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Abstract

Plant responses to rising atmospheric carbon dioxide (CO,) concentrations,
together with projected variations in temperature and precipitation will determine
future agricultural production. Estimates of the impacts of climate change on
agriculture provide essential information to design effective adaptation strategies,
and develop sustainable food systems. Here, we review the current experimental
evidence and crop models on the effects of elevated CO, concentrations. Recent
concerted efforts have narrowed the uncertainties in CO,-induced crop responses
so that climate change impact simulations omitting CO, can now be eliminated.
To address remaining knowledge gaps and uncertainties in estimating the effects
of elevated CO, and climate change on crops, future research should expand
experiments on more crop species under a wider range of growing conditions,
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improve the representation of responses to climate extremes in crop models, and
simulate additional crop physiological processes related to nutritional quality.

Editor's Summary

Uncertainties in the estimation of the effects of elevated CO, on crops reduce
trust in the underlying crop models, and hamper actions on climate change
mitigation. This can be addressed by studying a wider variety of crop species
under a wider range of growing conditions, improving the representation of
responses to climate extremes in crop models and simulating additional crop
physiological processes related to nutritional quality.

These authors contributed equally: Andrea Toreti, Delphine Deryng.

Main

Many countries under the Paris Agreement have committed to increasing their
resilience to climate risks through adaptation and mitigation policies in their
agricultural sectors. The scientific community produces relevant scientific
information[1] for guiding the monitoring and evaluation of national climate
policies and increasing their ambition as stipulated by the Global Stocktake
component of the Paris Agreement[2].

Crop models are among the key tools to generate such scientific sources[3].
Process-based crop models account for the impact of biophysical, climatic and
environmental factors, including elevated CO, concentration (eCO,) on plant
growth processes[4], crop yield quantity and quality. Yet, despite decades of
experiments robustly demonstrating the effects of eCO, (ref. [4]), climate change
impact assessments have continued to use scenarios both with and without CO,-
fertilization effects[5, 6, 7]. Here we argue that this approach has produced more
confusion than clarity, whereas current knowledge is sufficiently robust to make the
scenario without CO, fertilization obsolete.
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Available experimental evidence of eCO, effects

The role of eCO, in stimulating crop growth has been documented since 1804,
when de Saussure[8] reported that peas exposed to eCO, grew better than control
plants in ambient air. Since then, this effect has been exploited in commercial
greenhouse production, while further scientific work has continued through many
CO, enrichment experiments using greenhouses, growth chambers, gradient
tunnels, open-top chambers (OTC), and Free-Air CO, Enrichment (FACE)
techniques (Supplementary Tables 1 and 2). The understanding of eCO, effects on
plant growth derived from those experiments has been synthesized in several
topical and literature reviews, as summarized below[9, 10, 11].

The effects of eCO2 on crop productivity

Kimball et al.[12] assembled more than 70 reports and tabulated 430 prior
observations of eCO,-driven productivity changes in crops, concluding that yields
of C; species under a full complement of water and nutrients significantly increase
with a doubling of ambient CO, concentration (aCO,; since that time the CO,
mixing ratio has increased from 340 ppm to 412 ppm, which affects the degree of
response to an experimental doubling). However, crop responses to eCO, vary by
species and growing conditions[4]. Elevation of CO, concentration in FACE
experiments (from a CO, mixing ratio of 353 ppm to 550 ppm) with ample water
and nutrients increased yields of C; grains (for example, wheat, rice and barley) on
average by 19% (ref. [4]). In contrast, the yield of C, crops (for example, maize and
sorghum) did not change significantly when the crops were grown under ample
water supply conditions. Variation in CO, responsiveness across genotypes within
species[13, 14, 15] has also been demonstrated in rice, soybean and wheat[16, 17].

