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Abstract. Decompositions of higher-order tensors into sums of simple terms are ubiquitous. We show that in4
order to verify that two tensors are generated by the same (possibly scaled) terms it is not necessary to5
compute the individual decompositions. In general the explicit computation of such a decomposition6
may have high complexity and can be ill-conditioned. We now show that under some assumptions the7
verification can be reduced to a comparison of both the column and row spaces of the corresponding8
matrix representations of the tensors. We consider rank-1 terms as well as low multilinear rank terms9
(also known as block terms) and show that the number of the terms and their multilinear rank can10
be inferred as well. The comparison relies only on numerical linear algebra and can be done in a11
numerically reliable way. We also illustrate how our results can be applied to solve a multi-label12
classification problem that appears in the context of blind source separation.13
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1. Introduction. Decompositions of tensors of order N (i.e., N -way arrays of real or com-17
plex numbers) into a sum of simple terms are ubiquitous. The most common simple term is a18
rank-1 tensor, i.e. a nonzero tensor whose columns (resp. rows, fibers, etc.) are proportional.19
The corresponding decomposition into a minimal number of terms is known as Canonical20
Polyadic Decomposition (CPD).21

It is well-known that for N = 2, that is, in the matrix case, the decomposition in a22
minimal number of rank-1 terms is not unique unless the matrix itself is rank-1: indeed,23

any factorization A = X(1)X(2)T with full column rank factors X(1) = [x
(1)
1 . . . x

(1)
R ] and24

X(2) = [x
(2)
1 . . . x

(2)
R ] generates a valid decomposition A = x

(1)
1 x

(2)T
1 + · · ·+x

(1)
R x

(2)T
R , where R25

is the rank of A, and this decomposition is not unique. On the other hand, if X(1) and/or X(2)26
are subject to constraints (e.g., triangularity or orthogonality), then the decomposition can be27
unique, but from an application point of view the imposed constraints can be unrealistic and28
the rank-1 terms not interpretable as meaningful “data components”. In contrast, for N ≥ 3,29
that is, in the higher order tensor case, the unconstrained CPD is easily unique (see, for30
instance, [8, 9, 21, 22] and the references therein). Its uniqueness properties make the CPD a31
fundamental tool for unique retrieval of data components, latent variable analysis, independent32
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2 I. DOMANOV AND L. DE LATHAUWER

component analysis, etc., with countless applications in chemometrics [6], telecommunication,33
array processing, machine learning, etc. [10, 11, 30, 32].34

The higher order setting actually allows the recovery of terms that are more general than35
rank-1 terms. A MultiLinear (ML) rank-(L1, L2, . . . ) term is a tensor whose columns (resp.36
rows, fibers, etc.) form a matrix of rank L1 (resp. L2, L3, etc.). Like CPD, a decomposition37
into a sum of ML rank-(L1, L2, . . . ) terms (also known as block term decomposition) is unique38
under reasonably mild assumptions (see [13, 23, 24] and the references therein), so that it has39
found applications in wireless communication [16], blind signal separation [14, 20], etc.40

Tensor decompositions can be considered as tools for data analysis that allow one to break41
a single (tensor) data set into small interpretable components. It is known that, in general, the42
explicit computation of the CPD and the decomposition into a sum of ML rank-(L1, L2, . . . )43
terms may have high complexity and can be ill-conditioned [1, 2, 5]. In other words, the44
mildness of the uniqueness conditions comes with a numerical and a computational cost.45

In this paper we consider tensor decompositions from a different perspective that is closer46
to pattern recognition. Namely, we consider the following “tensor similarity” problem:47

• How to verify that two I1×· · ·× IN tensors are generated by the same (possibly scaled)48
rank-1 terms?49
• More generally, how to verify that two I1 × · · · × IN tensors are generated by the same50
(possibly scaled) ML rank-(L1, L2, . . . ) terms?51

For brevity, our presentation will be in terms of the more general variant. The simpler (C)PD52
variant will follow as a special case (see, for instance, Theorem 2.1).53

An obvious approach would be to compute the decompositions of all tensors and then to54
compare them. This has two drawbacks. First, as mentioned above, the explicit computation55
of the decompositions may have high complexity and can be ill-conditioned. Second, the56
approach may fail if the tensors are generated by the same (possibly scaled) terms in cases57
where the decompositions are not unique.58

In this paper we will not compute the tensor decompositions. We will pursue a different59
approach, starting from the following trivial observation: if60

(1.1) a tensor B is a sum of (possibly scaled) terms from the decomposition of a tensor A,61

then62

(1.2) col(B(Sc;S)) ⊆ col(A(Sc;S)) for all proper subsets S of {1, . . . , N},63

where col(·) denotes the column space of a matrix, Sc denotes the complement of the set S,64
and A(Sc;S) denotes the (

∏
n∈Sc

In) × (
∏
n∈S

In) matrix representation of A (see subsection 4.265

for a formal definition of A(Sc;S)). Actually we will explain that (1.2) implies (1.1) (in a way66
that requires some more technical detail). A clear advantage of the approach based on the67
implication (1.2)⇒(1.1) is that the conditions in (1.2) rely only on numerical linear algebra68
and can be verified in a numerically reliable way. While the implication (1.1)⇒(1.2) is trivial,69
the implication (1.2)⇒(1.1) is not.70

The main contribution of this paper is to show that, with some technicalities, (1.2) implies71
(1.1). As a matter of fact, we will need only N conditions in (1.2) for this, namely the72

This manuscript is for review purposes only.



FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 3

conditions73

(1.3) col(B(nc;n)) ⊆ col(A(nc;n)), n ∈ {1, . . . , N},74

and we will show that the I1···IN
In
× In matrices A(nc;n) and B(nc;n) in (1.3) can be used to75

compute the number of terms in the decompositions of A and B as well as their multilinear76
ranks. We also consider a more general case where the inclusions in (1.3) are only known to77
hold for some n in {1, . . . , N}.78

It is well known that in the case of CPD i) each of the subspaces col(A(nc;n)) determines79
the number of rank-1 terms in the CPD of A (i.e., the rank of A) and ii) that the inclusion80
col(B(nc;n)) ⊆ col(A(nc;n)) in (1.3) implies that the rank-1 terms in the CPD of A and B can81
be matched so that their fibers are proportional in all modes that are complementary to n82
[7, Proposition 14.45], [31, Theorem 3.1.1.1], [26, Theorem 2.4]. At first sight it may seem83
that this implies that if all N inclusions in (1.3) hold, then i) the number of rank-1 terms84
needed to generate (with tensor-specific scaling coefficients) both A and B, also just equals85
the rank of A so that ii) the fibers of the properly matched rank-1 terms are proportional86
in all modes. Put simply, it may seem that if all inclusions in (1.3) hold, then the tensor87
B consists of the sum of the rank-1 terms in a CPD of A, possibly scaled. However, this is88
not correct. In Appendix A we give counterexamples for tensors of order three. Thus, (1.3)89
(or (1.2)) does not necessarily imply (1.1) in the case of CPD. There are two ways to change90
our view. A first way is to impose extra conditions. A second way is to consider terms that91
can be more general than just rank-1. In Theorems 2.1, 4.1, and 4.3 below we present such92
conditions and we replace the rank-1 assumption by a low ML rank assumption. Framed like93
this, (1.3) (or (1.2)) actually does imply (1.1). Note that the decomposition into a sum of low94
ML rank terms is a nontrivial extension of the CPD. While in the case of the CPD the rank-195
structure of the terms is assumed beforehand and the number of terms is a characteristic of96
the tensor (i.e., equals its rank), the ML rank values in the decomposition of a tensor into a97
sum of ML rank-(L1, L2, . . . ) terms are not known in advance, and in general, more than one98
combination of ML rank values and number of terms is possible. The new Theorems 2.1, 4.1,99
and 4.3 also imply a procedure to compute the number of terms and their ML rank values in100
the “similarity” setting.101

It is also worth noting that the conditions102

(1.4) row(B(nc;n)) ⊆ row(A(nc;n)), n ∈ {1, . . . , N},103

in which row(·) denotes the row space of a matrix, are more relaxed than the conditions in104
(1.3) (see Statement 1 of Lemma 3.2 below) and in general do not imply (1.1). For instance,105
if I1···IN

In
≥ In, then the conditions row(B(nc;n)) = row(A(nc;n)) (= FIn), n ∈ {1, . . . , N} hold106

for any generic tensors A and B (no matter whether they are generated by the same (possibly107
scaled) terms or not).108

We will also explain that the remaining 2N − 2−N conditions in (1.2) are redundant, i.e.,109
that the N conditions in (1.3) imply all 2N − 2 conditions in (1.2). (A fortiori, (1.1) follows110
from the N conditions in (1.3), as mentioned under the “main contribution” above.)111

Prior work on tensor similarity is limited to [36]. Both the present paper and [36] originated112
from the technical report [15]. The theoretical contributions of [36] related to the implication113
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4 I. DOMANOV AND L. DE LATHAUWER

(1.3)⇒ (1.1) rely on prior knowledge on the decompositions ofA and B1 and can be summarized114
as follows: if N = 3 and (1.3) holds with “⊆” replaced by “=”, then A and B are generated115
by the same (possibly scaled) terms. The results obtained in the current paper imply that the116
prior knowledge on the decompositions is not needed. Further, [36] presents applications in117
the context of emitter movement detection and fluorescence data analysis.118

