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Artificial intelligence for fast and accurate 3D tooth segmentation on CBCT

ABSTRACT

Introduction: Tooth segmentation on CBCT is a labour-intensivek,taonsidering limited
contrast resolution and potential disturbance byioua artefacts. Fully automated tooth
segmentation cannot be achieved by merely relym@BCT intensity variations. This study
aimed to develop and validate an artificial inggince (Al)-driven tool for automated tooth
segmentation on CBCT.

Methods: Total of 433 DICOM images of single and double rooted teatidomly selected
from 314 anonymized CBCT scans were imported anaually segmented. An Al-driven tooth
segmentation algorithm based on a feature pyrangtivark (FPN) was developed to
automatically detect and segment teeth replacinguadauser contour placement. The Al-driven
tool was evaluated based on volume comparisonrsedtéon over unionlgU), Dice score
coefficient (DSC), morphologic surface deviatiorddotal segmentation time.

Results: Overall, Al-driven and clinical reference segmdéiotass resulted in very similar

segmentation volumes. The mebo for full tooth segmentation was 0.8#0(03) and 0.88

(x0.03) for semi-automated (SA) (clinical referengs)fully automated Al-driven (F-Al) and
refined Al-driven (R-Al) respectively. R-Al and FtAshowed an average median surface
deviation from SA of 9.96 um (£59.33) and 7.85 #®9.55) respectively. SA segmentations of
single and double rooted teeth had a mean tota 6fMm6.6 mins £76.15s), F-Al of 0.5 mins
(£8.645s) (12 times faster) and R-Al of 1.2 mitt83.02s) (6 times faster).

Conclusion: This study demonstrated a unique fast and accuapproach for Al-driven
automated tooth segmentation on CBCT. Results rpay doors for Al-driven applications in

surgical and treatment planning in oral healthcare.



Introduction

Dentistry excels in the delivery of personalizedltiecare, traditionally through fabrication of
dental fillings, crowns and prostheses. The last d@cades have seen an exponential rise in the
field of three-dimensional (3D) image analysis anidting techniques leading to multiple digital
dentistry (DD) applications. Amongst the most frequ applications are 3D-guided implant
surgery (1), guided-endodontics and apical surg¢fe3) CBCT-based planning and fabrication
of donor teeth replicas and surgical guides forcessful tooth autotransplantation (TAT) (4),
digital orthodontic applications (5) and virtuatlwgnathic surgery planning (6).

DD relies primarily on acquisition and segmentad3D imaging modalities. The current trend
of image acquisition in this field relies primaribyy cone beam computed tomography (CBCT),
which offers highly accurate volumetric data on jasnes and teeth with relatively low radiation
doses and cost, (7-9).

Image segmentation is a process of dividing an ematp different meaningful regions and is
utilized in structural identification and quantitet assessment of dental structures for various
imaging modalities (10, 11). Tooth segmentatiorvital for accurate diagnosis, treatment
planning and direct surgical assistance for a watéety of DD applications as abovementioned.
Nevertheless, teeth segmentation on CBCT remaifteb@ur-intensive and challenging task,
primarily related to the lack of hounsfield unitd{s) and the limited differential contrast
between cementum, dentin and bone with only 200wise- periodontal ligament space.
Meanwhile these images also suffer from artefacthe jaw bone area, making fully automated
tooth segmentation by merely relying on intensayiation of (CB)CT images unreliable (5).
Convolutional neural networks (CNN/ConvNet) are geaal type of deep learning (DL)

algorithms made of multilayer neural networks, #peadly aimed at the recognition of visual



patterns from pixelized images with minimal pregessing (12). Several CNNs have been
described with different architectures dependingtio® application (13, 14). CNNs sparked
tremendous interest over the past few years, ane lieecome relevant tools for image
processing and segmentation (11, 15), such assth@f U-Net and V-Net for automated level
set-based tooth segmentation (16, 17). The ar¢hieeof a CNN is analogous to that of the
connectivity pattern of neurons in the human bramajnly inspired by the organization of the
visual cortex. A CNN “learns” intrinsic statisticphtterns in data to eventually cast predictions
on unseen data (18). Implementation of a CNN inoatht segmentation tool could help
improving the results, given that the algorithm Idole taught how to behave for challenging —
yet highly common — cases, including complicatedt ranatomy, heavy scattering, immature
teeth and metal artefacts. Such tool could bridge gap between accuracy and time
consumption for tooth segmentation, and potentisitgplify digital dentistry applications and
surgical planning to a broader audience of practérs.