Beyond stimulating photosynthesis and growth, eCO, also causes reduced stomatal
conductance by 19% to 22% (refs. [12, 18, 19]) and reduced crop transpiration[4,
20]. This leads to lower crop evapotranspiration (ET), as demonstrated by the
average 10% ET reduction in FACE experiments for all investigated crops[4, 21]
(Supplementary Information). Improved water-use efficiency under eCO, can
enable crops to be more drought tolerant compared to crops grown in aCO,. This
effect is particularly important for C, crops, for which yield increases have been
reported under water-limiting conditions in eCO,. For example, FACE-sorghum([22,
23] and FACE-maize[24] experiments had average yield increases of 15% and 41%,
respectively.
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While under ample water and nutrient conditions, yields of most C; crops increase
by 10% to 30% under eCO, in experiments, yield stimulation due to eCO, is
generally smaller or insignificant when nutrients are limiting. Nutrient deficiencies,
such as nitrogen (N) and probably also phosphorus deficiency, can minimize ¢CO,
effects on crop productivity[4, 25]. While eCO, improves water-use efficiency, the
eCO, growth stimulus, which accelerates leaf growth and may increase leaf area
and root biomass, can lead to higher water use and nutrient limitation later in the
growing season[26]. The modulating effects of N and seasonal rainfall on plant
responses to ¢CO, have recently been demonstrated for a temperate C;—C,
grassland[27].

The effects of eCO, on crop quality

While eCO, has the potential to partly offset (and in some cases and conditions
even compensate for) the negative effects of climate change on crop productivity
(especially for C4 crops such as wheat, rice and soybean[28]), a substantial body of
work has shown that a CO,-rich atmosphere also results in lowering food quality
and potentially affecting nutrition security[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43] (Supplementary Information).

A meta-analysis[33] of 228 pairs of experimental observations on barley, potato,
rice and wheat reported reductions in protein concentrations ranging on average
from —15.3% to —9.8% under ¢CO,, while the reduction was relatively small (-
1.4%) in soybean[33]. A larger meta-analysis[43] done on 7,761 pairs of
observations covering 130 species and cultivars reported an average 8% decline in
mineral concentrations (except for Mn) and high agreement between FACE and
non-FACE experiments. N fertilization and climate conditions may play a role in
modulating the eCO,-response in protein and mineral (Fe and Zn)
concentrations[41, 42], entailing that processes such as mineralization should be
taken into account to better understand this modulating role[42].

Declines in B vitamins (ranging from —30% to —13% for rice cultivars) under eCO,
have been identified as well[30] (Supplementary Information). These changes in
rice quality under eCO, may affect the nutrient status of about 600 million
people[30] around the world.

Global-scale declines in minerals, such as Ca, Mg, protein concentrations and
carotenoids under eCO, have been reported for many C, plants in general,
including non-staple crops and vegetables[43, 44, 45]. A meta-analysis[46] on
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legumes and leafy vegetables found no changes in Fe, vitamin C and flavonoid
concentrations under eCO,; whereas antioxidant concentration tended to increase
(although with high uncertainty). In another study, significant decreases in Fe
concentration under eCO, were reported for leafy vegetables (-31%), fruit (-19.2%)
and root vegetables (—8.2%), together with decreases in Zn concentration (—10.7%
in stem vegetables, —18.1% in both fruit and root vegetables)[44]. Conversely,
eCO, favours higher total antioxidant capacity in leafy vegetables (72.5%) but not
in fruit vegetables (—14.4%)[44].

Decreases in protein concentration under eCO, are likely caused by nitrogen uptake
not keeping up with carbon in biomass growth, an effect called carbohydrate
dilution or growth dilution (Supplementary Information). However, recent studies
have also found that lower protein concentrations may be triggered by reduced
photorespiration and lower N-demand under eCO,[43, 47, 48]. Indeed, slower
photorespiration may induce a decrease in NO,- assimilation and eventually lower
protein concentration[48, 49]. However, changes in the ratio of manganese to
magnesium may help to counterbalance this effect[48]. Leaf protein concentration
is determined by the balance of Rubisco carboxylation or oxidation, with the former
favoured by eCO,, and by Rubisco content[50]. The reduction of Rubisco content
and activity over time, being more pronounced under eCO,, leads to lower leaf
protein concentration. To date, no adaptation in agronomic management or
phenotypic traits in FACE experiments[51, 52] has compensated for reduced protein
concentration.

