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Automatic rational approximation and linearization of nonlinear
eigenvalue problems

PIETER LIETAERT †, KARL MEERBERGEN †, JAVIER PÉREZ ‡ AND
BART VANDEREYCKEN §

We present a method for solving nonlinear eigenvalue problems using rational approximation. The
method uses the AAA algorithm of Nakatsukasa, Sète, and Trefethen to approximate the nonlinear
eigenvalue problem via a rational eigenvalue problem. A set-valued variant of the AAA algorithm is
also presented for building low-degree rational approximations of nonlinear eigenvalue problems with a
large number of nonlinear functions. The rational approximation is embedded in the state-space repre-
sentation of a rational polynomial by Su and Bai. This procedure perfectly fits the framework of the com-
pact rational Krylov methods (CORK and TS-CORK), allowing to efficiently solve large-scale nonlinear
eigenvalue problems. One advantage of our method, compared to related techniques such as NLEIGS
and infinite Arnoldi, is that it automatically selects the poles and zeros of the rational approximations.
Numerical examples show that the presented framework is competitive with NLEIGS and usually pro-
duces smaller linearizations with the same accuracy but with less effort for the user.

Keywords: Nonlinear eigenvalue problem, rational interpolation, rational Krylov method

1. Introduction

The nonlinear eigenvalue problem (NEP) is the problem of finding scalars λ ∈ Σ ⊆ C and nonzero
vectors x,y ∈ Cn such that

A(λ )x = 0 and y∗A(λ ) = 0, (1.1)

where A : Σ → Cn×n is a nonlinear matrix-valued function. The scalar λ ∈ C is called an eigenvalue
and the vectors x and y are called, respectively, associated right and left eigenvectors. Usually, one is
interested in the eigenvalues in a specific region Σ ⊂ C. We assume that A in (1.1) is regular, i.e., there
is at least one λ ∈ C for which det(A(λ )) 6= 0. It is also standard to assume that A is holomorphic in Σ ,
as this avoids numerous difficulties. However, we want to mention that the algorithm proposed in this
work can deal with some non-analytical situations (see the numerical experiment in Section 4.3). For a
thorough treatment of nonlinear eigenvalue problems, we refer the reader to the recent survey (Güttel &
Tisseur, 2017) for most of the concepts mentioned in this introduction.

Numerical methods for computing eigenvalues of generic nonlinear eigenvalue problems in a region
Σ are based on approximation theory or Newton’s method. There currently are two classes of methods
based on approximation theory: those based on contour integrals (Beyn, 2012), and those based on
rational and polynomial approximation, e.g. Effenberger & Kressner (2012), infinite Arnoldi (Jarlebring
et al., 2012) and NLEIGS (Güttel et al., 2014). The methods based on contour integration rely on
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Keldysh’ theorem, where the eigenvalues in Σ are found as the poles of a resolvent using contour
integration. There are several variations of this approach; see Beyn (2012). Another example comes
from Effenberger (2013), where invariant pairs of large-scale NEPs are computed by combining the
Jacobi–Davidson method with contour integration. The second class of methods approximates A by a
polynomial or rational function on Σ and solves the resulting polynomial or rational eigenvalue problem.
Polynomial and rational eigenvalue problems can be solved by Krylov methods through a linearization.
The prototype linearization is the companion pencil.

In this paper, we focus on methods that build a rational approximation, reformulate the resulting
problem as a linear eigenvalue problem (by the process of linearization) and then use a Krylov method
for solving the linearized problem. Roughly speaking, there exist three approaches to rational approx-
imation. The NLEIGS method uses potential theory for the selection of poles and interpolation points,
and embeds this within a rational polynomial expressed in a rational Newton basis (see Güttel et al.,
2014). The second is the infinite Arnoldi method (Jarlebring et al., 2012) that uses the discretization of
an infinite dimensional operator that is a linear representation of the nonlinear eigenvalue problem. The
discretization of this operator leads to a finite dimensional linear problem that is solved by the Arnoldi
method. The third approach expresses a Padé approximation in state-space form and applies a Krylov
method to a linearization; see Su & Bai (2011).

The approach of this paper is inspired by Su & Bai (2011) and assumes that the matrix-valued
function A can be written as

A(λ ) = P(λ )+G(λ ), (1.2)

where P(λ ) is an n×n matrix polynomial or rational matrix, and G is an arbitrary matrix-valued function
of the form

G(λ ) =
s

∑
i=1

(Ci−λDi)gi(λ ), (1.3)

where Ci,Di are constant n× n matrices and gi : Σ → C is a nonlinear function. Each gi can be ap-
proximated by a different rational function with different poles and interpolation points, determined
independently from each other. For efficiency, it is, therefore, assumed in this paper that the number of
nonlinear terms, s, is modest. The NLEIGS method by Güttel et al. (2014) does not have this limitation
since it uses the same poles and nodes for all terms.

The contribution of this paper is threefold. First, the rational approximations used in this work are
obtained by employing the adaptive Antoulas–Anderson (AAA) algorithm introduced by Nakatsukasa
et al. (2018). This approach presents two key advantages: the AAA algorithm is not domain-dependent
and it works effectively even with sets consisting of disconnected regions of irregular shape; and once
the approximation region has been fixed, it is the algorithm and not the user that chooses in an adaptive
way the number of poles and zeros, and their values, of the rational approximation. Hence, unlike
NLEIGS by Güttel et al. (2014), neither special knowledge of the nonlinear functions nor advanced
knowledge of complex analysis is required from the user.

The second contribution is an automatic strategy that uses the same poles and interpolation points
for (a subset of) all gi, which leads to the same appealing properties as NLEIGS, when s is not so small.
Our numerical experiments compare to rational approximations obtained using NLEIGS in Güttel et al.
(2014). We mention that a similar idea to adapt the AAA algorithm for multiple nonlinear functions in-
terpolation has already been independently investigated in Hochman (2017), using an updated Cholesky
factor of a Gram matrix, where we use an updated QR factorization. An alternative to AAA, that is not
considered in the paper, is Vector Fitting: it builds an approximation in barycentric form by iteratively
determining support points and weights in order to minimize the approximation error (Gustavsen &
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Semlyen, 1999), where AAA minimizes the linearized residual and chooses the support points using a
greedy optimization method.

The third contribution of the paper lies in the observation that the linearization from Su & Bai (2011)
fits perfectly in the framework of the CORK (Compact Rational Krylov) method by Van Beeumen et al.
(2015) and the two-sided CORK method by Lietaert et al. (2018), which makes the linearization suitable
for large scale problems and rational functions of high degree. There is no need to require Ci,Di to be
of low rank but if they are, it can be exploited.

We note that we are not the first ones to propose the use of the AAA algorithm and its appealing
properties in the Nonlinear Eigenvalue Problem. In Elsworth & Güttel (2018), the authors propose to
apply the AAA algorithm to v∗A(λ )u for random vectors u, v, and then turn the barycentric formulation
into a Newton representation, which is passed into the NLEIGS algorithm. However, we found that this
approach leads to approximations of lower accuracy compared to the set valued approach from §2.2.

The rest of the paper is structured as follows. Section 2 presents the original AAA approximation of
a nonlinear function g and its generalization to a set of nonlinear functions g1, . . . ,gs. In Section 3, we
reformulate the linearization by Su & Bai (2011) as a CORK linearization and establish a relation be-
tween the eigenvalues and eigenvectors of the linearization and the rational matrix polynomial, including
the case of low rank Ci−λDi, i = 1, . . . ,s. Section 4 illustrates the use of AAA for solving nonlinear
eigenvalue problems and compares AAA to NLEIGS. Section 5 is reserved for the conclusions.