Frequently used tooth segmentation software maiales on thresholding, template-based
fitting methods (TbFM) and level set methods tonsegt individual tooth from dental CBCT
images.

However, thresholding may not work if underlyingading distorts the image and may have
difficulties finding the threshold minimum (19), peially with CBCT grey values. TbFM
lacked robustness with multi-rooted teeth and cemphatomy (16), while the level set method
needs to perform numerous mathematical operatiakling relatively slow results (20) and
may be problematic in regards to partial volumea#, especially when the intensity variation
in the background is higher than in the foregro(21). Also, the use of such automated methods

could struggle with images of low quality, metaledacts and immature tooth segmentation.



The overall aim of this study was to develop antidate a clinically operational Al-
driven tooth segmentation tool capable of miningzimanual interventions and yielding fast,
accurate and consistent results essential forcelinise.

Materialsand M ethods

Data Acquisition and Training Database

CBCT scans were randomly collected from two presiagtudy databases, described in
supplemental S1. All teeth were segmented manuély experts in the field of
dentomaxillofacial radiology using a dedicated tdeleloped in MeVisLab (MeVis Research,
Bremen, Germany) and validated for accurate tomth/mnd canal space segmentation as
previously described (10) with an integrated timenitoring module. Briefly, the imaging
analysis tool applies a semi-interactive livewireubdary extraction (22) to create a set of
orthogonal contours, followed by a variational mptation algorithm that reconstructs the
surface of an object with energy-minimizing, smawoting and implicit functions (23).
Segmentations resulted in a total of 433 DICOM ifdlgimaging and communications in
medicine) images of teeth randomly selected froen@GBCT scans — including upper and lower
incisors, canines and premolars — accounting f@428€lice images of teeth sampled in axial,
sagittal or coronal direction and an associatedrgimask identifying the region of the image

belonging to the tooth. Each binary mask was geeérisased on a contour segmentation object

file (CSO file) of the tooth, that were annotated the 2D slices. Contours were filled and
exported as portable network graphics (PNG) imagds)e the corresponding slice was
extracted from the 3D DICOM image and exported tpayscale PNG image. These 2D image
pairs were then divided into three datasets: ingir{fR095 samples, 71.6%), optimization (501

samples, 17.2%) and validation set (328 sample2%d)1 Datasets included single and double



rooted teeth (with mature and immature cases)ouariartefacts, fillings, metal posts, low
resolution images, various voxel sizes, heavy amddcattering as well as other segmentation-
challenging cases.

Machine Learning

Dataset pre-processing and augmentation

Data augmentation techniques were used on theingaiset in order to increase the
generalization and robustness of the model, aslefbia supplemental S2.1.

Network Architecture of the ConvNet

The architecture used was a Feature Pyramid Net{ePN) (24). Network architecture is
demonstrated in figure 1. Detailed descriptionrsv/mled in supplemental S2.2.

Al driven tooth segmentation

An Al-driven tooth segmentation algorithm trainedthwthe above described dataset was
developed for automated detection and segmentafidnoth structure replacing manual user
contour placement implemented in the previouslydeaéd tooth segmentation method (10).
Moreover, the possibility of user interaction wasgerved with the ability to modify, add, or
delete the Al suggested contours (figure 2).

Validation Dataset

Forty-six randomly selected cases were chosenthfervalidation of the tool. These cases
accounted for 10% of the whole database (433 DICO&hsl were unseen by the algorithm
during the training phase. The validation set cxiesgi of 19 incisors, 17 canines and 17
premolars, equally proportional to the full databsoth-type distribution.

All 46 cases were segmented using three segmamtgiiotocols: (1) semi-automated

segmentation (SA) — performed manually by experthe field of oral radiology and medical



imaging and serving as the clinical reference —ctvimelied on the use of livewire contour based
segmentation as described earlier (10) and witAbassistance, (2) fully automated Al-driven
segmentation (F-Al) — where no user interaction pagormed following the Al-computation
and contour placement; and (3) refined Al-drivegrsentation (R-Al) — where expert users
refine what was judged under- or over-estimatetbfhg computation suggested by the Al-
algorithm.

Assessment and Validation of the tool

Voxel-based performance metrics

Binarized segmentation results were used for volgadeulation and subsequent assessment.
The binary images were fed to an Intersection-Qu@en (oU) algorithm to test for the
accuracy of overlap (25). The module plotted F-At&R-Al groups against SA in order to

evaluate the performance of the Al-tool. Aol score lower than 0.5 is considered as failure

(26). Further, the Dice similarity coefficiedD$C) was calculated for each tooth/protocol (F-Al
& R-Al) versus the reference image (SA).
IoU is employed as a loss function in foreground aackround classification tasks of object in

an image (25). Detailed calculation steps are alkalin supplemental S3.

