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Abstract Satellite observations show a small overall increase in Antarctic sea ice8

extent (SIE) over the period 1979–2015. However, this upward trend needs to be9

balanced against recent pronounced SIE fluctuations occurring there. In the space of10

three years, the SIE sank from its highest value ever reached in September 2014 to11

record low in February 2017. In this work, a set of six state-of-the-art global climate12

models is used to evaluate the potential predictability of the Antarctic sea ice at such13

timescales. This first multi-model study of Antarctic sea ice predictability reveals14

that the ice edge location can potentially be predicted up to three years in advance.15

However, the ice edge location predictability shows contrasted seasonal performances,16

with high predictability in winter and no predictability in summer. The reemergence17

of the predictability from one winter to next is provided by the ocean through its18

large thermal inertia. Sea surface heat anomalies are stored at depth at the end of19

the winter and influences the sea ice advance the following year as they resurface.20

The effectiveness of this mechanism across models is found to depend upon the depth21

of the mixed layer. One should be very cautious about these potential predictability22

estimates as there is evidence that the Antarctic sea ice predictability is promoted23

by deep Southern Ocean convection. We therefore suspect models with excessive24

convection to show higher sea ice potential predictability results due to an incorrect25

representation of the Southern Ocean.26
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1 Introduction29

Unlike the rapid sea ice losses reported in the Arctic, the Antarctic SIE has been30

increasing during the 1979 to 2015 period for all seasons (Comiso et al (2017)),31

despite global warming. This small overall increase is a balance between large regional32

variations. The Ross Sea and the eastern Antarctic sector positively contribute to33

the sea ice cover increase, while the Amundsen and Bellingshausen Seas negatively34

contribute to it (e.g., Parkinson and Cavalieri (2012); Comiso et al (2017)). This35

sea ice expansion is seemingly at odds with the evolution of sea ice simulated by36

almost all today’s climate models, which show a significant decrease in sea ice cover37

over the same period (Turner et al (2013a)). The inconsistency between the observed38

and simulated sea ice may reflect a deficient or even missing representation of the39

physical processes governing the Antarctic sea ice. Interestingly, Meehl et al (2016)40

found that the models which correctly sample the observed natural variability of the41

SIE over 2000–2014 within the fifth phase of the Coupled Model Intercomparison42

Project (CMIP5) also capture the expansion of the SIE in all seasons.43

The evolution of the Antarctic sea ice at the seasonal-to-interannual timescales44

has been related to both atmospheric and oceanic processes. The two studies of Gor-45

don and Taylor (1975) and Martinson (1990) notably initiated the understanding of46

the interactions between the sea ice, the winds and the ocean. Over the last decades,47

multiple mechanisms have been proposed as potential drivers of the Antarctic sea ice48

cover changes. As yet, none of them has provided a single and fully satisfactory ex-49

planation. Several studies traced recent changes in atmospheric circulation patterns50

in the Antarctic, and possible impact on Antarctic sea ice, to teleconnections with51

the tropical Pacific and Atlantic Oceans (Ding et al (2011); Okumura et al (2012); Li52

et al (2014); Simpkins et al (2014); Meehl et al (2016)). A positive Southern Annular53

Mode (SAM) – associated with an intensification and a poleward shift of the westerly54

winds – is also expected to promote an overall sea ice expansion due to an increased55

equatorward Ekman transport of cold surface waters (Thompson et al (2011)), with56

a noticeable exception in the West Antarctic region. In this region, the Amundsen57

Sea Low (ASL) variability influences the climate by controlling the meridional com-58

ponent of the large-scale atmospheric circulation. This results in a reduced SIE in the59

Bellingshausen and eastern Amundsen Seas and an increase in the western Amundsen60

and Ross Seas (e.g., Stammerjohn et al (2008); Turner et al (2013b); Raphael et al61

(2016)). Nevertheless, climate general circulation models (GCMs) fail at reproducing62

the observational link between SAM, SST and Antarctic sea ice on the inteannual63

timescale. They even tend to produce an ocean surface warming and a sea ice lost in64

response to a strengthening of the SAM (e.g., Bitz and Polvani (2012); Sigmond and65

Fyfe (2014); Haumann et al (2014)). Ferreira et al (2015) sheds light on this appar-66

ent disagreement by introducing a two timescale response. While the strengthening67

of the westerly winds leads to an initial surface cooling and sea ice expansion, the68

long-term response is that of a surface warming and sea ice loss. Purich et al (2016)69

recently argued that part of this disagreement lies in the model underestimation of70

westerly wind changes. To explain the sea ice expansion during the last decades, it71

has also been suggested that freshwater influx from basal melt of ice shelves could72

favour the formation of sea ice locally through an enhanced stratification (Bintanja73

et al (2013)). This is though a contentious issue since both Swart and Fyfe (2013)74

and Pauling et al (2016) were unable to confirm this mechanism. At the regional75

scale, Holland and Kwok (2012) identified wind-driven dynamic and thermodynamic76
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changes as the principal cause of the observed sea ice cover trends. However, it is77

unclear how the wind-driven sea ice transport alone could explain the observed con-78

current sea surface temperatures (SST) downward trends. This problem is partly79

figured out over the seasonally sea ice covered region with the ice-ocean feedback80

introduced by Goosse and Zunz (2014) and observationally proven and quantified by81

Lecomte et al (2017).82

The year 2016 has been marked by anomalous atmospheric circulation patterns,83

mainly in the Weddell Sea and Ross Sea sectors, which prevailed throughout the84

springtime and lead to strong winds and advection of warm air from the north.85

Those atmospheric conditions, associated with a strong negative November SAM86

index, induced a massive sea ice melt (Turner et al (2017)), causing the Antarctic87

sea ice in 2017 to shrink to its smallest summer extent on record since the beginning88

of satellite observations. Stuecker et al (2017) also attributed this unprecedented low89

Antarctic SIE to positive SST anomalies, caused by an extreme El Niño event that90

peaked in over the period December 2015-February 2016 and a concurrent negative91

phase of the SAM. The 2017 record low came a bit more than two years after several92

monthly record high SIEs in 2014 and decades of moderate sea ice growth. Those93

rapid changes highlight the importance of SIE natural variability in the Antarctic.94

According to Armour et al (2011), however, this increasing variance should not be95

interpreted as a warning sign of an approaching tipping point for the Antarctic sea96

ice.97

Most CMIP5 models notably fail in reproducing the natural variability of the98

Antarctic sea ice (e.g., Turner et al (2013a); Zunz et al (2013)). Those two studies99

pointed out marked seasonal variations of the interannual variability simulated for100

each month of the year compared to the observations, as well as an overestimation of101

the observed winter interannual variability. In addition, much of the SIE variability in102

models originates from changes in intensity of deep ocean convection (e.g., Latif et al103

(2013); Behrens et al (2016)). As yet, there was no clear evidence of this relation in104

recent observations. However, the return of the Weddell polynya in winter 2017 might105

support the existence of a multi-decadal internal mode of variability in the Southern106

Ocean, suggesting that natural variability alone could have explained the Antarctic107

sea ice expansion over the last decades (Polvani and Smith (2013); Mahlstein et al108

(2013); Zunz et al (2013)).109

Until now, Antarctic sea ice predictability has not received much attention. Due110

to the lack of observations and model biases, the scientific community has mainly111

focused on idealised studies so far. Holland et al (2013) characterised the initial112

value predictability of the ice edge location in the coupled atmosphere-ocean-land-113

sea ice model CCSM3. They found that the predictability up to two years ahead is114

mainly driven by oceanic processes through the reemergence of previous winter SST115

conditions. Those processes are responsible for intermittent performance with low116

summer and high winter predictability, this behaviour being closely related to the117

seasonal magnitude of the vertical ocean mixing. Zunz et al (2014) applied differ-118

ent initialisation procedures to the Earth system model of intermediate complexity,119

LOVECLIM1.2, and evaluated their impact on sea ice predictability in the Southern120

Ocean. They confirmed the role of the ocean as a source of sea ice predictability at121

the interannual timescale (two years ahead). They also addressed the sea ice pre-122

dictability at the multi-decadal (10–30 years) timescale. They found a significant123

correlation of the SIE trend between the hindcasts and the pseudo-observations over124

the period 10–30 years. Finding that, initialisation systematically improved those125
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correlations. However, much work still has to be done to harness this potential pre-126

dictability in a real prediction system. Using CMIP5 decadal hindcasts, Yang et al127

(2016) showed poor Antarctic sea ice predictive skill on all timescales irrespective128

of whether the projections were initialised or not. This is an indication that more129

effort should be invested in order to understand the origin of the deficiencies in real130

forecast performance. Should those deficiencies primarily originate from a sparse131

and incomplete knowledge of Antarctic initial conditions and or model biases, or132

should they rather be attributed to limited model predictive skill at the seasonal-to-133

interannual timescales? This question motivated our model intercomparison study.134

We assessed in a systematic way the Antarctic sea ice predictive skill of multiple135

climate models and showed that the predictive skill is highly model-dependent. This136

model intercomparison allowed us to identify robust Antarctic sea ice predictability137

characteristics and possible related mechanisms inherent to up-to-date GCMs, creat-138

ing the potential for skilful Antarctic sea ice forecasts at the seasonal-to-interannual139

timescales.140

Our work follows on from numerous studies dedicated to the predictability of Arc-141

tic sea ice, carried out within the Arctic Predictability and Prediction on Seasonal142

to Inter-annual Timescales (APPOSITE) project (Day et al (2016))). This project143

aimed to define the scope of useful climate predictions in the Arctic, including the144

identification of the timescales on which Arctic climate is potentially predictable. The145

ability to perform accurate predictions of the Arctic climate was tackled with several146

GCMs. Additional information about this project is available at http://arp.arctic.ac.147

uk/projects/arctic-predictability-and-prediction-seasonal-inte/. Although this dataset148

was initially designed to address Arctic climate predictability, we benefited from149

global climate simulations to explore the predictability of the Antarctic sea ice. This150

study should be regarded as an extension for the Antarctic of that conducted by151

Tietsche et al (2014) in this respect.152

We proceed in Section 2 with a brief introduction to the idealised experiments153

that we used. A detailed description of the APPOSITE simulations can be found in154

Day et al (2016). We then give a general overview of the mean climate state (SIE155

and mixed layer depth (MLD)) simulated by the six models utilised. We conclude156

Section 2 with a description of the metric used to assess the predictability of the157

sea ice edge location. The results of the predictability of the ice edge location are158

then presented in Section 3 and discussed in Section 4 in light of the results that we159

gained from the analysis of the predictability of the ocean heat content computed160

over its first 100 metres.161

2 Methodology162

2.1 The APPOSITE project163

This study aims at giving an overview of the ability of today’s GCMs to predict the164

Antarctic sea ice on seasonal-to-interannual timescales. Due to its nonlinear nature,165

the climate system is highly sensitive to small perturbations in the initial state at166

such timescales. As both observations and models are incomplete and error-prone, it167

is difficult to correctly estimate the part of the total uncertainty accounted for the168

initial state. In order to statistically address the sensitivity to the initial conditions,169

the models were run from a set of initial conditions.170
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Six coupled atmosphere-ocean-sea ice GCMs were used to assess the initial-value171

predictability of Antarctic sea ice. They all include a fully prognostic sea ice compo-172

nent (see Table 1). After a spin-up phase of at least 100 years that ensure the models173

to be close to equilibrium, long control simulations with constant radiative forcing174

representative of the end the 20th century (see Table 1) were conducted in order to175

have a good estimate of the mean state and internal variability of the system (further176

discussed in Section 2.2). These simulations were used as a reference to evaluate the177

predictability arising from the knowledge of the initial conditions (see Section 2.3).178

It appeared as though that the models do not settle down into a stable climate after179

the spin-up phase, leading to a drift in the simulated SIE (see Section 2.2). This180

situation was already reported in Day et al (2016) in the Arctic for many models181

and turns out to be true for all the models in the Antarctic. The influence of this182

drift on the metric used to assess the predictability is discussed in Section 2.3.183

The ensemble experiments were generated from the control simulations on multi-184

ple start dates. Within a given ensemble, each ensemble member was initialised from185

the same atmosphere, land and sea ice conditions. They only differ by a slightly186

modified ocean state, a white noise of amplitude 10−4 K being applied to the SSTs.187

This perturbation is tiny enough to assume a virtually perfect knowledge of the ini-188

tial state. The number of start dates varies between 8 and 18. They are sufficiently189

spaced in time to encompass a wide range of sea ice conditions (see Figure S1 of the190

supplementary material). Each ensemble includes from 7 to 16 members depending191

on the model. The number of ensembles and ensemble members for each model is192

specified in Table 1. The APPOSITE project was originally designed to assess late193

summer sea ice conditions in the Arctic. That is why the models all provided with194

ensemble experiments initialised on July 1st even if this requirement is not relevant195

for Antarctic sea ice predictability. Some models also contributed to the predictabil-196

ity experiments with simulations initialised on January 1st, May 1st and November197

1st (see Table 1). Irrespective of the start month, all the predictions are 36 months198

long except for MIROC5.2, which are 42 months long.199

2.2 Models’ mean state and internal variability200

2.2.1 Sea ice201

Figure 1 illustrates how the Antarctic SIE is simulated by the six models. Though the202

annual cycle of the SIE is correctly reproduced with a maximum SIE in September203

and a minimum SIE in February, the simulated SIE does not track the observations. It204

bears emphasizing that most today’s GCMs fail to reproduce the correct magnitude205

of the SIE all over the year (refer to Turner et al (2013a) and Zunz et al (2013)206

for a discussion of the CMIP5 models mean state). Most of the models selected here207

(EC-Earth2.2, ECHAM6-FESOM, GFDL CM3, MIROC5.2 and MPI-ESM-LR) tend208

to underestimate the SIE. The situation is particularly problematic for ECHAM6-209

FESOM and MIROC5.2, those models producing little sea ice in winter with no210

remaining sea ice in summer. HadGEM1.2 is the only one to produce too much sea211

ice throughout the year. It is worth noticing that a model that simulates a small212

SIE in winter consistently produces a small SIE in summer and vice versa. Looking213

at the sea ice concentration (SIC) field patterns in Figure S2 of the supplementary214
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material reveals that the Weddell Sea contributes much of the remaining summer215

sea ice.216

Like the SIE mean state, the internal variability of the SIE simulated by the217

models is in disagreement with observations. The standard deviation of the observed218

SIE is nearly flat throughout the year, whereas it shows marked seasonal variations219

in the models. This is especially true for ECHAM6-FESOM, MIROC5.2 and MPI-220

ESM-LR. All the models but HadGEM1.2 tend to have their minimum of variability221

in February. This minimum of variability coincides with the minimum of SIE and222

probably results from it. At the regional scale (see Figure S3 of the supplementary223

material), the observed internal variability of the SIE is ring-shaped in winter. The224

interior of the sea ice is in fact characterised by smooth variations of the SIC field and225

most of the variability is limited to the marginal ice zone. This is in sharp contrast226

with the variability simulated by the models. Although they succeed in reproducing227

the high SIC variability in the marginal sea ice zone, most of them tend to produce228

too much SIC variability within the pack. The SIC variability patterns shown in229

Figure S3 of the supplementary material are representative of the magnitude of the230

interannual variations of the ice edge position. Much of the SIC variability within231

the pack must therefore not be ascribed to the sea ice drift observed in the control232

simulations. We will see in Section 2.2.2 that those extensive areas of large SIC233

variability are characterised by anomalous open-ocean deep convection events (see234

figure 3).235

We mentioned in Section 2.1 that the APPOSITE control runs are subject to a236

drift, i.e. a long-term trend. This is especially clear for the SIE. The magnitude of237

the annual drift is given in Table 1, while the plots of the September control run SIE238

and associated drift are provided in Figure S1 of the supplementary material. Those239

diagnostics show that all the models have a negative September SIE trend, except240

HadGEM1-2 which has a positive one. All trends are significant at the 95 percent241

level.242

From this perspective, GCMs leave room for improvement concerning the Antarc-243

tic sea ice. Nevertheless, this glaring disagreement between models and observations244

fully justifies the use of a perfect model approach as it helps to gain insight into the245

predictability properties of the Antarctic sea ice.246

2.2.2 Mixed layer247

The mixed layer south of the Antarctic circumpolar current (ACC) is strongly influ-248

enced by the presence of sea ice (Martinson (1990); Pellichero et al (2017)). Marked249

seasonal variations of the mixed layer depth are observed in this part of the South-250

ern Ocean with values exceeding 100 m at some locations (Pellichero et al (2017)).251

The seasonal cycle of the MLD closely follows the seasonal cycle of the sea ice (not252

shown). Winter cooling and formation of sea ice destabilize the water column and253

deepen the mixed layer, while warming and freshening of the surface, associated with254

the summer sea ice melting, cause the mixed layer to shallow. This observational link255

between the sea ice and the mixed layer has also been reported in models (see for256

instance Barthélemy et al (2015)).257

The depth of the mixed layer is important as it reflects the amount of water and258

accumulated heat which is directly available to interact with sea ice. As a conse-259

quence, it is essential to correctly represent the mixed layer in the regions covered260

by sea ice in climate models to properly simulate the observed mean state of the sea261
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(b) SIE variability

Fig. 1 Characteristics of the Antarctic SIE simulated by the six models (up: the
mean over the control run years for each individual month; down: the standard
deviation over the same period and for each month too. The SIE was previously
detrended before computing the standard deviation). The mean observed SIE and
the associated standard deviation are also shown for comparison. They were retrieved
from the global sea ice concentration data record (SSMI/SSMIS) of the Ocean and
Sea Ice Satellite Application Facility (OSI SAF, EUMETSAT (2015)). This dataset
covers the period October 1978 to April 2015 and has a spatial sampling of 10 km
and 12.5 km. The performance of this dataset is discussed in Ivanova et al (2015)
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ice and its natural variability. Besides, we will show in Sections 4.1 and 4.2 that the262

penetration of the SST anomalies in the ocean is closely tied to the seasonal cycle263

of the MLD in the regions seasonally capped by sea ice. Temperature fluctuations264

at the base of the mixed layer reflect the temperature fluctuations at the surface.265

For sufficiently deep winter mixed layers, the winter temperature anomalies at depth266

are likely to persist and influence the surface temperatures the following year. We267

thus found useful to discuss the ability of our six models to represent the seasonal268

evolution of the MLD.269

The lack of in-situ measurements makes difficult to explore the mixed layer char-270

acteristics in the Southern Ocean, especially in the zone seasonally covered by sea271

ice. Recently, Pellichero et al (2017) constructed a 10-year climatology of the MLD272

in this ocean by examining more than 465,000 hydrographic profiles. Those profiles273

combine several sources of information, including elephant seal-derived observations,274

ship-based and Argo float observations. The MLD was retrieved from density pro-275

files by combining three criteria that give three estimates of the MLD, following the276

approach of Holte and Talley (2009). One of the criteria consists in inspecting the277

shape of each individual profile, while the two others are based on a density threshold278

of 0.03 kgm−3 and vertical density gradient of 0.0005 kgm−3dbar−1. Figure 2 shows279

the mean state of the observed MLD averaged over the summer months (January,280

February and March), the winter months (July, August and September) as well as281

the amplitude of the seasonal cycle (defined as the difference between the mean win-282

ter MLD and the mean summer MLD). Those three quantities were also computed283

for the six models.284

Although the models that we used provided an MLD diagnostic, we decided not285

to work with it for two reasons. Firstly, we noticed that the definition of the MLD286

is not always clearly stated in the model description so that different models might287

use different criteria. Secondly, the models for which the method of calculation is288

not reported probably follow the density σθ threshold of 0.125 kgm−3 from the near289

surface recommended by CMIP5. Heuzé et al (2013) showed that this value is too290

high to detect the real MLD in the weakly stratified Southern Ocean. Consequently,291

the most appropriate criterion ∆σθ ≥ 0.03 kgm−3 was selected in this study (the292

reader is referred to Sallée et al (2006) and de Boyer Montégut (2004) for more293

details). This choice of density threshold value criterion was also motivated by the294

comparison to the observations, as this criterion was used to produce the mixed layer295

climatology discussed above. Note that the potential density was directly available296

for the three models GFDL CM3, MPI-ESM-LR and MIROC5.2, while it needed297

to be computed from monthly mean potential temperatures and salinities for EC-298

Earth2.2, ECHAM6-FESOM and HadGEM1.2.299

It can be seen from Figure 2 (left column) that the MLD simulated by the mod-300

els in summer is spatially uniform over the part of the Southern Ocean seasonally301

capped by sea ice. Besides, it rarely exceeds 50 m. This value is close to the ob-302

served summer MLD. Much of the differences between the simulated and observed303

MLDs arise in winter. The winter MLDs simulated by ECHAM6-FESOM, GFDL304

CM3, HadGEM1.2, MIROC5.2 and MPI-ESM-LR are consistently larger than the305

observations almost everywhere in the Southern Ocean. Apart from the coast, the306

EC-Earth2.2 model is the only model which simulates too shallow mixed layers over307

the regions seasonally covered by sea ice. Despite the reported magnitude biases, the308

broad meridional evolution of the winter MLD simulated by the six models fits with309

the climatology of Pellichero et al (2017). All the models simulate deep mixed layers310
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Summer (JFM) Winter (JAS) Seasonal cycle amplitude

(a) EC-Earth2.2

(b) ECHAM6-FESOM

(c) GFDL CM3

(d) Climatology
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Fig. 2 Representation of the summer MLD (left), winter MLD (centre) and amplitude of the MLD
seasonal cycle (right) averaged over the control run years for EC-Earth2.2, ECHAM6-FESOM and
GFDL CM3. MLDs values are in metres. The colour scale is limited to values between 0 and 100 m
for the summer, while it is extended to 700 m for the winter and the amplitude of the seasonal cycle.
The winter MLD simulated by GFDL CM3 can exceed this threshold value, but only for a restricted
number of grid points. The maximum winter MLD is 1262 m and 895 m for GFDL CM3 in the Indian
Ocean and the Ross Sea, respectively. The mean state (standard deviation) of the ice edge location
in summer and winter is represented by the thick (thin) black curve(s). Note that, for the models, the
standard deviation of the ice edge location was computed from the detrended ice edge location time
series for each month and each longitude separately. The MLD climatology of Pellichero et al (2017)
is also presented with the observed ice edge location and its standard deviation, for comparison. The
ice edge location was retrieved from the global sea ice concentration data record (SSMI/SSMIS),
which covers the period October 1978 to April 2015 (OSI SAF, EUMETSAT (2015))
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Summer (JFM) Winter (JAS) Seasonal cycle amplitude

(e) HadGEM1.2

(f) MIROC5.2

(g) MPI-ESM-LR

(h) Climatology
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Fig. 2 (cont.) Same as before, but for HadGEM1.2, MIROC5.2 and MPI-ESM-LR.
MLDs values are still in metres. The winter MLD simulated by HadGEM1.2 and
MIROC5.2 go up to 1169 m and 1337 m at some grid points, respectively. The MLD
climatology of Pellichero et al (2017) is presented with the observed ice edge location
and its standard deviation, for comparison. The ice edge location was retrieved from
the global sea ice concentration data record (SSMI/SSMIS), which covers the period
October 1978 to April 2015 (OSI SAF, EUMETSAT (2015))
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in coastal areas and in the vicinity of the ice shelves. They typically reach the ocean311

floor, which is in agreement with observations. Those coastal areas are associated312

with the production of dense waters. Unlike observations, the deep coastal mixed lay-313

ers also extend to the open ocean in ECHAM6-FESOM, GFDL CM3, HadGEM1.2,314

MIROC5.2 and MPI-ESM-LR. Such open ocean deep mixed layers are almost ex-315

clusively found in the Ross and Weddell Seas. The mean state of the winter MLD316

at those locations can go up to 700 m depending on the model. It even locally ex-317

ceeds 1000 m in GFDL CM3, HadGEM1.2 and MIROC5.2. Away from the deep open318

ocean mixed layers, the MLD never exceeds 120 m. This zone of intermediate MLD319

values encloses the continent and extends over the ACC front, where the mixed layer320

deepens again.321

Heuzé et al (2013) reported those open ocean regions as the source of much322

Antarctic dense bottom water formation in CMIP5 models, while the production of323

dense bottom water at those locations is extremely rare in observations. Figure 3324

shows the maximum MLD found in the control run for each individual grid point.325

The blue contour in each individual map encloses the regions where the maximum326

MLD exceeds half of the whole water column. The identified areas correspond to327

the regions where deep convection is likely to occur. Heuzé et al (2013) asserted328

that the regions defined in this way are insensitive to the criterion used to detect329

deep convection. Figure 3 indicates that deep convection events are widespread and330

occur in the vicinity of the coast as well as in the open ocean, where the deepest331

MLDs are found. In contrast to the five other models, EC-Earth2.2 simulates few332

deep convection events in the open ocean. The infrequency of those events in the333

Weddell Sea accounts for the shallow mean state of the winter MLD in Figure 2.334

2.3 Metric used to assess the predictability335

In order to assess the initial-value predictability, we characterised the ensemble pre-336

dictions with the prognostic potential predictability (PPP) introduced by Pohlmann337

et al (2004). This metric has been extensively used in idealised potential predictabil-338

ity studies (see for instance Koenigk and Mikolajewicz (2008); Holland et al (2013);339

Zunz et al (2014); Hawkins et al (2016)).340

The PPP basically compares the variance of the ensemble predictions (which341

gives an idea of the ensemble spread) to the variance of some reference forecast,342

chosen in this case as the control simulation variance σ2
clim:343

PPP(t) = 1 −

1
(N(M − 1))

N∑
i=1

M∑
j=1

(xij(t) − x̄i(t))2

σ2
clim

(1)

where xij(t) is the simulated value of some climate variable x at time t for the jth344

member of the ith prediction ensemble, and x̄i(t) denotes the ensemble mean at time345

t for the ensemble i. i ranges from 1 to N , the number of ensembles, while j ranges346

from 1 to M , the number of members per ensemble. A PPP value of 1 indicates347

perfect predictability (all members forecast the same evolution of the variable x).348

Conversely, a value of 0 means that the ensemble variance converges to the variance349

of the reference simulation. This last situation implies that no more information can350

be extracted from the knowledge of the initial state. As in Pohlmann et al (2004),351
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(a) EC-Earth2.2 (b) ECHAM6-FESOM (c) GFDL CM3

(d) HadGEM1.2 (e) MIROC5.2 (f) MPI-ESM-LR

(g) Climatology

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fig. 3 Maximum MLD (in metres) found in the control run for each model. The
colour scale is limited to values between 0 and 5000 m. The blue line encloses the
regions of the Southern Ocean where the MLD over bathymetry quotient exceeds
50 %. The maximum MLD climatology of Pellichero et al (2017) is also shown for
comparison, with colour scale values ranging from 0 to 500 m
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the statistical significance of the PPP was estimated using an F-test which takes into352

account the effect of serial correlation in the control run time series.353

Metrics like the PPP are known to be sensitive to the method used for choosing354

the reference climatology (see Hawkins et al (2016)). In the special case of the PPP,355

this choice has a direct impact on σclim, the standard deviation of the reference356

climatology. A drift in the control simulations leads to higher values of σ2
clim than357

would be expected in a steady state. As a result, σ2
clim may be higher than the358

limit of ensemble variance and leads to overoptimistic PPP estimates. Similarly, it359

is also important to compute the variance of the control time series for each of the360

12 calendar months, rather than having a single estimate, to include the potential361

influence of marked seasonal variations of the variance (as depicted in Figure 1b for362

the SIE standard deviation). Thus we systematically removed, for all variables, the363

linear trend of the control time series for each month of the year, before calculating364

the variability of the control simulation. The post-processed variables like the ice edge365

location and the ocean heat content were first computed from the undetrended sea366

ice concentration and temperature fields and, then, we detrended the corresponding367

time series. We expect the PPP values presented to give an unbiased estimate of368

the predictability for each model. However, this transient climate may affect the369

properties of the climate system, thus influencing its predictability. Nonetheless, more370

start dates would be required to correctly sample the predictability of the system371

over the same baseline climate and thus robustly investigate the state dependency372

of the predictability.373

3 Results374

3.1 Predictability of the ice edge location375

We applied the PPP metric to the ice edge location as in Holland et al (2013).376

It is defined for each longitude as the northernmost latitude where the Southern377

Hemisphere SIC exceeds 15 %. Each panel of Figure 4 shows the PPP computed378

for a given model. The time evolution of the PPP throughout the 36 months of379

integration (42 for MIROC5.2) is plotted along the horizontal axis, i.e. from left380

to right, all the ensemble experiments starting on July 1st. The six models display381

high values, i.e. close to one, during the first months of integration, even though382

we already notice some meridional differences. Predictability of the ice edge location383

rapidly falls to nearly zero in EC-Earth2.2 everywhere, whereas PPP remains high in384

the other models until December at some locations. The summer (January, February385

and March) is then characterised by low and generally not significant PPP values in386

many locations. This feature is shared by all the models. This period when the ice387

edge is not predictable is followed by a marked increase of the PPP at the beginning388

of the sea ice growing season around May. All models apart from EC-Earth2.2 share389

this feature.390

The reemergence of the predictability of the ice edge location is consistent with391

previous studies (Holland et al (2013); Zunz et al (2014)), despite the choice of a392

different start month (January 1st). This suggests that skilful interannual sea ice393

predictions could be achieved from various start months, not just January. This is394

confirmed by looking further at the role of the start month for each model separately,395

by applying the PPP metric to the other start months available. Figures are provided396
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(a) EC-Earth2.2 (b) ECHAM6-FESOM

(c) GFDL CM3 (d) HadGEM1.2

(e) MIROC5.2 (f) MPI-ESM-LR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 4 Prognostic potential predictability (PPP) of the ice edge location as a function
of longitude and lead time for the six models used. The forecast lead time is from
left to right, July 1st corresponding to the start month. Areas in grey represent the
longitudes free of sea ice during summer, while areas outlined in black refer to values
that are significant at the 95 % level. A map of Antarctica is included in each panel
to make the PPP results easier to interpret. The sectors constituting the Southern
Ocean, i.e. the Indian Ocean, the Pacific Ocean, the Ross Sea, the Bellingshausen
and Amundsen Seas and the Weddell Sea, are denoted by the letters I, P, R, B&A
and W, respectively
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in the supplementary material. It ensues from this additional analysis that the overall397

behaviour depicted above for the ensemble predictions started on July 1st is still398

valid. The ice edge location is still not predictable during the summer period, with399

a noticeable exception for the ensemble predictions initialised on January 1st. From400

this start month, the ice edge location is predictable during the first months of401

integration, that is in summer, at the longitudes where summer sea ice persists. As402

the summer ice edge location becomes unpredictable during the second and third403

years of prediction, this result is plainly attributed to the direct influence of the404

initial conditions on the ensemble members evolution. The skill at some lead time is405

highly dependent on when the forecast is started (skilful PPP values found at longer406

lead times for predictions started on January 1st). A similar result was found in the407

Arctic by Day et al (2014b). Nevertheless, the choice of the start month does not408

affect the predictability reemergence described above. Note that no additional data409

was provided for EC-Earth2.2, preventing us from checking any improvement with410

another start month.411

The locations where the predictability reemerges vary between the models even412

if some are shared by several models. For instance, ECHAM6-FESOM, GFDL CM3,413

HadGEM1.2 and MPI-ESM-LR show predictability in the Ross and Amundsen Seas,414

ECHAM6-FESOM, GFDL CM3 and MIROC5.2 in the Weddell Sea, GFDL CM3,415

HadGEM1.2 and MIROC5.2 in the Indian and Pacific Ocean sectors of the Southern416

Ocean and, finally, GFDL CM3 and MPI-ESM-LR in the Bellingshausen Sea.417

The second year of simulation is also characterised by a loss of predictability in418

summer followed by significant values of PPP in autumn. The predictability patterns419

look similar to those of the previous year, but with slightly weaker PPP values in420

almost every location. This weakening causes the predictability to almost completely421

vanish in HadGEM1.2.422

An eastward propagation of the predictability was reported in the CCSM3 model423

by Holland et al (2013). A similar propagation is observed in ECHAM6-FESOM,424

GFDL CM3, HadGEM1.2 and MPI-ESM-LR. Figure 4 shows that the eastward prop-425

agation mainly occurs in the Ross Sea, the Amundsen and Bellingshausen Seas and426

in the Weddell Sea. While the eastward propagation was also simulated in the West427

Pacific sector in CCSM3, only HadGEM1.2 simulates it. Interestingly, MIROC5.2 is428

the only model not to simulate an eastward propagation of the predictability. This429

can be understood by looking at the SIE mean states simulated by the models. Fig-430

ure 1a shows that MIROC5.2 simulates the lower SIE, causing the ice edge to be431

located close to the continent (see Figure 2). Conversely, the ice edge simulated by432

the other models is located more northwards. The ice edge in ECHAM6-FESOM,433

GFDL CM3, HadGEM1.2 and MPI-ESM-LR could consequently be more affected434

by the prevailing westerly winds, causing its predictability to shift eastwards.435

What emerges from Figure 4 is that the ice edge is potentially predictable436

three years in advance in ECHAM6-FESOM, GFDL CM3, MPI-ESM-LR and, to a437

lesser extent, HadGEM1.2. The predictability even reaches 3.5 years in MIROC5.2.438

Nonetheless, this predictability exhibits a wide variation between the seasons and439

the regions. It appears that the ice edge location cannot be predicted in summer440

at most locations, while the highest PPP values are found in winter. In addition,441

the predictability of the ice edge for a given model is confined to the same bands of442

longitudes throughout the prediction. In the next section, we consider the sources of443

predictability that cause the above-mentioned behaviour.444
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3.2 Predictability of the ocean445

The Antarctic sea ice almost entirely disappears during austral summer, which makes446

it very different to its Arctic counterpart. Apart from HadGEM1.2, Figure 1a shows447

that all models simulate little sea ice in summer. This near disappearance prevents448

sea ice from keeping a record of its past conditions after the summer retreat, unlike449

the Arctic sea ice, where sea ice thickness anomalies provide a source of predictabil-450

ity (e.g., Chevallier and Salas-Mélia (2012); Day et al (2014b)). Moreover, one can451

presumably expect the little coastal remnants of sea ice (see Figure S2 in the sup-452

plementary material) to be primarily affected by unpredictable regional processes,453

making them unpredictable in summer. Nevertheless, these features do not prevent454

sea ice from being predictable as soon as it grows during the next season. The fact455

that the same ice edge reemergence is observed regardless of the start month also456

supports the weak influence of the summer sea ice state on the winter predictability.457

It indicates that accurately initialising sea ice in summer is of little importance for458

its winter evolution. This is in agreement with the study of Guemas et al (2016),459

who studied the impact of the sea ice initialisation on Antarctic sea ice predictabil-460

ity on seasonal timescales. They found that initialising the winter sea ice conditions461

from their best possible observational estimate in May does not improve the quality462

of Antarctic sea ice predictions, suggesting that skilful SIE predictions should not463

be attributed to the sea ice memory. As the ocean was initialised in May too, this464

indicates that the ocean initial state prevails in controlling the evolution of the sea465

ice during the growing season.466

As already pointed out by Holland et al (2013) and Zunz et al (2014), the ice467

edge variations are constrained by the heat anomalies stored in the ocean. However,468

those anomalies do not remain at the ocean surface. Figure S5 of the supplementary469

material shows that the PPP applied to the SSTs greatly depends on the season, with470

highly significant values found in winter and low and generally non-significant values471

in summer. An examination of Figure 2 reveals that the longitudes for which the472

SSTs are still predictable in summer are typical of the regions with extensive deep473

mixed layers areas, probably accounting for the persistence of the SST anomalies at474

those locations (see Figure 6). We will discuss in the next sections the influence of475

those regions on the winter-to-winter reemergence of SST anomalies. Consequently,476

we investigated the role of a thicker oceanic layer, close to the surface, to explain the477

reemergence of the ice edge predictability.478

We computed the PPP of the ocean heat content (OHC) between 0 and 100 m479

depth. For a given longitude, the ocean heat content was integrated over latitudes480

situated between the coast and the northernmost ice edge location found in the481

control run of each model for each longitude. Figure 5 shows the results for the 36482

months (42 for MIROC5.2) of integration for the six models.483

Unlike the predictability of the ice edge location, the OHC is potentially pre-484

dictable at some longitudes for the whole period of simulation, including the sum-485

mer months. ECHAM6-FESOM, GFDL CM3, MIROC5.2 and MPI-ESM-LR exhibit486

well-defined strips of high PPP values. Albeit less pronounced, those strips are also487

present in HadGEM1.2. Figure 5 and Figure S5 of the supplementary material have488

been compared, showing no appreciable differences between the positions of the strips489

of high PPP values for the OHC and the SSTs. Among the models, EC-Earth2.2 is490

the least predictable, with the OHC becoming unpredictable after the first five fore-491

cast lead months almost everywhere, except in the Weddell Sea sector. The location492



18 Sylvain Marchi et al.

(a) EC-Earth2.2 (b) ECHAM6-FESOM

(c) GFDL CM3 (d) HadGEM1.2

(e) MIROC5.2 (f) MPI-ESM-LR
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Fig. 5 Prognostic potential predictability (PPP) of the ocean heat content computed
for the six models between 0 and 100 m depth and between the coast and the ice
edge, as defined in the text. The forecast lead time is from left to right, July 1st
corresponding to the start month. Areas outlined in black refer to values that are
significant at the 95 % level. As in Figure 4, a map of Antarctica was included in
each panel to make the PPP results easier to interpret
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of the strips of high PPP values varies from one model to another, but they share493

a common property. They match the longitudes where the predictability of the ice494

edge location is significant. This result highlights the role of the ocean in explaining495

this predictability. From Figure 5, we clearly identify longitudes for which the ocean496

behaves in a consistent way. This common behaviour shared by the ensemble mem-497

bers causes the sea ice to be predictable at those longitudes. Since the interactions498

between the interior of the ocean and the surface are effective during winter months499

(April to November) and nearly absent during the rest of the year, the predictability500

of the ice edge location is only significant for this period of the year. Note the westerly501

propagation of the OHC PPP maxima in the Ross Sea and the Bellingshausen and502

Amundsen Seas in GFDL CM3 in line with propagation of SIC PPP. A similar, but503

less pronounced, propagation is also observed in HadGEM1.2 in the same sectors.504

4 Discussion505

4.1 A mechanism of reemergence506

Alexander and Deser (1995) identified such a winter-to-winter recurrence of SST507

anomalies in the North Pacific Ocean. This behaviour was attributed to the persis-508

tence of ocean temperature anomalies beneath the summer mixed layer. The anoma-509

lies at depth reflect the temperature variations occurring at the surface in winter510

when the mixed layer is deep. They interact with the surface once the mixed layer511

deepens in autumn. Later on, Hanawa and Sugimoto (2004) carried out a comprehen-512

sive study of the World Ocean and found the reemergence of winter SST anomalies513

in many other locations. More recently, Holland et al (2013) spotted this mechanism514

in the Southern Ocean and showed that it could potentially contribute to skilful sea515

ice seasonal forecasts in that region. The mechanism of reemergence of the winter516

SST anomalies in polar regions is not confined to south polar regions, as it was also517

reported in the Barents Sea by Bushuk et al (2017), leading to an improvement of518

sea ice seasonal forecasts in that region.519

We tested this mechanism of reemergence for all the models. To do so, we com-520

puted from the control simulations the Pearson correlation between the September521

SSTs and the potential temperatures at depth at different lags. The highest ice edge522

PPP values found in September account for the choice of this reference month (see523

Figure 4). Prior to the computation of the correlations, the potential temperatures524

were averaged over quarters of 20 degrees longitude. Each quarter was further limited525

to the northernmost ice edge location found for each longitude in the control run.526

The time series of the averaged temperatures were then detrended for each of the ver-527

tical levels and for each of the 12 calendar months. The correlations are illustrated in528

Figure 6, along with the seasonal cycles of the density-based and temperature-based529

MLDs. They are respectively estimated with the fixed difference threshold criteria530

from the near-surface 0.03 kg/m3 and 0.2 ◦C. Dong et al (2008) suggested that the531

shallower of the two MLDs should be employed to estimate the fully homogenized532

mixed layer. The lag correlation analysis has also been extended to EC-Earth2.2 for533

comparison.534

In September, low surface temperatures and brine rejection associated with sea535

ice formation cause the mixed layer to deepen. This deepening fosters the interactions536

between the surface and the interior of the ocean, leading to strong positive corre-537
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(a) EC-Earth2.2 (340-360 ◦E) (b) ECHAM6-FESOM (180-200 ◦E)

(c) ECHAM6-FESOM (320-340 ◦E) (d) GFDL CM3 (60-80 ◦E)

(e) GFDL CM3 (200-220 ◦E) (f) GFDL CM3 (320-340 ◦E)

Fig. 6 Correlation between SSTs in September and potential temperatures at depth
at different lags computed from EC-Earth2.2, ECHAM6-FESOM and GFDL CM3 for
the regions (mentioned below each figure) where the ice edge location is predictable
at least one year ahead. The thick vertical black line marks the reference month,
i.e. September, for the lagged correlations. The density-based (temperature-based)
MLD seasonal cycle is represented by the black dashed (dotted) line. The shaded
region around the curves represents the corresponding MLD standard deviations
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(g) HadGEM1.2 (60-80 ◦E) (h) HadGEM1.2 (240-260 ◦E)

(i) MIROC5-2 (40-60 ◦E) (j) MIROC5-2 (140-160 ◦E)

(k) MIROC5-2 (320-340 ◦E) (l) MPI-ESM-LR (200-220 ◦E)

(m) MPI-ESM-LR (320-340 ◦E)

Fig. 6 (cont.) Same as before, but for HadGEM1.2, MIROC5.2 and MPI-ESM-LR



22 Sylvain Marchi et al.

lations through the mixed layer. This situation persists until the end of the winter538

when the sea ice starts retreating. The mixed layer then shoals, and the anomalies at539

depth are isolated from the surface during summer. When the mixed layer deepens540

again during the next winter, those temperature anomalies resurface and influence541

the ice advance. By this mechanism we can explain how ice edge variations at the542

end of the winter, which directly impact the SST, influence the ice edge location543

the following year. The study of the reemergence of the SST anomalies reveals large544

longitudinal variations of the performance of the mechanism within a given model.545

We noticed that the SST anomalies are closely tied to the seasonal cycle of the546

mixed layer. Winter SST anomalies are more efficiently preserved below the surface547

in summer in the regions/models which show deep winter mixed layers. This result548

agrees with the study of Dommenget and Latif (2002) carried out at midlatitudes.549

They found that the SST variability is strongly influenced by the MLD variability550

and concluded that a better representation of the MLD in models at those latitudes551

is therefore suited to improve the seasonal-to-interannual predictability of the SST552

anomalies.553

Our model intercomparison confirms the prime importance of the SST reemer-554

gence mechanism in the Antarctic as it is observed in the five models that show555

a reemergence of the predictability of the ice edge location. It also reveals that the556

mechanism acts almost everywhere the ice edge is predictable (see Figure 6) and that557

the mechanism is missing at longitudes where the ice edge location cannot be pre-558

dicted (not shown). However, we were not able to clearly identify the reemergence of559

the SST anomalies as the source of the ice edge predictability for ECHAM6-FESOM560

and GFDL CM3 in the Bellingshausen and Admunsen Seas. Interestingly, those561

regions are characterised by an eastward shift of the ice edge predictability originat-562

ing from the Ross Sea (see Figure 4). This possibly indicates that the ice edge in563

those models is more controlled by the horizontal advection of ocean temperature564

anomalies coming from the Ross Sea or by the atmosphere. We also found that the565

September SST anomalies are likely to persist at the surface throughout the summer566

in the sectors where deep ocean convection events occur. This is in agreement with567

Figure S5 of the supplementary material. Deep convection events are responsible for568

the persistence of those temperature anomalies, due to an efficient mixing through569

the water column and an upward flow of warmer water layers to the surface. The570

influence of those events on the persistence of September SSTs can be appreciated571

by comparing Figures 6 and 7. In the Bellingshausen and Admunsen Seas too, the572

September SST anomalies persist at the surface in HadGEM1.2. As these anomalies573

are efficiently retained beneath the summer mixed layer, the persistence at the sur-574

face possibly masked the reemergence mechanism. Nevertheless, the source of that575

persistence remains unclear. It cannot be accounted for by deep convection events,576

as no such event was detected in this sector (see Figure 3).577

In the following section, we investigate the role of the MLD in explaining the lon-578

gitudinal variations of the performance of the mechanism of reemergence presented579

here.580

4.2 The role of the mixed layer581

The depth at which the temperature anomalies are stored is typical of the Winter582

Water depth range. This seasonal subsurface layer is the remaining part of the previ-583
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ous winter mixed layer. It resides between the shallow summer mixed layer and the584

permanent pycnocline. This layer is isolated from the surface in summer by strong585

thermal and salinity gradients. Although this thin layer of relatively cold water lies586

on top of warm and salty waters (Circumpolar Deep Water), the salinity gradient587

is strong enough to stabilize the water column. The existence of this seasonal layer588

was for instance reported near the Wilkes Land coast of Antarctica (Wong and Riser589

(2011)) and in the Enderby Basin (Park et al (1998)). The information about the590

winter sea surface properties is expected to remain in this layer until the seasonal591

stratification is eroded. Depending on the model, the entrainment of the Winter Wa-592

ter to the mixed layer, subsequent to the erosion of the stratification, occurs in April593

or May. This month coincides with the reemergence of the ice edge predictability594

discussed above (see Figure 4).595

Based on different datasets, Timlin et al (2002) and Hanawa and Sugimoto (2004)596

found in non-polar oceans that a large seasonal variation of the MLD is a necessary597

condition for the reemergence of winter SST anomalies. Figure 2 (right column)598

brings out the differences in the amplitude of the MLD seasonal cycle simulated599

by the six models. Among the models, EC-Earth2.2 is the one that simulates the600

smallest seasonal variations of the MLD in the regions of the Southern Ocean sea-601

sonally covered by sea ice. This contrasts with the strong seasonal variations of the602

MLD simulated in the open ocean by ECHAM6-FESOM, GFDL CM3, HadGEM1.2,603

MIROC5.2 and MPI-ESM-LR. The amplitude of the MLD seasonal cycle simulated604

by those models in the open ocean can be up to five times larger than the obser-605

vations (Figure 2). This misrepresentation of the amplitude of the MLD seasonal606

cycle is due to a biased high winter MLD. As EC-Earth2.2 does not exhibit any607

reemergence of the predictability of the ice edge location and the predictability of608

the ice edge location in the other models is confined to the longitudes which hold609

the deepest winter mixed layers in the open ocean, this suggests that a sufficiently610

strong MLD seasonal cycle is required to efficiently store the winter SST anomalies611

at depth during the whole summer. As a result, the duration of sea ice potential612

predictability may be linked to the seasonal amplitude of MLD.613

We already mentioned in Section 2.2.2 that the MLDs simulated in the Ross and614

Weddell Seas significantly differ from the observations for ECHAM6-FESOM, GFDL615

CM3, HadGEM1.2, MIROC5.2 and MPI-ESM-LR. The simulated winter MLD in616

these two places is higher than in the rest of the Southern Ocean. Those unrealistic617

deep mixed layers originate from deep convection. The regions where deep convection618

is likely to occur are illustrated in Figure 3. We expect anomalous convection in the619

open ocean to promote significant September-to-September SST correlations. To620

verify this, we isolated the control run years for which no anomalous convection621

events happen and repeat the lag correlation analysis for the selected years.622

The convective years were removed according to the arbitrary criterion MLD >623

500 m. However, this criterion was sometimes either too restrictive or not restrictive624

enough depending on the models and regions. A too restrictive criterion means that625

most of the control run years are disregarded. It is therefore impossible to study626

the impact of anomalous convection events. This situation arose for HadGEM1.2627

between 60 and 80 ◦E and MIROC5-2 between 40 and 60 ◦E. Conversely, a not too628

restrictive criterion implies that not many years of the control run (even none) are629

removed. In that case, we substituted it for the more convenient MLD > 1000 m630

criterion. Note that this last criterion was still not too restrictive for GFDL CM3631

between 60 and 80 ◦E. For the regions studied in Figure 6, we decided for each region632
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to remove a year of the control simulation if the MLD criterion was met for at least633

one of the grid points belonging to that region and one of the three winter months634

July, August and September. Besides, we also removed the year which directly fol-635

lows an anomalous convection event to avoid undesired subsequent deep convection636

effects. We also make sure not to perform the lagged correlations over a temporally637

discontinuous dataset. We thus only considered the true consecutive years among638

the selected years. Results are shown in Figure 7. It can be seen from this figure639

that the correlations consistently weaken for all the models. This suggests that the640

anomalous convection events occurring in the models sustain the reemergence of641

winter SST anomalies. In the case of ECHAM6-FESOM, winter SST anomalies be-642

tween two consecutive years become uncorrelated. This implies that the resulting ice643

edge predictability for this model only comes from its inability to correctly simulate644

mixed layers in the Southern Ocean. Although the anomalous convection events in645

the open ocean for EC-Earth2.2 are too sparse in time to efficiently promote sea646

ice predictability, we also noticed that the correlations of September-to-September647

SSTs become weak in the Weddell Sea once the anomalous convection years are648

removed. Interestingly, HadGEM1.2 is the only model simulating deep open ocean649

convection with no marked reemergence of the winter SST anomalies associated to it650

(not shown). This could possibly stems from the area over which the lag correlation651

analysis is performed. As can be inferred from Figure 2 and 3, the regions which652

hold deep open ocean convection in HadGEM1.2, i.e. the quarters 300-320 ◦E and653

320-340 ◦E, also include areas where the MLD never exceeds 50 m on average near654

the ice edge. We thus expect those latter regions to blur the temperature signal.655

We also probed the evidence of an impact of deep convection events on the pre-656

dictability of the ice edge location by applying the PPP to each start date separately657

rather than to all start dates taken together. It results from this analysis that the658

ensemble predictions which coincide with one or multiple deep convection event(s)659

display higher PPP values. This situation was reported in ECHAM6-FESOM for the660

year 3697 and in MPI-ESM-LR for the year 2263, as shown in Figure 8. Unfortu-661

nately, it was not possible to assess the impact of deep convection on the predictabil-662

ity of the ice edge location for GFDL CM3, HadGEM1.2 and MIROC5.2 since those663

models deeply convect almost all the years of the control run. As a consequence, no664

significant PPP differences were detected between the ensembles belonging to those665

three models. Although the predictability results of each individual ensemble are666

not statistically robust due to the limited number of ensemble members, Figure 8667

suggests that capturing deep convection events is important to achieve skilful sea ice668

prediction.669

5 Summary and conclusions670

In this study, we have examined the initial-value predictability of the Antarctic sea671

ice on seasonal-to-interannual timescales. This first model intercomparison aimed at672

identifying in a systematic way the attributes of the sea ice predictability inherent to673

GCMs in the Antarctic and understand the origin of that predictability. To achieve674

this objective, we considered idealised ensemble experiments generated by six GCMs.675

As compared with real ensemble experiments, idealised experiments give a clue to676

the predictability that could be achieved when forecasting the real climate without677

being limited by initialisation shocks due to model biases and sparse observations.678
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(a) EC-Earth2.2 (340-360 ◦E)
MLD > 500 m (155)

(b) ECHAM6-FESOM (180-200 ◦E)
MLD > 500 m (75)

(c) ECHAM6-FESOM (320-340 ◦E)
MLD > 1000 m (123)

(d) GFDL CM3 (200-220 ◦E)
MLD > 500 m (33)

(e) GFDL CM3 (320-340 ◦E)
MLD > 500 m (15)

Fig. 7 Correlation between SSTs in September and potential temperatures at depth
at different lags computed from EC-Earth2.2, ECHAM6-FESOM and GFDL CM3 for
the regions (mentioned below each figure) where the ice edge location is predictable
at least one year ahead. The thick vertical black line marks the reference month,
i.e. September, for the lagged correlations. Temperature time series are limited to
the years for which no deep convection events happen. The criterion used to identify
those events and the number of years used to perform the lagged correlations (in
parentheses) are mentioned below each figure. The density-based MLD seasonal cycle
is shown with the black dashed line, while the temperature-based MLD seasonal cycle
is shown with the dotted line. The shaded region around the curves represents the
corresponding MLD standard deviations
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(f) MIROC5-2 (140-160 ◦E)
MLD > 1000 m (11)

(g) MIROC5-2(320-340 ◦E)
MLD > 1000 m (17)

(h) MPI-ESM-LR (200-220 ◦E)
MLD > 500 m (31)

(i) MPI-ESM-LR (320-340 ◦E)
MLD > 1000 m (28)

Fig. 7 (cont.) Same as before, but for MIROC5.2 and MPI-ESM-LR

These are two major obstacles to the achievement of skilful real Antarctic sea ice679

predictions.680

We assessed the benefit of a perfect knowledge of the initial conditions on the ice681

edge location using the PPP metric. We found that the predictability quickly falls682

down after the first lead months, except at some locations where it persists until683

the end of the year (November/December). All the models then exhibit a complete684

loss of the predictability in early spring at most locations. The ice retreat acts like a685

natural barrier for predicting the ice edge location in spring and summer. The little686

predictive skill found for the summer sea ice contrasts with the Arctic, where sea687

ice thickness anomalies provide a source of predictability (Blanchard-Wrigglesworth688

et al (2011); Chevallier and Salas-Mélia (2012); Day et al (2014a)). For five of the six689

models included in this study, we recovered significant PPP values around May once690

the sea ice grows. Unlike the other models, EC-Earth2.2 does not exhibit a clear691

reemergence of the predictability. Finally, the predictability of the ice edge location692

behaves similarly in the second and third years of integration despite weaker PPP693
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(a) ECHAM6-FESOM (b) MPI-ESM-LR

Fig. 8 Prognostic potential predictability (PPP) of the ice edge location as a function
of longitude and lead time computed for an ensemble which coincides with a deep
convection event for ECHAM6-FESOM (year 3697) and MPI-ESM-LR (year 2263).
The start month, July 1st, is displayed at the bottom left of each figure. Areas in
grey represent the longitudes free of sea ice during summer, while areas outlined in
black refer to values that are significant at the 95 % level. As in Figure 4, a map of
Antarctica was included in each panel to make the PPP results easier to interpret

values. Regardless of the start month used to initialise the prediction, we do find a694

reemergence of the predictability of the ice edge location.695

The austral summer leaves the ocean with almost no sea ice. Therefore summer696

sea ice conditions cannot be invoked to explain the reemergence of the predictability697

between two successive winters. Instead, the ocean acts as a source of memory of698

previous sea ice conditions, with SSTs strongly influenced by the presence of sea699

ice. Due to strong mixing in winter, the temperature anomalies at the surface ex-700

tend through the base of the mixed layer. As the mixed layer shrinks from spring,701

the temperature anomalies are isolated from the surface and are reentrained into702

the mixed layer when it deepens again the following autumn. We showed that the703

effectiveness of this mechanism relies on sufficiently large variations of the MLD704

seasonal cycle. Among the six models used, EC-Earth2.2 simulates the smallest am-705

plitude of the MLD seasonal cycle, hence the limited potential predictability of the706

ice edge location found for this model. A similar mechanism of reemergence was707

found by Bushuk et al (2017) in the Barents Sea. This mechanism of predictability708

also bears some similarity to the mechanism operating in Arctic regions described709

by Blanchard-Wrigglesworth et al (2011), where the persistence of SST anomalies in710

the melt season directly influence the ice growth next season.711
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The ice edge predictability reemergence does not occur at all longitudes, but it is712

rather limited to the longitudes which host the deepest mixed layers. We noticed that713

the predictability in the Ross and Weddell Seas outperforms the predictability in the714

other basins of the Southern Ocean. The high potential predictability results achieved715

in these two regions stem from the anomalous convection events occurring there. It716

was shown that the absence of such events systematically reduces the September-to-717

September SSTs correlations. It even leads to no correlation for ECHAM6-FESOM.718

A detailed analysis of each ensemble also pointed out the influence of those extreme719

events on the ice edge predictability. We found for ECHAM6-FESOM and MPI-720

ESM-LR two ensembles whose start dates coincide with at least one deep convection721

event. The computation of the associated PPP revealed higher predictive skill at722

the longitudes where it occurred compared with the other ensembles. Accordingly,723

caution must be exercised in interpreting the magnitude of the skill using a multi-724

ensemble approach in order to evaluate the potential predictability of the sea ice.725

As the predictability is inflated by occasional deep convection events, incorrectly726

sampling the ocean state (through the ensemble start dates) could lead to an over-727

estimation of the ice edge predictability. This issue raises important questions about728

the design of future sea ice predictability experiments, and especially, how the start729

dates should be selected from the control simulation. Future ensemble experiments730

dedicated to the prediction of the Antarctic sea ice should address, more closely, the731

oceanic state dependence of the predictability.732

It is worth emphasising that our predictability study refers to potential pre-733

dictability, that is the predictability that we would get if dealing with perfectly734

known initial conditions and unbiased models. Although the mechanism described735

in this study is likely to take place in the Southern Ocean, there is some evidence736

that models would overestimate the predictability achievable from observations for737

two reasons. The first one is related to the mean ocean MLDs simulated by the mod-738

els. The climatology of Pellichero et al (2017) shows that the observed MLD in the739

marginal sea ice zone is consistently smaller than the one simulated by the models740

that experience a clear reemergence of the predictability of the ice edge location. The741

second reason relates to the deep convection events. They are hardly ever observed742

in the open ocean, but we expect them to play a key role in the reemergence of743

SST anomalies. For those reasons, we expect the comparison to observations to sub-744

stantially degrade the potential predictability results discussed here. The promising745

results derived from this idealised experimental set up should thus be interpreted746

with care. Nonetheless, this study provides some informed perspectives on what can747

reasonably be expected from real ensemble predictions of the Antarctic sea ice. A748

better representation of the Southern Ocean in climate models should be regarded749

as a priority if one wants to advance our understanding of the Antarctic sea ice,750

especially its variability, emphasising the critical need for a comprehensive set of751

ocean observations with a fully spatial coverage.752

Acknowledgements We thank the two referees for their very helpful comments on an earlier753

version of this manuscript.754

Hugues Goosse is Research Director within the Fonds National de la Recherche Scientifique755

(F.R.S.-FNRS-Belgium).756



Potential Antarctic sea ice predictability 29

References757

Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime mid-758

latitude SST anomalies. Journal of Physical Oceanography 25(1):122–137, DOI759

10.1175/1520-0485(1995)025<0122:amftro>2.0.co;2760

Armour KC, Eisenman I, Blanchard-Wrigglesworth E, McCusker KE, Bitz CM761

(2011) The reversibility of sea ice loss in a state-of-the-art climate model. Geo-762

physical Research Letters 38(16):n/a–n/a, DOI 10.1029/2011gl048739763

Barthélemy A, Fichefet T, Goosse H, Madec G (2015) Modeling the interplay be-764

tween sea ice formation and the oceanic mixed layer: Limitations of simple brine765

rejection parameterizations. Ocean Modelling 86:141–152, DOI 10.1016/j.ocemod.766

2014.12.009767

Behrens E, Rickard G, Morgenstern O, Martin T, Osprey A, Joshi M (2016) Southern768

Ocean deep convection in global climate models: a driver for variability of subpolar769

gyres and Drake Passage transport on decadal timescales. Journal of Geophysical770

Research: Oceans 121(6):3905–3925, DOI 10.1002/2015jc011286771

Bintanja R, van Oldenborgh GJ, Drijfhout SS, Wouters B, Katsman CA (2013)772

Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice773

expansion. Nature Geoscience 6(5):376–379, DOI 10.1038/ngeo1767, URL https:774

//doi.org/10.1038/ngeo1767775

Bitz CM, Polvani LM (2012) Antarctic climate response to stratospheric ozone de-776

pletion in a fine resolution ocean climate model. Geophysical Research Letters777

39(20):n/a–n/a, DOI 10.1029/2012GL053393, URL http://dx.doi.org/10.1029/778

2012GL053393, l20705779

Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence780

and inherent predictability of Arctic sea ice in a GCM ensemble and observations.781

Journal of Climate 24(1):231–250, DOI 10.1175/2010jcli3775.1782

de Boyer Montégut C (2004) Mixed layer depth over the global ocean: an examination783

of profile data and a profile-based climatology. Journal of Geophysical Research784

109(C12), DOI 10.1029/2004jc002378785

Bushuk M, Msadek R, Winton M, Vecchi GA, Gudgel R, Rosati A, Yang X (2017)786

Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophysical787

Research Letters DOI 10.1002/2017gl073155788

Chevallier M, Salas-Mélia D (2012) The role of sea ice thickness distribution in the789

Arctic sea ice potential predictability: a diagnostic approach with a coupled GCM.790

Journal of Climate 25(8):3025–3038, DOI 10.1175/jcli-d-11-00209.1791

Comiso JC, Gersten RA, Stock LV, Turner J, Perez GJ, Cho K (2017) Positive792

trend in the Antarctic sea ice cover and associated changes in surface temperature.793

Journal of Climate 30(6):2251–2267, DOI 10.1175/JCLI-D-16-0408.1, URL https:794

//doi.org/10.1175/JCLI-D-16-0408.1, https://doi.org/10.1175/JCLI-D-16-0408.1795

Day JJ, Hawkins E, Tietsche S (2014a) Will Arctic sea ice thickness initialization796

improve seasonal forecast skill? Geophysical Research Letters 41(21):7566–7575,797

DOI 10.1002/2014GL061694, URL http://dx.doi.org/10.1002/2014GL061694798

Day JJ, Tietsche S, Hawkins E (2014b) Pan-Arctic and regional sea ice predictability:799

Initialization month dependence. Journal of Climate 27(12):4371–4390, DOI 10.800

1175/jcli-d-13-00614.1801

Day JJ, Tietsche S, Collins M, Goessling HF, Guemas V, Guillory A, Hurlin WJ, Ishii802

M, Keeley SPE, Matei D, Msadek R, Sigmond M, Tatebe H, Hawkins E (2016)803

The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales804



30 Sylvain Marchi et al.

(apposite) data set version 1. Geoscientific Model Development 9(6):2255–2270,805

DOI 10.5194/gmd-9-2255-2016, URL http://www.geosci-model-dev.net/9/2255/806

2016/807

Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica808

caused by central tropical Pacific warming. Nature Geoscience 4(6):398–403, DOI809

10.1038/ngeo1129, URL https://doi.org/10.1038/ngeo1129810

Dommenget D, Latif M (2002) Analysis of observed and simulated SST spectra in the811

midlatitudes. Climate Dynamics 19(3-4):277–288, DOI 10.1007/s00382-002-0229-9812

Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth813

from Argo float profiles. Journal of Geophysical Research 113(C6), DOI 10.1029/814

2006jc004051815

Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC,816

Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL,817

Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson818

TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik819

V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E,820

Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng821

F (2011) The dynamical core, physical parameterizations, and basic simulation822

characteristics of the atmospheric component AM3 of the GFDL global coupled823

model CM3. Journal of Climate 24(13):3484–3519, DOI 10.1175/2011jcli3955.1824

EUMETSAT (2015) Ocean and sea ice satelitte application facility. global sea ice825

concentration climate data records 1978-2015 (v1.2, 2015). Online, DOI 10.15770/826

EUM_SAF_OSI_000110.15770/EUM_SAF_OSI_0005, norwegian and Danish827

Meteorological Institutes828

Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic ocean and829

sea ice response to ozone depletion: A two-time-scale problem. Journal of Cli-830

mate 28(3):1206–1226, DOI 10.1175/JCLI-D-14-00313.1, URL https://doi.org/831

10.1175/JCLI-D-14-00313.1, https://doi.org/10.1175/JCLI-D-14-00313.1832

Goosse H, Zunz V (2014) Decadal trends in the Antarctic sea ice extent ultimately833

controlled by ice–ocean feedback. The Cryosphere 8(2):453–470, DOI 10.5194/tc-834

8-453-2014, URL http://www.the-cryosphere.net/8/453/2014/835

Gordon AL, Taylor HW (1975) Seasonal change of Antarctic sea ice cover. Science836

187(4174):346–347, DOI 10.1126/science.187.4174.346837

Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanade-838

sikan A, Hurlin WJ, Lee HC, Liang Z, Palter JB, Samuels BL, Wittenberg AT,839

Wyman BL, Yin J, Zadeh N (2011) The GFDL CM3 coupled climate model: char-840

acteristics of the ocean and sea ice simulations. Journal of Climate 24(13):3520–841

3544, DOI 10.1175/2011jcli3964.1842

Guemas V, Chevallier M, Déqué M, Bellprat O, Doblas-Reyes F (2016) Impact of sea843

ice initialization on sea ice and atmosphere prediction skill on seasonal timescales.844

Geophysical Research Letters 43(8):3889–3896, DOI 10.1002/2015GL066626, URL845

http://dx.doi.org/10.1002/2015GL066626846

Hanawa K, Sugimoto S (2004) ‘reemergence’ areas of winter sea surface temperature847

anomalies in the world’s oceans. Geophysical Research Letters 31(10):n/a–n/a,848

DOI 10.1029/2004GL019904, URL http://dx.doi.org/10.1029/2004GL019904,849

l10303850

Haumann FA, Notz D, Schmidt H (2014) Anthropogenic influence on recent851

circulation-driven Antarctic sea ice changes. Geophysical Research Letters852

41(23):8429–8437, DOI 10.1002/2014GL061659, URL http://dx.doi.org/10.1002/853



Potential Antarctic sea ice predictability 31

2014GL061659, 2014GL061659854

Hawkins E, Tietsche S, Day JJ, Melia N, Haines K, Keeley S (2016) Aspects of855

designing and evaluating seasonal-to-interannual Arctic sea-ice prediction systems.856

Quarterly Journal of the Royal Meteorological Society 142(695):672–683, DOI857

10.1002/qj.2643, URL http://dx.doi.org/10.1002/qj.2643858

Hazeleger W, Wang X, Severijns C, Ştefănescu S, Bintanja R, Sterl A, Wyser K,859

Semmler T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel860

K (2011) EC-Earth V2.2: description and validation of a new seamless earth system861

prediction model. Climate Dynamics 39(11):2611–2629, DOI 10.1007/s00382-011-862

1228-5863

Heuzé C, Heywood KJ, Stevens DP, Ridley JK (2013) Southern Ocean bottom water864

characteristics in CMIP5 models. Geophysical Research Letters 40(7):1409–1414,865

DOI 10.1002/grl.50287866

Holland MM, Blanchard-Wrigglesworth E, Kay J, Vavrus S (2013) Initial-value867

predictability of Antarctic sea ice in the Community Climate System Model868

3. Geophysical Research Letters 40(10):2121–2124, DOI 10.1002/grl.50410, URL869

http://dx.doi.org/10.1002/grl.50410870

Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nature871

Geosci 5(12):872–875, DOI 10.1038/ngeo1627, URL http://dx.doi.org/10.1038/872

ngeo1627873

Holte J, Talley L (2009) A new algorithm for finding mixed layer depths with appli-874

cations to Argo data and Subantarctic Mode Water formation*. Journal of Atmo-875

spheric and Oceanic Technology 26(9):1920–1939, DOI 10.1175/2009jtecho543.1876

Ivanova N, Pedersen LT, Tonboe RT, Kern S, Heygster G, Lavergne T, Sørensen877

A, Saldo R, Dybkjær G, Brucker L, Shokr M (2015) Inter-comparison and878

evaluation of sea ice algorithms: towards further identification of challenges879

and optimal approach using passive microwave observations. The Cryosphere880

9(5):1797–1817, DOI 10.5194/tc-9-1797-2015, URL https://www.the-cryosphere.881

net/9/1797/2015/882

Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior883

CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sex-884

ton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB,885

Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley886

Centre climate model (HadGEM1): evaluation of coupled simulations. Journal of887

Climate 19(7):1327–1353, DOI 10.1175/jcli3712.1888

Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz889

U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the890

Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-891

Earth system model. Journal of Advances in Modeling Earth Systems 5(2):422–892

446, DOI 10.1002/jame.20023893

Koenigk T, Mikolajewicz U (2008) Seasonal to interannual climate predictability in894

mid and high northern latitudes in a global coupled model. Climate Dynamics895

32(6):783–798, DOI 10.1007/s00382-008-0419-1896

Latif M, Martin T, Park W (2013) Southern Ocean sector centennial climate variabil-897

ity and recent decadal trends. Journal of Climate 26(19):7767–7782, DOI 10.1175/898

JCLI-D-12-00281.1, URL https://doi.org/10.1175/JCLI-D-12-00281.1, https://899

doi.org/10.1175/JCLI-D-12-00281.1900

Lecomte O, Goosse H, Fichefet T, de Lavergne C, Barthélemy A, Zunz V (2017)901

Vertical ocean heat redistribution sustaining sea-ice concentration trends in the902



32 Sylvain Marchi et al.

Ross Sea. Nature Communications 8:258, URL http://www.ncbi.nlm.nih.gov/903

pmc/articles/PMC5557847/904

Li X, Holland DM, Gerber EP, Yoo C (2014) Impacts of the north and tropical905

Atlantic ocean on the Antarctic Peninsula and sea ice. Nature 505(7484):538–542,906

DOI 10.1038/nature12945, URL https://doi.org/10.1038/nature12945907

Mahlstein I, Gent PR, Solomon S (2013) Historical Antarctic mean sea ice area, sea908

ice trends, and winds in CMIP5 simulations. Journal of Geophysical Research: At-909

mospheres 118(11):5105–5110, DOI 10.1002/jgrd.50443, URL http://dx.doi.org/910

10.1002/jgrd.50443911

Martinson DG (1990) Evolution of the Southern Ocean winter mixed layer and912

sea ice: open ocean deepwater formation and ventilation. Journal of Geophysi-913

cal Research: Oceans 95(C7):11,641–11,654, DOI 10.1029/JC095iC07p11641, URL914

http://dx.doi.org/10.1029/JC095iC07p11641915

Meehl GA, Arblaster JM, Bitz CM, Chung CTY, Teng H (2016) Antarctic sea-916

ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate917

variability. Nature Geoscience 9(8):590–595, DOI 10.1038/ngeo2751, URL https:918

//doi.org/10.1038/ngeo2751919

Notz D, Haumann FA, Haak H, Jungclaus JH, Marotzke J (2013) Arctic sea-ice920

evolution as modeled by Max Planck Institute for Meteorology’s Earth system921

model. Journal of Advances in Modeling Earth Systems 5(2):173–194, DOI 10.922

1002/jame.20016923

Okumura YM, Schneider D, Deser C, Wilson R (2012) Decadal–interdecadal cli-924

mate variability over Antarctica and linkages to the tropics: analysis of ice core,925

instrumental, and tropical proxy data. Journal of Climate 25(21):7421–7441, DOI926

10.1175/jcli-d-12-00050.1, URL https://doi.org/10.1175/jcli-d-12-00050.1927

Park YH, Charriaud E, Fieux M (1998) Thermohaline structure of the Antarctic928

Surface Water/Winter Water in the Indian sector of the Southern Ocean. Journal929

of Marine Systems 17(1-4):5–23, DOI 10.1016/s0924-7963(98)00026-8930

Parkinson CL, Cavalieri DJ (2012) Antarctic sea ice variability and trends, 1979-931

2010. The Cryosphere 6(4):871–880, DOI 10.5194/tc-6-871-2012, URL http://932

www.the-cryosphere.net/6/871/2012/933

Pauling AG, Bitz CM, Smith IJ, Langhorne PJ (2016) The response of the Southern934

Ocean and Antarctic sea ice to freshwater from ice shelves in an earth system935

model. Journal of Climate 29(5):1655–1672, DOI 10.1175/jcli-d-15-0501.1, URL936

https://doi.org/10.1175/jcli-d-15-0501.1937

Pellichero V, Sallée JB, Schmidtko S, Roquet F, Charrassin JB (2017) The ocean938

mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing. Journal of939

Geophysical Research: Oceans 122(2):1608–1633, DOI 10.1002/2016jc011970940

Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating941

the decadal predictability of a coupled AOGCM. Journal of Climate 17(22):4463–942

4472, DOI 10.1175/3209.1, URL http://dx.doi.org/10.1175/3209.1, http://dx.doi.943

org/10.1175/3209.1944

Polvani LM, Smith KL (2013) Can natural variability explain observed Antarctic945

sea ice trends? New modeling evidence from CMIP5. Geophysical Research Let-946

ters 40(12):3195–3199, DOI 10.1002/grl.50578, URL http://dx.doi.org/10.1002/947

grl.50578948

Purich A, Cai W, England MH, Cowan T (2016) Evidence for link between modelled949

trends in Antarctic sea ice and underestimated westerly wind changes. Nature950

Communications 7:10,409 EP –, URL http://dx.doi.org/10.1038/ncomms10409,951



Potential Antarctic sea ice predictability 33

article952

Raphael MN, Marshall GJ, Turner J, Fogt RL, Schneider D, Dixon DA, Hosking953

JS, Jones JM, Hobbs WR (2016) The Amundsen Sea Low: variability, change,954

and impact on Antarctic climate. Bulletin of the American Meteorological Society955

97(1):111–121, DOI 10.1175/BAMS-D-14-00018.1, URL https://doi.org/10.1175/956

BAMS-D-14-00018.1, https://doi.org/10.1175/BAMS-D-14-00018.1957

Sallée JB, Wienders N, Speer K, Morrow R (2006) Formation of subantarctic mode958

water in the southeastern Indian Ocean. Ocean Dynamics 56(5-6):525–542, DOI959

10.1007/s10236-005-0054-x960

Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A,961

Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole962

JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New963

AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM:964

The new U.K. high-resolution global environment model—model description and965

basic evaluation. Journal of Climate 22(8):1861–1896, DOI 10.1175/2008jcli2508.1966

Sidorenko D, Rackow T, Jung T, Semmler T, Barbi D, Danilov S, Dethloff K, Dorn967

W, Fieg K, Goessling HF, Handorf D, Harig S, Hiller W, Juricke S, Losch M,968

Schröter J, Sein DV, Wang Q (2014) Towards multi-resolution global climate969

modeling with ECHAM6–FESOM. part i: model formulation and mean climate.970

Climate Dynamics 44(3-4):757–780, DOI 10.1007/s00382-014-2290-6971

Sigmond M, Fyfe JC (2014) The Antarctic sea ice response to the ozone hole972

in climate models. Journal of Climate 27(3):1336–1342, DOI 10.1175/JCLI-973

D-13-00590.1, URL https://doi.org/10.1175/JCLI-D-13-00590.1, https://doi.org/974

10.1175/JCLI-D-13-00590.1975

Simpkins GR, McGregor S, Taschetto AS, Ciasto LM, England MH (2014) Tropical976

connections to climatic change in the Extratropical Southern Hemisphere: the role977

of Atlantic SST trends. Journal of Climate 27(13):4923–4936, DOI 10.1175/jcli-978

d-13-00615.1, URL https://doi.org/10.1175/jcli-d-13-00615.1979

Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends980

in Antarctic annual sea ice retreat and advance and their relation to El981

Niño–Southern Oscillation and Southern Annular Mode variability. Journal of982

Geophysical Research: Oceans 113(C3):n/a–n/a, DOI 10.1029/2007JC004269,983

URL http://dx.doi.org/10.1029/2007JC004269, c03S90984

Stuecker MF, Bitz CM, Armour KC (2017) Conditions leading to the unprecedented985

low Antarctic sea ice extent during the 2016 austral spring season. Geophysical986

Research Letters 44(17):9008–9019, DOI 10.1002/2017gl074691987

Swart NC, Fyfe JC (2013) The influence of recent Antarctic ice sheet retreat on988

simulated sea ice area trends. Geophysical Research Letters 40(16):4328–4332,989

DOI 10.1002/grl.50820, URL https://doi.org/10.1002/grl.50820990

Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011)991

Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate992

change. Nature Geosci 4(11):741–749, DOI 10.1038/ngeo1296, URL http://dx.993

doi.org/10.1038/ngeo1296994

Tietsche S, Day JJ, Guemas V, Hurlin WJ, Keeley SPE, Matei D, Msadek R, Collins995

M, Hawkins E (2014) Seasonal to interannual Arctic sea ice predictability in cur-996

rent global climate models. Geophysical Research Letters 41(3):1035–1043, DOI997

10.1002/2013GL058755, URL http://dx.doi.org/10.1002/2013GL058755998

Timlin MS, Alexander MA, Deser C (2002) On the reemergence of North At-999

lantic SST anomalies. Journal of Climate 15(18):2707–2712, DOI 10.1175/1520-1000



34 Sylvain Marchi et al.

0442(2002)015<2707:OTRONA>2.0.CO;2, URL https://doi.org/10.1175/1520-1001

0442(2002)015<2707:OTRONA>2.0.CO;21002

Timmermann R, Danilov S, Schröter J, Böning C, Sidorenko D, Rollenhagen K1003

(2009) Ocean circulation and sea ice distribution in a finite element global sea1004

ice–ocean model. Ocean Modelling 27(3-4):114–129, DOI 10.1016/j.ocemod.2008.1005

10.0091006

Turner J, Bracegirdle TJ, Phillips T, Marshall GJ, Hosking JS (2013a) An initial1007

assessment of Antarctic sea ice extent in the CMIP5 models. Journal of Cli-1008

mate 26(5):1473–1484, DOI 10.1175/JCLI-D-12-00068.1, URL https://doi.org/1009

10.1175/JCLI-D-12-00068.1, https://doi.org/10.1175/JCLI-D-12-00068.11010

Turner J, Phillips T, Hosking JS, Marshall GJ, Orr A (2013b) The Amundsen Sea1011

low. International Journal of Climatology 33(7):1818–1829, DOI 10.1002/joc.3558,1012

URL https://doi.org/10.1002/joc.35581013

Turner J, Phillips T, Marshall GJ, Hosking JS, Pope JO, Bracegirdle TJ, Deb P1014

(2017) Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophysical1015

Research Letters 44(13):6868–6875, DOI 10.1002/2017gl0736561016

Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura1017

T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T,1018

Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simula-1019

tion by MIROC5: mean states, variability, and climate sensitivity. Journal of Cli-1020

mate 23(23):6312–6335, DOI 10.1175/2010JCLI3679.1, URL http://dx.doi.org/1021

10.1175/2010JCLI3679.1, http://dx.doi.org/10.1175/2010JCLI3679.11022

Wong APS, Riser SC (2011) Profiling float observations of the upper ocean under1023

sea ice off the Wilkes Land coast of Antarctica. Journal of Physical Oceanography1024

41(6):1102–1115, DOI 10.1175/2011jpo4516.11025

Yang CY, Liu J, Hu Y, Horton RM, Chen L, Cheng X (2016) Assessment of1026

Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts. The1027

Cryosphere 10(5):2429–2452, DOI 10.5194/tc-10-2429-2016, URL http://www.1028

the-cryosphere.net/10/2429/2016/1029

Zunz V, Goosse H, Massonnet F (2013) How does internal variability influence the1030

ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea1031

ice extent? The Cryosphere 7(2):451–468, DOI 10.5194/tc-7-451-2013, URL http:1032

//www.the-cryosphere.net/7/451/2013/1033

Zunz V, Goosse H, Dubinkina S (2014) Impact of the initialisation on the predictabil-1034

ity of the Southern Ocean sea ice at interannual to multi-decadal timescales. Cli-1035

mate Dynamics pp 1–20, DOI 10.1007/s00382-014-2344-9, URL http://dx.doi.1036

org/10.1007/s00382-014-2344-91037