2. Scalar rational approximations by AAA

As explained in the introduction, we intend to use rational approximations for the NEP. As a first step,
this requires approximating the scalar functions gi(λ ) in (1.3), either separately or together, by rational
functions. Our approach is based on the recently introduced algorithm by Nakatsukasa et al. (2018) that
we review next.

2.1 The AAA algorithm

Let g : Σ → C denote a generic nonlinear function that we would like to approximate on Σ ⊂ C by
a rational function r(λ ). The adaptive Antoulas–Anderson (AAA) algorithm from Nakatsukasa et al.
(2018), constructs r(λ ) in barycentric form:

r(λ ) =
m

∑
j=1

g(z j)ω j

λ − z j︸ ︷︷ ︸
=:nm(λ )

/ m

∑
j=1

ω j

λ − z j︸ ︷︷ ︸
=:dm(λ )

. (2.1)

Here, z1, . . . ,zm are a set of distinct support points and ω1, . . . ,ωm are the weights. Note that, as long as
ω j 6= 0, limλ→z j r(λ ) = g(z j). In other words, the rational function (2.1) interpolates the function g(λ )
at z1, . . . ,zm.

The AAA algorithm computes the support points and the weights iteratively by minimizing the
linearized residual of the rational approximation on a sample set Z of M points. The set Z can be seen
as a sufficiently fine discretization of the region Σ which means M is typically quite large. At the mth
step of the algorithm, the next support point zm is chosen so that the residual g(λ )−nm−1(λ )/dm−1(λ )
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attains its maximum absolute value for λ = zm. Then, denoting

Z(m) = {Z(m)
1 , . . . ,Z(m)

M−m} := Z/{z1, . . . ,zm} and

G(m) = {G(m)
1 , . . . ,G(m)

M−m} with G(m)
i = g(Z(m)

i ),

it computes the vector of weights ω =
[
ω1 · · · ωm

]T with ‖ω‖2 = 1 that minimizes the 2-norm of
the linearized residual


g(Z(m)

1 )dm(Z
(m)
1 )−nm(Z

(m)
1 )

...

g(Z(m)
M−m)dm(Z

(m)
M−m)−nm(Z

(m)
M−m)

=


G(m)

1 −g(z1)

Z(m)
1 −z1

· · · G(m)
1 −g(zm)

Z(m)
1 −zm

...
. . .

...
G(m)

M−m−g(z1)

Z(m)
M−m−z1

· · · G(m)
M−m−g(zm)

Z(m)
M−m−zm


ω1

...
ωm

 . (2.2)

This can be done by using the SVD on the Loewner matrix
G(m)

1 −g(z1)

Z(m)
1 −z1

· · · G(m)
1 −g(zm)

Z(m)
1 −zm

...
. . .

...
G(m)

M−m−g(z1)

Z(m)
M−m−z1

· · · G(m)
M−m−g(zm)

Z(m)
M−m−zm

 .

The procedure terminates when the norm of the residual (2.2) is less than a user defined tolerance, for
example, 10−13. For further details of the AAA algorithm, including the removal of numerical Froissart
doublets, we refer to Nakatsukasa et al. (2018).

A key feature of AAA is its flexibility in selecting the domain of approximation (through the set Z),
unlike other methods that are domain-dependent. Furthermore, the user only needs to supply this domain
and a tolerance. Then, the poles and zeros of the rational interpolant (2.1) are found automatically by
the algorithm. In many cases, AAA succeeds in computing a rational interpolant that is often not far
from the optimal one. However, the algorithm can fail on difficult functions; see Filip et al. (2018) for
examples. In the numerical experiments, however, we did not see such pathological behaviour and AAA
performed adequately.

In Section 3, it will be convenient to write the rational functions from AAA that are in barycentric
form into an equivalent state-space form. In the following proposition, we will present such a state-space
representation.

PROPOSITION 2.1 The rational function (2.1) can be written as

r(λ ) =
[
g(z1)ω1 · · · g(zm)ωm

]


ω1 ω2 · · · ωm−1 ωm
λ − z1 z2−λ

λ − z2
. . .

. . . zm−1−λ

λ − zm−1 zm−λ



−1
1
0
...
0

 , (2.3)

where the entries that are not depicted are equal to zero.
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A slightly different state-space form for (2.1) can be found as Theorem 1.6 in Ionitǎ (2013), where
all basis functions are related to first basis function.
Proof. Let d(λ ) = ∑

m
j=1 ω j(λ − z j)

−1 and n(λ ) = ∑
m
j=1 g(z j)ω j(λ − z j)

−1 denote, respectively, the
denominator and numerator of r(λ ) in (3.4). Then, it is easily verified that the vector

1
d(λ )

(λ − z1)
−1

...
(λ − zm)

−1


is the first column of 

ω1 ω2 · · · ωm−1 ωm
λ − z1 z2−λ

λ − z2
. . .

. . . zm−1−λ

λ − zm−1 zm−λ



−1

.

Thus, we obtain the desired result as

1
d(λ )

[
g(z1)ω1 · · · g(zm)ωm

](λ − z1)
−1

...
(λ − zm)

−1

=
n(λ )
d(λ )

= r(λ ).

�

2.2 A set-valued AAA algorithm

There are applications where a large number of nonlinear functions g1, . . . ,gs need to be approximated
on the same region Σ of the complex plane. One can of course use the AAA algorithm on each function
separately but, as we will see in the numerical examples in Section 4, it is sometimes beneficial to find
support points and poles that work for all the functions at the same time. The result is then a linearization
with a smaller total degree compared to the linearization obtained from the separate applications of
AAA. In this section, we show how to extend the AAA approach to accomplish this; see also Hochman
(2017).

Let g1, . . . ,gs be some nonlinear functions. In contrast to Hochman (2017), we assume that g1, . . . ,gs
are of the same scale over the sample set Z, that is, we assume

max
z∈Z
|gi(z)| ≈max

z∈Z
|g j(z)| ≈ 1 for i 6= j. (2.4)

Observe that the condition (2.4) can be accomplished by simply scaling the functions g1, . . . ,gs as
gi(λ )/maxz∈Z |gi(z)|. Our aim is to construct rational approximations to g1, . . . ,gs of the form

gi(λ )≈
m

∑
j=1

gi(z j)ω j

λ − z j︸ ︷︷ ︸
=:ni,m(λ )

/ m

∑
j=1

ω j

λ − z j︸ ︷︷ ︸
=:dm(λ )

. (2.5)



6 of 29

Note that all rational approximants share the same support points z j and weights ω j. In the spirit of the
AAA algorithm, these support points and weights are computed iteratively. At the mth step, the next
support point zm is chosen where

max
i

∣∣∣∣gi(λ )−
ni,m−1(λ )

dm−1(λ )

∣∣∣∣,
attains its maximum on Σ . Then, denoting

Z(m) = {Z(m)
1 , . . . ,Z(m)

M−m} := Z/{z1, . . . ,zm} and

G(m)
i = {G(m)

i,1 , . . . ,G(m)
i,M−m} with G(m)

i, j = gi(Z
(m)
j ),

the residual vector (2.2) can be written to incorporate the different functions:

G(m)
1,1 −g1(z1)

Z(m)
1 −z1

· · ·
G(m)

1,1 −g1(zm)

Z(m)
1 −zm

...
. . .

...
G(m)

1,M−m−g1(z1)

Z(m)
M−m−z1

· · ·
G(m)

1,M−m−g1(zm)

Z(m)
M−m−zm

G(m)
2,1 −g2(z1)

Z(m)
1 −z1

· · ·
G(m)

2,1 −g2(zm)

Z(m)
1 −zm

...
. . .

...
G(m)

2,M−m−g2(z1)

Z(m)
M−m−z1

· · ·
G(m)

2,M−m−g2(zm)

Z(m)
M−m−zm

...
...