3D Reconstruction and Morphologic Surface Analysis

After segmentation, the 3D triangle-based surfdct® tooth was reconstructed as a Standard
Tessellation Language file (STL). All STL files weethen imported in the 3-matic software
(Materialise NV, Leuven, Belgium) to perform a segn morphologic surface comparison
between the 3D model for each tooth/protocol (FEAR-AI) versus the 3D model from the

reference image (SA), allowing for positive and atege differentiation with regard to the



reference image (figure 2-L/M). A cutoff value faccuracy was set at 200pm median surface

deviation from the reference image (27, 28).

Statistical Analysis

Results from the metrics calculated during andrafegmentation were evaluated in regard to
three distinct groups: (1) Full dataset analyst$,nature and immature tooth analysis, and (3)
tooth-types dependent analysis (for incisors, asand premolars separately).

Statistical analysis was performed using GraphRainPfor MacOS, version 9.0. (GraphPad

Software, La Jolla California, USA). Volume varati between the three groups as well as

between the different tooth types and condition tgma and immature) was reported in a

descriptive fashion. The systematic volume devimbetween F-Al, R-Al and SA segmentations

was evaluated using the method of Bland and Altii2®) in MedCalc for Windows, version

15.0 (MedCalc Software, Ostend, Belgium). Detaiteding was recorded and compared

between the three groups using repeated measuigsisnaf Variance (ANOVA) method with

Tukey's correction. To examine if Al segmentatiamsre not inferior to the SA segmentations

(dentist-operated) two metrics were evaluated Hewe: 1- theloU scores for F-Al and R-Al

were tested using a one-sample t-testi@hhscore lower than 0.5 is considered as failure), 2-

average surface deviation using a one-sample atgshst a cut-off value of 200 um.

A two-way ANOVA test with Tukey’s correction wasagsto evaluate the effect of tooth type

(incisors, canines and premolars) and apex mabmrat theloU score of F-Al as well as R-Al.

All measurements were calculated for the overalthias well as for crown and root separately.

Results



Overall, Al-driven and clinical reference segmeiotad resulted in very similar segmentation

volumes (figure 3A). The mean segmentation voluorettfie SA (clinical reference) was 544

mm° (+121), while this was 536 nih{+121) and 538 mf(x123) for the F-Al and the R-Al

methods, respectively. The deviation in segmentddnves between F-Al and R-Al versus SA

(clinical reference) was evaluated using the Blaiidian method showing a systematic
decrease in segmentation volume 1.7% for F-Al aB@olfor R-Al (figure 3B-C).
The mearioU for full tooth segmentation was 0.87 (£0.03) am@B0(+0.03) for SA vs F-Al and

R-Al respectively. Both F-Al and R-Al performed gsod as the human opera{pk0.0001),

without any failure caseddU score below 0.5) (figure 4D). The mean DSC 0.93 \#£.02)

and 0.94 (x0.02) for SA vs F-Al and R-Al respeciyve

There was a significant effect on thelJ score at the@<0.05 for tooth types included in this

study (incisors, canines and premolars) [F (2,=881.9,p<0.0001]. Post hoc comparisons using

the Tukey test indicated that the me#mlJ score for incisors (full tooth and crown

segmentations) was significantly different thanicas and premolars in both the F-Al and R-Al

groups. DetailedoU results are shown in table 1. While, there wasigaificant effect on the

loU score at th@<0.05 for the tooth apex maturation (mature vs. immatiFg1, 89) = 0.1145,

p=0.73].

A morphologic surface comparison between SA velswsl and R-Al showed an average

median surface deviation of 7.85 um (£69.55) a®é §m (£59.33) (figure 3E). Both F-Al and

R-Al performed as good as the human operfgigf.0001), without average surface deviation

higher than the cut-off value of 200 um (figure 8Eand G).

There was a significant effect on the total timenstomed at thep<0.05 for the three

segmentation methods [F (2, 144) = 8490.0001]. Post hoc comparisons using the Tukey test




indicated that the SA segmentations time (mean6=n@ins +76.2s) was significantly different

from the F-Al (mean = 0.5 mins +8.6s) and R-Al (meal.2 mins +33.0s) segmentations. This

difference demonstrated a 12.5- and 6.5-fold dser@gathe segmentation time for the F-Al and

R-Al respectively. The difference in segmentationet between F-Al and R-Al was statistically

significant(p-value <0.05). The aforementioned total time accounted for negibinterest (ROI)

selection, rotation, seeds/contour placement aray@rsaving (figure 2). In case of Al-driven
segmentations (F-Al / R-Al), the average time nedalethe user for ROI selection, rotation and
saving was 29.7 seconds (+8.6s), and the average tieeded by the algorithm to cast
segmentation predictions on slices had a mean of seconds (+0.04s). Additional user
interactions for R-Al segmentations then took aerage of 55 seconds (£2.5s).

Discussion

This study reports on the development and validatth a novel tool for automated tooth
segmentation based on Al. The presented data oonfine positive impact of implementing Al
technology in the field of radiology in general aseymentation in particular, highlighting the
high accuracy and low time-consumption gained fAdnmtegration.

Despite the heterogeneity of the dataset usedrinst®f age, image quality, voxel size and
artefacts, no failure casd® < 0.5) were recorded and no cases showddlamate below 0.77

— illustrating the wide array of clinical caseswhich this tool can be applied. It must be stated
that theloU penalizes just a slight shift in overlap quite \ilga Therefore, a good overlap has
anloU > 0.6, and an excellent overlap hadald of > 0.9 (26).

Al integration for tooth segmentation bridges thep doetween automated segmentation and
challenging cases such as immature teeth, teeth filiings and metal induced artefacts.

Previous studies applying automated segmentatichade using techniques such as the level-



set or template-based fitting method for tooth segation (5), showed drawbacks obtaining
highly accurate results on such challenging clingases, yet highly common in daily clinical
practice.

CNNs have been introduced by (30) in the early X09Chey rely on hidden layers responsible
of feature extraction and classification and haliewsd excellent results in detection and
classification tasks (31). In the current studyeatfire pyramid networks architecture was
selected (24), since it is part of the state-ofdhteof semantic segmentation and because it
showed from our preliminary results an acceptatierence time of approximately 1.6 seconds.
As for the encoder, an efficientnet-b7 was usedit @a&hieves superior performances on the
ImageNet dataset, while using less operations dkt@@r encoders such as ResNet (32).

To date, few attempts of bridging Al and tooth segtation were reported. Cui et al. (5) relied
on a 2-stage approach with two 3D networks, reqgirspecialized software and advanced
hardware to run efficiently. The sample size usettheé study was relatively small (12 images for
training and 8 for validation). Timing and companswith manual segmentations were not
reported, and no cases with artefacts were usetedver, DSC reached at most 0.921.

Chen et al. (16) used a multi-task 3D fully conviminal network (V-Net) based on 3D operation
to predict tooth region and surface. This approaatt a maximum DSC of 0.94 0.01) and
similar to the Cui et al.’s relies on a 3D apprqaelquiring heavy processing.

Lee et al.’s (17) used a 2D U-Net to label sliceshge, yet relied on mapping Grey values to
HUs, which has been proven to be unreliable on CB@3n after normalization (33).

None of the approaches discussed reported the bdgsiof manual corrections or user
interaction to enhance the Al-driven segmentatioRgrther, editing a 3D label-map is

computationally demanding, as it requires goingtlgh the slices and editing on a voxel basis.
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Such methods may vyield relatively slow results aeduire GPU to efficiently operate,
complicating accurate user-interaction and manoalections. Therefore, the aforementioned
approaches might struggle with complex images, yesoattering and other compromising
radiological artefacts. In contrast to the 2D skogrection and interpolation approach applied in
the current study.

This present study tackled these issues by expdbmg@lgorithm to a large dataset with 314
CBCT scans, yielding 2924 fully segmented CSO paihshe study and diverse cases such as
root shape variation, heavy scattering, restorafioarthodontic brackets, artefacts and
resorptions. The method applied in the currentysalsio allows for smooth user-interaction with
the dentist in mind as an end-user. The operatablie to correct what is judged under- or over-
estimated in a user-friendly and highly intuitivedrface, given that the segmentations rely on
CSOs seed points and contours on 2D images, whicleasily be adjusted to precise locations,
as well as having more seeds/contours added orvesimeaccording to the operator’s judgment.
To the best of our knowledge, this is the firseatpt of Al-driven tooth segmentation based on
CSOs and 2D slices, that is combined with a preshowalidated interpolation algorithm for
accurate 3D teeth segmentation (10). This tool wamperated without GPU and therefore on
personal computers and could also be implementeal @eud-based service, serving a wider
audience for DD applications.