The paper is organized as follows. In subsections 2.1 and 2.2 we introduce tensor related119
notations and formalize the problem statement, respectively. Section 3 contains preliminary120
results. In subsection 3.1, for the convenience of the reader, we remind the primary decom-121
position theorem and the Jordan canonical form. Subsection 3.2 contains an auxiliary result122
about the simultaneous compression of tensors A and B for which the first N̂ inclusions in123
(1.3) hold (Lemma 3.2). The main results are given in section 4. In subsection 4.1 we estab-124
lish connections between the terms in the decompositions of tensors A and B that satisfy the125
conditions in (1.3) (Theorems 4.1 and 4.3). In subsection 4.2 we show that the N conditions126
in (1.3) imply the 2N −2 conditions in (1.2) (Corollary 4.5). In section 5 we illustrate how our127
results can be applied to solve a multi-label classification problem that appears in the context128
of blind source separation. Appendix A contains some numerical examples that illustrate a129
particular advantage of using the decomposition into a sum of ML rank-(L1, L2, ·) terms over130
the CPD when we deal with the implication (1.3)⇒(1.1).131

2. Basic definitions and problem statement.132

2.1. Basic definitions.133

Matrix representations. Let 1 ≤ n ≤ N . A mode-n matrix representation of a tensor134

A ∈ FI1×···×IN is a matrix A(nc;n) ∈ F
I1···IN

In
×In whose columns are the vectorized mode-n135

slices (see Figure 2.1 (top)) of A. Using Matlab colon notation, the columns of A(nc;n) are the136
vectorized I1× · · ·× In−1× 1× In+1× · · ·× IN tensors A(:, . . . , :, 1, :, . . . , :), . . . ,A(:, . . . , :, In, :137
, . . . , :). Formally,138

(2.1) the (1 +

N∑
k=1
k 6=n

(ik − 1)

k−1∏
l=1
l 6=n

Il, in)th entry of A(nc;n) = the (i1, . . . , iN )th entry of A.139

For instance, the mode-1 matrix representation A(2,3;1) of an I1 × I2 × I3 tensor A is the140
I2I3 × I1 matrix whose columns are the vectorized matrices A(1, :, :), . . . ,A(I1, :, :). It can141
also be verified that the rows of A(2,3;1) are the transposed columns of A, i.e., the transposed142
columns of A(:, 1, :), . . . ,A(:, I2, :) or A(:, :, 1), . . . ,A(:, :, I3) (see Figure 2.1 (top)).143

Mode-n product. If for some tensor D ∈ FI1×...In−1×Ln×In+1×IN and matrix X(n) ∈144
FIn×Ln ,145

(2.2) A(nc;n) = D(nc;n)X
(n)T ,146

1Namely, the working assumption in [36] is that both tensors A and B admit decompositions of the same
type (CPD, decomposition in ML rank-(L,L, 1) terms, decomposition in ML rank-(L,L, ·) terms), that the
decompositions include the same number of terms, and that in the latter two decomposition types the terms
of A and B can be matched so that their ML ranks are equal.
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FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 5

i.e., if the mode-n fibers of A are obtained by multiplying the corresponding mode-n fibers of147
D by X(n), then we say that A is the mode-n product of a D and X(n) and write A = D•nX(n).148
It can be easily verified that the remaining N−1 matrix representations of A can be factorized149
as150

(2.3) A(kc;k) =

 n−1⊗
l=1,l 6=k

IIl ⊗X(n) ⊗
N⊗

l=n+1,l 6=k
IIl

D(kc;k), k ∈ {1, . . . , N} \ {n}.151

where IIl and “⊗” denote the Il × Il identity matrix and the Kronecker product, respectively.152
Figure 2.1 (bottom) illustrates the mode-1 product of a third-order tensor and matrix.

A
=

A(
I 1,
:, :)

A(
2, :
, :)A(

1, :
, :)

=
A(
:, 1
, :)

A(
:, 2
, :)

A(
:, I2
, :) =

A(:, :, I3)

A(:, :, 2)
A(:, :, 1)

D
•1 X(1) =

X
(1)D

(:,
1, :
)

X
(1)D

(:,
2, :
)

X
(1)D

(:,
I2,
:)
=

X(1)D(:, :, I3)

X(1)D(:, :, 2)
X(1)D(:, :, 1)

Figure 2.1. Representations of an I1 × I2 × I3 tensor A as a set of mode-n slices, n = 1, 2, 3 (top) and
mode-1 product of a tensor D and matrix X(1) (bottom). The columns of D •1 X(1) are obtained from the
columns of D by multiplying them with X(1).

153

Several products in the same mode or across modes. It easily follows from (2.2) that
for compatible matrix and tensor dimensions,(((

D •n X(n)
1

)
•n X(n)

2

)
· · · •n X(n)

k

)
= D •n

(
X

(n)
k · · ·X

(n)
1

)
.

Let N̂ ≤ N and154

(2.4) D ∈ FL1×···×LN̂×IN̂+1×···×IN , X(1) ∈ FI1×L1 , . . . ,X(N̂) ∈ FIN̂×LN̂ .155

For products across different modes, we have156

D •1 X(1) · · · •N X(N) :=
(((
D •1 X(1)

)
•2 X(2)

)
· · · •N X(N)

)
=(2.5)157 (((

D •i1 X(i1)
)
•i2 X(i2)

)
· · · •iN X(iN )

)
158
159
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6 I. DOMANOV AND L. DE LATHAUWER

for any permutation i1, . . . , iN of 1, . . . , N . It follows from (2.2), (2.3), and (2.5), that the160
matrix representations of A = D •1 X(1) · · · •N X(N) are given by161

(2.6) A(nc;n) =

 N⊗
k=1,k 6=n

X(k)

D(nc;n)X
(n)T , n ∈ {1, . . . , N}.162

If A = D •1 X(1) · · · •N̂ X(N̂) with N̂ < N , then the identities in (2.6) hold with X(N̂+1) =163

IIN̂+1
, . . . ,X(N) = IIN . That is,164

A(nc;n) =

 N̂⊗
k=1,k 6=n

X(k) ⊗
N⊗

k=N̂+1

IIk

D(nc;n)X
(n)T , n ∈ {1, . . . , N̂},(2.7)165

A(nc;n) =

 N̂⊗
k=1

X(k) ⊗
N⊗

k=N̂+1,k 6=n

IIk

D(nc;n), n ∈ {N̂ + 1, . . . , N}.(2.8)166

167

ML rank of a tensor. By definition,

A is ML rank-(L1, . . . , LN̂ , ·, . . . , ·)
def⇐⇒ rA(nc;n)

= Ln, n ∈ {1, . . . , N̂}, 2 ≤ N̂ ≤ N,

that is, Ln is the dimension of the subspace spanned by the mode-n fibers of A. It can168
be shown that A is ML rank-(L1, . . . , LN̂ , ·, . . . , ·) if and only if it admits the factorization169

A = D •1 X(1) · · · •N̂ X(N̂) such that D, X(1), . . . ,X(N̂) have dimensions as in (2.4) and170

X(1), . . . ,X(N̂),D(1c;1), . . . ,D(N̂c;N̂) have full column rank. In this paper we assume that the171
tensor dimensions have been permuted so that we can just specify the rank values for the first172

N̂ matrix representations of A. A special case of the factorization A = D •1 X(1) · · · •N̂ X(N̂),173

where N̂ = N , X(n) equals the “U ” factor in the compact Singular Value Decomposition (SVD)174
of A(nc;n), and D = A•1X(1)H · · · •N X(N)H is known as the MLSVD of A and is used for the175

compression of an I1 × · · · × IN tensor to the size L1 × · · · × LN [17]. By setting X(n) equal176
to the identity matrix for n = N̂ + 1, . . . , N , we compress only along the first N̂ dimensions.177

ML rank-(L1r, . . . , LN̂r, ·, . . . , ·) decomposition of a tensor. In this paper we consider the178
decomposition of A into a sum of ML rank-(L1r, . . . , LN̂r, ·, . . . , ·) terms:179

A =

R∑
r=1

Dr •1 X(1)
r · · · •N̂ X(N̂)

r , 2 ≤ N̂ ≤ N,(2.9)180

Dr ∈ FL1r×···×LN̂r
×IN̂r+1×···×IN , X(n)

r ∈ FIn×Lnr , n ∈ {1, . . . , N̂}, r ∈ {1, . . . , R}.181182

In our derivation we will also use a matricized version of (2.9). It can be obtained as follows.183
First, we call184

(2.10) X(n) := [X
(n)
1 . . . X

(n)
R ] ∈ F

In×
R∑

r=1
Lnr

, n ∈ {1, . . . , N̂},185

This manuscript is for review purposes only.



FROM COMPUTATION TO COMPARISON OF TENSOR DECOMPOSITIONS 7

the concatenated factor matrices of A. If further we set186

(2.11) X(n) := [IIn . . . IIn ] ∈ FIn×RIn , n ∈ {N̂ + 1, . . . , N},187

then, by (2.6), we can express (2.9) in a matricized way as188

189

(2.12) A(nc;n) =
R∑
r=1

 N⊗
l=1,l 6=n

X(l)
r

Dr(nc;n)X
(n)T
r =190

 N⊙
l=1,l 6=n

X(l)

Bdiag(D1(nc;n), . . . ,DR(nc;n))X
(n)T , n ∈ {1, . . . , N},191

192

where193

(2.13)
N⊙

l=1,l 6=n
X(l) :=

 N⊗
l=1,l 6=n

X
(l)
1 . . .