...
G(m)

s,1 −gs(z1)

Z(m)
1 −z1

· · ·
G(m)

s,1 −gs(zm)

Z(m)
1 −zm

...
. . .

...
G(m)

s,M−m−gs(z1)

Z(m)
M−m−z1

· · · G(m)
s,M−m−gs(zm)

Z(m)
M−m−zm



ω1
...

ωm

 , (2.6)

The vector of weights ω =
[
ω1 · · · ωm

]T is computed as the vector minimizing the norm of (2.6)
under the constraint ‖ω‖2 = 1. We note that minimizing this norm is equivalent to minimizing the sum
of squares of the norms of the residual vectors of the different functions.

The computational cost of the AAA algorithm and of our modified set-valued version might become
an issue when a large number of nonlinear functions are approximated. To partly alleviate this extra
cost, we can slightly reformulate how the AAA algorithm computes the minimizing vector ω in (2.2)
or (2.6). This is outlined in the next section.

2.3 Efficient solution of the least squares problem in AAA

The original AAA algorithm requires the repeated singular value decomposition of the tall but skinny
Loewner matrix in (2.2) to find its right singular vector corresponding to the smallest singular value.
This can become costly for large matrices, which is certainly the case if we have do this for a large
number of functions as in (2.6). Fortunately, we can exploit that the Loewner matrices in (2.2) or
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in (2.6) differ only in a few rows and columns throughout each iteration of the AAA algorithm. In
particular, by computing economy-size QR decompositions of said matrices, we only need to obtain the
right singular vectors of much smaller matrices. In turn, these QR decompositions can be computed
using updating strategies.

Let Lm be the Loewner matrix in (2.2) or (2.6), of size n×m. We recall that n� m. The matrix Lm
can be stored as

Lm = QH,

where Q is an n×m matrix with orthonormal columns, and H is an m×m matrix. Note that the right
singular vectors of the matrix Lm can be computed as the right singular vectors of the small matrix H.
The column of the matrix Q can be iteratively found by adding one column of the Loewner matrix Lm
in each step and applying Gram–Schmidt orthogonalization. Note, however, that in each step of AAA,
the number of rows of Q is reduced by one for (2.2) and by s for (2.6) because the support points zi
are removed from the set Z that defines the residual. With the removal of these rows, Q is no longer
orthogonal. However, we can reorthogonolize Q cheaply as follows. Let Qr ∈Cr×m be the matrix whose
rows have been removed from Q in step m and let Q̃ be the matrix obtained from Q after the removal of
these rows. Note that the subscript in Qr does not refer to the rth iteration of the AAA method, but is an
abbreviation of the word removed. We then have, since Q is orthogonal,

Q̃∗Q̃ = Im−Q∗r Qr.

By taking the Cholesky decomposition,

Im−Q∗r Qr = S∗S,

we have that matrix the Q̃S−1 is orthogonal, and we replace H by SH. We can further avoid the (costly)
explicit multiplication Q̃S−1 by storing S as

Sm =

[
Sm−1

1

]
S−1,

which is only used in matrix-vector and matrix-matrix multiplications with vectors and matrices of size
O(m), that is, of small size.

This procedure, including the set-valued AAA algorithm, is implemented in our MATLAB version
of the AAA algorithm, see Section 4 on numerical examples. The main cost of the algorithm is reduced
to the Gram–Schmidt orthogonalization process of the long vectors of the Loewner matrix.

REMARK 2.1 The idea of speeding up the original AAA algorithm by carefully updating a matrix
decomposition of the Loewner matrix has also been investigate in Hochman (2017). In contrast to our
approach, which uses a QR-like decomposition, in Hochman (2017), the right singular vectors of the
Loewner matrix Lm are computed as the right singular vectors of the Cholesky factor of L∗mLm.

3. Rational approximations for NEPs using AAA

In this section, we show how the scalar rational functions, computed by AAA, can be used efficiently
to obtain a rational approximation of the NEP. In particular, we will present linearizations that build on
the CORK (Van Beeumen et al., 2015) and the TS-CORK (Lietaert et al., 2018) frameworks and exploit
possible low-rank terms. These frameworks support efficient operations on linearizations for (rational)
Krylov methods.
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3.1 The CORK framework

The starting point of the compact rational Krylov (CORK) method in Van Beeumen et al. (2015) is a
matrix-valued function of the form

P(λ ) =
k−1

∑
i=0

(Ai−λBi) fi(λ ), with Ai,Bi ∈ Cn×n, (3.1)

where fi : C→ C are polynomial or rational functions satisfying the linear relation

(M−λN) f (λ ) = 0 with rank(M−λN) = k−1 for all λ ∈ C, (3.2)

N,M ∈C(k−1)×k and f (λ ) =
[

f0(λ ) · · · fk−1(λ )
]T 6= 0. Without much loss of generality, we further

assume that f0(λ )≡ 1 has degree zero. This assumption is indeed not restrictive in practice, as it covers
most of the important cases in applications including monomials, Chebyshev polynomials, orthogonal
polynomials, Newton polynomials, rational Newton functions. For a more general setting and explicit
examples of M−λN, we refer to Van Beeumen et al. (2015).

Given a matrix-valued function (3.1) satisfying (3.2), the matrix pencil

LP(λ ) =

[
A0−λB0 · · · Ak−1−λBk−1

(M−λN)⊗ In

]
, (3.3)

is called the CORK linearization of P(λ ). When P(λ ) is a matrix polynomial, the pencil (3.3) is a
linearization in the usual sense (Gohberg et al., 1982), that is, there are matrix polynomials U(λ ) and
V (λ ) with nonzero constant determinants such that

U(λ )LP(λ )V (λ ) = diag(P(λ ), Is),

for some identity matrix Is; see Dopico et al. (2018); Robol et al. (2016). We recall that the definition
of linearization implies that P(λ ) and LP(λ ) have the same eigenvalues with the same geometric and
algebraic multiplicities. When P(λ ) is a rational matrix, it is not clear whether the pencil (3.3) is a
linearization of P(λ ) in the sense of Amparan et al. (2018). In any case, for our purposes, we only need
to use that P(λ ) and LP(λ ) have the same eigenvalues and that the eigenvectors of P(λ ) can be easily
recovered from those of LP(λ ) (see Van Beeumen et al., 2015, Corollary 2.4).

The CORK linearization (3.3) is of size kn×kn which can become quite large. Fortunately, its Kro-
necker structure can be exploited by Krylov methods; see, e.g., (Van Beeumen et al., 2015, Algorithm
3) on how to efficiently use the rational Krylov method in this context.

3.2 Extending CORK with AAA

Let us now consider the NEP with A(λ ) as defined in (1.2), that is,

A(λ ) = P(λ )+
s

∑
i=1

(Ci−λDi)gi(λ ).

Using AAA, or its set-valued generalization, we can approximate each function gi(λ ) on the region
Σ ⊂ C as

gi(λ )≈ ri(λ ) =
`i

∑
j=1

gi(z
(i)
j )ω

(i)
j

λ − z(i)j

/ `i

∑
j=1

ω
(i)
j

λ − z(i)j

, (3.4)
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where `i is the number of support points z(i)j and weights ω
(i)
j for each i = 1, . . . ,s. If some of the gi are

approximated together by the set-valued AAA algorithm, the z(i)j and ω
(i)
j are the same for their corre-

sponding indices i. For now, we ignore this property. In any case, we can use the rational approximations
ri(λ ) to obtain an approximation of the NEP on the same region Σ :

A(λ )≈ R(λ ) = P(λ )+
s

∑
i=1

(Ci−λDi)ri(λ ). (3.5)

We now show how to obtain a CORK linearization of R(λ ). If we assume that P(λ ) satisfies (3.1),
then by making use of Prop. 2.1, we can also write the rational part in (3.5) in state-space form as

R(λ ) =
k−1

∑
i=0

(Ai−λBi) fi(λ )+
s

∑
i=1

(Ci−λDi)aT
i (Ei−λFi)

−1bi (3.6)

for some vectors ai,bi ∈ C`i and the `i× `i matrices

Ei =



ω1 ω2 · · · ω`i−1 ω`i

−z1 z2

−z2
. . .

