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Artificial intelligence for fast and accurate 3D tooth segmentation on CBCT 

ABSTRACT 

Introduction: Tooth segmentation on CBCT is a labour-intensive task, considering limited 

contrast resolution and potential disturbance by various artefacts. Fully automated tooth 

segmentation cannot be achieved by merely relying on CBCT intensity variations. This study 

aimed to develop and validate an artificial intelligence (AI)-driven tool for automated tooth 

segmentation on CBCT. 

Methods: Total of 433 DICOM images of single and double rooted teeth randomly selected 

from 314 anonymized CBCT scans were imported and manually segmented. An AI-driven tooth 

segmentation algorithm based on a feature pyramid network (FPN) was developed to 

automatically detect and segment teeth replacing manual user contour placement. The AI-driven 

tool was evaluated based on volume comparison, intersection over union (IoU), Dice score 

coefficient (DSC), morphologic surface deviation and total segmentation time. 

Results: Overall, AI-driven and clinical reference segmentations resulted in very similar 

segmentation volumes. The mean IoU for full tooth segmentation was 0.87 (±0.03) and 0.88 

(±0.03) for semi-automated (SA) (clinical reference) vs fully automated AI-driven (F-AI) and 

refined AI-driven (R-AI) respectively. R-AI and F-AI showed an average median surface 

deviation from SA of 9.96 µm (±59.33) and 7.85 µm (±69.55) respectively. SA segmentations of 

single and double rooted teeth had a mean total time of 6.6 mins (±76.15s), F-AI of 0.5 mins 

(±8.64s) (12 times faster) and R-AI of 1.2 mins (±33.02s) (6 times faster). 

Conclusion: This study demonstrated a unique fast and accurate approach for AI-driven 

automated tooth segmentation on CBCT. Results may open doors for AI-driven applications in 

surgical and treatment planning in oral healthcare.  
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Introduction 

Dentistry excels in the delivery of personalized healthcare, traditionally through fabrication of 

dental fillings, crowns and prostheses. The last two decades have seen an exponential rise in the 

field of three-dimensional (3D) image analysis and printing techniques leading to multiple digital 

dentistry (DD) applications. Amongst the most frequent applications are 3D-guided implant 

surgery (1), guided-endodontics and apical surgeries (2, 3) CBCT-based planning and fabrication 

of donor teeth replicas and surgical guides for successful tooth autotransplantation (TAT) (4), 

digital orthodontic applications (5) and virtual orthognathic surgery planning (6). 

DD relies primarily on acquisition and segmentation of 3D imaging modalities. The current trend 

of image acquisition in this field relies primarily on cone beam computed tomography (CBCT), 

which offers highly accurate volumetric data on jaw bones and teeth with relatively low radiation 

doses and cost, (7-9).  

Image segmentation is a process of dividing an image into different meaningful regions and is 

utilized in structural identification and quantitative assessment of dental structures for various 

imaging modalities  (10, 11). Tooth segmentation is vital for accurate diagnosis, treatment 

planning and direct surgical assistance for a wide variety of DD applications as abovementioned. 

Nevertheless, teeth segmentation on CBCT remains a labour-intensive and challenging task, 

primarily related to the lack of hounsfield units (HUs) and the limited differential contrast 

between cementum, dentin and bone with only 200 µm-wide periodontal ligament space. 

Meanwhile these images also suffer from artefacts in the jaw bone area, making fully automated 

tooth segmentation by merely relying on intensity variation of (CB)CT images unreliable (5).  

Convolutional neural networks (CNN/ConvNet) are a special type of deep learning (DL) 

algorithms made of multilayer neural networks, specifically aimed at the recognition of visual 
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patterns from pixelized images with minimal pre-processing (12). Several CNNs have been 

described with different architectures depending on the application (13, 14). CNNs sparked 

tremendous interest over the past few years, and have become relevant tools for image 

processing and segmentation  (11, 15), such as the use of U-Net and V-Net for automated level 

set-based tooth segmentation (16, 17). The architecture of a CNN is analogous to that of the 

connectivity pattern of neurons in the human brain; mainly inspired by the organization of the 

visual cortex. A CNN “learns” intrinsic statistical patterns in data to eventually cast predictions 

on unseen data (18). Implementation of a CNN in a tooth segmentation tool could help 

improving the results, given that the algorithm could be taught how to behave for challenging – 

yet highly common – cases, including complicated root anatomy, heavy scattering, immature 

teeth and metal artefacts. Such tool could bridge the gap between accuracy and time 

consumption for tooth segmentation, and potentially simplify digital dentistry applications and 

surgical planning to a broader audience of practitioners.  