Thus, the negative impacts of eCO, on protein and nutrient availability may be such
as to require important adjustments of future food systems[53, 54].

Future directions to improve experimental coverage

Although the overall number of eCO, experiments is large and the findings of the
main effects on crops are unequivocal, more experimental work is still needed to
improve the spatial (geographical) representativeness, temporal (timing and
duration) distribution, numbers of crops and cultivars, and analyze components
besides yield (for example, water use and nutrient concentrations).

As shown in Fig. 1a, eCO, experiments have been concentrated in Europe and the
US, with some significant multi-year, large-scale FACE studies in South America,
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Asia (Japan, China and India), and Australia. There have been no eCO, experiments
in Africa, where agriculture provides significant livelihoods. Furthermore, Fig. 1b
highlights the need for more experiments in order to achieve better coverage of the
diverse climatic conditions around the world. There is also a lack of multiple-year
eCO, experiments, which are important for grasslands and perennials, especially
tree crops, and for understanding long-term effects on soils and microbiota. A few
long-term experiments have confirmed the ability of agro-ecosystems to acclimate
(that is, reduced photosynthetic activity response compared to the initial response,
known as down-regulation) to a CO,-rich environment[55] (Supplementary
Information). The results of these experiments suggest that eCO,-induced effects in
grasslands and perennial crops are highly dependent on climatic conditions and that
acclimation may take more than 3—5 years[56, 57, 58, 59]. Although acclimation is
of less relevance for the main food crops, it is still an important factor considering
that it may act on shorter timescales and in light of recent studies on perennial
grains[60] and the amplification of eCO, positive effects through crop generations
by targeted selection[61].

Fig. 1

Overview of the eCO, experiments.

a, Global distribution of ¢CO, experiments on crops and grasslands. The distribution
is derived from an updated version of the CLIMMANI Networking Group database
(Supplementary Table 2) and other studies[43]. Colours indicate different agricultural
crops: green, grassland and forages; ochre, cereals (barley, maize, sorghum and
wheat); purple, woody crops (cotton and grape); turquois, forests and trees; light blue,
natural ecosystems; red, other crops (apple, banana, cassava, coffee, cucumber,
lemon, orange, pea, peach, potato, radish and spinach); gold, artificial crops (single or
multiple species mixtures without agricultural use). b, The mean annual temperature
versus annual precipitation (1981-2010) of the experimental sites and of the global
cropland (grey area). The grey colour gets darker according to the cropland area
falling into the temperature and precipitation bin. Data in panel b are taken from ref.
[108] (experimental sites) and ref. [109] (global cropland).
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Other types of experiments — including OTC, mini-FACE, climate control
chambers and enclosures — can be cheaper and faster. These experiments can
significantly reduce uncertainties by providing a larger number of replicates and
sample sizes, covering a larger range of eCO, well above 550 ppm, and thus
complementing and further supporting the evidence provided by the more
expensive and time-consuming FACE experiments. OTC and mini-FACE may also
help in addressing the role of eCO, at night[62], as many FACE experiments only
enrich during daylight hours.

Approaches for modelling primary production

Crop growth models are key tools for scaling-up experimental evidence and
assessing regional and global crops. We distinguish four basic approaches for
modelling primary production[63]: complex with a biochemical basis; semi-
complex involving leaf-level photosynthesis; based on radiation-use efficiency; and
transpiration-efficiency based[64]. The choice of these modelling approaches
largely determines how CO, responsiveness is implemented in crop models, either
as simple response functions that scale productivity, or as components of the
underlying mechanisms, such as Rubisco kinetics[65] (Supplementary Information).

While existing crop models include CO, responses in the simulation of primary
production, they differ in the representation of transpiration and abiotic responses,
such as N stress[64].
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Many crop models have been tested against observations conducted with eCO, up
to 600 ppm (FACE) and beyond (OTC). At the field scale under experimental
conditions, crop models performed reasonably well[66] in reproducing the main
effects of eCO, under both ample and limited water and N supplies, of higher
temperatures on growth, harvestable yield, leaf area, water uptake, and of N
dynamics for wheat[67, 68, 69], rice[70], maize[71], cotton[72], potatoes[73, 74]
and pasture[75]. Figure 2 shows two examples of eCO, effects on yield of wheat
and maize as simulated by crop models and measured in two dedicated experiments
under different water and climatic conditions[24, 68, 71, 76]. Overall, good
performance characterizes the modelling simulations, although some discrepancies
remain (for example, in the case of maize under dry conditions).

Fig. 2

Yield responses to eCO, as measured in two FACE experiments and
simulated by crop models.

a, Maize yield responses to €CO, from a mixing ratio of 387 ppm to 550 ppm
measured in the 2007-2008 Braunschweig FACE experiment (northern Germany)
under two levels of water supply: dry and irrigated. Uncertainty in measured crop
yield response (given by replicates performed in the FACE experiment) is represented
by grey solid lines. Uncertainty of the simulations, given by a 21-member ensemble
of models, is represented by grey dotted lines. b, Wheat grain yield responses to
eCO, from a mixing ratio of 365 ppm to 550 ppm measured in the 2007-2009
Horsham FACE experiment (south-eastern Australia) under different water supply
conditions (dry and supplemental irrigation). Uncertainty in measured crop yield
responses (given by replicates performed in the FACE experiment) is represented by

models, is represented by grey dotted lines. Data in panel a are taken from ref. [24]
(experiment) and ref. [71] (models). Data in panel b are taken from ref. [76]
(experiment) and ref. [68] (models).
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Concerning the effects of N limitation in modulating the impacts of eCO,, crop
models in general reproduce how the lack of adequate N reduces yield gains
induced by €CO,, although uncertainties tend to be greater (Supplementary Fig. ).
In most cases, crop models also tend to underestimate yield gains induced by eCO,
when N is adequate under experimental conditions (Supplementary Fig. 1).

Scaling-up crop simulations from field experiments

The high costs of running €eCO, and climate change field experiments have
prohibited the study of a representative sample with respect to the crop genetics
(G), environmental conditions (E) and management regimes (M) in which farmers
produce crops (G x E x M). Process-based crop models constitute an affordable
solution to explore crop responses across a range of G x E x M combinations and at
any scale of interest. More than twenty global-scale crop models[77] have been
developed and many of them have been used in multi-model assessments[28, 78,
79, 80]. These global crop models follow the same dynamic process approaches of
field-based models and have been increasingly used in economic and climate
impact studies[5, 6, 7] that contribute to policy formulation[7, 81]. Large-scale crop
simulations introduce additional uncertainty compared to field-scale crop models
due to a lack of complete spatial and temporal data coverage on relevant agronomic
information. Simulation and scenario approaches are used to fill current data
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gaps[82, 83, 84, 85, 86, 87], and relevant global data are being marshalled to
address these challenges[88]. Trust in crop modeling capacity has been gained over
the past five decades since models were first developed[28] based on widespread
comparison of simulated yields and other variables against available field data, and
from multi-model comparisons[89, 90, 91].

The effects of eCO, in crop model simulations

Past climate change assessments have routinely presented crop yield ‘with and
without’ the effects of eCO,[7, 92, 93], under the implicit assumption that the no-
eCO,-effects scenario represented an acceptable lower limit of the uncertainty
range (Supplementary Table 3). That extremely cautious approach has, however,
generated unnecessary misunderstanding of uncertainty regarding the current
knowledge of eCO, on crops within climate change scenarios. As a result, some
studies[94, 95] have used crop modelling results based on both ‘with’ and ‘without’
CO, simulations indistinguishably, potentially leading to misinterpretation of the
ensemble median, range and causes for model (dis)agreement.

We demonstrate the issues in comparing crop model simulations with these
different key settings (that is, with and without eCO,) with global wheat and maize
simulations under projected climate changes (Supplementary Fig. 2). The high
uncertainties induced by the ‘without CO,’ lower bound ultimately reduce trust in
the underlying crop models, whereas experimental knowledge of the eCO, effect, as
well as the ability of crop models to reproduce it, is substantial.

The large and growing body of experimental evidence has shown that current crop
modelling approaches are increasingly able to capture the main effects of ¢CO, on
crop growth and yield under a wide range of growing conditions at field scale.
Hence, we argue that these effects should be included by default in climate change
impact assessments: there is no longer a scientifically valid reason for expanding
the range of model uncertainties to include a ‘without eCO,’ scenario (other than
quantifying the isolated effect). Under optimal growing conditions, ‘with eCO,’
simulations should represent the upper bound of the uncertainty range. For the
lower bound, rather than using a ‘without eCO,’ scenario, levels responding to
observed interactions of eCO, with abiotic stresses affecting crop growth — for
example, soil N and water availability[70], temperature and O, (refs. [96, 97]) —
should be assessed.
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Knowledge gaps in model development

Under complex growth-limiting environmental conditions, interactive processes are
less well understood. A recent experiment on maize indicated that crop model
results corresponded well to the observations under irrigated conditions[71, 98].
Nevertheless, some models had poor performance under certain drought conditions
(due to underestimation of eCO, water savings), and therefore underestimated the
associated crop yield stimulation[71]. Other nutrients, such as phosphorus (P) and
potassium, are often neither considered in crop models nor fully measured or
controlled in experiments, even though P is known to be a main limiting crop
nutrient in many soils, particularly in Africa[99, 100, 101].

A serious gap in crop modelling tools is the scarcity of models for fruits and
vegetables[64]. This situation is now improving, but models for many more fruits
and vegetables with the full range of eCO, responses are needed. In addition, most
existing crop models do not account for nutritional aspects other than protein
concentration[67, 102], while recent work on the socio-economic impacts[54, 103]
of reduced Fe and Zn concentration highlights the importance of including other
key nutritional aspects, such as mineral concentrations. Finally, the upper range of
projected CO, concentration by the end of the 21st century (for example, up to a
CO, mixing ratio of 936 ppm in RCP8.5) greatly exceeds eCO, in current
experiments. As the rate of C; crop responses declines with eCO,, approaching 600
ppm (ref. [104]), and considering that the current atmospheric concentration is
currently about 412 ppm and increasing by 2—3 ppm per year, key performance of
crop models for long-term assessments will depend on the representation of this
saturating response in interaction with other environmental variables, especially
temperature,[ 18] and possible physiological limitations[105].

Key criteria for improving modelling protocols

We argue that research and assessment should better focus on critical issues in
projecting the interactions of eCO, and climate change with crops. To this end, key
criteria for selecting crop models for climate change impact assessments should
advance the following representation:

1. Concurrent and interactive effects of eCO,, temperature, water and nitrogen

(CTWN) on crop processes;

2. Evaluation of simulated responses to CTWN variation compared to a range of
observations from experiments (including at least crop cycle length, leaf area
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index, harvestable yield, evapotranspiration) for C; and C, crops including
staple grains, fruits and vegetables;

3. Comparison with observations to identify systematic biases in simulated
baseline (that is, aCO,) crop yields, which should then be either bias-corrected
or excluded from the crop model ensemble.

The results of these evaluation tests should be made available as metadata in impact
assessments, and crop models should be assessed in standardized evaluation
exercises[106]. The proposed criteria-based model could improve the robustness of
multi-model impact assessments.

Roadmap to advance future research on eCO,

We outline here the main priorities for future research and point to existing barriers
that must be addressed urgently to further improve scientific assessments of the
effects of eCO, and climate change on crop productivity and quality (Table 1). We
propose that the scientific community, through international initiatives such as the
Agricultural Model Intercomparison and Improvement Project (AgMIP)[1], plays
an important role in delivering scientific resources that helps assess the potential
biophysical and socio-economic consequences to support national and international
agricultural policies.

Table 1

Knowledge gaps, recommendations and requirements for research progress on ¢CO, and

climate change

Data gaps and Main
modelling Recommendations requirements
inconsistencies to address
Data gap on

crop nutritional Include measurement of crop quality in experimental

quality, beyond . Funding

N or protein design

]c)r?)ta tga%;)gn d Expand FACE, mini-FACE, OTC, climate control Funding,

crop IYIF chambers and enclosures experiments to other crops  expertise and
pping and beyond high-input systems infrastructure

systems
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Data gaps and
modelling
inconsistencies

Data gap in
many agro-
climatic regions
of the world,
especially
Africa

Data gap on
interactions of
eCO, effects,
weather
conditions and
extreme events

Disparities in
data
measurements

Limited sample
sizes for testing
experimental
evidence

Lack of access
to data

Modelling
uncertainty

Large
uncertainty
across scales

Misleading
scenarios using
‘without eCO,’
as plausible

Effects on crop
quality in
modelling
assessment are
overlooked

e.Proofing

Recommendations

Set up experiments in unstudied regions, especially
in Africa

More long-term (>10 years) FACE studies
incorporating climate variables

Harmonization of measurement methods

Increase replicates of experiments, especially non-
FACE ones and those focused on nutrients

Set up and maintain an open-access data repository,
for example, within Copernicus and AgMIP

Use multi-model ensembles, harmonization of
variables and input data for modelling
intercomparison exercises; display and discuss
additional measures other than the ensemble median;
use evaluation and validation criteria for inclusion of
specific models

Harmonize available input data sets; identify an
optimal set of global data to be used as input for
large-scale model runs; create a common input data
repository; develop a time-varying dataset of the
main input parameters

For policy purpose, use results that fully include
eCO, effects (as well as N limitation) and are
validated against recent eCO, experiments

Development of modelling components to simulate
protein and mineral concentrations; set up AgMIP
multi-modelling intercomparison activity for
coordinated model development and improvement
that includes nutrient quality

Main
requirements
to address

Funding,
expertise and
infrastructure

Funding and
infrastructure

Research
method
development

Funding and
infrastructure

Funding,
communication
and database
development

Research
method and
communication

Research
method,
funding,
infrastructure
and
communication

Research
method and
communication

Funding,
expertise and
research
method
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Firstly, new eCO, experiments are needed for important crops in all agricultural
regions of the world, particularly for cropping systems and agro-climatic regions in
Africa, in order to capture the full diversity of responses. More experimental
evidence on changes in crop quality and nutrition is needed for a wider range of
crops to represent the threat for human health. All new studies describing results
from specific CO,-enrichment experiments should provide comprehensive and
detailed weather, soil and management information to be easily integrated and used
for crop model evaluation.

Synchronization of field experiments and modelling outputs should be enhanced to
steadily improve crop models. Building connections among scientific disciplines
will contribute to better access and use of experimental data to encourage
continuous development of impact modelling tools.

Secondly, crop model improvements should focus with high priority on capturing
the complex interactions of eCO,, N, O3, and varying climate and weather
conditions, especially extreme events, and nutritional aspects. This crop model
development will be fostered by an international initiative to be launched within
AgMIP, but urgently requires research funding as well.

Thirdly, in addition to the inclusion of eCO, by default in impact assessments, the
use of multi-model ensembles should be strongly encouraged to better capture
modelling uncertainties[81]. Bias-correction techniques[107] should be applied to
deal with potential biases in crop yield baseline simulations[28]

Finally, we propose to build an open-access web-repository (which could be hosted,
for example, in the Copernicus C3S data store in conjunction with AgMIP and other
agricultural modelling and data groups), containing information in standardized
formats of experiments, model metadata and model simulations that are suitable for
use in impact assessments, and to be made accessible to stakeholders across the
science and policy spheres.

This roadmap will contribute to further narrowing the uncertainties that have long
hampered actions on climate change mitigation and adaptation in agriculture, and
facilitate major improvements in the conduct and use of climate change impact
assessments in the agricultural sector.
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