. . . z`i−1
−z`i−1 z`i

 and Fi =


0 0 · · · 0 0
1 −1

1
. . .

. . . −1
1 −1

 .

Next, introduce for i = 1, . . . ,s the vector-valued function

Ri : C→ C`i , Ri(λ ) = (Ei−λFi)
−1bi. (3.7)

Assuming that P(λ ) satisfies (3.1) with f0(λ ) = 1 and observing that (Ei−λFi)Ri(λ ) = bi for all i =
1, . . . ,s, we obtain the linear relation


M−λN 0 · · · 0

−b1
...
−bs

0 · · · 0
...

...
0 · · · 0

E1−λF1
. . .

Es−λFs





f0(λ )
f1(λ )
...

fk−1(λ )
R1(λ )

...
Rs(λ )


= 0.

Collecting the basis functions into the single vector

f (λ ) =

 f0(λ )
...

fk−1(λ )

 , Ψ(λ ) =


f (λ )

R1(λ )
...

Rs(λ )

 , (3.8)

we arrive at the following result.
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PROPOSITION 3.1 Let Ψ(λ ) be the vector-valued function (3.8) with fi(λ ) scalar functions satisfy-
ing (3.2) such that f0(λ ) = 1 and Ri(λ ) satisfying (3.7). Then,

(M̂−λ N̂)Ψ(λ ) = 0 with M̂−λ N̂ =

[
M−λN 0
−b 0 E−λF

]
, (3.9)

where we used

b =
[
bT

1 · · · bT
s
]T and E−λF = diag(E1−λF1, . . . ,Es−λFs). (3.10)

Furthermore, the pencil M̂−λ N̂ has full row rank for any λ ∈ C so that Ei−λFi is invertible for all
i = 1, . . . ,s.

Proof. The identity (3.9) was shown above since f0(λ ) = 1. The second result is immediate since
M− λN has full row rank by assumption and E − λF is only singular when one of the Ei− λFi is
singular. �

In order to obtain a CORK linearization of (3.6), we first write it using (3.7) as

R(λ ) =
k−1

∑
i=0

(Ai−λBi)( fi(λ ) · In)+
s

∑
i=1

(Ci−λDi)(aT
i Ri(λ ) · In)

=
k−1

∑
i=0

(Ai−λBi)( fi(λ )⊗ In)+
s

∑
i=1

[aT
i ⊗ (Ci−λDi)] (Ri(λ )⊗ In).

Observe that this is a trivial rewriting of scalar multiplications in terms of Kronecker products. However,
using the vector Ψ(λ ) as defined in (3.8), it allows us to express the rational expression in (3.6) as

R(λ ) =
[

A0−λB0 · · · Ak−1−λBk−1 aT
1 ⊗ (C1−λD1) · · · aT

s ⊗ (Cs−λDs)
]
×

(Ψ(λ )⊗ In).

Together with Prop. 3.1, this suggests the following CORK linearization of (3.6).

DEFINITION 3.2 (CORK linearization for AAA rational approximation) Let R(λ ) be the rational ap-
proximation (3.6) obtained by using the AAA algorithm or the set-valued AAA algorithm. We define
the pencil LR(λ ) as follows

LR(λ ) =

[
A0−λB0 · · · Ak−1−λBk−1 aT

1 ⊗ (C1−λD1) · · · aT
s ⊗ (Cs−λDs)

(M̂−λ N̂)⊗ In

]
,

(3.11)
where the pencil M̂−λ N̂ has been defined in (3.9).

The size of LR(λ ) is (k+∑
s
i=1 `i)n. Fortunately, one can again exploit the Kronecker structure and

show that the CORK algorithm can be applied to (3.11), as long as the shifts in the shift-and-invert steps
of the rational Krylov method are not poles of the rational interpolants (3.4). Furthermore, as a special
case of Theorem 3.4 in Section 3.3 with full-rank matrices, any λ ∈ C that is not a pole of any of the
rational interpolants (3.4) is an eigenvalue of R(λ ) if and only if it is an eigenvalue of (3.11), and their
associated right eigenvectors are easily related.
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REMARK 3.1 In case the set-valued AAA algorithm is applied to all gi together, we have that Ei−λFi
is the same for all i, as well as all bi. As a result, one can use the CORK linearization

LR(λ ) =

 A0−λB0 · · · Ak−1−λBk−1 ∑
s
i=1 aT

i ⊗ (Ci−λDi)
(M−λN)⊗ In 0
−b1⊗ In 0 (E1−λF1)⊗ In

 ,
which is of size (k+ `1)n.

Sumarizing, the CORK algorithm can be applied to (3.11) for computing eigenvalues of R(λ ) that
are not poles of the rational interpolants (3.4) and their associated right eigenvectors. In practice, we
have noticed that this assumption is not very restrictive, since the AAA algorithm tends to place the
poles outside the region of interest.

3.3 Low-rank exploitation

In several applications, the matrix coefficients of the nonlinear valued function G(λ ) in (1.3) are of
low rank. In this section, we show how the exploitation of these low ranks leads to a linearization of
size smaller than that of LR(λ ). This linearization generalizes the one used in Dopico & González-
Pizarro (2018); Su & Bai (2011), which is valid when P(λ ) in (3.1) is expressed using monomials, i.e.,
fi(λ ) = λ i, to the more general setting used by CORK.

Suppose that the coefficients of the rational part in (3.6) admit the following structure (possibly after
a rank-revealing decomposition of Ci−λDi)

Ci−λDi = (C̃i−λ D̃i)Z̃∗i with C̃i, D̃i, Z̃i ∈ Cn×ki , and Z̃∗i Z̃i = Iki . (3.12)

Observe that this holds trivially for Z̃i = Iki but in many problems ki is potentially much smaller than n.
Introducing the matrices Z̃i in the definition of R(λ ) in (3.6), we obtain

R(λ ) =
k−1

∑
i=0

(Ai−λBi) fi(λ )+
s

∑
i=1

(aT
i Ri(λ )) · (C̃i−λ D̃i)Z̃∗i

=
k−1

∑
i=0

(Ai−λBi)( fi(λ )In)+
s

∑
i=1

[aT
i ⊗ (C̃i−λ D̃i)] [Ri(λ )⊗ Iki ] Z̃

∗
i ,

where we recall that Ri(λ ) = (Ei−λFi)
−1bi. We can therefore write

R(λ ) =
[

AAA−λBBB CCC−λDDD
]
·Ψ(λ )

using the matrices

AAA =
[
A0 · · · Ak−1

]
, BBB =

[
B0 · · · Bk−1

]
,

CCC =
[
aT

1 ⊗C̃1 · · · aT
s ⊗C̃s

]
, DDD =

[
aT

1 ⊗ D̃1 · · · aT
s ⊗ D̃s

]
,

f (λ ) =

 f0(λ )
...

fk−1(λ )

 , Ψ(λ ) =


f (λ )⊗ In

(R1(λ )⊗ Ik1)Z̃
∗
1

...

(Rs(λ )⊗ Iks)Z̃
∗
s

 .
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Denoting by OOO a matrix of all zeros (of suitable size), and using

MMM = M⊗ In, NNN = N⊗ In,

where the pencil M−λN is the one in (3.2), we obtain from (M−λN) f (λ ) = 0 the identity[
MMM−λNNN OOO

]
·Ψ(λ ) = OOO.