N⊗
l=1,l 6=n

X
(l)
R

194

and Bdiag(D1(nc;n), . . . ,DR(nc;n)) denotes a block-diagonal matrix with the matrices D1(nc;n),195
. . . , DR(nc;n) on the diagonal.196

Note that (2.9) captures several well-studied decompositions as special cases (see also the
introduction). If N̂ = N and L1r = · · · = LNr = 1 for all r, then all terms in (2.9) are rank-1
tensors, so (2.9) reduces to a polyadic decomposition of A. It can easily be verified that if
N̂ = 2, N = 3, and L1r = 1 for all r, then the ML rank-(1, L2r, ·) terms in (2.9) are actually
ML rank-(1, L2r, L2r) terms.2 Thus, (2.9) reduces to the decomposition into a sum of ML
rank-(1, L2r, L2r) terms. Finally, if N̂ = 2 and N = 3, then (2.9) is a tensor reformulation of
the joint block diagonalization problem. Namely, (2.9) means that the frontal slices of A can
simultaneously be factorized as

A(:, :, i) = X(1)Bdiag(D1(:, :, i), . . . ,DR(:, :, i))X
(2)T , i = 1, . . . , I3,

where Dr(:, :, i) ∈ FL1r×L2r .197

2.2. Problem statement. Assume that a tensor B ∈ FI1×···×IN consists of the same ML198
rank-(L1r, . . . , LN̂r, ·, . . . , ·) terms as A, but possibly differently scaled:199

(2.14) B =

R∑
r=1

λrDr •1 X(1)
r · · · •N̂ X(N̂)

r , λ1 · · ·λR 6= 0.200

2Indeed, since the column rank is equal to 1, a ML rank-(1, L2r, ·) (I1 × I2 × I3) term consists of scaled
versions of the same (I2 × I3) matrix. Since column rank and row rank of the latter matrix coincide, the ML
rank-(1, L2r, ·) term is necessary ML rank-(1, L2r, L2r).
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8 I. DOMANOV AND L. DE LATHAUWER

Then by (2.12),201

202

(2.15) B(nc;n) =

 N⊙
k=1,k 6=n

X(k)

Bdiag(λ1D1(nc;n), . . . , λRDR(nc;n))X
(n)T =203

 N⊙
k=1,k 6=n

X(k)

Bdiag(D1(nc;n), . . . ,DR(nc;n)) Bdiag(λ1ILn1 , . . . , λRILnR
)X(n)T .204

205

Assume that N̂ ≥ 2 and that the matrices206

(2.16) X(1), . . . ,X(N̂) have full column rank.207

It can be easily shown3 that the matrices in (2.13) have full column rank for all n. Hence, by208
(2.12) and (2.15), the column spaces of the first N̂ matrix representations of A and B coincide:209

(2.17) col(A(nc;n)) = col(B(nc;n)), n ∈ {1, . . . , N̂}.210

If we further limit4 ourselves to the case where the matrices211

(2.18) X(1), . . . ,X(N̂) are square and nonsingular,212

then, obviously,213

(2.19) B(nc;n) = A(nc;n)Mn, n ∈ {1, . . . , N̂},214

where215

(2.20) Mn =
(
X(n)T

)−1
Bdiag(λ1ILn1 , . . . , λRILnR

)X(n)T , n ∈ {1, . . . , N̂}.216

Thus, if (2.9), (2.14), and (2.18) hold, then the column spaces of the first N̂ matrix repre-217

sentations of A and B coincide, the matrices Mn := A†(nc;n)B(nc;n) have the same spectrum218

λ1, . . . , λR ∈ F and can be diagonalized, n = 1, . . . , N̂ . Moreover, the concatenated factor219
matrices X(n) and the sizes of blocks Lnr (and hence the overall decompositions of A and B)220
can be recovered from the EVDs of M1, . . . ,MN̂ .221

In this paper we consider the inverse problem: we assume that the column spaces of the222
first N̂ matrix representations of A and B coincide and we investigate how the ML rank223
decompositions A and B relate to each other. (A version of Theorem 2.1 in which (2.18) and224
(2.19) hold for N̂ values arbitrary chosen from {1, . . . , N} can be obtained by permuting the225
tensor dimensions.) In particular, we obtain the following result.226

3Indeed, the result holds since, by assumption (2.16), the first N̂ − 1 factors X(l) have full column rank
and, by construction, the remaining factors do not have zero columns.

4Lemma 3.2 below implies that assumption (2.16) can always be replaced by assumption (2.18). Computa-
tionally, this can be done by Multilinear Singular Value Decomposition (MLSVD) [17, 34, 35].
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Theorem 2.1. Let A,B ∈ CI1×···×IN and 2 ≤ N̂ ≤ N . Assume that A(nc;n) and B(nc;n)227

have full column rank for each n ∈ {1 . . . , N̂}, that (2.19) holds and that at least one of the228
matrices M1, . . . ,MN̂ can be diagonalized.5 Then the following statements hold.229

1. The matrices M1, . . . ,MN̂ have the same spectrum.230
2. All matrices M1, . . . ,MN̂ can be diagonalized.231
3. Let the distinct eigenvalues of Mn be λ1, . . . , λR with respective multiplicities Ln1, . . . , LnR and232

let Xn ∈ CIn×In be a nonsingular matrix such that (2.20) holds. Then A and B admit the ML233
rank-(L1r, . . . , LN̂r, ·, . . . , ·) decompositions in (2.9) and (2.14), respectively. In particular, if234
Lnr = 1 for all n and r, then A and B are generated by the same (possibly scaled) R rank-1235
terms.236

Proof. The proof follows from Theorem 4.3 below.237

The theorem can be used as follows. First, the matrices M1, . . . ,MN̂ are found from the sets238
of linear equations (2.19). (If any of the sets of linear equations does not have a solution, then239
B is not of the form (2.14), i.e., it cannot be generated by terms from the decomposition of A.)240
The number of terms R is found as the number of distinct eigenvalues of Mn, 1 ≤ n ≤ N̂ . The241
distinct eigenvalues themselves correspond to the scaling factors λr in (2.14). Both R and the242
eigenvalues λr are necessarily the same for all Mn, but the multiplicities can be different. The243
multiplicity of λr in the EVD of Mn corresponds to the nth entry Lnr in the ML rank of the244
rth term, so that to apply the theorem we should necessarily have that Ln1 + · · ·+ LnR = In245
for 1 ≤ n ≤ N̂ . (Recall from Footnote 4 on p. 8 that this means that for the given tensors246
we should have Ln1 + · · ·+ LnR ≤ In for 1 ≤ n ≤ N̂ .) The larger N̂ , the more the terms are247
specified. The minimal value for N̂ is 2, since a decomposition in ML rank-(L1r, ·, . . . , ·) terms248
is meaningless.249

So far, we have explained the use of the theorem for decompositions that are exact. Obvi-250
ously, the theorem also suggests a procedure for approximate decompositions (of noisy tensors).251
The equations in (2.19) may be solved in least squares sense. The eigenvalues λnr of the matri-252
cesM1, . . . ,MN̂ may be averaged over n to obtain estimates of λr. The values Lnr, 1 ≤ n ≤ N̂ ,253
1 ≤ r ≤ R may be estimated by assessing how close the eigenvalues λrn are to the averaged254
values λr.255

3. Preliminaries.256

3.1. Primary decomposition theorem and the Jordan canonical form. In this subsection
we recall known results that will be used in section 4. Recall that the minimal polynomial
q(x) of a matrix M ∈ FI×I is the polynomial of least degree over F whose leading coefficient
is 1 and such that q(M) = O. It is well known that the minimal polynomial does not depend
of F, is unique, and that the set of its zeros coincides with the set of the eigenvalues of the
matrix (in the case F = R both sets can be empty, namely, when the minimal polynomial
does not have real roots). Recall also that a non-constant polynomial is irreducible over F if
its coefficients belong to F and it cannot be factorized into the product of two non-constant

5The assumption on diagonalization will later be relaxed by using the Jordan canonical form in Theorem 4.3.

This manuscript is for review purposes only.



10 I. DOMANOV AND L. DE LATHAUWER

polynomials with coefficients in F. For instance, the minimal polynomials of the matrices[
0 0
1 1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]
,

[
0 1
0 0

]
, and II

are x2 − x, x2 − 1, x2 + 1, x2, and x− 1, respectively. The matrix II has a single eigenvalue 1
of multiplicity I which corresponds to a single root of x− 1 of multiplicity 1. The polynomial
x2 +1 is irreducible over R and is reducible over C, x2 +1 = (x+ i)(x− i), which agrees with

the fact that the matrix
[
0 1
−1 0

]
does not have eigenvalues over R but has two eigenvalues −i

and i over C. It is well known that any polynomial with leading coefficient 1 can be factorized
as

q(x) = p1(x)
µ1 · · · pR(x)µR

where pr are distinct irreducible polynomials and µr ≥ 1. Since in this paper F is either C or257
R, we have that258

p1, . . . , pR ∈ {x− λ : λ ∈ C}, if F = C,259

p1, . . . , pR ∈ {x− λ : λ ∈ R} ∪ {x2 + 2ax+ a2 + b2 : a, b ∈ R and b > 0}, if F = R.260261

The following theorem implies that the minimal polynomial of a matrix can be used to construct262
a basis in which that matrix has block-diagonal form.263

Theorem 3.1 (Primary decomposition theorem [12, pp.196–197]). Let M ∈ FI×I and let

q(x) = p1(x)
µ1 · · · pR(x)µR

be the minimal polynomial of M, factorized into powers of distinct polynomials pr(x) that are
irreducible (over F). Then the subspaces

Er := Null (pr(M)µr) , 1 ≤ r ≤ R

are invariant for M, i.e., MEr ⊆ Er and we have264

(3.1) FI = E1 ⊕ · · · ⊕ ER,265

where “⊕” denotes the direct sum of subspaces.266

Decomposition (3.1) in Theorem 3.1 implies that the matrix M is similar to a block-diagonal
matrix. Indeed, let Lr = dimEr and let the columns of Sr ∈ FI×Lr form a basis of Er,
r = 1, . . . , R. Then by (3.1), the columns of S := [S1 . . . SR] form a basis of the entire space
FI , implying that S is nonsingular. SinceMEr ⊆ Er it follows that there exists a unique matrix
Tr ∈ FLr×Lr such that MSr = SrTr, r = 1, . . . , R. Hence M[S1 . . . SR] = [S1T1 . . . SRTR]
or

M = SBdiag(T1, . . . ,TR)S
−1, S = [S1 . . . SR], Sr ∈ FI×Lr .

It is well-known that each of the matrices Tr can further be reduced to Jordan canonical form
by a similarity transform. Namely, if pr(x)µr = (x − λ)µr with λ ∈ F, then Tr is similar to
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J(λ, nr1)⊕ · · · ⊕ J(λ, nrkr), where J(λ, n) denotes the n× n Jordan block with λ on the main
diagonal: 

λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . λ

 .
If F = R and pr(x)µr = (x2 + 2ax+ a2 + b2)µr with a, b ∈ R and b > 0, then Tr is similar to
C(a, b, nr1)⊕ · · ·⊕C(a, b, nrkr), where C(a, b, n) denotes the 2n× 2n block matrix of the form

C(a, b) I2 0 . . . 0
0 C(a, b) I2 . . . 0
...

...
...

...
...

0 0 0 . . . I2
0 0 0 . . . C(a, b)

 , C(a, b) =

[
a b
−b a

]
.

It is known that the values nr1 , . . . , nrkr are uniquely determined by Tr up to permutation,267
in particular, max(nr1 , . . . , nrkr) = µr. Thus, the Jordan canonical form is unique up to268
permutation of its blocks. For more details on the Jordan canonical form we refer to [27,269
Chapter 3].270

3.2. An auxiliary result about simultaneous compression of a pair of tensors. Let271
A,B ∈ FI1×···×IN . It is clear that the conditions272

(3.2) col(B(nc;n)) ⊆ col(A(nc;n)), n ∈ {1, . . . , N̂}.273

can be rewritten as274

(3.3) B(nc;n) = A(nc;n)Mn, n ∈ {1, . . . , N̂},275

in which Mn ∈ FIn×In is not necessarily unique. The goal of the following lemma is to show276
that (3.3) can further be reduced to the case where the matrices A(nc;n) do have full column277

rank, so Mn can be uniquely recovered as Mn = A†(nc;n)B(nc;n). In subsection 4.1 we will use278
M1, . . . ,MN̂ to establish connections between the terms in the decompositions of A and B.279

Lemma 3.2. Let Ã, B̃ ∈ FĨ1×···×ĨN , N ≥ N̂ ≥ 2 and let Ã be ML rank-(I1, . . . , IN̂ , ·, . . . , ·).280
Assume that281

(3.4) col(B̃(nc;n)) ⊆ col(Ã(nc;n)), n ∈ {1, . . . , N̂}.282

Let also the rows of Un ∈ FIn×Ĩn form an orthonormal basis of the row space of Ã(nc;n),283

n ∈ {1, . . . , N̂}6 and284

(3.5) A := Ã •1 U∗1 · · · •N̂ U∗
N̂
, B := B̃ •1 U∗1 · · · •N̂ U∗

N̂
.285

Then the following statements hold.286

6For instance, one can take Un equal to the transpose of the “U ” factor in the compact SVD of ÃT
(nc;n). In

this case, (3.6) implements a standard compression by multilinear singular value decomposition [17, 34, 35], in
which the compression matrices are obtained from A.
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12 I. DOMANOV AND L. DE LATHAUWER

1. For all k ∈ {1, . . . , N}, the row space of Ã(kc;k) contains the row space of B̃(kc;k).287

2. Ã and B̃ can be recovered from A and B, respectively, as288

(3.6) Ã = A •1 UT
1 · · · •N̂ UT

N̂
, B̃ = B •1 UT

1 · · · •N̂ UT
N̂
.289

3. A,B ∈ FI1×···×IN̂×ĨN̂+1×···×ĨN , A is ML rank-(I1, . . . , IN̂ , ·, . . . , ·), and the ML rank of B equals290

the ML rank of B̃.291

Proof. 1. Recall that (2.2) is equivalent to any identity in (2.3). Hence if (2.2) holds for292
n = 1 and n = 2, then, by (2.3), the row space of D(kc;k) contains the row space of A(kc;k) for293
k ∈ {2, . . . , N} and for k ∈ {1, 3, . . . , N}, respectively, i.e., for all k. To complete the proof294
one should replace D and A in (2.2) and (2.3) by Ã and B̃, respectively.295

2. Since the rows of Un form an orthonormal basis of the row space of Ã(nc;n), it follows296

that Ã(nc;n)U
H
n Un = Ã(nc;n) or Ã •n (UT

nU
∗
n) = Ã, n ∈ {1, . . . , N̂}. Hence297

298
A •1 UT

1 · · · •N̂ UT
N̂

= (Ã •1 U∗1 · · · •N̂ U∗
N̂
) •1 UT

1 · · · •N̂ UT
N̂

=299

Ã •1 (UT
1 U
∗
1) · · · •N̂ (UT

N̂
U∗
N̂
) = Ã.300301

By statement 1, the identity for B̃ can be proved in a similar way.302
3. From (2.2), (3.5), and (3.6) it follows that

rA(nc;n)
≤ rÃ(nc;n)

≤ rA(nc;n)
, rB(nc;n)

≤ rB̃(nc;n)
≤ rB(nc;n)

, n = 1, . . . , N̂

implying that rA(nc;n)
= rÃ(nc;n)

= In and rB(nc;n)
= rB̃(nc;n)

for n = 1, . . . , N̂ .303

4. Main results.304

4.1. Connections between tensors A and B that satisfy the first N̂ conditions in (1.3).305
To simplify the presentation throughout this subsection we assume that the first N̂ matrix306
representations of A have full column rank. The general case follows from Lemma 3.2 above.307
Also, to keep the presentation and derivation of results easy to follow, we first consider the308
particular case where A and B are third-order tensors (i.e., N = 3) that satisfy only the first309
two conditions (i.e., N̂ = 2) in310

(4.1) col(B(2,3;1)) ⊆ col(A(2,3;1)), col(B(1,3;2)) ⊆ col(A(1,3;2)), col(B(1,2;3)) ⊆ col(A(1,2;3)).311

The case where all three conditions in (4.1) hold (i.e., N = N̂ = 3) and the general case N ≥ 3,312
N ≥ N̂ ≥ 2 will be covered by Theorem 4.3 below.313

It is worth noting that the following theorem not only presents conditions that guarantee314
that A and B are generated by the same (possibly scaled) terms but also implies a procedure315
to compute the number of terms R and their ML rank values (see similar discussion after316
Theorem 2.1). To apply the theorem we should necessarily have that Ln1+ · · ·+LnR = In for317
n = 1, 2.318

Theorem 4.1. Let tensors A,B ∈ FI1×I2×I3. Assume that319

(4.2) A(2,3;1) and A(1,3;2) have full column rank320
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and that there exist matrices M1 ∈ FI1×I1 and M2 ∈ FI2×I2 such that321

(4.3) B(2,3;1) = A(2,3;1)M1 and B(1,3;2) = A(1,3;2)M2.322

Then the following statements hold.323
1. The matrices M1 and M2 have the same minimal polynomial q(x).324
2. Consider the factorization q(x) = p1(x)

µ1 · · · pR(x)µR with distinct polynomials pr(x) that are
irreducible (over F) and set

L1r := dim(Null (pr(M1)
µr)), L2r := dim(Null (pr(M2)

µr)) 1 ≤ r ≤ R.

Let also325

M1 = S1Bdiag(T11, . . . ,T1R)S
−1
1 , S1 = [S11 . . . S1R], S1r ∈ FI1×L1r ,(4.4)326

M2 = S2Bdiag(T21, . . . ,T2R)S
−1
2 , S2 = [S21 . . . S2R], S2r ∈ FI2×L2r(4.5)327328

be the primary decompositions of M1 and M2, respectively, such that the minimal polynomials329
of T1r and T2r are equal to pr(x)µr for each r = 1, . . . , R. Then the matrices330

(4.6) Di := ST1 AiS2, Ai := A(:, :, i), i = 1, . . . , I3331

are block-diagonal, Di = Bdiag(Di,11, . . . ,Di,RR), Di,rr ∈ FL1r×L2r and332

(4.7) TT
1rDi,rr = Di,rrT2r, i = 1, . . . , I3, r = 1, . . . , R.333

3. Let Dr ∈ FL1r×L2r×I3 denote a tensor with frontal slices D1,rr, . . . ,DI3,rr ∈ FL1r×L2r and let334

S−T1 =: X(1) = [X
(1)
1 . . . X

(1)
R ], X(1)

r ∈ FI1×L1r ,335

S−T2 =: X(2) = [X
(2)
1 . . . X

(2)
R ], X(2)

r ∈ FI2×L2r .336337

Then the tensors A and B admit decompositions into ML rank-(L1r, L2r, ·) terms which are338
connected as follows:339

A =

R∑
r=1

Dr •1 X(1)
r •2 X(2)

r =:

R∑
r=1

Ar,(4.8)340

B =
R∑
r=1

(Dr •1 TT
1r) •1 X(1)

r •2 X(2)
r =:

R∑
r=1

Br,(4.9)341
342

and343

(4.10) Dr •1 TT
1r = Dr •2 TT

2r r = 1, . . . , R.344

4. If I1 = I2 and if there exists a linear combination of A1, . . . ,AI3 that is nonsingular, then M1345
is similar to M2.346

5. If M1 is similar to M2, then L1r = L2r for all r and the matrices S1 and S2 in (4.4) and347
(4.5) can be chosen such that T1r = T2r for all r.348
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6. If, for some r, the matrix T1r (or T2r) is a scalar multiple of the identity matrix, i.e., if349
T1r = λrIL1r (or T2r = λrIL2r), then Ar = λrBr.350

7. If T1r = λrIL1r (or T2r = λrIL2r) for all r, then A and B consist of the same ML rank-351
(L1r, L2r, ·) terms, possibly differently scaled.352

Proof. 1. To prove that the minimal polynomials of M1 and M2 coincide, it is sufficient353
to show that a polynomial q(x) annihilates M1 if and only if q(x) annihilates M2. By (4.3),354
B = A •1 MT

1 = A •2 MT
2 . Since, by (2.1),355

(4.11) A(2,3;1) = [A1 . . . AI3 ]
T and A(1,3;2) = [AT

1 . . . AT
I3 ]

T ,356

it follows that357

(4.12) (Bi =)MT
1 Ai = AiM2, i ∈ {1, . . . , I3}.358

Hence for any k ≥ 1,359

(MT
1 )
kAi =(MT

1 )
k−1MT

1 Ai = (MT
1 )
k−1AiM2 =360

(MT
1 )
k−2MT

1 AiM2 = (MT
1 )
k−2AiM

2
2 = · · · = AiM

k
2,361362

implying that for any polynomial q,363

(4.13) q(M1)
TAi = Aiq(M2), i ∈ {1, . . . , I3}.364

It follows from (4.11) that (4.13) is equivalent to365

(4.14) A(1,3;2)q(M2) = Bdiag(q(M1)
T , . . . , q(M1)

T )A(1,3;2)366

and to367

(4.15) A(2,3;1)q(M1) = Bdiag(q(M2)
T , . . . , q(M2)

T )A(2,3;1).368

Assume that q annihilates M1. Then, by (4.14), A(1,3;2)q(M2) = O. Since A(1,3;2) has full369
column rank, it follows that q annihilates M2. On the other hand, if q annihilates M2, then370
by (4.15), A(2,3;1)q(M1) = O. Since A(2,3;1) has full column rank, it follows that q annihilates371
M1. Thus, the matrices M1 and M2 have the same minimal polynomial.372

2. By (4.4), (4.5), and (4.12),373
374

(S1Bdiag(T11, . . . ,T1R)S
−1
1 )T ·Ai =375

Ai · S2Bdiag(T21, . . . ,T2R)S
−1
2 , i ∈ {1, . . . , I3}.376377

Hence378
379

(4.16) Bdiag(TT
11, . . . ,T

T
1R)S

T
1 AiS2 =380

ST1 AiS2Bdiag(T21, . . . ,T2R), i ∈ {1, . . . , I3}.381382

Let
ST1 AiS2 =: Di = (Di,r1r2)

R
r1,r2=1
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denote a block matrix with Di,r1r2 ∈ FL1r1×L2r2 . It is clear that (4.16) can be rewritten as383

(4.17) TT
1r1Di,r1r2 = Di,r1r2T2r2 , r1, r2 = 1, . . . , R, i ∈ {1, . . . , I3},384

implying that (4.7) holds.385
Now we show that Di is a block diagonal matrix, i.e., that Di,r1r2 = O for r1 6= r2. Let386

pr(x)
µr denote the minimal polynomial ofT1r (orT2r). Then, by (4.17),O =

(
Tk

1r1

)T
Di,r1r2 =387

Di,r1r2T
k
2r2

for all k ≥ 1, implying that388

(4.18) O = (pr1(T1r1)
µr1 )T Di,r1r2 = Di,r1r2pr1(T2r2)

µr1389

for all r1, r2 = 1, . . . , R and i ∈ {1, . . . , I3}. Let r1 6= r2. To prove that Di,r1r2 = O, it is
sufficient to show that the matrix pr1(T2r2)

µr1 is nonsingular. Since the polynomials pr1(x)µr1
and pr2(x)

µr2 are relatively prime, it follows from the Euclidean algorithm that there exist
polynomials f(x) and g(x) such that 1 = pr1(x)

µr1f(x) + pr2(x)
µr2g(x) for all x ∈ F. Hence

I = pr1(T2r2)
µr1f(T2r2) + pr2(T2r2)

µr2g(T2r2) = pr1(T2r2)
µr1f(T2r2).

Thus, pr1(T2r2)
µr1 is nonsingular.390

3. By (4.6),391

(4.19) Ai = S−T1 DiS
−1
2 = X(1)DiX

(2)T , i = 1, . . . , I3392

which is equivalent to (4.8). Since, by (4.3), Bi = MT
1 Ai, it follows from (4.4) and (4.19) that393

394
(4.20) Bi = MT

1 Ai = (S1Bdiag(T11, . . . ,T1R)S
−1
1 )TS−T1 DiS

−1
2395

S−T1 Bdiag(TT
11, . . . ,T

T
1R)S

T
1 S
−T
1 DiS

−1
2 =396

X(1)Bdiag(TT
11Di,11, . . . ,T

T
1RDi,RR)X

(2)T , i = 1, . . . , I3,397398

which is equivalent to (4.9). Finally, identity (4.10) is equivalent to (4.7).399
4. Let the linear combination t1A1 + · · ·+ tI3AI3 be nonsingular. Then, by (4.12),

M2 = (t1A1 + · · ·+ tI3AI3)
−1MT

1 (t1A1 + · · ·+ tI3AI3),

i.e., M2 is similar to MT
1 . Since any matrix is similar to its transpose [27, Section 3.2.3], it400

follows that M2 is similar to M1.401
5. We choose S1 such that the matrices T11, . . . ,T1R in (4.4) are in the Jordan canonical402

form. Since similar matrices have the same Jordan canonical form, the matrix M2 is similar to403
Bdiag(T11, . . . ,T1R), i.e., there exists S2 such that (4.5) holds for T11 = T21, . . . ,T1R = T2R.404

6. and 7. follow from (4.9).405

Example 4.2. This example illustrates that although the matrices M1 and M2 in Theo-
rem 4.1 have the same minimal polynomial they are not necessarily similar. Let the frontal
slices of A ∈ C3×3×4 have the following nonzero pattern:0 ∗ ∗

∗ 0 0
∗ 0 0


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It is clear that any linear combination of the frontal slices of A is singular so the assumption406
in statement 4 of Theorem 4.1 does not hold. We choose the values “∗” (e.g., generic values)407
such that A(2,3;1) and A(1,3;2) have full column rank. It is clear that A is the sum of a ML408
rank-(1, 2, ·) and a ML rank-(2, 1, ·) term. More precisely, A is the sum of a ML rank-(1, 2, 2)409
and a ML rank-(2, 1, 2) term. Let M1 := diag(λ2, λ1, λ1) and B = A •1 MT

1 . One can easily410
verify that B = A •2 MT

2 , where M2 = diag(λ1, λ2, λ2). Thus, if λ1 6= λ2, then M1 and M2411
have the same minimal polynomial but are not similar.412

Now we consider the general case, that is, we assume that A and B are tensors of or-413
der N ≥ 3 and satisfy (3.2) for N ≥ N̂ ≥ 2. First we extend the notion of block diagonal414
matrices to tensors. Let the numbers Ln1, . . . , LnR sum up to In for each n = 1, . . . , N̂ . Con-415
sider the partition of {1, . . . , In} into consecutive blocks Vn1, . . . , VnR of length Ln1, . . . , LnR,416
respectively, so Vn1 = {1, . . . , Ln1}, . . . , VnR = {In − LnR + 1, . . . , LnR}. If the condition417

(4.21) (D)i1,...,iN = 0 for (i1, . . . , iN̂ ) 6∈
R⋃
r=1

(V1r × · · · × VN̂r)418

holds, then we say that D is a block diagonal tensor and write D = Bdiag(D1, . . . ,DR), where419
Dr := D(V1r, . . . , VN̂r, :, . . . , :) ∈ FL1r×···×LN̂r×IN̂+1×···×IN denote the diagonal blocks. For420
instance, statement 2 of Theorem 4.1 means that if D is the I1 × I2 × I3 tensor formed by the421
I1 × I2 matrices Di in (4.6), i.e., if D := A •1 S1 •2 S2, then D = Bdiag(D1, . . . ,DR), where422
the diagonal blocks Dr ∈ FL1r×L2r×I3 are defined in statement 3 of Theorem 4.1.423

The following result generalizes Theorem 4.1 for N ≥ 3 and N ≥ N̂ ≥ 2. The proof is424
obtained by applying Theorem 4.1 to the Ii × Ij ×

∏
In

IiIj
reshapings of A and B.425

Theorem 4.3. Let tensors A,B ∈ FI1×···×IN and let N ≥ 3, N ≥ N̂ ≥ 2. Assume that for426
each n ∈ {1 . . . , N̂},427

(4.22) A(nc;n) has full column rank428

and that there exists matrix Mn ∈ FIn×In such that429

(4.23) B(nc;n) = A(nc;n)Mn.430

Then the following statements hold.431
1. The matrices M1, . . . ,MN̂ have the same minimal polynomial q(x).432
2. Consider the factorization q(x) = p1(x)

µ1 · · · pR(x)µR with distinct polynomials pr(x) that are
irreducible (over F) and set

Lnr := dim(Null (pr(Mn)
µr)), 1 ≤ r ≤ R, 1 ≤ n ≤ N̂ .