Frequently used tooth segmentation software mainly relies on thresholding, template-based 

fitting methods (TbFM) and level set methods to segment individual tooth from dental CBCT 

images.  

However, thresholding may not work if underlying shading distorts the image and may have 

difficulties finding the threshold minimum (19), especially with CBCT grey values. TbFM 

lacked robustness with multi-rooted teeth and complex anatomy (16), while the level set method 

needs to perform numerous mathematical operations, yielding relatively slow results (20) and 

may be problematic in regards to partial volume effects, especially when the intensity variation 

in the background is higher than in the foreground (21). Also, the use of such automated methods 

could struggle with images of low quality, metal artefacts and immature tooth segmentation.  
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The overall aim of this study was to develop and validate a clinically operational AI-

driven tooth segmentation tool capable of minimizing manual interventions and yielding fast, 

accurate and consistent results essential for clinical use. 

Materials and Methods 

Data Acquisition and Training Database 

CBCT scans were randomly collected from two previous study databases, described in 

supplemental S1. All teeth were segmented manually by experts in the field of 

dentomaxillofacial radiology using a dedicated tool developed in MeVisLab (MeVis Research, 

Bremen, Germany) and validated for accurate tooth/root and canal space segmentation as 

previously described (10) with an integrated time monitoring module. Briefly, the imaging 

analysis tool applies a semi-interactive livewire boundary extraction (22) to create a set of 

orthogonal contours, followed by a variational interpolation algorithm that reconstructs the 

surface of an object with energy-minimizing, smoothening and implicit functions (23). 

Segmentations resulted in a total of 433 DICOM (digital imaging and communications in 

medicine) images of teeth randomly selected from the CBCT scans – including upper and lower 

incisors, canines and premolars – accounting for 2924 slice images of teeth sampled in axial, 

sagittal or coronal direction and an associated binary mask identifying the region of the image 

belonging to the tooth. Each binary mask was generated based on a contour segmentation object 

file (CSO file) of the tooth, that were annotated on the 2D slices. Contours were filled and 

exported as portable network graphics (PNG) images, while the corresponding slice was 

extracted from the 3D DICOM image and exported to a grayscale PNG image.  These 2D image 

pairs were then divided into three datasets: training (2095 samples, 71.6%), optimization (501 

samples, 17.2%) and validation set (328 samples, 11.2%). Datasets included single and double 
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rooted teeth (with mature and immature cases), various artefacts, fillings, metal posts, low 

resolution images, various voxel sizes, heavy and low scattering as well as other segmentation-

challenging cases. 

Machine Learning 

Dataset pre-processing and augmentation  

Data augmentation techniques were used on the training set in order to increase the 

generalization and robustness of the model, as detailed in supplemental S2.1. 

Network Architecture of the ConvNet  

The architecture used was a Feature Pyramid Network (FPN) (24). Network architecture is 

demonstrated in figure 1. Detailed description is provided in supplemental S2.2. 

AI driven tooth segmentation 

An AI-driven tooth segmentation algorithm trained with the above described dataset was 

developed for automated detection and segmentation of tooth structure replacing manual user 

contour placement implemented in the previously validated tooth segmentation method (10). 

Moreover, the possibility of user interaction was preserved with the ability to modify, add, or 

delete the AI suggested contours (figure 2). 

Validation Dataset 

 Forty-six randomly selected cases were chosen for the validation of the tool. These cases 

accounted for 10% of the whole database (433 DICOMs) and were unseen by the algorithm 

during the training phase. The validation set consisted of 19 incisors, 17 canines and 17 

premolars, equally proportional to the full database tooth-type distribution. 

All 46 cases were segmented using three segmentation protocols: (1) semi-automated 

segmentation (SA) – performed manually  by experts in the field of oral radiology and medical 
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imaging and serving as the clinical reference – which relied on the use of livewire contour based 

segmentation as described earlier (10) and without AI assistance, (2) fully automated AI-driven 

segmentation (F-AI) – where no user interaction was performed following the AI-computation 

and contour placement; and (3) refined AI-driven segmentation (R-AI) – where expert users 

refine what was judged under- or over-estimated following computation suggested by the AI-

algorithm. 

Assessment and Validation of the tool 

Voxel-based performance metrics 

Binarized segmentation results were used for volume calculation and subsequent assessment. 

The binary images were fed to an Intersection-Over-Union (IoU) algorithm to test for the 

accuracy of overlap (25). The module plotted F-AI and R-AI groups against SA in order to 

evaluate the performance of the AI-tool. An IoU score lower than 0.5 is considered as failure 

(26). Further, the Dice similarity coefficient (DSC) was calculated for each tooth/protocol (F-AI 

& R-AI) versus the reference image (SA). 

IoU is employed as a loss function in foreground and background classification tasks of object in 

an image (25). Detailed calculation steps are available in supplemental S3. 

3D Reconstruction and Morphologic Surface Analysis 

After segmentation, the 3D triangle-based surface of the tooth was reconstructed as a Standard 

Tessellation Language file (STL). All STL files were then imported in the 3-matic software 

(Materialise NV, Leuven, Belgium) to perform a signed morphologic surface comparison 

between the 3D model for each tooth/protocol (F-AI & R-AI) versus the 3D model from the 

reference image (SA), allowing for positive and negative differentiation with regard to the 
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reference image (figure 2-L/M). A cutoff value for accuracy was set at 200µm median surface 

deviation from the reference image (27, 28). 

Statistical Analysis 

Results from the metrics calculated during and after segmentation were evaluated in regard to 

three distinct groups: (1) Full dataset analysis, (2) mature and immature tooth analysis, and (3) 

tooth-types dependent analysis (for incisors, canines and premolars separately). 

Statistical analysis was performed using GraphPad Prism for MacOS, version 9.0. (GraphPad 

Software, La Jolla California, USA). Volume variation between the three groups as well as 

between the different tooth types and condition (mature and immature) was reported in a 

descriptive fashion. The systematic volume deviation between F-AI, R-AI and SA segmentations 

was evaluated using the method of Bland and Altman (29) in MedCalc for Windows, version 

15.0 (MedCalc Software, Ostend, Belgium). Detailed timing was recorded and compared 

between the three groups using repeated measuresAnalysis of Variance (ANOVA) method with 

Tukey’s correction. To examine if AI segmentations were not inferior to the SA segmentations 

(dentist-operated) two metrics were evaluated as follows: 1- the IoU scores for F-AI and R-AI 

were tested using a one-sample t-test (an IoU score lower than 0.5 is considered as failure), 2- 

average surface deviation using a one-sample t-test against a cut-off value of 200 µm. 

A two-way ANOVA test with Tukey’s correction was used to evaluate the effect of tooth type 

(incisors, canines and premolars) and apex maturation on the IoU score of F-AI as well as R-AI. 

All measurements were calculated for the overall tooth as well as for crown and root separately.  

Results 
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Overall, AI-driven and clinical reference segmentations resulted in very similar segmentation 

volumes (figure 3A). The mean segmentation volume for the SA (clinical reference) was 544 

mm3 (±121), while this was 536 mm3 (±121) and 538 mm3 (±123) for the F-AI and the R-AI 

methods, respectively. The deviation in segmented volumes between F-AI and R-AI versus SA 

(clinical reference) was evaluated using the Bland-Altman method showing a systematic 

decrease in segmentation volume 1.7% for F-AI and 1.3% for R-AI (figure 3B-C).  

The mean IoU for full tooth segmentation was 0.87 (±0.03) and 0.88 (±0.03) for SA vs F-AI and 

R-AI respectively. Both F-AI and R-AI performed as good as the human operator (p<0.0001), 

without any failure cases (IoU score below 0.5) (figure 4D). The mean DSC 0.93 was (±0.02) 

and 0.94 (±0.02) for SA vs F-AI and R-AI respectively. 

There was a significant effect on the IoU score at the p<0.05 for tooth types included in this 

study (incisors, canines and premolars) [F (2, 88) = 21.9, p<0.0001]. Post hoc comparisons using 

the Tukey test indicated that the mean IoU score for incisors (full tooth and crown 

segmentations) was significantly different than canines and premolars in both the F-AI and R-AI 

groups. Detailed IoU results are shown in table 1. While, there was no significant effect on the 

IoU score at the p<0.05 for the tooth apex maturation (mature vs. immature) [F (1, 89) = 0.1145, 

p=0.73]. 

A morphologic surface comparison between SA versus F-AI and R-AI showed an average 

median surface deviation of 7.85 µm (±69.55) and 9.96 µm (±59.33) (figure 3E). Both F-AI and 

R-AI performed as good as the human operator (p<0.0001), without average surface deviation 

higher than the cut-off value of 200 µm (figure 3E, F and G). 

There was a significant effect on the total time consumed at the p<0.05 for the three 

segmentation methods [F (2, 144) = 847, p<0.0001]. Post hoc comparisons using the Tukey test 

Jo
urn

al 
Pre-

pro
of



 9

indicated that the SA segmentations time (mean = 6.6 mins ±76.2s) was significantly different 

from the F-AI (mean = 0.5 mins ±8.6s) and R-AI (mean = 1.2 mins ±33.0s) segmentations. This 

difference demonstrated a 12.5- and 6.5-fold decrease in the segmentation time for the F-AI and 

R-AI respectively. The difference in segmentation time between F-AI and R-AI was statistically 

significant (p-value <0.05). The aforementioned total time accounted for region of interest (ROI) 

selection, rotation, seeds/contour placement and image saving (figure 2). In case of AI-driven 

segmentations (F-AI / R-AI), the average time needed by the user for ROI selection, rotation and 

saving was 29.7 seconds (±8.6s), and the average time needed by the algorithm to cast 

segmentation predictions on slices had a mean of 1.7 seconds (±0.04s). Additional user 

interactions for R-AI segmentations then took an average of 55 seconds (±2.5s).  

Discussion 

This study reports on the development and validation of a novel tool for automated tooth 

segmentation based on AI. The presented data confirms the positive impact of implementing AI 

technology in the field of radiology in general and segmentation in particular, highlighting the 

high accuracy and low time-consumption gained from AI integration. 

Despite the heterogeneity of the dataset used in terms of age, image quality, voxel size and 

artefacts, no failure cases (IoU < 0.5) were recorded and no cases showed an IoU rate below 0.77 

– illustrating the wide array of clinical cases to which this tool can be applied. It must be stated 

that the IoU penalizes just a slight shift in overlap quite heavily. Therefore, a good overlap has 

an IoU > 0.6, and an excellent overlap has an IoU of > 0.9 (26). 

AI integration for tooth segmentation bridges the gap between automated segmentation and 

challenging cases such as immature teeth, teeth with fillings and metal induced artefacts. 

Previous studies applying automated segmentation methods using techniques such as the level-
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set or template-based fitting method for tooth segmentation (5), showed drawbacks obtaining 

highly accurate results on such challenging clinical cases, yet highly common in daily clinical 

practice.  

CNNs have been introduced by (30) in the early 1990’s. They rely on hidden layers responsible 

of feature extraction and classification and have showed excellent results in detection and 

classification tasks (31). In the current study a feature pyramid networks architecture was 

selected (24), since it is part of the state-of-the-art of semantic segmentation and because it 

showed from our preliminary results an acceptable inference time of approximately 1.6 seconds. 

As for the encoder, an efficientnet-b7 was used, as it achieves superior performances on the 

ImageNet dataset, while using less operations than other encoders such as ResNet (32). 

To date, few attempts of bridging AI and tooth segmentation were reported. Cui et al. (5) relied 

on a 2-stage approach with two 3D networks, requiring specialized software and advanced 

hardware to run efficiently. The sample size used in the study was relatively small (12 images for 

training and 8 for validation). Timing and comparison with manual segmentations were not 

reported, and no cases with artefacts were used. Moreover, DSC reached at most 0.921.  

Chen et al. (16) used a multi-task 3D fully convolutional network (V-Net) based on 3D operation 

to predict tooth region and surface. This approach had a maximum DSC of 0.94 (± 0.01) and 

similar to the Cui et al.’s relies on a 3D approach, requiring heavy processing. 

Lee et al.’s (17) used a 2D U-Net to label slice-by-slice, yet relied on mapping Grey values to 

HUs, which has been proven to be unreliable on CBCT even after normalization (33). 

None of the approaches discussed reported the possibility of manual corrections or user 

interaction to enhance the AI-driven segmentations. Further, editing a 3D label-map is 

computationally demanding, as it requires going through the slices and editing on a voxel basis. 
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Such methods may yield relatively slow results and require GPU to efficiently operate, 

complicating accurate user-interaction and manual corrections. Therefore, the aforementioned 

approaches might struggle with complex images, heavy scattering and other compromising 

radiological artefacts. In contrast to the 2D slice correction and interpolation approach applied in 

the current study. 

This present study tackled these issues by exposing the algorithm to a large dataset with 314 

CBCT scans, yielding 2924 fully segmented CSO paths for the study and diverse cases such as 

root shape variation, heavy scattering, restorations, orthodontic brackets, artefacts and 

resorptions. The method applied in the current study also allows for smooth user-interaction with 

the dentist in mind as an end-user.  The operator is able to correct what is judged under- or over-

estimated in a user-friendly and highly intuitive interface, given that the segmentations rely on 

CSOs seed points and contours on 2D images, which can easily be adjusted to precise locations, 

as well as having more seeds/contours added or removed – according to the operator’s judgment. 

To the best of our knowledge, this is the first attempt of AI-driven tooth segmentation based on 

CSOs and 2D slices, that is combined with a previously validated interpolation algorithm for 

accurate 3D teeth segmentation (10). This tool can be operated without GPU and therefore on 

personal computers and could also be implemented as a cloud-based service, serving a wider 

audience for DD applications. 

It is fair to mention that this study has its own limitations. The AI algorithm was not trained to 

segment molars yet (figure 1). It can therefore segment from second premolar to second 

premolar in both the maxilla and mandible. The tool can also segment one tooth at a time and 

require a manual ROI selection and rotation, however both will be automated in the near future. 

Nevertheless, the results obtained are unique showing the effectiveness of this technique in terms 
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of fully automated segmentations and provide the best results to date in terms of accuracy and 

time consumption for AI-driven teeth segmentations. The developed tool has a direct clinical 

application in guided-endodontics, CBCT-based TAT and orthodontic treatment planning and 

follow-up. Moreover, in research, the tool will simplify studying the 3D tooth root tissue changes 

after regenerative endodontic procedures (10, 34, 35), TAT (4) and orthodontic tooth movement. 

Studying the 3D patterns of tissue deposition or resorption could offer valuable insights into the 

treatment outcomes and influence clinical decision making. 

Conclusion 

The present study demonstrated a novel approach for using CNNs for accurate and fast 

automated 3D tooth segmentation. The aforementioned results may open doors for AI-driven 

applications in surgical and treatment planning for improving efficiency and accuracy of various 

procedures in oral surgery, orthodontics, guided-endodontics, tooth autotransplantation. 
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Table 1:  Mean IoU/DSC performance comparison depending on tooth part, condition and type 

for SA, F-AI and R-AI 

Figure 1: Architecture of the Feature Pyramid Network used. (A) The encoder extracts the 

interesting features from the input image, (B) the decoder generates a dense segmentation mask 

of the input and (C) the semantic segmentation branch combines the feature maps from all the 

layers of the decoder into one single output. (D) shows the result of multiple segmentation 

predictions and interpolations. 

Figure 2: Workflow of the segmentation methods used. (A) and (B) represent ROI selection and 

rotation. (C) (D) and (E) show seeds and contour placement according to the three segmentation 

methods relying on semi-automated user segmentation (SA), Fully Automated AI-driven 

Segmentation (F-AI) and Refined AI-driven Segmentation (R-AI). (F) (G) and (H) show a 3D 

representation of CSOs contours. (I) (J) and (K) illustrate segmentation results for each method. 

(L) and (M) represent an example of a surface deviation map of F-AI (L) and R-AI (M) 

compared with the clinical reference (SA). 

Figure 3: (A) A plot comparison between segmented volumes in mm3 for SA, F-AI and R-AI. 

(B and C) Bland-Altman plots between tooth segmented volumes for F-AI (B) and R-AI (C) 

versus the clinical reference (SA) (the difference between the measurements is plotted against 

their mean). (D) IoU score comparison between F-AI and R-AI for Full tooth, crown and root 

segmentation (represented as mean with SD). (E) Median surface deviation from the clinical 

reference of F-AI and R-AI. (F and G) Morphologic surface comparison analysis of SA versus F-

AI (F) and R-AI (G). 
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Table 1:  Mean IoU/DSC performance comparison depending on tooth part, condition and 

type for SA, F-AI and R-AI 

 

 
SA vs F-AI  
Full tooth 

SA vs R-AI  
Full tooth 

SA vs F-AI 
Crown 

SA vs R-AI  
Crown 

SA vs F-AI 
Root 

SA vs R-AI  
Root 

SA vs F-AI 
Mature 

teeth 

SA vs R-AI   
Mature 

teeth 

IoU 
0.877 

(±0.037) 
0.881 

(±0.036) 
0.887 

(±0.032) 
0.889 

(±0.036) 
0.894 

(±0.03) 
0.898 

(±0.026) 
0.876 

(±0.039) 
0.881 

(±0.038) 

DSC 
0.934 

(±0.02) 
0.937 

(±0.02) 
0.940 

(±0.018) 
0.941 

(±0.02) 
0.944 

(±0.017) 
0.946 

(±0.014) 
0.934 

(±0.023) 
0.937 

(±0.021) 

 
SA vs F-AI 
Immature 

teeth 

SA vs R-AI 
Immature 

teeth 

SA vs F-AI 
Incisors 

SA vs R-AI 
Incisors 

SA vs F-AI 
Canines 

SA vs R-AI 
Canines 

SA vs F-AI 
Premolars 

SA vs R-AI 
Premolars 

IoU 
0.879 

(±0.032) 
0.884 

(±0.031) 
0.877 

(±0.038) 
0.881 

(±0.035) 
0.898 

(±0.027) 
0.906 

(±0.029) 
0.891 

(±0.025) 
0.890 

(±0.022) 

DSC 
0.935 

(±0.018) 
0.938 

(±0.018) 
0.934 

(±0.024) 
0.937 

(±0.022) 
0.949 

(±0.012) 
0.954 

(±0.013) 
0.942 

(±0.011) 
0.94 

(±0.0078) 

Jo
urn

al 
Pre-

pro
of



Encoder Decoder Semantic Segmentation Branch

1

256

512

1024

2048

256

256

256

256

128

128

128

128

512

3x3

conv

Prediction

1_
4

1_
8

1__
16

1__
32

Interpelation Algorithm

Multiple Segmentation Prediction and Interpolation

A B

D

C

Jo
urn

al 
Pre-

pro
of



ROI Selection ROI Rotation

SA R-AIF-AI

IoU: 0.89

DSC: 0.94

IoU: 0.90

DSC: 0.95

Volume: 495.5 mm! Volume: 486.2 mm! Volume: 489.1 mm!

Median Surface Deviation (SA - R-AI): 1.4 μmMedian Surface Deviation (SA - F-AI): 4.7 μm

-60 -40 -20 0 20 40 60

μm

A B

C D E

F G H

I J K

L MJo
urn

al 
Pre-

pro
of



SA versus F-AI

-80 -60 -40 -20 0 20 40
μm

SA versus R-AI

B

E

F G

-80 -60 -40 -20 0 20 40
μm

D

A B C
(m

m
")

Mean of SA and F-AI volumes Mean of SA and R-AI volumes

Jo
urn

al 
Pre-

pro
of