As before (Ei−λFi)Ri(λ ) = bi, whence

[(Ei−λFi)⊗ Iki ] [Ri(λ )⊗ Iki ] Z̃
∗
i = [bi⊗ Iki ]Z̃

∗
i .

Therefore by assuming again that f0(λ )≡ 1 and introducing

EEE = diag(E1⊗ Ik1 , . . . ,Es⊗ Iks), FFF = diag(F1⊗ Ik1 , . . . ,Fs⊗ Iks),

eT
1 =

[
1 0 · · · 0

]
∈ Rk, ZZZ∗ =

−(b1⊗ Ik1)Z̃
∗
1

...

−(bs⊗ Iks)Z̃
∗
s

(eT
1 ⊗ In),

we obtain the identity [
ZZZ∗ EEE−λFFF

]
·Ψ(λ ) = OOO.

Putting all the identities from above together, we obtain the following square matrix of size d̃ = nk+
∑

s
i=1 `iki:

L̃R(λ )Ψ(λ ) =

[
R(λ )

OOO

]
with L̃R(λ ) =

 AAA−λBBB CCC−λDDD
MMM−λNNN OOO

ZZZ∗ EEE−λFFF

 . (3.13)

In Theorem 3.4 below, we show that, as long as λ is not a pole of any of the rational functions
ri(λ ) in (3.5), L̃R(λ ) is indeed a linearization for R(λ ) in the sense that we can use it to compute the
eigenpairs of R(λ ). Observe that d̃ is never larger than d = n(k+∑

s
i=1 `i), the size of LR(λ ). Hence,

L̃R(λ ) is a trimmed linearization that effectively exploits the low-rank terms in the rational part of R(λ ).
It is also possible to exploit low-rank terms in P(λ ) as in Van Beeumen et al. (2015). However, as this
would complicate notation and the gain in size is typically less significant, we do not pursue this here.

Together with Theorem 3.4, we also have in Theorem 3.3 an explicit block-UL factorization of
L̃R(λ ). The proof of both these results is fairly standard and is therefore demoted to the appendix—in
particular, we refer to similar results in Su & Bai (2011) for rational terms Ri(λ ) with explicit state-space
representation, in Van Beeumen et al. (2015) for P(λ ) in CORK form, and in Dopico & González-
Pizarro (2018) for P(λ ) in companion form combined with explicit state space for Ri(λ ). However, a
compact representation that is a combination of general P(λ ) in CORK form and rational terms stem-
ming from AAA is new.

The theorems are stated for a certain permuted version of the columns of L̃R(λ ). By assumption,
the (k− 1)× k pencil M−λN has rank k− 1. Hence, there exists a permutation P0 ∈ Rk×k, possibly
depending on λ , such that

(M−λN)P0 =:
[
m0−λn0 M1−λN1

]
with M1−λN1 nonsingular.
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Denoting PPP000 = P0⊗ In, we can also apply this permutation block-wise to the first nk columns of L̃R(λ ).
We then obtain AAA−λBBB CCC−λDDD

MMM−λNNN OOO
ZZZ∗ EEE−λFFF

[ PPP000
I

]
=

 AAA0−λBBB0 AAA1−λBBB1 CCC−λDDD
MMM0−λNNN0 MMM1−λNNN1 OOO

ZZZ∗0 ZZZ∗1 EEE−λFFF

 , (3.14)

where I denotes an identity matrix of suitable size, and with

MMM0 = m0⊗ In, nnn0 = n0⊗ In, MMM1 = M1⊗ In, NNN1 = N1⊗ In.

The other block matrices are partitioned accordingly. This means AAA0 = A j and BBB0 = B j for some j that
corresponds to the column that PPP000 has permuted to the first position.

As mentioned above, one of the results is a block-UL factorization. Amongst others, it is key for
performing efficiently the shift-and-invert steps of the rational Krylov method when computing the
eigenvalues of L̃R(λ ).

THEOREM 3.3 Let L̃R(λ ) be the pencil in (3.13) for the rational matrix R(λ ) in (3.6) with the low-rank
structure (3.12). If µ ∈ C is such that all E1− µF1, . . . ,Es− µFs are nonsingular, then using the block
matrices as defined in (3.14), the following block-UL decomposition holds:

L̃R(µ)P = U (µ)L (µ),

where (empty blocks are zero and ρ = ∑
s
i=1 `iki)

P =

[
PPP000

I

]

U (µ) =

In [AAA1−µBBB1−ZZZ∗1(CCC−µDDD)] [MMM1−µNNN1]
−1 (CCC−µDDD)(EEE−µFFF)−1

I(k−1)n
Iρ

 ,
L (µ) =

α(µ)−1 R(µ)
MMM0−µNNN0 MMM1−µNNN1

ZZZ∗0 ZZZ∗1 EEE−µFFF

 , α(µ) = eT
1 PT

0 f (µ) 6= 0.

In addition,

α(µ)n detL̃R(µ) = detR(µ)(det(M1−µN1))
k−1

s

∏
i=1

(det(Ei−µFi))
`i . (3.15)

Proof. See appendix A. �
Next, we have the main result for the linearization: the relation of the eigenvalues (and their algebraic

and geometric multiplicities) and eigenvectors of the rational matrix R(λ ) with those of the matrix
trimmed pencil L̃R(λ ).

THEOREM 3.4 Let L̃R(λ ) be the pencil in (3.13) for the rational matrix R(λ ) in (3.6) with f0(λ ) ≡ 1
and the low-rank structure (3.12). Let λ0 ∈ C be such that all E1−λ0F1, . . . ,Es−λ0Fs are nonsingular.
Denote ρ = ∑

s
i=1 `iki.
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(a) If x ∈ Cn is an eigenvector of R(λ ) with eigenvalue λ0, then Ψ(λ0)x ∈ Ckn+ρ is an eigenvector of
L̃R(λ ) with eigenvalue λ0.

(b) If z ∈ Ckn+ρ is an eigenvector of L̃R(λ ) with eigenvalue λ0, then z =Ψ(λ0)x for some eigenvector
x ∈ Cn of R(λ ) with eigenvalue λ0.

(c) The algebraic and geometric multiplicities of λ0 as an eigenvalue of L̃R(λ ) and as an eigenvalue of
R(λ ) are the same.

Proof. See appendix A. �

REMARK 3.2 We observe that Theorem 3.4 might miss some of the eigenvalues of R(λ ), since there
could be eigenvalues of R(λ ) for which at least one of the matrices Ei−λFi is singular. However, in
practice, this does not pose a problem given that AAA tends to place the poles of the rational inter-
polants, that is, the eigenvalues of the pencils Ei−λFi, outside the interpolation region.

REMARK 3.3 It should be noted that the rational approximation, and therefore the linearization of A(λ ),
computes eigenvalues of a rational matrix R(λ ) that is a small perturbation of A(λ ). The level of the
error of approximation does not guarantee that the same level of error is obtained for the eigenvalues of
A(λ ).

4. Numerical examples

This section illustrates the theory with a number of applications. All examples are implemented in
MATLAB1. The AAA algorithm is used to approximate different nonlinear matrix-valued functions and
the accuracy of the resulting rational approximations is compared to the accuracy obtained with potential
theory (NLEIGS). The approximations are compared in terms of accuracy and the number of poles
(which is equal to the degree plus one) to achieve that accuracy. We used the rational Krylov method
(more specifically, its CORK implementation by Van Beeumen et al. (2015)) to obtain eigenvalue and
eigenvector estimates.

We compare the following three methods.