Let also433

M1 = S1Bdiag(T11, . . . ,T1R)S
−1
1 , S1 = [S11 . . . S1R], S1r ∈ FI1×L1r ,

...

MN̂ = SN̂ Bdiag(TN̂1, . . . ,TN̂R)S
−1
N̂
, SN̂ = [SN̂1 . . . SN̂R], SN̂r ∈ FIN̂×LN̂r

(4.24)434
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be the primary decompositions of M1, . . . ,MN̂ , respectively, such that the minimal polynomials
of T1r, . . . ,TN̂r are equal to pr(x)µr for each r = 1, . . . , R. Then the tensor

D := A •1 S1 · · · •N̂ SN̂

is block-diagonal (see (4.21)),

D = Bdiag(D1, . . . ,DR), Dr ∈ FL1r×···×LN̂r×IN̂+1×···×IN

and435

(4.25) Dr •1 TT
1r = · · · = Dr •N̂ TT

N̂r
r = 1, . . . , R.436

3. Let437

S−Tn =: X(n) = [X
(n)
1 . . . X

(n)
R ], X(n)

r ∈ FIn×Lnr .438439

Then the tensors A and B admit decompositions into ML rank-(L1r, . . . , LN̂r, ·, . . . , ·) terms440
which are connected as follows:441

A =

R∑
r=1

Dr •1 X(1)
r · · · •N̂ X(N̂)

r =:

R∑
r=1

Ar,(4.26)442

B =

R∑
r=1

(Dr •1 TT
1r) •1 X(1)

r · · · •N̂ X(N̂)
r =:

R∑
r=1

Br,(4.27)443
444

in which the tensors Dr satisfy the identities in (4.25).445
4. Let Aij,k, k = 1, . . . , (I1 · · · IN )/(IiIj) denote the Ii × Ij slices of A, that is, Aij,k ∈ FIi×Ij446

is obtained from A by fixing all indices but i and j. If Ii = Ij and if there exists a linear447
combination of Aij,k that is nonsingular, then Mi is similar to Mj.448

5. If Mi is similar to Mj, then Lir = Ljr for all r and the matrices Si and Sj in (4.24) can be449
chosen such that Tir = Tjr for all r.450

6. If, for some r, there exists n such that the matrix Tnr is a scalar multiple of the identity451
matrix, i.e., if Tnr = λrILnr , then Ar = λrBr.452

7. If for each r there exists nr such that Tnrr = λrILnrr
, then A and B consist of the same ML453

rank-(L1r, . . . , LN̂r, ·, . . . , ·) terms, possibly differently scaled.454

Proof. Let 1 ≤ i < j ≤ N̂ . We reshape A and B into the Ii × Ij ×
∏
In

IiIj
tensors Aij and455

Bij such that456

(4.28) Aij
(2,3;1) = A(ic;i), Bij

(2,3;1) = B(ic;i), Aij
(1,3;2) = A(jc;j), Bij

(1,3;2) = B(jc;j).457

Then, by (4.22) and (4.28), the first two matrix representations of Aij have full column rank
and, by (4.23) and (4.28),

Bij
(2,3;1) = Aij

(2,3;1)Mi and Bij
(1,3;2) = Aij

(1,3;2)Mj .

Thus Aij and Bij satisfy the assumptions in Theorem 4.1. We leave it to the reader to show458
that the statements in Theorem 4.3 can be obtained from the corresponding statements of459
Theorem 4.1 by applying it to all pairs (Aij ,Bij), where 1 ≤ i < j ≤ N̂ .460
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18 I. DOMANOV AND L. DE LATHAUWER

4.2. Redundancy of conditions in (1.2). In this subsection we explain that if col(B(nc;n)) ⊆461
col(A(nc;n)), then for any subset S ( {1, . . . , N} that contains n we also have that col(B(Sc;S))462

⊆ col(A(Sc;S)) (Lemma 4.4). Hence the N conditions in (1.3) imply the 2N − 2 conditions in463
(1.2) (Corollary 4.5).464

Let us first formally define generalized matrix representations. Let A ∈ FI1×···×IN , let S465
be a proper subset of {1, . . . , N} and let Sc denote the complement of S. A mode-S slice466
of A is a subtensor obtained from A by fixing the indices in S. It is clear that A has

∏
n∈S

In467

mode-S slices. A mode-S matrix representation of A is a matrix A(Sc;S) ∈ F
(
∏

n 6∈S
In)×(

∏
n∈S

In)

468
whose columns are the vectorized mode-S slices of A. Formally, if we follow the conventions469
that470

(4.29) S = {q1, . . . , qN−k} with q1 < · · · < qN−k and Sc = {p1, . . . , pk} with p1 < · · · < pk,471

then472

(4.30) the (ind
Ip1×···×Ipk
ip1 ,...,ipk

, ind
Iq1×···×IqN−k

iq1 ,...,iqN−k
)th entry of the matrix A(Sc;S) is equal to ai1...iN ,473

where

ind
Ip1×···×Ipk
ip1 ,...,ipk

:= 1 +
k∑

u=1

(ipu − 1)
u−1∏
s=1

Ips

denotes the linear index corresponding to the element in the (ip1 , . . . , ipk) position of an Ip1 ×474
· · · × Ipk tensor. If S = {n}, then A(Sc;S) coincides with the mode-n matrix representation475
A(nc;n) introduced earlier in (2.1). It is easy to show that, if for two I1 × · · · × IN tensors A476
and B the identity B(nc;n) = A(nc;n)Mn holds for some n, then for any subset S that contains477
n there exists a matrix MS such that B(Sc;S) = A(Sc;S)MS . Indeed, the matrices B(nc;n) and478
A(nc;n) can be simultaneously reshaped into the matrices B(Sc;S) and A(Sc;S), respectively, so479
that the kth column of B(nc;n) (resp. A(nc;n)) is reshaped into a group of (

∏
l∈S

Il)/In columns of480

B(Sc;S) (resp. A(Sc;S) ) whose indices are determined by k. Since the kth column of B(nc;n) is481
a linear combination of columns of A(nc;n), it follows that each of the (

∏
l∈S

Il)/In corresponding482

columns of B(Sc;S) is a linear combination of the (
∏
l∈S

Il)/In corresponding columns of A(Sc;S).483

Thus, B(Sc;S) = A(Sc;S)MS holds for some matrix MS . More in detail, we show in the484
following lemma that the matrix MS coincides up to column and row permutation with the485
direct sum of Mn multiple times with itself.486

Lemma 4.4. Let N ≥ 4, and let A,B ∈ FI1×···×IN be such that B(nc;n) = A(nc;n)Mn for487

some Mn ∈ FIn×In. Let S and Sc be as in (4.29) and let n ∈ S, that is, ql = n for some488
l ∈ {1, . . . , N − k}. Then B(Sc;S) = A(Sc;S)MS, where489

(4.31) MS =

(
l−1⊗
v=1

IIqv

)
⊗Mn ⊗

(
N−K⊗
v=l+1

IIqv

)
490

or MS = IK ⊗Mn ⊗ IL, where K =
l−1∏
v=1

Iqv and L =
N−k∏
v=l+1

Iqv .491
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Proof. Let δ(i, j) denote the Kronecker delta symbol, i.e., δ(i, j) = 1 for i = j and δ(i, j) =492
0 for i 6= j. One can easily verify that493

(MS)
ind

Iq1×···×IqN−k
iq̃1

,...,iq̃N−k
,ind

Iq1×···×IqN−k
iq1 ,...,iqN−k

=

δ(iq̃1 , iq1) · · · δ(iq̃l−1
, iql−1

) · (Mn)q̃l,n · δ(iq̃l+1
, iql+1

) · · · δ(iq̃N−k
, iqN−k

) ={
(Mn)q̃l,n, if iq̃1 = iq1 , . . . , iq̃l−1

= iql−1
, iq̃l+1

= iql+1
, . . . , iq̃N−k

= iqN−k

0, otherwise.

(4.32)494

Hence495 (
B(Sc;S)

)
ind

Ip1×···×Ipk
ip1 ,...,ipk

,ind
Iq1×···×IqN−k
iq1 ,...,iqN−k

(4.30)
= (B)i1,...,iN

(4.30)
=

(
B(nc;n)

)
ind

I1×···×In−1×In+1···×IN
i1,...,in−1,in+1,...,iN

,in
=496

(
A(nc;n)Mn

)
ind

I1×···×In−1×In+1···×IN
i1,...,in−1,in+1,...,iN

,in
=

n∑
q̃l=1

(A)i1,...,in−1,iq̃l ,in+1,...,iN (Mn)q̃l,n
(4.30)
=497

n∑
q̃l=1

(
A(Sc;S)

)
ind

Ip1×···×Ipk
ip1 ,...,ipk

,ind
Iq1×···×IqN−k
iq1 ,...,iql−1

,iq̃l
,iql+1

...,iqN−k

(Mn)q̃l,n
(4.32)
=498

q1∑
q̃1=1

· · ·
qN−k∑
q̃N−k=1

(
A(Sc;S)

)
ind

Ip1×···×Ipk
ip1 ,...,ipk

,ind
Iq1×···×IqN−k
iq̃1

,...,iq̃N−k

(MS)
ind

Iq1×···×IqN−k
iq̃1

,...,iq̃N−k
,ind

Iq1×···×IqN−k
iq1 ,...,iqN−k

=499

(
A(Sc;S)MS

)
ind

Ip1×···×Ipk
ip1 ,...,ipk

,ind
Iq1×···×IqN−k
iq1 ,...,iqN−k

.500
501

The following corollary follows from Lemma 4.4 and states that 2N −2−N conditions in (1.2)502
are redundant.503

Corollary 4.5. Let N ≥ 4, and let A,B ∈ FI1×···×IN . If (1.3) holds, then (1.2) also holds.504

5. Illustration: classification of linear mixtures of signals. A basic problem in signal505
processing is to assess whether two observed signals involve the same underlying signal “com-506
ponents”. Typically, the component signals manifest themselves with a different amplitude in507
the observed signals. If moreover the component signals are by themselves unknown, which is508
the case in many applications, the problem can be very challenging. As a preview, in Figure 5.3509
it may a priori not be obvious to establish which displayed signals are generated by the same510
components up to scaling.511

One of the possible applications is in underdetermined Blind Source Separation (BSS). In512
BSS, the task is to recover sources from a set of their linear mixtures [11]. Often, sources are513
sparsely combined in the observed mixed signals [25], i.e., the number of sources is large but514
each mixture contains a small number of sources. This means that the mixing matrix is sparse515
and has many more columns than rows. BSS problems that involve a wide mixing matrix516
are called underdetermined and are generally much harder to solve than overdetermined BSS517
problems (involving a mixing matrix that is square or tall). As a preprocessing step one can518
first try to solve the following multi-label classification problem: mixture i belongs to the same519
class as mixture j if mixture i is generated by (some of) the sources that appear in mixture j.520
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20 I. DOMANOV AND L. DE LATHAUWER

In this way the initial underdetermined BSS problem with many sources can be replaced by a521
set of smaller overdetermined BSS problems.522

In this section we explain how Theorem 4.1 can be used to solve the multi-label classifica-523
tion problem. Our derivation is valid under the assumption that the sources can simultaneously524
be mapped (i.e., “tensorized”) into low ML rank tensors and that the mapping, so called ten-525
sorization, is linear. Such mappings are known [19, 4, 29] for sources that can be modeled526
as exponential polynomials (Hankelization), rational functions (Löwnerization), and periodic527
signals (Segmentation), among others. To demonstrate the approach we confine ourselves to528
exponential polynomials.529

To solve the multi-label classification problem, we do not use more prior knowledge about530
the sources than that they can be (approximately) modeled as exponential polynomials (with531
a mild bound on the value Ls in (5.2) that will be introduced in the next subsection).532

5.1. Exponential polynomials and Hankelization mapping. A univariate exponential533
polynomial is a function of the form534

(5.1) s(t) =
F∑
f=1

pf (t)a
t
f ,535

where p1, . . . , pF are non-zero polynomials in one variable and a1, . . . , aF ∈ C \ {0}. Let Ts536
denote the sampling time and let N be the number of sampling points. It can be shown [14, 19]537
that for any positive integers I1, I2, I3 that sum up to N + 2 and are greater than or equal to538
Ls, the vector s = [s1 . . . sN ]

T := [s(0) . . . s((N − 1)Ts)]
T can be mapped to an I1 × I2 × I3539

ML rank-(Ls, Ls, Ls) tensor S, where the value540

(5.2) Ls := F +
F∑
f=1

deg pf541

does not depend on I1, I2, I3. The mapping H : s 7→ S, H : CN → CI1×I2×I3 is given by
[14, 19]

(S)i1i2i3 = si1+i2+i3−2 = s((i1 + i2 + i3 − 3)Ts),

where 1 ≤ i1 ≤ I1, 1 ≤ i2 ≤ I2, 1 ≤ i3 ≤ I3. Since (S)i1i2i3 depends only on i1 + i2 + i3, the542
mapping H was called “Hankelization” in [19]. It is worth noting that if I1 = I2 = I3, then S543
is a fully symmetric tensor, implying that S(2,3;1) = S(1,3;2) = S(1,2;3).544

It is clear that H is a linear mapping, so if y = [y1 . . . yN ]
T := [y(0) . . . y((N − 1)Ts)]

T545
is a linear mixture of sampled sources of the form (5.1)546

(5.3) y(t) = g1s1(t) + . . .gRsr(t), t = 0, Ts, . . . , (N − 1)Ts547

and min(I1, I2, I3) ≥ maxLsr , then, by (5.2),548

(5.4) Y := H(y) = g1H(s1) + · · ·+ gRH(sR) = g1S1 + · · ·+ gRSR549

is a decomposition of Y into a sum of ML rank-(Lsr , Lsr , Lsr) terms.550
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5.2. Example. We generate 25 mixtures551

(5.5) yj(t) = g1js1(t) + . . .g8js8(t), j = 1, . . . , 25552

of 8 exponential polynomials553

s1(t) = 3 · 2−
t
5 , s2(t) = 3 cos(πt+

1

2
), s3(t) = 3 cos(2πt+ 2),554

s4(t) = 3 cos(3πt− 2), s5(t) = (5− t) cos(10πt+ 1

2
), s6(t) = (5− t) cos(12πt− 3

2
),555

s7(t) = t cos(8πt+ 1), s8(t) = t cos(14πt− 1

2
).556

557

The coefficients gij are generated randomly7 so that for each j = 1, . . . , 25 at least three and558
at most six of g1j , . . . ,g8j are zero. The nonzero coefficients gij are randomly chosen from559
[−2.5,−0.5] ∪ [0.5, 2.5]. We thus obtain that560

(5.6) [y1(t) . . . y25(t)] = [s1(t) . . . s8(t)]G,561

where G = (gij) is an 8× 25 sparse matrix. The nonzero pattern of G is shown in Figure 5.1.562
By way of example, the mixtures y1(t), y4(t), y8(t), and y19(t) were generated as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1

2

3

4

5

6

7

8

Figure 5.1. The nonzero pattern of the matrix G.
563

y1(t) = 2.22s3(t) −1.95s5(t) −2.38s6(t) −2.39s7(t) +1.77s8(t),(5.7)564

y4(t) = −0.55s3(t) −2.07s5(t) +0.50s6(t) +2.41s7(t) −1.90s8(t),(5.8)565

y8(t) = +1.16s5(t) +0.94s6(t) +1.35s7(t),(5.9)566

y19(t) = 0.69s3(t) −0.68s8(t).(5.10)567568

We consider a noisy sampled (with Ts = 0.05 and N = 100) version of (5.6):569

(5.11) [yn1 . . . yn25] := [y1 . . . y25] + σN = [s1 . . . s8]G+ σN,570

7The numerical experiments in the example were performed in MATLAB R2018b. To make the results
reproducible, the random number generator was initialized using the built-in function rng(’default’) (the
Mersenne Twister with seed 0).
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in which the entries of the 100 × 25 matrix N are independently drawn from the standard571
normal distribution N(0, 1) and σ = 0.1‖[y1 ... y25]‖F

‖N‖F , where ‖ · ‖F denotes the Frobenius572

norm.8 The sampled sources s1, . . . , s8 and noisy sampled mixtures yn1 , yn4 , yn8 , yn19 are shown573
in Figures 5.2 and 5.3, respectively. We now use Theorem 4.1 to verify whether the pair of
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Figure 5.2. Sampled source signals s1, . . . , s8; the sampling interval is 0.05.
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Figure 5.3. Noisy sampled mixtures yn
1 , yn

4 , yn
8 , yn

19 (see (5.7)–(5.10))
.

574
mixtures (yi(t), yj(t)) is generated by the same subset of sources, 1 ≤ i, j ≤ 259, i 6= j. For575
visualization purposes it is convenient to associate the mixtures y1(t), . . . , y25(t) with vertices576
of a directed graph: a directed edge from vertex i to vertex j indicates that yi(t) is generated577

8Note that the matrix pencil based algorithm in [14] can be used to estimate the matrix G and the sources
s1, . . . , s8 only for much smaller values of σ.

9Note that in contrast to BSS, we do not work with the full matrix G but only with pairs of its columns.
The number of mixtures 25 is just chosen to illustrate the approach for a large number of pairs (namely,
252 − 25 = 600), making the results very convincing.
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by sources that also appear in yj(t). For instance, the subgraph corresponding to the mixtures578
y1(t), y4(t), y8(t), and y19(t) is shown in Figure 5.4a. In this example we show how to recover579
the overall graph in Figure 5.4b based only on the (observed) vectors yn1 , . . . ,yn25 and without580
estimating s1, . . . , s8. Let H : C100 → C34×34×34 denote the Hankelization mapping. By (5.4)

(a) (b)

Figure 5.4. The subgraph corresponding to the mixtures y1(t), y4(t), y8(t), y19(t) (left) and the graph
corresponding to all mixtures y1(t), . . . , y25(t) (right); a directed edge from vertex i to vertex j indicates that
mixture yi(t) is generated by sources that also appear in mixture yj(t).

581
and (5.11), we have that582

Yni := H(yni ) = gi1H(s1) + · · ·+ gi8H(s8) + σH(ni) = gi1S1 + · · ·+ g18SR + σH(ni)583

is an approximate decomposition of Yni into a sum of ML rank-(Lsr , Lsr , Lsr) terms. One
can easily verify that the exact values of Ls1 , . . . , Ls8 are 1, 2, 2, 2, 4, 4, 4, 4, respectively. For
instance, since

s8(t) = t
1

2
(e(14πt−0.5)i + e−(14πt−0.5)i) = (

1

2
e−0.5it1)e14πt + (

1

2
e0.5it1)e−14πt,

we get, by (5.2), that Ls8 = 2+(1+1) = 4. On the other hand, it can be verified that although584
the tensors S5, . . . ,S8 are ML rank-(4, 4, 4), they can be approximated by ML rank-(2, 2, 2)585
tensors with a relative error less than 0.061, which is below the noise level.586

To verify whether yi(t) is generated by sources that appear in yj(t), it is sufficient to587
show that Yni is generated by ML rank terms that appear in Ynj , which, by Theorem 4.1, is588
reduced to verifying that the column space of Yn

i (2,3;1) is contained in the column space of589

Yn
j (2,3;1)

.10 To compare the column spaces we proceeded as follows. For each i = 1, . . . , 25 we590

computed the first ri singular vectors ui1, . . . ,uiri of Yn
i (2,3;1), where the rank ri of Yn

i (2,3;1)591

was estimated as the largest index k such that the ratio of the kth and the (k + 1)st singular592
value of Yn

i (2,3;1) is greater than a certain threshold τ . (We chose τ = 2.3.) Then for all593

10Note that we use only the part of Theorem 4.1 that guarantees that (1.2) implies (1.1). This part relies
only on the comparison of column spaces; the computation of the matrices Mi is not necessary. One could
actually go further, i.e., compute the matrices Mi, their spectra, the number of low ML rank terms and their
ML rank values. This is possible because even for two mixtures that contain all 8 sources (which is never the
case in the example) we have that L1 + · · ·+L8 = 1+ 2+ 2+ 2+ 4+ 4+ 4+ 4 = 23 ≤ 34 = In for n = 1, 2, 3.
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i, j = 1, . . . , 25 and i 6= j we concluded that the column space of Yn
i (2,3;1) is contained in the594

column space of Yn
j (2,3;1)

if the (rj+1)st singular value of the matrix [ui1 . . . uiri uj1 . . . ujrj ]595

was less than 0.1 (and in this case we plotted the directed edge from vertex i to vertex j). The596
resulting directed graph is shown in Figure 5.4b. The same graph can be obtained directly597
from the nonzero pattern of the matrix G which means that all 43 (out of the possible 600)598
edges of the graph were detected correctly and no superfluous edges were added.599

6. Conclusion. An obvious requirement for a tensor B to be the sum of (possibly scaled)600
terms from the decomposition of a tensor A, is that its column (row, fiber, . . . ) space is a601
subspace of the corresponding space of tensor A. Formally, this means that row(B(nc;n)) ⊆602
row(A(nc;n)) should hold for all n ∈ {1, . . . , N}. However, this is only a necessary condition.603
Switching to the column spaces, we have shown in this paper that604

(6.1) col(B(nc;n)) ⊆ col(A(nc;n)), n ∈ {1, . . . , N}605

is a sufficient condition for B to be generated by (possibly scaled) terms from the decomposition606
of A. The number or terms and their “type” (namely, their ML rank) follow from the analysis607
as well. As the derivation relies only on linear algebra, it bypasses the typical difficulties in608
the computation of CPD and BTD, such as NP-hardness and possible ill-conditioning. We609
believe that this paper introduces a new tool that will prove important for tensor-based pattern610
recognition and machine learning, in a similar way as (explicit) tensor decompositions have611
proven to be fundamental tools for data analysis. We have illustrated the practical use of the612
new tool in a new clustering-based scheme for sparse underdetermined BSS.613

An interesting topic of further study would be to investigate partially shared structure of614
A and B, in the sense that A and B share some but not all terms. We will also derive more615
detailed information from the actual principal angles and associated directions between the616
subspaces obtained from A and B. Another topic of further study is the generalization to617
“flower”, “butterfly” and related decompositions [3, 4, 33].618

Appendix A. The goal of this appendix is to illustrate a particular advantage of using the619
decomposition into a sum of ML rank-(L1, L2, ·) terms over the CPD when we deal with the620
implication (1.3)⇒(1.1). Namely, we show that in the case where the terms in (1.1) are rank-1,621
(1.3) does not necessarily imply (1.1) but if the rank-1 assumption on the terms is replaced622
by the low ML rank assumption, then (1.3) does imply (1.1). We contrast our approach with623
the kind of results that can be derived from [7, Proposition 14.45], [31, Theorem 3.1.1.1], [26,624
Theorem 2.4].625

Example A.1. We consider the 2× 2× 2 tensors A,B with frontal slices626

(A.1) A(:, :, 1) =
[
1 0
0 1

]
, A(:, :, 2) =

[
0 1
0 0

]
, B(:, :, 1) =

[
1 1
0 1

]
, B(:, :, 2) =

[
0 1
0 0

]
.627

Since

B(2,3;1) =

[
1 1 0 1
0 1 0 0

]T
=

[
1 0 0 1
0 1 0 0

]T
·
[
1 0
1 1

]
= A(2,3;1)M1,

B(1,3;2) =

[
1 0 0 0
1 1 1 0

]T
=

[
1 0 0 0
0 1 1 0

]T
·
[
1 1
0 1

]
= A(1,3;2)M2,
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B(1,2;3) =

[
1 0 1 1
0 0 1 0

]T
=

[
1 0 0 1
0 0 1 0

]T
·
[
1 0
1 1

]
= A(1,2;3)M3,

the column spaces of the corresponding matrix representations of A and B coincide. The result628
in [7, Proposition 14.45], [31, Theorem 3.1.1.1], [26, Theorem 2.4] only implies that A and B629
share the factor matrices in the first two modes, last two modes, and in the first and third630
mode, so, that A and B can be decomposed as631

A = a1 ⊗ b1⊗? + a2 ⊗ b2⊗? + · · ·+ aR ⊗ bR⊗?,(A.2)632

B = a1 ⊗ b1⊗? + a2 ⊗ b2⊗? + · · ·+ aR ⊗ bR⊗?,(A.3)633634

or as635

A =?⊗ c1 ⊗ d1+?⊗ c2 ⊗ d2 + · · ·+?⊗ cR ⊗ dR,(A.4)636

B =?⊗ c1 ⊗ d1+?⊗ c2 ⊗ d2 + · · ·+?⊗ cR ⊗ dR,(A.5)637638

or as639

A = e1⊗?⊗ f1 + e2⊗?⊗ f2 + · · ·+ eR⊗?⊗ fR,(A.6)640

B = e1⊗?⊗ f1 + e2⊗?⊗ f2 + · · ·+ eR⊗?⊗ fR.(A.7)641642

Note that, in general, the result in [7, Proposition 14.45], [31, Theorem 3.1.1.1], [26, Theorem643
2.4] does not imply a procedure to compute R nor the vectors a1, . . . , fR. Since 2 × 2 × 2644
tensors are well studied, it can be inferred from known results (see, for instance,[18]) that in645
this example R = 3. On the other hand, even in this small example decompositions (A.2)–646
(A.7) are not unique and the border rank of A and B is 2 [18], which means that the rank-3647
tensors A and B can be arbitrary well approximated by tensors of rank 2. Further, again since648
we are dealing with 2× 2× 2 tensors, it can be shown that A and B cannot be generated by649
the same three (possibly scaled) rank-1 tensors, that is,650

A = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c2 + a3 ⊗ b3 ⊗ c3,(A.8)651

B = λ1a1 ⊗ b1 ⊗ c1 + λ2a2 ⊗ b2 ⊗ c2 + λ3a3 ⊗ b3 ⊗ c3(A.9)652653

is not possible.11 Hence, the number of rank-1 terms that (possibly scaled) generate both A654
and B, is at least 4. (Obviously, 4 is also sufficient.) Thus, the minimal number of rank-1655
tensors that generate both A and B is greater than the individual rank of A.656

Example A.2. Let D1 = D2 = D3 ∈ F2×2×2 be the same as A in (A.1), that is,

Dr(:, :, 1) =
[
1 0
0 1

]
, Dr(:, :, 2) =

[
0 1
0 0

]
, r = 1, 2, 3.

11Indeed, if we assume that (A.8) and (A.9) hold, then for (α, β) ∈ {(λ1, 1), (λ2, 1), (λ3, 1)} the tensor

αA − βB is at most rank-2. Since αA − βB = B •1
[
α− β α

0 α− β

]
and B is rank-3 tensor, it follows that

αA− βB is at most rank-2 only if α = β. Hence, λ1 = 1, λ2 = 1, and λ3 = 1, implying that A = B, which is a
contradiction.
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and let657

A =
R∑
r=1

Dr •1 X(1)
r •2 X(2)

r •3 X(3)
r ,658

659

where X
(1)
r ,X

(2)
r ,X

(3)
r ∈ F6×2 are such that the matrices [X

(1)
1 X

(1)
2 X

(1)
3 ], [X(2)

1 X
(2)
2 X

(2)
3 ],660

and [X
(3)
1 X

(3)
2 X

(3)
3 ] ∈ F6×6 are nonsingular, so A ∈ F6×6×6 is a sum of three ML rank-(2, 2, 2)661

terms. Let also B ∈ F6×6×6 be a tensor such that assumption (4.3) in Theorem 4.1 holds.662
The result in [7, Proposition 14.45], [31, Theorem 3.1.1.1], [26, Theorem 2.4] only implies that663
(A.4)–(A.7) hold for some R and for some vectors c1, . . . , fR ∈ F6. Since A is the sum of three664
ML rank-(2, 2, 2) terms and each of the terms is a rank-3 tensor, it follows from [28] (Strassen’s665
direct sum conjecture) that A is rank-9 tensor, that is R = 9. Note that even in this small scale666
example it is very hard to estimate R from the column spaces of the matrix representations667
of A or B. The reason is that both A and B can be arbitrary well approximated by tensors of668
rank-6. (Indeed each ML rank-(2, 2, 2) term can be arbitrary well approximated by tensors of669
rank-2.)670

On the other hand, Theorem 4.1 says under what assumptions on M1 and M2 both tensors671
A and B can be decomposed into a sum of three ML rank-(2, 2, ·) terms and how the ML rank-672
(2, 2, ·) terms of A and B relate to each other.673
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