3) hold, then i) the number of rank-1 terms
needed to generate (with tensor-specific scaling coefficients) both A and B, also just equals
the rank of A so that ii) the fibers of the properly matched rank-1 terms are proportional
in all modes. Put simply, it may seem that if all inclusions in (1.3) hold, then the tensor
B consists of the sum of the rank-1 terms in a CPD of A, possibly scaled. However, this is
not correct. In Appendix A we give counterexamples for tensors of order three. Thus, (1.3)
(or (1.2)) does not necessarily imply (1.1) in the case of CPD. There are two ways to change
our view. A first way is to impose extra conditions. A second way is to consider terms that
can be more general than just rank-1. In Theorems 2.1, 4.1, and 4.3 below we present such
conditions and we replace the rank-1 assumption by a low ML rank assumption. Framed like
this, (1.3) (or (1.2)) actually does imply (1.1). Note that the decomposition into a sum of low
ML rank terms is a nontrivial extension of the CPD. While in the case of the CPD the rank-1
structure of the terms is assumed beforehand and the number of terms is a characteristic of
the tensor (i.e., equals its rank), the ML rank values in the decomposition of a tensor into a
sum of ML rank-(Lj, La, . ..) terms are not known in advance, and in general, more than one
combination of ML rank values and number of terms is possible. The new Theorems 2.1, 4.1,
and 4.3 also imply a procedure to compute the number of terms and their ML rank values in
the “similarity” setting.

It is also worth noting that the conditions

(1.4) row(B(pem)) € 1oW(Aey), n€{l,...,N},

in which row(-) denotes the row space of a matrix, are more relaxed than the conditions in
(1.3) (see Statement 1 of Lemma 3.2 below) and in general do not imply (1.1). For instance,
if 878 > T, then the conditions row(Byei)) = oW (A (o)) (= F), n € {1,..., N} hold
for any generic tensors A and B (no matter whether they are generated by the same (possibly
scaled) terms or not).

We will also explain that the remaining 2% — 2 — N conditions in (1.2) are redundant, i.e.,
that the N conditions in (1.3) imply all 2V — 2 conditions in (1.2). (A fortiori, (1.1) follows
from the N conditions in (1.3), as mentioned under the “main contribution” above.)

Prior work on tensor similarity is limited to [36]. Both the present paper and [36] originated
from the technical report [15]. The theoretical contributions of [36] related to the implication
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4 |. DOMANOV AND L. DE LATHAUWER

(1.3)= (1.1) rely on prior knowledge on the decompositions of A and B! and can be summarized
as follows: if N = 3 and (1.3) holds with “C” replaced by “=", then A and B are generated
by the same (possibly scaled) terms. The results obtained in the current paper imply that the
prior knowledge on the decompositions is not needed. Further, [36] presents applications in
the context of emitter movement detection and fluorescence data analysis.

The paper is organized as follows. In subsections 2.1 and 2.2 we introduce tensor related
notations and formalize the problem statement, respectively. Section 3 contains preliminary
results. In subsection 3.1, for the convenience of the reader, we remind the primary decom-
position theorem and the Jordan canonical form. Subsection 3.2 contains an auxiliary result
about the simultaneous compression of tensors A and B for which the first N inclusions in
(1.3) hold (Lemma 3.2). The main results are given in section 4. In subsection 4.1 we estab-
lish connections between the terms in the decompositions of tensors A and B that satisfy the
conditions in (1.3) (Theorems 4.1 and 4.3). In subsection 4.2 we show that the N conditions
in (1.3) imply the 2% — 2 conditions in (1.2) (Corollary 4.5). In section 5 we illustrate how our
results can be applied to solve a multi-label classification problem that appears in the context
of blind source separation. Appendix A contains some numerical examples that illustrate a
particular advantage of using the decomposition into a sum of ML rank-(L1, Lo, -) terms over
the CPD when we deal with the implication (1.3)=-(1.1).

2. Basic definitions and problem statement.
2.1. Basic definitions.

Matrix representations. Let 1 < n < N. A mode-n matriz representation of a tensor
Iy In
A € FIixXIN is a matrix Aoy € F I *In whose columns are the vectorized mode-n

slices (see Figure 2.1 (top)) of A. Using Matlab colon notation, the columns of A ;e,y) are the

vectorized I} X -+ - X In_1 X 1 X Inyq X -+« x Iy tensors A(:, ... 5100 0), o AG, ooy Iy
y-..,:). Formally,
N k—1
(2.1)  the (1+ Z(zk -1) H I,in)th entry of A(,e.,) = the (i1,...,in)th entry of A.
k7n Zn

For instance, the mode-1 matrix representation A (s 3.y of an Iy x Iy X I3 tensor A is the
IyI5 x I matrix whose columns are the vectorized matrices A(1,:,:),...,A(I1,:,:). It can
also be verified that the rows of A(y3.1) are the transposed columns of A, i.e., the transposed
columns of A(:,1,:),...,A(:, [2,:) or A(:,:,1),...,A(:,:, I3) (see Figure 2.1 (top)).

Mode-n product. If for some tensor D € Fl1¥-In-1xLnxInt1xIN and matrix X e
F[nXLn’

n)T
(2.2) Afneny = Doy XMT

!Namely, the working assumption in [36] is that both tensors A and B admit decompositions of the same
type (CPD, decomposition in ML rank-(L, L, 1) terms, decomposition in ML rank-(L, L, ) terms), that the
decompositions include the same number of terms, and that in the latter two decomposition types the terms
of A and B can be matched so that their ML ranks are equal.
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147
148
149
150
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i.e., if the mode-n fibers of A are obtained by multiplying the corresponding mode-n fibers of
D by XM, then we say that A is the mode-n product of a D and X(™ and write A = De,, X (),
It can be easily verified that the remaining N — 1 matrix representations of A can be factorized
as

n—1 N
(23) A(kc;k) = ® IIZ & X(n) & ® IIl D(kc;k)7 ke {17 v 7N} \ {n}
1=1,1#k I=n+1,l#k

where I;, and “®” denote the I; x I; identity matrix and the Kronecker product, respectively.
Figure 2.1 (bottom) illustrates the mode-1 product of a third-order tensor and matrix.

Figure 2.1. Representations of an I, X I x I3 tensor A as a set of mode-n slices, n = 1,2,3 (top) and
mode-1 product of a tensor D and matriz XV (bottom). The columns of D e; XD are obtained from the
columns of D by multiplying them with XM,

Several products in the same mode or across modes. It easily follows from (2.2) that
for compatible matrix and tensor dimensions,

(20X o X)) = (250

Let N < N and

XW) ¢ FlaxLly,

)

(2.4) D g FlvxLyxIgpoxn - x (1) ¢ ghxln
For products across different modes, we have
(2.5) Do XV ... oy XMV .= (((p o X(l)) . X(z)) ey X(N)) _

(((D o X(il)) o X(iz)) . X(iN))

This manuscript is for review purposes only.
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6 |. DOMANOV AND L. DE LATHAUWER

for any permutation i1,...,ix of 1,...,N. It follows from (2.2), (2.3), and (2.5), that the
matrix representations of A =D e; X(I) ... o)y X(V) are given by

N
(2.6) Apey=| & X¥|DpeyX™T, nef1,....N}
k=1,k#n

fA="De; XV ...00 XV with N < N, then the identities in (2.6) hold with X(¥+1) —

Irg oo ,XNV) =1, . That is,
N N
(2.7) Aoy = X® e &Q I, | DpeyX™WT,  nefl,... N},
k=1,k#n k=N+1
N N
(2.8) Apey = [QRXP e K I, |Dueny, ne{N+1,... N}
k=1 k=N+1,k#n

ML rank of a tensor. By definition,

A is ML rank-(L1, ..., Ly, ...,") €5 ra .. = Lo, ne{l,...,N}, 2<N<N,

that is, L, is the dimension of the subspace spanned by the mode-n fibers of A. It can

be shown that A is ML rank-(Li,...,Lyg,-,...,-) if and only if it admits the factorization
A=De XWD... < X such that D, XM . ,X(N) have dimensions as in (2.4) and
XM ,X(N)7D(1c;1), e D(NC;N) have full column rank. In this paper we assume that the
tensor dimensions have been permuted so that we can just specify the rank values for the first
N matrix representations of A. A special case of the factorization A =D e; X1 ... o X(N)7
where N = N, X(™ equals the “U” factor in the compact Singular Value Decomposition (SVD)
of A(peny, and D = Aey XMH ... o XMH 5 known as the MLSVD of A and is used for the
compression of an I; X --- X Iy tensor to the size Ly x --- x Ly [17]. By setting X (™) equal

to the identity matrix for n = N+ 1,..., N, we compress only along the first NV dimensions.

ML rank-(Li;,...,Lg,,...,-) decomposition of a tensor. In this paper we consider the

decomposition of A into a sum of ML rank-(L1,,...,Lg, ,-,...,-) terms:

R
(2.9) A=Y"D,e; X0 XM 2 < N <N,
r=1

D, e Pl x by g xdy - X () @ plaxlor e {1, N}, re{l,...,R}.
In our derivation we will also use a matricized version of (2.9). It can be obtained as follows.
First, we call

R
In Lpr N
(2.10) XM = x(M . xWer S I g 8

This manuscript is for review purposes only.
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FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 7

the concatenated factor matrices of A. If further we set
(2.11) XM =1 ... 1] eF>Bh e {N+1,...,N},

then, by (2.6), we can express (2.9) in a matricized way as

R N
l n)T
(212) Apemy=>_ | & XV | Dy XM =
r=1 \Il=1,l#n

I=1,l#n
where
N N N
! l
(2.13) O x0=] R x... K xP
I=1,l#n I=1,l#n I=1,l#n

and Bdiag(D1(ne;n)s - - - » DR(nesn)) denotes a block-diagonal matrix with the matrices D1 (pe.p),
.+« DR(ne;n) on the diagonal.

Note that (2.9) captures several well-studied decompositions as special cases (see also the
introduction). If N=Nand Li, =---= Ly, = 1 for all r, then all terms in (2.9) are rank-1
tensors, so (2.9) reduces to a polyadic decomposition of A. It can easily be verified that if
N =2, N =3, and Ly, = 1 for all 7, then the ML rank-(1, Loy, -) terms in (2.9) are actually
ML rank-(1, Loy, Lo,) terms.? Thus, (2.9) reduces to the decomposition into a sum of ML
rank-(1, Ly, Ly,) terms. Finally, if N = 2 and N = 3, then (2.9) is a tensor reformulation of
the joint block diagonalization problem. Namely, (2.9) means that the frontal slices of A can
simultaneously be factorized as

A(:,: 1) = XY Bdiag(D1(5,5,4), ..., DR, i) XPT =1, I,

where D,.(:,:,1) € FLirxlar,

2.2. Problem statement. Assume that a tensor B € FI1><*IN congists of the same ML

rank-(Lyy,...,Lg,,-,...,-) terms as A, but possibly differently scaled:

R
(2.14) B=Y ANDyer XMoo XM A A £0.

>
r=1

2Indeed, since the column rank is equal to 1, a ML rank-(1, La,,-) (I1 x I> x I3) term consists of scaled
versions of the same (I2 X I3) matrix. Since column rank and row rank of the latter matrix coincide, the ML
rank-(1, Loy, -) term is necessary ML rank-(1, Lar, Lar).

This manuscript is for review purposes only.
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8 |. DOMANOV AND L. DE LATHAUWER

Then by (2.12),

N
(215) Beyy = [ () X® ) Bdiag(MDigneiny; - - - ARD R(nesn)) X7 =
k=1,k#n

N
(O X® | Bdiag(Di(neiny; - - - DRnesn)) Bdiag(MIL,,, .. ArIL, ) X7,
k=1k#n

Assume that N > 2 and that the matrices
(2.16) xM . ,X(N) have full column rank.

It can be easily shown® that the matrices in (2.13) have full column rank for all n. Hence, by
(2.12) and (2.15), the column spaces of the first /N matrix representations of A and B coincide:

(2.17) col(A (nem)) = col(Bnein)), ne{l,...,N}.
If we further limit* ourselves to the case where the matrices
(2.18) XM ,X(N) are square and nonsingular,

then, obviously,

(219) B(nc;n) = A(nc;n)Mn, n e {1, e ,N},
where

—1 N
(2.20) M, = (X(">T) Bdiag(MIz, ..., Arly, )X ne{l,... N}

Thus, if (2.9), (2.14), and (2.18) hold, then the column spaces of the first N matrix repre-
sentations of A and B coincide, the matrices M,, := A‘Enc‘n)B(ne;n) have the same spectrum

Al,...,Ar € F and can be diagonalized, n = 1,... ,]\7 . Moreover, the concatenated factor
matrices X(™ and the sizes of blocks Ly, (and hence the overall decompositions of A and B)
can be recovered from the EVDs of My,... , M.

In this paper we consider the inverse problem: we assume that the column spaces of the
first N matrix representations of A and B coincide and we investigate how the ML rank
decompositions A and B relate to each other. (A version of Theorem 2.1 in which (2.18) and
(2.19) hold for N values arbitrary chosen from {1,..., N} can be obtained by permuting the
tensor dimensions.) In particular, we obtain the following result.

3Indeed, the result holds since, by assumption (2.16), the first N — 1 factors X® have full column rank
and, by construction, the remaining factors do not have zero columns.

“Lemma 3.2 below implies that assumption (2.16) can always be replaced by assumption (2.18). Computa-
tionally, this can be done by Multilinear Singular Value Decomposition (MLSVD) [17, 34, 35].

This manuscript is for review purposes only.
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FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 9

Theorem 2.1. Let A,B € Ch**IN gnd 2 < N < N. Assume that A (o) and Bpep)

have full column rank for each n € {1...,N}, that (2.19) holds and that at least one of the
matrices My, ..., Mg can be diagonalized.” Then the following statements hold.

The matrices My, ..., Mg have the same spectrum.

All matrices My, ..., Mg can be diagonalized.

Let the distinct eigenvalues of My, be A1, ..., Ar with respective multiplicities Ly, ..., Lyr and
let X,, € C"*In e a nonsingular matriz such that (2.20) holds. Then A and B admit the ML
rank-(Liy,...,Lg,,-,...,-) decompositions in (2.9) and (2.14), respectively. In particular, if
Ly, =1 for all n and r, then A and B are generated by the same (possibly scaled) R rank-1
terms.

Proof. The proof follows from Theorem 4.3 below. |

The theorem can be used as follows. First, the matrices My, ..., M are found from the sets
of linear equations (2.19). (If any of the sets of linear equations does not have a solution, then
B is not of the form (2.14), i.e., it cannot be generated by terms from the decomposition of A.)
The number of terms R is found as the number of distinct eigenvalues of M,,, 1 < n < N. The
distinct eigenvalues themselves correspond to the scaling factors A, in (2.14). Both R and the
eigenvalues A, are necessarily the same for all M,,, but the multiplicities can be different. The
multiplicity of A, in the EVD of M, corresponds to the nth entry L, in the ML rank of the
rth term, so that to apply the theorem we should necessarily have that L,; + -+ L,r = I,
for1 <n< N. (Recall from Footnote 4 on p. 8 that this means that for the given tensors
we should have L1 + -+ Lyp < I, for 1 <n < N) The larger N, the more the terms are
specified. The minimal value for N is 2, since a decomposition in ML rank-(Li,, -, ..., ) terms
is meaningless.

So far, we have explained the use of the theorem for decompositions that are exact. Obvi-
ously, the theorem also suggests a procedure for approximate decompositions (of noisy tensors).
The equations in (2.19) may be solved in least squares sense. The eigenvalues A, of the matri-
ces My, ..., My may be averaged over n to obtain estimates of A,.. The values Ly, 1 <n < N ,
1 < r < R may be estimated by assessing how close the eigenvalues A, are to the averaged
values \,.

3. Preliminaries.

3.1. Primary decomposition theorem and the Jordan canonical form. In this subsection
we recall known results that will be used in section 4. Recall that the minimal polynomial
q(z) of a matrix M € F/*! is the polynomial of least degree over F whose leading coefficient
is 1 and such that ¢(M) = O. It is well known that the minimal polynomial does not depend
of F, is unique, and that the set of its zeros coincides with the set of the eigenvalues of the
matrix (in the case F = R both sets can be empty, namely, when the minimal polynomial
does not have real roots). Recall also that a non-constant polynomial is irreducible over F if
its coeflicients belong to F and it cannot be factorized into the product of two non-constant

5The assumption on diagonalization will later be relaxed by using the Jordan canonical form in Theorem 4.3.
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10 |. DOMANOV AND L. DE LATHAUWER

polynomials with coefficients in F. For instance, the minimal polynomials of the matrices

00 0 1 0 1 01 g
1 1] |1 0ol" |-1 o|” |o of ™H
2

are z2 —x, 2 — 1, 22 + 1, 22, and x — 1, respectively. The matrix I; has a single eigenvalue 1
of multiplicity I which corresponds to a single root of x — 1 of multiplicity 1. The polynomial
22 + 1 is irreducible over R and is reducible over C, 22 4+ 1 = (x +i)(z — i), which agrees with

the fact that the matrix does not have eigenvalues over R but has two eigenvalues —i

0 1
-1 0
and ¢ over C. It is well known that any polynomial with leading coefficient 1 can be factorized
as

q(z) = pr(x)" - - pr(z)"

where p, are distinct irreducible polynomials and p, > 1. Since in this paper F is either C or
R, we have that

ply..,prE€{r—A: XeC}, f F=C,
Pl PrE{T—A: NeER}U{2? +2ax+a® +b%: a,b€Rand b > 0}, if F=R.
The following theorem implies that the minimal polynomial of a matrix can be used to construct

a basis in which that matrix has block-diagonal form.

Theorem 3.1 (Primary decomposition theorem [12, pp.196-197]). Let M € F'*! and let

q(z) = pr(x)" - - pr(x)"*

be the minimal polynomial of M, factorized into powers of distinct polynomials p,(x) that are
irreducible (over F). Then the subspaces

E, :=Null(p,(M)"), 1<r<R
are tnvariant for M, i.e., ME, C E,. and we have
(3.1) F'=E & & Ep,

where “@” denotes the direct sum of subspaces.

Decomposition (3.1) in Theorem 3.1 implies that the matrix M is similar to a block-diagonal
matrix. Indeed, let L, = dim E, and let the columns of S, € F/*Lr form a basis of E,,
r=1,...,R. Then by (3.1), the columns of S :=[S; ... Sg] form a basis of the entire space
F!, implying that S is nonsingular. Since ME, C E, it follows that there exists a unique matrix
T, € FL7*Lr guch that MS, = S, T,, r = 1,..., R. Hence M[S; ... Sg] =[S1T1 ... SkTEg]
or

M = SBdiag(T1,...,Tg)S™', S=1[S; ... Sg|, S, cF*l

It is well-known that each of the matrices T, can further be reduced to Jordan canonical form
by a similarity transform. Namely, if p,(x)*" = (x — A)#*" with A € F, then T, is similar to

This manuscript is for review purposes only.



FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 11

JA ) @@ J(A npk,. ), where J(A, n) denotes the n x n Jordan block with A on the main
diagonal:

A1 0 ... 0
0 A 1 0
000 ... 1
0 0 0 ... A

If F =R and p,(z)"* = (2% + 2az + a® + b*)* with a,b € R and b > 0, then T, is similar to
C(a,b,nm)®---®C(a,b,nyy, ), where C(a, b,n) denotes the 2n x 2n block matrix of the form

_C((L, b) 12 0 ... 0
0 C (a, b) IQ ce 0
: : : : : ) )= 4
0 0 0 ... I
| 0 0 0 ... C(a,b)]
It is known that the values n,,,...,n,, are uniquely determined by T, up to permutation,
in particular, max(ny,,...,n.) = py. Thus, the Jordan canonical form is unique up to

permutation of its blocks. For more details on the Jordan canonical form we refer to [27,
Chapter 3|.

3.2. An auxiliary result about simultaneous compression of a pair of tensors. Let
A, B € FlvxxIN Tt is clear that the conditions

(3.2) col(Byeny) € col(A(peny), ne€{l,...,N}.
can be rewritten as
(33) B(nc;n) = A(nc;n)Mn, n e {1, e ,N},

in which M,, € F/»*In ig not necessarily unique. The goal of the following lemma is to show
that (3.3) can further be reduced to the case where the matrices A(,e.,) do have full column

rank, so M,, can be uniquely recovered as M,, = Al B (nein)- In subsection 4.1 we will use

(nm)
My, ..., My to establish connections between the terms in the decompositions of A and B.
Lemma 3.2. Let A, B e IFilX”'XiN, N >N > 2 and let A be ML rank-(Iy, ..., Iy, ...,").
Assume that
(3.4) col(Bne.n)) € col(Agpesy), ne{l,...,N}

Let also the rows of U, € FlnxIn form an orthonormal basis of the row space of A(nc;n),
ne{l,...,N}° and

(3.5) A:ZAolUT-'-oNU*A B::BolUT---oNU

*/\
N’ N

Then the following statements hold.

SFor instance, one can take U, equal to the transpose of the “U” factor in the compact SVD of A{nc;m. In
this case, (3.6) implements a standard compression by multilinear singular value decomposition [17, 34, 35], in
which the compression matrices are obtained from .A.
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. Forallk € {1,...,N}, the row space of A(kc;k) contains the row space of B(kc;k).
. A and B can be recovered from A and B, respectively, as

(3.6) A:A%U{'“ONUTN, B:BolUr{---oNU%,

K- -s0), and the ML rank of B equals

the ML rank of B.

Proof. 1. Recall that (2.2) is equivalent to any identity in (2.3). Hence if (2.2) holds for
n =1 and n = 2, then, by (2.3), the row space of D ge.;) contains the row space of A e,z for
ke {2,...,N} and for k € {1,3,..., N}, respectively, i.e., for all k. To complete the proof
one should replace D and A in (2.2) and (2.3) by A and B, respectively.

2. Since the rows of U,, form an orthonormal basis of the row space of A(nc;n), it follows

that A(ncm)Ufon = A(ncm) or Ae, (UTU%) = A, ne{1,...,N}. Hence

A.IU{.NUJJ\;:(A.IUT.NU}).lUT.NU%:
Ay (UTU}) o (URUR) = A,

By statement 1, the identity for B can be proved in a similar way.
3. From (2.2), (3.5), and (3.6) it follows that

STBlegyy N = 1,...,N

n) —

TAmen) S TApeyy S TAmem? "Biewy S TB (e,
implying that TAmemy = TR ey = I,, and "Blnen) = "Binenn) forn=1,...,N. [ |

4. Main results.

4.1. Connections between tensors A and B that satisfy the first N conditions in (1.3).
To simplify the presentation throughout this subsection we assume that the first N matrix
representations of A have full column rank. The general case follows from Lemma 3.2 above.
Also, to keep the presentation and derivation of results easy to follow, we first consider the
particular case where A and B are third-order tensors (i.e., N = 3) that satisfy only the first
two conditions (i.e., N = 2) in

(4.1) C01(]3(2,3;1)) - COI(A(2,3;1))7 COI(B(1,3;2)) C col(A(1,32))s 001(3(1,2;3)) - COI(A(1,2;3))-

The case where all three conditions in (4.1) hold (i.e., N = N = 3) and the general case N > 3,
N > N > 2 will be covered by Theorem 4.3 below.

It is worth noting that the following theorem not only presents conditions that guarantee
that A and B are generated by the same (possibly scaled) terms but also implies a procedure
to compute the number of terms R and their ML rank values (see similar discussion after
Theorem 2.1). To apply the theorem we should necessarily have that Ly + -+ L,r = I, for
n=1,2.

Theorem 4.1. Let tensors A, B € FIv<2XI3 - Assume that

(4.2) A3y and A 39y have full column rank
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and that there exist matrices My € FI'*It gnd My € FI2%02 gych that
(4.3) By = AesyMi and B o) = A zMoe.

Then the following statements hold.
The matrices My and My have the same minimal polynomial q(x).

irreducible (over F) and set
Ly, := dim(Null (p,(M1)#")), Lo, := dim(Null (p,(M3z)*")) 1<r <R.
Let also

(4.4) M, =85; Bdiag(Tu, ceey TlR)Sl_l, S; = [SH R SlR]; Slr S FhXL“,
(4.5) My =S5 Bdiag(Tgl, ceey TZR)SQ_I, Sy = [821 R SQR], SQT S FIQXLQT

be the primary decompositions of M1 and Ms, respectively, such that the minimal polynomials
of T1, and To,. are equal to p,(x)*" for each r =1,..., R. Then the matrices

(46) Dz = S?AlsQ, Az = A(,,Z), 1= 1,...,]3

are block-diagonal, D; = Bdiag(Dj 11, ...,Di rr), Dirr € FlirxLar gnd

(4.7) TI D, = D Toy, i=1,....,I5, r=1,...,R.

Let D, € FlarxLarxIs denote a tensor with frontal slices Di;ry...,Dpr € FlirxLar gnd let

s;T = xW =[xV . xP xOehxli
(

s; T =X =[x ... xP)], xX? ephxle

T

Then the tensors A and B admit decompositions into ML rank-(Li,, Lo, -) terms which are
connected as follows:

R R
(4.8) A=Y"D, o XV 0y X =" 4,
r=1 r=1
R R
(4.9) B=> (D, o1 T) o1 XV 0 X?) = 3 "B,
r=1 r=1
and
(4.10) D.,e; T =D, e;T:  r=1,... R

If I = I and if there exists a linear combination of Ay,..., Ay, that is nonsingular, then My
1s stmilar to M.

If My is similar to My, then Ly, = Lo for all r and the matrices S1 and Sy in (4.4) and
(4.5) can be chosen such that Ty, = Tq, for all r.
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16. If, for some r, the matriz Tq, (or Ta.) is a scalar multiple of the identity matriz, i.e., if

Tlr = )\TILM (OT‘ TQT = )\TILQT)7 then .Ar = ArBr-
If Ty, = NI, (or Top = NIp,.) for all v, then A and B consist of the same ML rank-
(L1p, Loy, -) terms, possibly differently scaled.

Proof. 1. To prove that the minimal polynomials of M and My coincide, it is sufficient
to show that a polynomial ¢(x) annihilates M; if and only if ¢(z) annihilates My. By (4.3),
B=Ae; MI = Ae; M. Since, by (2.1),

(4.11) Apsiy =[Ar ... Ap]" and A0 =[A] ... AL]T,
it follows that

(4.12) (B; =) MTA; = AM,, ic{l,.. . I3}
Hence for any k& > 1,

MDEA; =MD IMTA,; = (MT)TAM, =
MTYF2MTA M, = (MT)F2A,M2 = .. = A, M5,

implying that for any polynomial ¢,
(4.13) g(M1)TA; = Aig(My),  ie{l,... I3}

It follows from (4.11) that (4.13) is equivalent to

(4.14) A(1,32)7(M2) = Bdiag(q(M1)", ..., q(M1)") A 3
and to
(4.15) A 23.1)q(M1) = Bdiag(¢(M2)", ..., ¢(M2)") A2 3.1).-

Assume that ¢ annihilates M. Then, by (4.14), A 3.9)¢(M2) = O. Since A 3.y has full
column rank, it follows that ¢ annihilates Msy. On the other hand, if ¢ annihilates My, then
by (4.15), A2.3.1y¢(M1) = O. Since A 3.1y has full column rank, it follows that ¢ annihilates
M;. Thus, the matrices M; and My have the same minimal polynomial.

2. By (4.4), (4.5), and (4.12),

(Sl Bdiag(TH, e ,TlR)Sl_l)T . Az =
AZ"SQBdiag(Tgl,...,TgR)SQ_I, 1€ {1,...,]3}.
Hence
(4.16) Bdiag(T7,,..., T1z)STA;S, =
STA;Sy Bdiag(Ta1,...,Tor),  iec{l,...,I3}.

Let
STA;S; = D; = (Dj )"

r1,ro=1
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denote a block matrix with Dj . ,, € FFr*L2n Tt is clear that (4.16) can be rewritten as

(4.17) T! Diriry = DirirsTor, r,ro=1,...,R, ie{l,..., I3},

1ry
implying that (4.7) holds.
Now we show that D; is a block diagonal matrix, i.e., that D;, ,, = O for 71 # ra. Let

pr(z)# denote the minimal polynomial of T4, (or Tg,). Then, by (4.17), O = (T’frl)T Diyir, :I
Di’rlrQT’;,ﬂ2 for all £ > 1, implying that

(4'18) 0= (pm (T1T1 )Ml )T Di77’1T2 = Diﬂ’ﬂzp?“l (T2T2)HT1

for all ri,ro = 1,...,Rand i € {1,...,I3}. Let r; # 5. To prove that D;, ,, = O, it is
sufficient to show that the matrix p,, (T2, )*"1 is nonsingular. Since the polynomials p;, (z)#m
and pp, (x)Hr2 are relatively prime, it follows from the Euclidean algorithm that there exist
polynomials f(x) and g(z) such that 1 = p,, (z)*"1 f(z) + py, (2)#2g(2) for all z € F. Hence

I= Pry (T27‘2 )Mrl f(TZTz) + Dry (T2T2 )MQ g(TQTz) = Pry (T2T2)NT1 f(T27"2)'

Thus, pr, (T, )*1 is nonsingular.
3. By (4.6),

(4.19) A =S7TD;s;t =XWD,XAT =1,
which is equivalent to (4.8). Since, by (4.3), B; = MY A, it follows from (4.4) and (4.19) that

(420) Bz = 1\/[{1&Z = (Sl Bdiag(TH, e ,TlR)Sl_l)Tsl_TDZ‘SQ_I
Sy ¥ Bdiag(T?,,...,T1,)S7T8"D;S; ! =
XV Bdiag(TTDi11, ..., THD pr)XPT,  i=1,..., I,

which is equivalent to (4.9). Finally, identity (4.10) is equivalent to (4.7).
4. Let the linear combination t1A; + - - + t7; Az, be nonsingular. Then, by (4.12),

M2 — (tlAl + .- —f—t[gA]g)ilM{(tlAl + -+ t13A13)7

i.e., My is similar to M?. Since any matrix is similar to its transpose [27, Section 3.2.3], it
follows that Ms is similar to Mj.

5. We choose S; such that the matrices T11,..., T1g in (4.4) are in the Jordan canonical
form. Since similar matrices have the same Jordan canonical form, the matrix My is similar to
Bdiag(Ti1,..., TiR), i.e., there exists Sy such that (4.5) holds for T1; = T9y,...,T1g = Tap.

6. and 7. follow from (4.9). [ ]

Ezample 4.2. This example illustrates that although the matrices M; and My in Theo-
rem 4.1 have the same minimal polynomial they are not necessarily similar. Let the frontal
slices of A € C3*3%4 have the following nonzero pattern:

0 * *
* 0 0
* 0 0
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It is clear that any linear combination of the frontal slices of A is singular so the assumption
in statement 4 of Theorem 4.1 does not hold. We choose the values “x” (e.g., generic values)
such that A3,y and A(q 3,0) have full column rank. It is clear that A is the sum of a ML
rank-(1,2,-) and a ML rank-(2,1,-) term. More precisely, A is the sum of a ML rank-(1, 2, 2)
and a ML rank-(2,1,2) term. Let M; := diag()\a, A1, A1) and B = A e; M?. One can easily
verify that B = A e Mg, where My = diag(A1, A2, A2). Thus, if A\ # Ag, then M; and My
have the same minimal polynomial but are not similar.

Now we consider the general case, that is, we assume that A and B are tensors of or-
der N > 3 and satisfy (3.2) for N > N > 2. First we extend the notion of block diagonal

matrices to tensors. Let the numbers L,1,..., L,z sum up to I, foreach n =1, ... ,]\7. Con-
sider the partition of {1,...,I,} into consecutive blocks Vj,1,...,V,gr of length Ly1,..., Lyg,
respectively, so V1 = {1, yLoit, ..., Var ={In, — Lnr +1,..., Lyg}. If the condition
(4.21) (D)iy,..ix = 0 for (i1, ...,ig) & U (Vip x -+ x Vg,)

holds, then we say that D is a block diagonal tensor and write D = Bdiag(Ds, ..., Dr), where
Dy := D(Vipy .o, Vi ts oo o) € FLarxe XLy, xIg 1% XIN qenote the dlagonal blocks. For
instance, statement 2 of Theorem 4.1 means that if D is the I; x I x I3 tensor formed by the
I x I, matrices D; in (4.6), i.e., if D := A e; Sy 3 Sy, then D = Bdiag(Dy, ..., Dr), where
the diagonal blocks D, € FLlirxL2rXIs are defined in statement 3 of Theorem 4.1.

The following result generalizes Theorem 4.1 for N > 3 and N > N > 2. The proof is

obtained by applying Theorem 4.1 to the I; x I; x H n reshaplngs of A and B.

Theorem 4.3. Let tensors A, B € F >IN gnd let N >3, N > N > 2. Assume that for
eachne{l...,N},

(4.22) A (nein) has full column rank
and that there exists matriz M,, € FIn*In such that
(423) B(nc;n) = A(TLC;TL)MTL'

Then the following statements hold.
The matrices My, ...,Mg have the same minimal polynomial q(x).

irreducible (over F) and set
Ly := dim(Null (p,(M,,)"")), 1<r<R, 1<n<N.
Let also
M; = S; Bdiag(T11,...,Tig)S;’, S1=[Su ... Sir], Sy, € Fxfur
(4.24)
My = S Bdiag(Ty,,. .., Tgp)S5's Sy =1I[Sg; -+ Sygls Sy, e Flvxbar
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be the primary decompositions of My, ..., M, respectively, such that the minimal polynomials
of T1r, ..., Ty, are equal to p.(x)' for each r =1,...,R. Then the tensor

is block-diagonal (see (4.21)),
D= Bdiag(Dl, . 7DR), D, € FLMX"'XLNTXINJHX‘“XIN

and
(4.25) Do T|,=---=D,egTL  r=1,.. R
Let
s, 7= xm = x{™ . x) xRl

Then the tensors A and B admit decompositions into ML rank-(Lqy, .. Loy -) terms
which are connected as follows:

R A R
(4.26) A=) "Drog XM 0g XM =Y " 4,

r=1 r=1

R A R
(4.27) B=Y (D, o1 Th) e XV 0 XV = 375,

r=1 r=1

in which the tensors D, satisfy the identities in (4.25).

Let Ajji, k=1,....,(I1 -~ In)/(L;I;) denote the I; x I; slices of A, that is, A;jx € FIixLi
is obtained from A by fizing all indices but ¢ and j. If I; = I; and if there ewists a linear
combination of A;j; . that is nonsingular, then M; is similar to M.

. If M; is similar to M, then Ly = Ly, for all v and the matrices S; and S; in (4.24) can be

chosen such that T;. = T;,. for all r.

If, for some r, there exists n such that the matrix Ty, is a scalar multiple of the identity
matriz, i.e., if Tpr = N1g, ., then A, = A\ B,.

If for each r there exists n, such that Ty, = NI, ., then A and B consist of the same ML
rank-(Lip, ..., L ,+) terms, possibly differently scaled.

Proof. Let 1 <i < j < N. We reshape A and B into the I; x I; x I}j]” tensors A% and
B such that

(4.28) AZ(]2,3;1) = Aiesi) Bl(]2,3;1) = Blicsi) Al(]1,3;2) = A(jey)s B2J1,3;2) = Bjeyj)-

JRRERE

Then, by (4.22) and (4.28), the first two matrix representations of A% have full column rank
and, by (4.23) and (4.28),

2 ) M, and BY ., = A”

=Ag; (1,3;2) (1,3;2)

(2,3;1) M;.

Thus A% and BY satisfy the assumptions in Theorem 4.1. We leave it to the reader to show
that the statements in Theorem 4.3 can be obtained from the corresponding statements of
Theorem 4.1 by applying it to all pairs (AY,B%), where 1 <i < j < N. |
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461 4.2. Redundancy of conditions in (1.2). In this subsection we explain that if col(B ,e,,)) €|}
162 col(A(nesn)), then for any subset S C {1,..., N} that contains n we also have that col(Bge,s))
163 C col(A(ge,s)) (Lemma 4.4). Hence the N conditions in (1.3) imply the 2% — 2 conditions in
164 (1.2) (Corollary 4.5).

465 Let us first formally define generalized matrix representations. Let A € F/1XXIN et §
166 be a proper subset of {1,..., N} and let S¢ denote the complement of S. A mode-S slice
167 of A is a subtensor obtained from A by fixing the indices in S. It is clear that A has [] I,

nes
. , , . . (IT In)x(II In)
468 mode-S slices. A mode-S matriz representation of A is a matrix A (ge,q) € F "9 nes

469  whose columns are the vectorized mode-S slices of A. Formally, if we follow the conventions
470 that

471 (4.29) S = {ql, . ,qN_k} with ¢y < - - <gn_p and S = {pl, R ,pk} with p1 < --- < pg,
172 then

173 (4.30) the (ind

Tpy XoooxIp, . dgqg XX . .
pp X X py a N=k)th entry of the matrix A (ge.5) is equal to a;, iy,

ippripg, 00 gy gy
where
P p k u—1
. XX .
mdi;l,...,ipk Ph=1+4 Z(Zpu -1) H Ip,
u=1 s=1
474 denotes the linear index corresponding to the element in the (ip,,...,1ip,) position of an I, x
175 ++- x Iy, tensor. If S = {n}, then A (ge.g) coincides with the mode-n matrix representation

476 A(peny introduced earlier in (2.1). It is easy to show that, if for two Iy x - x Iy tensors A
477 and B the identity B e,y = A (ne;n)My, holds for some n, then for any subset S that contains
478 n there exists a matrix Mg such that B(ge,q) = A(g¢;5yMs. Indeed, the matrices B ,c,,) and
479 A(ne) can be simultaneously reshaped into the matrices B(ge,g) and A (ge,q), respectively, so

480 that the kth column of B,e.,,) (resp. A (ye.y)) is reshaped into a group of ([] 1;)/I, columns of
les
181 Byge,s) (resp. A(ge.s) ) whose indices are determined by k. Since the kth column of Bje.p,) is

482 a linear combination of columns of A .y, it follows that each of the (] I;)/I, corresponding
les
483 columns of B(ge,s) is a linear combination of the ([] I;)/I, corresponding columns of A (ge,g).
les
484 Thus, B(ge;5y = A(ge,5)Mg holds for some matrix Mg. More in detail, we show in the

185 following lemma that the matrix Mg coincides up to column and row permutation with the
486 direct sum of M,, multiple times with itself.

487 Lemma 4.4. Let N > 4, and let A, B € FI*IN be such that Bem) = AppeinyMy, for
188 some M,, € FIn*In_ Let S and S be as in (4.29) and let n € S, that is, ¢ = n for some
489 e {1, coy N — k‘} Then B(SE;S) = A(SB;S)M57 where

-1 N-K
400 (4.31) Mg = <®IIQU> @M, ® ( ® II%)

v=1 v=Il+1

-1 N-k
191 or Mg =1Ix @M,, ® I, where K = [[ I, and L =[] I,.
v=1 v=Il+1
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Proof. Let 6(i, j) denote the Kronecker delta symbol, i.e., §(i,7) = 1 for i = j and (i, j) =
0 for ¢ # j. One can easily verify that

m igy e qu © iqy e QN _k
(4.32) 6(tg9g0) 0 (lg_1s % 1) * Mn)gn - 6y i) 0lign_ps gy x) =
(Mn)(il,m if g =Ygt T Y1 Y T Y 0 Yan—k T Yan—s
0, otherwise.
Hence
(4.30) (4.30)
(B(SC;S)). djplxmxjpk . dlquH.XIqN*k = (B)il,m,i]\f = (B(nc;n))indh><..».><In_.1><1n+1....><IN i =
M iPl YYYY ipk ;2T iq1 ’’’’ in—k T yeees I —1stn+41ss TN yn
"~ (4.30)
(A(nﬂ;n)Mn)mdhX‘“an—1 }pprooxXIn = § (A)il,u-ﬂ:n—hiql,in+17-~~7iN (Mn)lﬁﬂl =
i 1sip g ety 7 —
q=1
"~ (4.32)
E : (A(SC;S))md{plxM.xka md{mx“‘_XIqN_,k _ _ (Mn)timl -
tizil Py seees sz ) iqy s qu—l’lql’qu»l""ZqN—k
q1 dN—k
Z oo Z (A(Sc;s))indjplx...xjpk indlqlmeIquk (MS)inqulquXIqN*k indlqu“'XIquk =
61:1 q~N7k::1 ipY s ipg ’ 'qu ,,,,, 'Lquk 'Lél ,,,,, 'Lquk ’ iqq s N _k
(A(SC,S)MS)i Ipy XX Ipy Tqy X xIqpn g, u
Pl e ipg iql ..... QN _k

The following corollary follows from Lemma 4.4 and states that 2V —2 — N conditions in (1.2)
are redundant.

Corollary 4.5. Let N > 4, and let A, B € Flv>xIN _[f (1.3) holds, then (1.2) also holds.

5. lllustration: classification of linear mixtures of signals. A basic problem in signal
processing is to assess whether two observed signals involve the same underlying signal “com-
ponents”. Typically, the component signals manifest themselves with a different amplitude in
the observed signals. If moreover the component signals are by themselves unknown, which is
the case in many applications, the problem can be very challenging. As a preview, in Figure 5.3
it may a priori not be obvious to establish which displayed signals are generated by the same
components up to scaling.

One of the possible applications is in underdetermined Blind Source Separation (BSS). In
BSS, the task is to recover sources from a set of their linear mixtures [11]. Often, sources are
sparsely combined in the observed mixed signals |25], i.e., the number of sources is large but
each mixture contains a small number of sources. This means that the mixing matrix is sparse
and has many more columns than rows. BSS problems that involve a wide mixing matrix
are called underdetermined and are generally much harder to solve than overdetermined BSS
problems (involving a mixing matrix that is square or tall). As a preprocessing step one can
first try to solve the following multi-label classification problem: mixture ¢ belongs to the same
class as mixture j if mixture ¢ is generated by (some of) the sources that appear in mixture j.
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In this way the initial underdetermined BSS problem with many sources can be replaced by a
set of smaller overdetermined BSS problems.

In this section we explain how Theorem 4.1 can be used to solve the multi-label classifica-
tion problem. Our derivation is valid under the assumption that the sources can simultaneously
be mapped (i.e., “tensorized”) into low ML rank tensors and that the mapping, so called ten-
sorization, is linear. Such mappings are known [19, 4, 29| for sources that can be modeled
as exponential polynomials (Hankelization), rational functions (Ldéwnerization), and periodic
signals (Segmentation), among others. To demonstrate the approach we confine ourselves to
exponential polynomials.

To solve the multi-label classification problem, we do not use more prior knowledge about
the sources than that they can be (approximately) modeled as exponential polynomials (with
a mild bound on the value L in (5.2) that will be introduced in the next subsection).

5.1. Exponential polynomials and Hankelization mapping. A univariate exponential
polynomial is a function of the form

(5.1) s(t) =Y pr(t)al,
=1

where p1,...,pp are non-zero polynomials in one variable and aq,...,ap € C\ {0}. Let Ty
denote the sampling time and let N be the number of sampling points. It can be shown [14, 19|
that for any positive integers I, Io, I3 that sum up to N + 2 and are greater than or equal to
L, the vector s = [s1 ... sy]T :=[s(0) ... s((N —1)T%)]" can be mapped to an I; x I x I3
ML rank-(Lg, Ls, Ls) tensor S, where the value

F

(5.2) Ls:=F+ Zdegpf
f=1

does not depend on I, Iy, Is. The mapping H : s — S, H : CN — Ch*XI3 ig given by
[14, 19]
(S)ivinis = Siyvintis—2 = s((i1 + iz 4 i3 — 3)T%),

where 1 < i3 < I, 1 <19 < Iy, 1 <i3g < I3. Since (S)iyinis depends only on iy + iz + i3, the
mapping H was called “Hankelization” in [19]. It is worth noting that if I; = Iy = I3, then S
is a fully symmetric tensor, implying that S 3.1) = S(1,3,2) = S(1,2:3)-

It is clear that H is a linear mapping, so if y = [y1 ... yn]T = [y(0) ... y((N — 1)T,)]*
is a linear mixture of sampled sources of the form (5.1)

(5.3) y(t) = g1s1(t) + ... grs: (1), t=0,Ts,...,(N = 1)T;
and min(1y, I2, I3) > max Lg,, then, by (5.2),
(5.4) Yi=H(y)=giH(s1) + -+ 8rH(sr) = 8151+ + 8rSr

is a decomposition of ) into a sum of ML rank-(Ls , Ls,, Ls, ) terms.
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5.2. Example. We generate 25 mixtures

(5.5) y;(t) = gijsi(t) + ... gsjss(t), J=1,...,25

of 8 exponential polynomials

sty =3-27%, sa(t) = Bcos(mt + %), s5(t) = Beos(2rt + 2),
sa(t) = Beos(3mt —2),  ss(t) = (5 — £) cos(10t + %), s6(t) = (5— ) cos(127t — g),
s7(t) = tcos(8nt+ 1), sg(t) =tcos(ldnt — %)

The coefficients g;; are generated randomly” so that for each j = 1,...,25 at least three and

at most six of gy;,...,gs; are zero. The nonzero coefficients g;; are randomly chosen from
[—2.5,—0.5] U [0.5,2.5]. We thus obtain that

(5.6) () - yas(O)] = [s1(2) - ss(D)]G,

where G = (g;;) is an 8 x 25 sparse matrix. The nonzero pattern of G is shown in Figure 5.1.
By way of example, the mixtures y1(¢), ya(t), ys(t), and y19(¢) were generated as

123 456 7 8 9101112131415161718192021 222324 25

1F H H L] ] M -

2 N L] EEEE B H H B N

srl HE | HE H EHE H N

4 H B B HEEE EEE EE EE -

s-FHE H 11l | L] H B B

crlll H HEHENE H B H HEEE 1

7rAHENR | ] ] H EEEE -

sr IHENR H H N | B

Figure 5.1. The nonzero pattern of the matriz G.

(5.7) yi(t) = 2.22s3(t)  —1.95s5(t) —2.38s(t) —2.39s7(t)  +1.77ss(t),
(5.8) ya(t) = —0.55s3(t)  —2.07s5(t)  +0.50s¢(t) +2.41s7(t)  —1.90ss(t),
(5.9) ys(t) = +1.16s5(t)  +0.94s6(t)  +1.35s7(¢),
(5.10)  yio(t) =  0.69s5(t) —0.68s5(t).

We consider a noisy sampled (with 75 = 0.05 and N = 100) version of (5.6):

(5.11) V7 .. yos) :=1[y1 ... yo5] + oN =[s; ...s3]G + 0N,

"The numerical experiments in the example were performed in MATLAB R2018b. To make the results
reproducible, the random number generator was initialized using the built-in function rng(’default’) (the
Mersenne Twister with seed 0).
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in which the entries of the 100 x 25 matrix N are independently drawn from the standard
normal distribution N(0,1) and o = 0.1 yasllle - pere || - ||z denotes the Frobenius

Nl
norm.® The sampled sources sy, ..., sg and noisy sampled mixtures y7, y7, y2, y7, are shown

in Figures 5.2 and 5.3, respectively. We now use Theorem 4.1 to verify whether the pair of

1 2 3 .
3 3 R R N 3 i —
| AR N
‘ AR A At et
; : /\ \ SRR RN RN AR AR TATATRY
; ';\s \ ;/\\/\\/\ \‘“) :; \H‘QH\“H\‘H‘J
2 (VAR VR | R e A AR R

HHM/HM % | % Mmu\u““%
;Nw 5§ MN o . x\”w ;EWWMW\M | w

3 4

2 3 4 5

o

Figure 5.2. Sampled source signals s1,...,ss; the sampling interval is 0.05.
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) 1 2 3 4 5 0 1 2 8 4 °

Figure 5.3. Noisy sampled miztures yT, yi, y&, yio (see (5.7)—(5.10))

mixtures (y;(t),y;(t)) is generated by the same subset of sources, 1 < i,j < 25%, i # j. For
visualization purposes it is convenient to associate the mixtures y(¢),. .., y25(t) with vertices
of a directed graph: a directed edge from vertex i to vertex j indicates that y;(t) is generated

8Note that the matrix pencil based algorithm in [14] can be used to estimate the matrix G and the sources
S1,...,ss only for much smaller values of o.

9Note that in contrast to BSS, we do not work with the full matrix G but only with pairs of its columns.
The number of mixtures 25 is just chosen to illustrate the approach for a large number of pairs (namely,
252 — 25 = 600), making the results very convincing.
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by sources that also appear in y;(t). For instance, the subgraph corresponding to the mixtures
y1(t), ya(t), ys(t), and y19(t) is shown in Figure 5.4a. In this example we show how to recover
the overall graph in Figure 5.4b based only on the (observed) vectors y7,...,y45s and without

estimating s1,...,sg. Let H : C190 — C34x34%34 denote the Hankelization mapping. By (5.4)
o4 — .l *4 22 *1
b _— »25
~ ) R T L T 3
s o1z *9 w > ¥ »e2
SR i
b i Teq3 ®67 - e i6 x
L3 [ {1 wy T SRS
L2E) 3 o
2
.5
é19 #19
(a) (b)
Figure 5.4. The subgraph corresponding to the miztures yi(t), ya(t), ys(t), yio(t) (left) and the graph
corresponding to all miztures yi(t),...,y25(t) (right); a directed edge from vertex i to vertex j indicates that

mizture y;(t) is generated by sources that also appear in mizture y;(t).

and (5.11), we have that

Vi =H(y;') =guH(s1)+ - +gigH(sg) + cH(n;) = gnS1 + - - + 818Sr + 0 H(n;)

is an approximate decomposition of Y into a sum of ML rank-(Ls,, Ls,, Ls,) terms. One
can easily verify that the exact values of L, ..., L, are 1,2,2,2,4,4,4,4, respectively. For
instance, since

1 . A 1 . 1 ..
Sg(t) _ ti(e(147rt—0.5)z + e—(147rt—0.5)z) _ (*6_0'51251)6147# + (*60’5%1)6_14“

2 2
we get, by (5.2), that Lg; = 24+ (1+1) = 4. On the other hand, it can be verified that although
the tensors Ss,...,Sg are ML rank-(4,4,4), they can be approximated by ML rank-(2,2,2)
tensors with a relative error less than 0.061, which is below the noise level.

To verify whether y;(t) is generated by sources that appear in y;(t), it is sufficient to
show that V" is generated by ML rank terms that appear in Y}, which, by Theorem 4.1, is
reduced to verifying that the column space of Y?(2,3;1) is contained in the column space of

)

Y}l 2.3; 1).10 To compare the column spaces we proceeded as follows. For each i = 1,...,25 we
computed the first r; singular vectors u;q, ..., u;,, of Y?(Q 31y where the rank r; of an(z 3:1)

was estimated as the largest index k such that the ratio of the kth and the (k + 1)st singular
value of Y3, 4y is greater than a certain threshold 7. (We chose 7 = 2.3.) Then for all

ONote that we use only the part of Theorem 4.1 that guarantees that (1.2) implies (1.1). This part relies
only on the comparison of column spaces; the computation of the matrices M, is not necessary. One could
actually go further, i.e., compute the matrices M;, their spectra, the number of low ML rank terms and their
ML rank values. This is possible because even for two mixtures that contain all 8 sources (which is never the
case in the example) we have that L1 +---+Lg =14+24+2+2+44+44+4+4=23<34=1,forn=1,2,3.
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i,j=1,...,25 and i # j we concluded that the column space of Y?(Q 3:1) is contained in the

column space of Y7 if the (r;+1)st singular value of the matrix [w;1 ... W, wjr ... wj,]

(2,3:1)
was less than 0.1 (and in this case we plotted the directed edge from vertex i to vertex j). The
resulting directed graph is shown in Figure 5.4b. The same graph can be obtained directly
from the nonzero pattern of the matrix G which means that all 43 (out of the possible 600)

edges of the graph were detected correctly and no superfluous edges were added.

6. Conclusion. An obvious requirement for a tensor B to be the sum of (possibly scaled)
terms from the decomposition of a tensor A, is that its column (row, fiber, ...) space is a
subspace of the corresponding space of tensor A. Formally, this means that row(B(ncm)) -
10W (A (ec;)) should hold for all n € {1,..., N}. However, this is only a necessary condition.
Switching to the column spaces, we have shown in this paper that

(6.1) col(Bnein)) € col(Apen), ne{l,...,N}

is a sufficient condition for B to be generated by (possibly scaled) terms from the decomposition
of A. The number or terms and their “type” (namely, their ML rank) follow from the analysis
as well. As the derivation relies only on linear algebra, it bypasses the typical difficulties in
the computation of CPD and BTD, such as NP-hardness and possible ill-conditioning. We
believe that this paper introduces a new tool that will prove important for tensor-based pattern
recognition and machine learning, in a similar way as (explicit) tensor decompositions have
proven to be fundamental tools for data analysis. We have illustrated the practical use of the
new tool in a new clustering-based scheme for sparse underdetermined BSS.

An interesting topic of further study would be to investigate partially shared structure of
A and B, in the sense that A and B share some but not all terms. We will also derive more
detailed information from the actual principal angles and associated directions between the
subspaces obtained from A and B. Another topic of further study is the generalization to
“flower”, “butterfly” and related decompositions [3, 4, 33].

Appendix A. The goal of this appendix is to illustrate a particular advantage of using the
decomposition into a sum of ML rank-(L, Lo, ) terms over the CPD when we deal with the
implication (1.3)=-(1.1). Namely, we show that in the case where the terms in (1.1) are rank-1,
(1.3) does not necessarily imply (1.1) but if the rank-1 assumption on the terms is replaced
by the low ML rank assumption, then (1.3) does imply (1.1). We contrast our approach with
the kind of results that can be derived from [7, Proposition 14.45], [31, Theorem 3.1.1.1], |26,
Theorem 2.4].

Erample A.1. We consider the 2 x 2 x 2 tensors A, B with frontal slices

10 0 1 11 01
Since T T
1 1 01 1 0 01 1 0
T T
1 000 1 0 00 11
B30 = [1 - O] _ [0 - 0} : [0 1] = A(,32 M,
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T T
101 1 100 17" [t 0
B(I’Q;?’):[O 0 1 0] - [0 01 0} '{1 1]:A(1’2;3>M3’

the column spaces of the corresponding matrix representations of A and B coincide. The result
in |7, Proposition 14.45|, [31, Theorem 3.1.1.1], |26, Theorem 2.4] only implies that A and B
share the factor matrices in the first two modes, last two modes, and in the first and third
mode, so, that A and B can be decomposed as

(A.Q) A=a; @b1®7+ as ®by®? + -+ +ar @ br®?,

(A.?)) B=a; @b1®7+as @bo®7+---+ar@brk?,

or as

(A.4> A="2c¢c19d1+?7®ca®@dy +---+? R cr R dg,

(A.5) B="®c1@d1+?®ca®da +---+? ® cg ® dg,

or as

(A.6) A=e1@7®0f +e0?7@fs + -+ ep®? @ fg,

(A7) B=e1®7®f +e@?®@f+ -+ er®? ® fg.

Note that, in general, the result in |7, Proposition 14.45], [31, Theorem 3.1.1.1], |26, Theorem

2.4] does not imply a procedure to compute R nor the vectors ay,...,fr. Since 2 x 2 x 2
tensors are well studied, it can be inferred from known results (see, for instance,|[18]) that in
this example R = 3. On the other hand, even in this small example decompositions (A.2)-
(A.7) are not unique and the border rank of A and B is 2 [18], which means that the rank-3
tensors A and B can be arbitrary well approximated by tensors of rank 2. Further, again since
we are dealing with 2 X 2 x 2 tensors, it can be shown that A and B cannot be generated by
the same three (possibly scaled) rank-1 tensors, that is,

(A.8) A=a;®b;®c;+ay®by®cy+ a3 ® b3 ® c3,
(A.9) B=XMa;®b;®ci+ Aas®bs®co + A\3a3 @ bs ®c3

is not possible.!! Hence, the number of rank-1 terms that (possibly scaled) generate both A
and B, is at least 4. (Obviously, 4 is also sufficient.) Thus, the minimal number of rank-1
tensors that generate both A and B is greater than the individual rank of A.

Ezample A.2. Let D1 = Dy = D3 € F2*2%2 be the same as A in (A.1), that is,

10 01
D,(:,:1) = [0 1], D.(:,:,2) = [0 0] , r=1,23.

"1ndeed, if we assume that (A.8) and (A.9) hold, then for (a, ) € {(\1,1),(X2,1),(X3,1)} the tensor
aA — BB is at most rank-2. Since oA — BB = B o {a 6 B o g 3
aA — BB is at most rank-2 only if « = 8. Hence, \1 = 1, A2 = 1, and A3 = 1, implying that A = B, which is a
contradiction.

and B is rank-3 tensor, it follows that
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26 |. DOMANOV AND L. DE LATHAUWER

and let

R
A=) Doy XV oy XP) 03 X3,

r=1

where X!, X® X3 ¢ F6*2 are such that the matrices [Xgl) Xgl) Xgl)], [ng) Xg) X:(f)],
and [ng) ng) ng)] € %6 are nonsingular, so A € F6%6%6 is a sum of three ML rank-(2, 2, 2)
terms. Let also B € F9%6%6 be a tensor such that assumption (4.3) in Theorem 4.1 holds.
The result in |7, Proposition 14.45], [31, Theorem 3.1.1.1], [26, Theorem 2.4| only implies that
(A.4)~(A.7) hold for some R and for some vectors cy,...,fr € F6. Since A is the sum of three
ML rank-(2, 2, 2) terms and each of the terms is a rank-3 tensor, it follows from [28] (Strassen’s
direct sum conjecture) that A is rank-9 tensor, that is R = 9. Note that even in this small scale
example it is very hard to estimate R from the column spaces of the matrix representations
of A or B. The reason is that both A and B can be arbitrary well approximated by tensors of
rank-6. (Indeed each ML rank-(2,2,2) term can be arbitrary well approximated by tensors of
rank-2.)

On the other hand, Theorem 4.1 says under what assumptions on M and My both tensors
A and B can be decomposed into a sum of three ML rank-(2, 2, -) terms and how the ML rank-
(2,2,-) terms of A and B relate to each other.
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