NLEIGS: This is the static variant from Güttel et al. (2014). The rational polynomial is expressed in a
basis of rational Newton polynomials:

R(λ ) = P(λ )+
s

∑
i=0

RiNi(λ ),

where N0, . . . ,Ns are rational Newton polynomials of the form

Ni(λ ) =
1
β0

i

∏
k=1

1
βk

λ −σk−1

1−λ/ξk

with σ0, . . . ,σs−1 Leja Bagby interpolation points and 1/ξ1, . . . ,1/xis poles. The interpolation
points and poles are determined recursively using the Leja Bagby algorithm, i.e., such that the

1Available at https://people.cs.kuleuven.be/karl.meerbergen/files/aaa/autoCORK.zip
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poles are selected from the singularity set Ξ of the nonlinear function and the nodes are selected
from the region Σ , such that

inf
λ∈Ξ

|ni−1(λ )|= |ni−1(1/ξi)| and max
λ∈Σ

|ni(λ )|= |ni(σi)|

for i = 1, . . . ,s.

AAA-EIGS: This is the rational Krylov method applied to linearization (3.3). The rational functions
are determined by applying AAA to the s nonlinear functions from (1.3) separately.

SV-AAA-EIGS: This is the rational Krylov method applied to linearization (3.3). The rational functions
are determined using the set-valued AAA approach explained in §2.2.

In the next section, we review the rational Krylov method that is used in the numerical experiments
for finding eigenvalues of the linearizations. We do not use implicit restarting, i.e., the number of
iterations corresponds to the dimension of the Krylov space.

4.1 The rational Krylov method

The rational Krylov method, sketched in Algorithm 1, is a generalization of the shift-and-invert Arnoldi
method for solving large-scale generalized eigenvalue problems.

Algorithm 1 Rational Krylov method

1: Choose vector v1, where ‖v‖2 = 1.
2: for j = 1,2, . . . do
3: Choose shift σ j.
4: Choose continuation vector t j.
5: Compute v̂ j = (A−σ jB)−1Bw j, where w j =Vjt j.
6: Orthogonalize ṽ j = v̂ j−Vjh j, where h j =V ∗j v̂ j.
7: Get new vector v j+1 = ṽ j/h j+1, j, where h j+1, j = ‖ṽ j‖2.
8: Set Vj+1 =

[
Vj v j+1

]
.

9: end for

At step j, Algorithm 1 computes a matrix Vj+1 whose columns form an orthonormal basis for the
rational Krylov subspace

K j(A,B,v1) = span{v1, v̂1, . . . , v̂ j},

where v̂i = (A−σiB)−1Bwi, for i = 1, . . . , j. Furthermore, the matrix Vj+1 satisfies the rational Krylov
recurrence relation

AVj+1H j = BVj+1K j,

where H j ∈ C( j+1)× j is an upper Hessenberg matrix whose nonzero entries are the Gram–Schmidt
coefficients computed by Algorithm 1, and

K j = H j diag(σ1, . . . ,σ j)+T j ∈ C( j+1)× j,

where T j is an upper triangular matrix whose ith column is the continuation vector ti appended with
some extra zeros. Note that we use t j = e j, where e j is the j-th vector of I, i.e. we always choose w j as
the iteration vector of the previous step.
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Approximations for the eigenvalues and right eigenvectors of the pencil A− λB are obtained by
solving the small generalized eigenvalue problem

K jsi = λiH jsi,

where H j and K j are, respectively, the j× j upper part of H j and K j. The pair (λi,xi = Vj+1H jsi) is
referred to as a Ritz pair of the pencil A−λB.

REMARK 4.1 An important consideration that the reader should keep in mind is how the memory and
orthogonalization costs of the CORK method depend on the number of poles needed by any of the
three algorithms (NLEIGS, AAA-EIGS and SV-AAA-EIGS) considered in this section. Assuming the
algorithm needs to use d poles in total, at step j of the CORK method the storage cost of the iteration
vectors is of order d + j vectors of size n, and the orthogonalization cost is of order (d + j) j scalar
products of vectors of size n; see Van Beeumen et al. (2015). Hence, the smaller the number of poles,
the lower are the orthogonalization and memory costs. Nevertheless, we found, as for NLEIGS, the
main cost lies in the LU factorization and the linear system solves with R(λ ). We compared timings
of NLEIGS and SV-AAA-EIGS obtained by averaging three run on an Intel 2.9GHz processor with
16GB memory using Matlab R2018a. Both methods have comparable timings as can be seen in Table 1.
Further analysis confirms the statements made in this remark.

4.2 Gun problem

The radio-frequency gun cavity problem from the NLEVP collection Betcke et al. (2013) is described
by the following matrix-valued function in λ

A(λ ) = K−λM+ i
√

λ −σ2
1W1 + i

√
λ −σ2

2W2,

where K,M,W1,W2 ∈ R9956×9956 are symmetric positive semi-definite matrices, σ1 = 0, and σ2 =
108.8774.

We accurately approximate the nonlinear part in A(λ ) in a semi-circle Σ in the complex plane;
see Figure 1a. The function is approximated by a rational function in two different ways. First, for

NLEIGS, a rational polynomial with 31 poles is used, with poles picked on the branch cut of
√

λ −σ2
2

on the open interval (−∞,σ2]. Second, for AAA-EIGS, the AAA test set consists of 500 random points
in the half disk combined with 500 equally distributed points on the boundary. The resulting poles for
both functions f j =

√
(λ −σ2

j ), j = 1,2, are plotted in Figure 1a. Note that not all poles are shown,
only the ones with a positive real part.

Table 1: Computation time [s] for all iterations for different problems.

NLEIGS SV-AAA-EIGS
Gun problem 10.9652 10.7188

Car cavity 51.5775 49.6916
Sandwich beam 0.562 0.3972
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Figure 1b shows the approximation error as a function of the number of poles for NLEIGS, AAA-
EIGS, and SV-AAA-EIGS. The approximation error is expressed as the relative summed error on the
nonlinear functions:

E f =

√√√√
∑

i

(
∑

j

f j(si)

∑k f 2
j (sk)

)2

, (4.1)

for j = 1,2, and as the error on the matrix functions:

Em =

√
m

∑
i=1

‖A(si)−R(si)‖2
1

‖A(si)‖2
1

,

where the points si, i = 1, . . . ,1000 are points of a test set consisting of random points on the boundary
and the interior of Σ . AAA-EIGS leads to a small reduction in degree compared to NLEIGS. An
important reduction, however, is achieved using the set-valued variant, SV-AAA-EIGS: 17 poles are
sufficient for an accuracy of 10−13 for the AAA set, whereas NLEIGS requires 31 poles. Both errors E f
and Em are very comparable.

We then determine eigenvalue and eigenvector estimates of the rational eigenvalue problems, around
the central point Re(s) = 2502, using the rational Krylov method. We used the same shifts as in Güttel
et al. (2014), i.e., three shifts equally spaced on the real axis and two inside the semi-circle. Figure 1c
shows residual norms of the five fastest converging Ritz values, as a function of the iteration count, for
NLEIGS and SV-AAA-EIGS. The residual norms are defined as

ρi =
‖A(λi)xi‖2

‖A(λi)‖1‖xi‖2
, (4.2)

where λi is the ith eigenvalue estimate, or Ritz value, and xi is an associated Ritz vector. In the figure,
comparable convergence behaviour is observed for both approaches, with slightly less accurate results
for NLEIGS.

4.3 Bound states in semiconductor devices

Determining bound states of a semiconductor device requires the solution of the Schrödinger equation,
that, after discretization, leads to a nonlinear eigenvalue problem with the matrix-valued function

A(λ ) = H−λ I +
80

∑
j=0

ei
√

λ−α j S j,

where H,S j ∈ R16281×16281; see Vandenberghe et al. (2014); Van Beeumen (2015). Matrix H is sym-
metric and matrices S j have low rank. This function has 81 branch points on the real axis at λ = α j, j =
0, . . . ,80, between −0.19 and 22.3, as can be seen in Figure 2. There is a branch cut running from
[−∞,α0] and one between each branch point.