It is fair to mention that this study has its ovimitations. The Al algorithm was not trained to
segment molars yet (figure 1). It can thereforensag from second premolar to second
premolar in both the maxilla and mandible. The toah also segment one tooth at a time and
require a manual ROI selection and rotation, howeeth will be automated in the near future.

Nevertheless, the results obtained are unique sipte effectiveness of this technique in terms

11



of fully automated segmentations and provide th& besults to date in terms of accuracy and
time consumption for Al-driven teeth segmentationBe developed tool has a direct clinical

application in guided-endodontics, CBCT-based TAil arthodontic treatment planning and

follow-up. Moreover, in research, the tool will hfy studying the 3D tooth root tissue changes
after regenerative endodontic procedures (10, 8%, TAT (4) and orthodontic tooth movement.

Studying the 3D patterns of tissue deposition eomgtion could offer valuable insights into the
treatment outcomes and influence clinical decismaking.

Conclusion

The present study demonstrated a novel approachugorg CNNs for accurate and fast

automated 3D tooth segmentation. The aforementioasdlts may open doors for Al-driven

applications in surgical and treatment planningifgproving efficiency and accuracy of various

procedures in oral surgery, orthodontics, guidedieelontics, tooth autotransplantation.
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Table1l: Mean IoU/DSC performance comparison dependingoth part, condition and type

for SA, F-Al and R-Al

Figure 1: Architecture of the Feature Pyramid Network use¥). The encoder extracts the
interesting features from the input image, (B) deeoder generates a dense segmentation mask
of the input and (C) the semantic segmentationdiramombines the feature maps from all the
layers of the decoder into one single output. (Bves the result of multiple segmentation
predictions and interpolations.

Figure 2: Workflow of the segmentation methods used. (A) @)drepresent ROI selection and
rotation. (C) (D) and (E) show seeds and contoacghent according to the three segmentation
methods relying on semi-automated user segmentd®#), Fully Automated Al-driven
Segmentation (F-Al) and Refined Al-driven Segmeata(R-Al). (F) (G) and (H) show a 3D
representation of CSOs contours. (I) (J) and (Kisitate segmentation results for each method.
(L) and (M) represent an example of a surface diewiamap of F-Al (L) and R-Al (M)
compared with the clinical reference (SA).

Figure 3: (A) A plot comparison between segmented volumemiirf for SA, F-Al and R-Al.

(B and C) Bland-Altman plots between tooth segnémntelumes for F-Al (B) and R-Al (C)
versus the clinical reference (SA) (the differetetween the measurements is plotted against
their mean). (D) loU score comparison between FaAd R-Al for Full tooth, crown and root
segmentation (represented as mean with SD). (E)idflesurface deviation from the clinical
reference of F-Al and R-Al. (F and G) Morphologigface comparison analysis of SA versus F-

Al (F) and R-Al (G).
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Table1l: Mean loU/DSC performance comparison dependingpoth part, condition and

type for SA, F-Al and R-Al

SAVSF-Al | SAvsR-Al | SAvsF-Al | SAVsR-AI | SAvsF-Al | SAvsR-Al S’?A‘;;‘é' SAM‘;StE?'
Full tooth Full tooth Crown Crown Root Root teeth teeth
loU 0.877 0.881 0.887 0.889 0.894 0.898 0.876 0.881
(+0.037) (+0.036) (+0.032) (+0.036) (+0.03) (+0.026) (+0.039) (+0.038)
DSC 0.934 0.937 0.940 0.941 0.944 0.946 0.934 0.937
(+0.02) (+0.02) (+0.018) (+0.02) (+0.017) (+0.014) (+0.023) (+0.021)
SAVSF-AL 1 SAVSRAL 1 gp ysE Al | SAvsR-Al | SAvsF-Al | SAvsR-Al | SAvsF-Al | SAvsR-Al
Immature Immature : ] . .
Incisors Incisors Canines Canines Premolars Premolars
teeth teeth
loU 0.879 0.884 0.877 0.881 0.898 0.906 0.891 0.890
(+0.032) (+0.031) (+0.038) (+0.035) (+0.027) (+0.029) (+0.025) (+0.022)
DSC 0.935 0.938 0.934 0.937 0.949 0.954 0.942 0.94
(+0.018) (+0.018) (+0.024) (+0.022) (+0.012) (+0.013) (+0.011) (+0.0078)
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