For approximating the nonlinear functions with Leja–Bagby points, in Vandenberghe et al. (2014),
a transformation is used that removes the branch cut between two predetermined, subsequent branch
points, i.e., for λ ∈ [αi−1,αi]. The interpolant based on these Leja–Bagby points is only valid for
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AUTOMATIC RATIONAL APPROXIMATION FOR NONLINEAR EIGENVALUE PROBLEMS 19 of 29

λ -values within this interval. For interval [α0,α1], a rational approximation with 50 poles was used
in Vandenberghe et al. (2014). This corresponds to the green triangular marker in Figure 2.

In contrast, using AAA and set-valued AAA, the 81 nonlinear functions are approximated on the
real axis, over multiple branch points, without first transforming the problem. Figure 2 shows the
resulting number of poles for approximating the nonlinear functions with an accuracy of 10−13 on a
test set of 2000 equally spaced points, between α0 and the following seven branch points, i.e., for
λ ∈ [α0,αi], i = 1, . . . ,7. For example, the third bullet marker indicates the number of poles when the
AAA test set runs from α0 to α3, so that it includes branchpoints α0,α1,α2 and α3 and the branch cuts
in between. We show the results for AAA and set-valued AAA, the second resulting in a significant
reduction of the number of poles for the 81 functions in the example.

The two eigenvalues between α0 and α7 are situated in the first interval, [α0,α1], as can be seen
in Figure 2. We used the rational Krylov method with five equally spaced shifts from α0 + ε to α1−
ε , where ε = 10−2. The convergence behaviour, using a SV-AAA-EIGS with 141 poles for interval
[α0,α7], is shown in Figure 3. We used ‖A(λ )x‖2 as error measure, to be able to compare the results to
those found in Van Beeumen (2015). The behaviour is comparable to that observed for the static variant
of NLEIGS.
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FIG. 2: Number of poles for the semiconductor problem when NLEIGS, AAA-EIGS, and SV-AAA-
EIGS are applied to the seven intervals [α0,αi] with i = 1, . . . ,7.
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FIG. 3: Convergence behavior of the two Ritz values for set-valued AAA between α0 and α7, with 141
poles, for the semiconductor problem. The faster converging Ritz value corresponds to the smallest
(leftmost) eigenvalue in Figure 2 near −0.14 and the slower converging value corresponds to the larger
eigenvalue around −0.13.

4.4 Sandwich beam

A beam, consisting of two steel layers surrounding a damping layer, is modeled using the following
matrix function

A(λ ) = K−λ
2M+

G0 +G∞(iλτ)α

1+(iλτ)α
C,

with K,M,C ∈ R168×168 symmetric positive semi-definite matrices; see Van Beeumen et al. (2013).
Here, G0 = 350.4kPa is the static shear modulus, G∞ = 3.062MPa is the asymptotic shear modulus,
τ = 8.23ns is the relaxation time and α = 0.675 a fractional parameter. Variable λ is the angular
frequency and we are interested in eigenvalues in the range λ ∈ [200,30000].

We use the AAA algorithm to approximate the nonlinear term in A(λ ), where the sample set consists
of 104 equidistant points within the frequency range, i.e., in the interval [200,30000]. The algorithm
converges with 11 poles. The location of the poles is shown in Figure 4 and the approximation error,
on a random test set of 1000 points λ ∈ [200,30000], is shown in Figure 5a. Note that Re λ <−1 and
Im λ > 0 for all poles, so that we can visualize the poles on a logarithmic axes, with on the negative real
axis − log10 |Re λ |. Note also that we do not use set-valued AAA, as there is only one non-polynomial
function. We similarly developed a rational approximation of degree 30 using NLEIGS in the rectangle
with corners 200,200+5000i,30000,30000+5000i. The poles were chosen on the negative real axis.
We also tried to use an NLEIGS approximation for the interval [200,30000], but the eigenvalues further
away from the interval did not converge to eigenvalues of the nonlinear eigenvalue problem.

We used the rational Krylov method to obtain eigenvalue and eigenvector estimates of A(λ ). We
used 10 shifts, [2,5,10,100,200,210,220,230,240,250] ·100, i.e., with more shifts located near the end
of the interval. This results in the Ritz values also shown in Figure 4, on the same logarithmic axes, since
Re λ > 1 for all Ritz values. The residual norms (4.2) can be seen in Figure 5b. They are compared to
the residual norms of NLEIGS. Note that because of the large norm of K, most residual norm values lie
around 10−8 for k = 1. After 50 iterations, the residual norms decrease by a factor 10−4 for most Ritz
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values.
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FIG. 4: AAA poles (◦) and Ritz values (×) for the sandwich beam.

4.5 Car cavity problem

The following model was generated by Dr. Axel van de Walle from KU Leuven, using a mesh from
a Siemens tutorial, and using poro-elastic material properties from Allard & Noureddine (2009) and
Chazot et al. (2013). The following matrix-valued function describes the nonlinear behaviour of the
sound pressure inside a car cavity with porous seats:

A(λ ) = K0 +hK(λ )K1−λ
2(M0 +hM(λ )M1),

where K0,K1,M0,M1 ∈ R15036×15036 are symmetric positive semidefinite matrices and λ is the angular
frequency λ = 2P0 f . The nonlinear functions are given by

hK(λ ) =
φ

α(λ )
, α(λ ) = α∞ +

σφ

iλρ0

√
1+ iλρ0

4α2
∞η

σ2Λ 2φ 2 ,

and

hM(λ ) = φ

(
γ− γ−1

α ′(λ )

)
, α

′(λ ) = 1+
8η

iλρ0Λ ′2Pr

√
1+ iλρ0

Λ ′2Pr

16η
,

with the parameters defined in Table 2. Function hK is unbounded around λ = 514i and has a branch
point around λ = 619i, with a branch cut on the imaginary axis. The second nonlinear function hM is
unbounded around λ = 815i and has a branch point at λ = 2089i. These points and branch cuts are
shown in Figure 6.

Since the physical model includes damping, we need to take into account that the eigenvalues have
positive imaginary parts. We chose a test set with 5 · 104 real values, Re(λ ) ∈ [1,300], and 5 · 104
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FIG. 5: Approximation error and residuals for the sandwich beam.

random values in the rectangle with corner points 0 and 300+104i, i.e., with very large imaginary part.
We can see from Figure 6 that AAA chooses some poles very close to the singularities of the nonlinear
functions. The degree of the set valued rational approximation is 42 for a tolerance of 10−13.

In order to compare with NLEIGS, we reduced the test set to the rectangle with corners 0 and
300+ 510i. In this way, the set of points remains below the first singular point of the function around
514i. The Leja–Bagby poles are picked on the imaginary axis, starting at Im(λ ) = 514. This is shown
in Figure 7. The degree necessary to reach a relative accuracy of 10−12 on the border of the rectangle
was 40. We found that AAA reaches the same required accuracy for a polynomial of degree 11. We
compared the results obtained by the rational Krylov method for both approximations, where we used
10 equally spaced shifts on the real axis Re(λ ), from 1 to 300. Figure 8 shows some of the Ritz values
together with the number of Krylov iterations required to reach a residual norm (4.2) below 10−12. These
Ritz values have low imaginary parts, confirming our choice of test set, and, as for the gun problem,
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Table 2: Constants of the car cavity model

α∞ 1.7 σ 13500kgm−3s−1 φ 0.98
η 1.839 ·10−5 Λ 80 ·10−6m Λ ′ 160 ·10−6m
γ 1.4 ρ0 1.213 Pr 0.7217

convergence is comparable for both methods.

5. Conclusions

We have proposed a method for solving the nonlinear eigenvalue problem by first approximating the as-
sociated nonlinear matrix-valued function using the AAA algorithm. This approximation is embedded
in a state space representation, which leads to a linearization that can be solved using the Compact Ratio-
nal Krylov method. We presented two versions: one that approximates each function separately and then
the set-valued version that approximates all functions together. The latter version is very competitive
with NLEIGS in terms of degree of the rational approximation, and in all our tests, AAA requires less
poles than an approximation using potential theory, even for a problem with eighty different functions.
The main advantage of the method is the fully automatic procedure in the determination of the rational
approximations. Contrary to NLEIGS, we expect that the construction of the AAA approximation may
become prohibitively expensive when the number of nonlinear functions is extremely high, i.e, in the
order of the size of the matrix.
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A. Proofs of Theorems 3.3 and 3.4

The following simple lemma turns out be useful.



REFERENCES 27 of 29

LEMMA A.1 Let G22 ∈ Cm×m and X1 ∈ Cn×n be invertible matrices that satisfy[
G11 G12
G21 G22

][
X1
X2

]
=

[
Y1
O

]
, (A.1)

then the following block-UL decomposition holds:[
G11 G12
G21 G22

]
=

[
In G12G−1

22
O Im

][
Y1X−1

1 O
G21 G22

]
. (A.2)

Proof. After block elimination of the square matrix on the left-hand size of (A.2), we only need to
show that its Schur complement S = G11−G12G−1

22 G21 equals Y1X−1
1 . But this follows directly from the

identities G11 = (Y1−G12X2)X−1
1 and X2 =−G−1

22 G21X1 that are implied by (A.1). �
Proof of Theorem 3.3. Identity (3.15) follows from direct manipulation together with det(A⊗ In) =
(det(A))n. To show the block-UL decomposition, recall from (3.13) and (3.14) that

(L̃R(λ )P)(PT
Ψ(λ )) =

[
R(λ )

OOO

]
with L̃R(λ )P =

 AAA0−λBBB0 AAA1−λBBB1 CCC−λDDD
MMM0−λNNN0 MMM1−λNNN1 OOO

ZZZ∗0 ZZZ∗1 EEE−λFFF

 .
The vertical and horizontal lines indicate compatible block partitioning. The corresponding partitioning
for PTΨ(λ ) satisfies

PT
Ψ(λ ) =



p1In
p2In
...

pkIn

(R1(λ )⊗ Ik1)Z̃
∗
1

...


with p =

p1
...

pk

 := PT
0 f (λ ) ∈ Ck.

The required block-UL decomposition now follows from a direct calculation if we can apply Lemma A.1
to the partitioned matrix L̃R(λ )P . In order to be able to do this, we only have to establish that p1 =
eT

1 PT
0 f (λ ) 6= 0 since then X1 = p1In is invertible (and we already have Y1 = R(λ )). To this end, we use

the definition of P0 to obtain

(M−λN) f (λ ) = 0 ⇐⇒
[
m0−λn0 M1−λN1

]
p = 0.

Since M1−λN1 is invertible and dimKer(M−λN) = 1, the null-vector p has to be of the form

p = α

[
1

−(m0−λn0)(M1−λN1)
−1

]
, α ∈ C.

Since f (λ ), and thus p, cannot ever be identically zero, we get as requested that α = p1 6= 0. �
Proof of Theorem 3.4. (a) Let (λ0,x) be an eigenpair of R(λ ), that is, R(λ0)x = 0. Recalling that
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f (λ )T =
[

f0(λ ) · · · fk−1(λ )
]

with f0(λ )≡ 1, we obtain

y =Ψ(λ0)x =



x
f1(λ0)x

...
fk−1(λ0)x

(R1(λ0)⊗ Ik1)Z̃
∗
1x

...

(Rs(λ0)⊗ Iks)Z̃
∗
s x


and thus also y 6= 0 due to x 6= 0. Using (3.13), we see that (λ0,y) verifies the eigenpair equation

L̃ (λ0)y =
[

R(λ0)
OOO

]
x =

[
0
0

]
.

(b) Let (λ0,y) be an eigenpair of L̃ (λ ). Thanks to (3.13), it suffices to show that y = Ψ(λ0)x
for some nonzero x ∈ Cn since that implies R(λ0)x = 0. To this end, consider the eigenpair equation
L̃ (λ0)y = 0 in partitioned form: AAA−λ0BBB CCC−λ0DDD

MMM−λ0NNN OOO
ZZZ∗ EEE−λ0FFF

[yAB
yCD

]
=

0
0
0

 .
The second block-row expresses that yAB is a null vector of MMM−λ0NNN = (M−λ0N)⊗ In. By definition of
f (λ ), we have (M−λN) f (λ ) = 0 from which (MMM−λNNN)( f (λ )⊗ In) = 0. Since f0(λ )≡ 1, the kn×n
matrix F(λ ) := f (λ )⊗ In has rank n. In addition, by rank nullity, dimKer(MMM−λNNN) = n and so F(λ )
is a basis for Ker(MMM−λNNN). Hence, there exists x ∈ Cn such that (recall f0(λ )≡ 1)

yAB = F(λ0)x =


x

f1(λ0)x
...

fk−1(λ0)x

 . (A.3)

The third block-row reads
(EEE−λ0FFF)yCD =−ZZZ∗yAB.

Together with the definitions of ZZZ,EEE,FFF and (A.3), we also obtain(E1−λ0F1)⊗ Ik1
. . .

(Es−λ0Fs)⊗ Iks

yCD =

(b1⊗ Ik1)Z̃
∗
1

...

(bs⊗ Iks)Z̃
∗
s

(eT
1 f (λ0)⊗ In)x.

Hence, isolating for yCD and using Ri(λ ) = (Ei−λFi)
−1bi, we get

yCD =

((E1−λ0F1)
−1⊗ Ik1)(b1⊗ Ik1)Z̃

∗
1

...

((Es−λ0Fs)
−1⊗ Iks)(bs⊗ Iks)Z̃

∗
s

x =

(R1(λ0)⊗ Ik1)Z̃
∗
1

...

(Rs(λ0)⊗ Iks)Z̃
∗
s

x. (A.4)
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Now combining (A.3) and (A.4), we have indeed shown that there exists x ∈ Cn such that

y =
[

yAB
yCD

]
=Ψ(λ0)x.

Observe that Ψ(λ ) has full column rank thanks to F(λ ) being its upper block. Hence, from y 6= 0 it
follows that x 6= 0 and we haven proven (b).

(c) The statement about the algebraic multiplicity of λ0 follows directly from (3.15) since the ma-
trices M1− λ0N1 and Ei− λ0Fi are invertible by construction of P0 and by assumption, respectively,
and α 6= 0. Next, we show the equality of the geometric multiplicity of λ0, that is, dimkerR(λ0) =

dimkerL̃R(λ0). Let {x1, . . . ,xt} be a basis for kerR(λ0). Then by (a), Ψ(λ0)xi ∈ kerL̃R(λ0) for
i = 1, . . . , t. As argued above Ψ(λ0) has full column rank, hence the vectors Ψ(λ0)x1, . . . ,Ψ(λ0)xt

are linearly independent and so dimkerR(λ0)6 dimkerL̃R(λ0). Similarly, if {y1, . . . ,yt} is a basis for
kerL̃R(λ0), then by (b), yi =Ψ(λ0)xi for some xi ∈ Cn. Again due to Ψ(λ0) having full column rank,
the x1, . . . ,xt are linearly independent. Hence, dimkerR(λ0) > dimkerL̃R(λ0), as we wanted to show.
�


