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Abstract12

The consideration of imprecise probability in engineering analysis to account for missing, vague or incom-13

plete data in the description of model uncertainties is a fast-growing field of research. Probability-boxes14

(p-boxes) are of particular interest in an engineering context, since they offer a mathematically straight-15

forward description of imprecise probabilities, as well as allow for an intuitive visualisation. In essence,16

p-boxes are defined via lower and upper bounds on the cumulative distribution function of a random17

variable whose exact probability distribution is unknown. However, the propagation of p-boxes on model18

inputs towards bounds on probabilistic measures describing the uncertainty on the model responses is nu-19

merically still very demanding, and hence is subject of intensive research. In order to provide an overview20

on the available methods, this paper gives a state-of-the art review for the modelling and propagation of21

p-boxes with a special focus on structural reliability analysis.22
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1. Introduction24

Numerical models give an unparalleled insight into the response of the structure under consideration25

to a set of predefined loading conditions, and hence, allow for a largely virtualized design optimization26

workflow. Examples of such models include finite element models of structures or thermal systems, but27

also other numerical schemes aimed at approximating complex multi-physical systems from the nanoscopic28

to the largest possible level can be considered. However, despite the highly detailed numerical predictions29

that can be obtained, these results often do not achieve a satisfactory level of agreement with ‘reality’,30

i.e., the actual physical behaviour of the considered continuum in the effective operational environment.31

This discrepancy is caused by epistemic (reducible) and aleatory (caused by variation) uncertainty in32

the model. Usually, a distinction between model form and parametric uncertainty is made, where the33
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former describes possibly unwarranted approximations of the mathematical description of reality, whereas34

the latter refers to discrepancies in the parameters of these models with respect to reality. This paper35

solely focuses on parametric uncertainties. In recent years, several highly performing methods based on36

stochastic analysis [1], fuzzy set theory and interval analysis [2] have been introduced in literature to37

account for these type of uncertainties in the model parameters x. Also several authors compared the38

applicability of a selection of these techniques in applications such as Geotechnical engineering [3] or39

inverse uncertainty quantification for stochastic dynamics [4, 5].40

1.1. Probabilistic analysis41

Probabilistic analysis is a powerful and mature tool to deal with aleatory uncertainties in numerical42

analyses. In order to express aleatory uncertainty in the model parameters, they are usually modelled43

as random variables, denoted by X = (X1, . . . , Xnx) with support domain DX ⊆ Dx. Their values are44

outcomes of a random experiment where a probability P can be assigned to X taking a value within45

a specific measurable set that is a subset of DX . The probability that X is less than or equal to x is46

modelled as a joint cumulative distribution function (CDF) FX(x) = P (X1 ≤ x1, . . . , Xnx ≤ xnx) for47

x ∈ DX . Its derivative is denoted by fX and is known as the joint probability density function (PDF).48

Since the inputs of the model are represented by a random vector, it follows that the model responses49

become random variables Y , which are distributed according to the (generally unknown) CDF FY . Note50

that FX and FY in general do not belong to the same family of distribution functions.51

Let M represent a function that maps a set of nx input parameters x ∈ Dx ⊆ Rnx , with Dx a set of52

feasible input parameters (e.g., non-negative Young’s moduli or contact stiffness values), to a set of ny53

output parameters y ∈ Rny via following relationship:54

y =M(x), (1)

where M may represent numerical model that provides a discretized approximation of the continuum55

physics that describe the modelling problem at hand. Usually, given fX , an analyst is then interested in56

computing the expected value of some random variable H(X), i.e., E[H(X)]. Here, E is the expected57

value operator and H is a function defined on DX . Typically, in this context, H is used to compute the58

nth central moments of Y , with n ∈ N. Hereto, H represents the component-wise exponentiation of the59

model responses y =M(x), i.e., H(x) = yn, or H(x) = (y − µY )n with µY = E[Y ]. In an engineering60

context, an analyst is mostly interested into whether their design, be it a structure, system or a complex61

network, will perform reliably given the uncertainties in their manufacturing and operating conditions.62

Usually, the probability of failure is estimated in this context to assess the reliability of their design.63
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The probability of failure can be computed as pf = P (M(X) ≤ 0), where M with ny = 1 represents64

a performance function that indicates whether the design failed (M(x) ≤ 0) or not (M(x) > 0) for65

x ∈ DX . In this context, H(x) is defined as H(x) = IM(x) with IM the indicator function that has66

value 1 in caseM(x) ≤ 0, x ∈ DX , and 0 otherwise. Overall, the expected value of H(X) is determined67

by evaluating the integral of the following form:68

P =

∫
DX

H(x)fX(x) dx, (2)

where the physical interpretation of P = E[H(X)] depends on the definition of H. For the remainder of69

the paper, the notation H is used to abstract the specific application (i.e., calculation of the moments or70

failure probability approximation) from the method that is being discussed. While at first sight it might71

be tempting to evaluate this integral using numerical quadrature schemes, such solutions become quickly72

unfeasible with respect to the non-linearity of the limit state function and/or the number of considered73

random variables [6], even though lower/upper bounds [7] or approximate solutions [8] exist in certain74

cases. In general, even integrating just the joint PDF (i.e., H = 1) is not so trivial by quadrature, as they75

tend to be extremely non-linear, especially when the random variables are highly correlated. Therefore,76

Eq. (2) is usually solved by asymptotic approximations [9] or advanced simulation methods such as subset77

simulation [10], directional importance sampling [11] or the probability density evolution method [12] in78

case of stochastic dynamics.79

1.2. Imprecise probabilistic analysis80

In most real-life applications, an analyst has only partial information about FX or fX due to the81

presence of epistemic uncertainty. This is a result of the often imprecise, diffuse, fluctuating, incomplete82

or vague nature of the available information. Moreover, the available information might be objective or83

subjective and consist of collected data (e.g., via experiments or data mining) and theoretical knowledge84

on the considered problem, but also expert opinions with different levels of trustworthiness [13]. Some85

illustrations of such situations can be found in the benchmark study presented in [14]. In engineering86

analysis, the main challenge is then to formulate suitable models that incorporate these various sources87

of data in an objective way, without introducing unwarranted conclusions and/or ignoring significant88

information to ensure that the calculated results do not deviate from reality. The class of imprecise prob-89

abilistic approaches attempts to solve this general problem and includes a plethora of different methods,90

including Bayesian methods [15, 16, 17, 18], random sets [19, 20, 21], sets of probability measures [22],91

evidence theory-based methods (such as Dempster-Shafer Theory) [23, 24, 25, 26] and interval probabil-92

ities [27] of which probability bounds methods [28] and fuzzy stochastic methods [29, 30] are extensions.93
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Figure 1: Illustration of parametric and distribution-free p-boxes. The black lines indicate the graphs of FX and FX , being
the bounds on the p-boxes. The colored lines illustrate a set of admissible distribution functions for FX that constitute the
p-box.

Furthermore, a study of Monte Carlo methods for the general case of propagating imprecise probabilities94

is given for instance in [31] or [32]. Answering the question on which of these methods is the most ap-95

propriate method from this broad class of techniques is in general not possible as the most appropriate96

mathematical framework depends on the nature of the information that is available to the analyst. It97

should be noted that the application of the general framework of imprecise probability theory requires98

complex mathematical descriptions and methods. Furthermore, due to several restricting assumptions99

that are required, the methods are sometimes also very hard to translate to engineering practice. For a100

thorough treatment on the selection of the most appropriate method, the reader is referred to [13].101

In many engineering applications, simplified imprecise probability models are often preferable for sim-102

pler utilization and representation. A popular representative thereof are probability-boxes (p-boxes),103

which provide a set of possible probability distributions for FX bounded by a lower CDF FX and an104

upper CDF FX . This type of credal set encompassing the unknown CDF is computationally efficient [33],105

easy to construct [34], and offers a simple graphical representation, see Fig. 1. This figure shows the106

two main types of p-boxes, being parametric and distribution-free p-boxes. Distribution-free p-boxes107

consider only the upper and lower CDF, and any CDF that complies with these bounds is admissible.108

Parametric p-boxes on the other hand impose additional constraints on admissible distribution functions,109

for instance by defining a family of distribution functions. A rigorous and more detailed definition of110

both types of p-boxes is given in Section 2.1.111

Their simpler utilization and representation make the application of p-boxes particularly interesting112
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for engineering analysis. However note that even with all their benefits over other, more general, imprecise113

probability models, computations involving p-boxes still require large computational budgets as they114

incorporate effectively a set of probability distributions that all need to be accounted for. Hence, advanced115

methods for p-box propagation have been subject to intense research over the past decades and various116

efficient methods addressing numerous applications of different complexity were proposed. This paper117

aims at giving an overview of a selection of promising approaches for the propagation of p-boxes in118

engineering analysis. This is complemented by an introduction to p-boxes showing their relationship to119

related imprecise probability models including their translation, and capabilities how to construct p-boxes120

based on given information.121

1.3. A guideline to read this paper122

Depending on the need of the reader, this paper can be used in several ways. For instance, a newcomer123

in the field of imprecise probabilities and/or p-boxes might use the entire manuscript to get the overall124

ideas on the methods, as well as obtain the references to recent key works in the field. In this case, it is125

recommended to consider all sections of the paper. On the other hand, an analyst that is knowledgeable126

with imprecise probabilities, but is unsure how to model them based on available data will gain most127

from the information in Section 3. Conversely, if an analyst is unsure which state-of-the-art propagation128

method is best applicable for their problem, they are kindly referred to Section 4 and the references129

therein included. To give the full overview; Section 2 describes the theoretical foundations of p-boxes130

and their analysis. Section 3 discusses the construction of p-boxes based on various sources of information.131

Section 4 highlights a selection of developments for the propagation of p-boxes, published during the last132

few years and ends with a summarizing table. Finally, Section 5 lists the conclusions of this paper.133

2. Probability boxes134

In the following two sections, the case nx = 1 is considered for notational simplicity. This is further-135

more warranted since most engineering literature on the subject, as will be clear from Section 3, either136

considers the univariate case of nx = 1, or when nx > 1 full independence among all Xi, i = 1, . . . , nx,137

with FX(x) =
∏nx
i=1 FXi(xi), x ∈ DX . For more information on the general modeling of multivariate138

p-boxes including dependence, the reader is referred to [35, 36].139

2.1. Theoretical background140

The main idea of a p-box is that there exist an unknown CDF FX of the random variable X for141

which only bounds can be provided. Thus, a p-box is described by a lower CDF FX ∈ F and an upper142

CDF FX ∈ F, where F expresses the set of all CDFs on DX ⊆ R. These CDFs are collected as a pair143
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[
FX , FX

]
which yields a set of possible CDFs {FX ∈ F | FX(x) ≤ FX(x) ≤ FX(x), x ∈ DX} for the144

unknown CDF of X. The definition of a p-box corresponds to defining a lower probability P and upper145

probability P on events {X ≤ x} = (−∞, x] ∩ DX , i.e., P (X ≤ x) = FX(x) and P (X ≤ x) = FX(x)146

for x ∈ DX , which yields a credal set of probability measures. Via the p-box framework, the epistemic147

uncertainty that comes for example from incomplete data on FX(x) is accounted for by assigning an148

interval
[
FX(x), FX(x)

]
for each value of x ∈ R, see [34]. In case sufficient high quality information over149

the entire range of possible values for x is available to the analyst,
[
FX(x), FX(x)

]
will be a tight interval,150

and the p-box will be close to a crisp (deterministic) distribution. Otherwise, when less information is151

available, the bounds may become wider to acknowledge weaker confidence in the results. In case no152

further assumptions are made concerning the set of possible CDFs, this type of p-box is also denoted a153

distribution-free p-box. This is the most general type of p-box, which allows for the highest flexibility154

when modelling parameters subject to aleatory and epistemic uncertainty, since any non-decreasing and155

right-continuous function that is consistent with these bounds is admissible. Indeed, it can be shown156

that crisp values, intervals and crisp probability distributions are all special cases of the distribution-free157

p-box [28]. As a final note, since distribution-free p-boxes are so general in their definition, also CDFs158

that are questionable from a physical perspective are explicitly included in the definition.159

Besides distribution-free p-boxes, there are parametric p-boxes, which are described by a family160

of CDFs whose parameters θi ∈ R are unknown up to the property that they must be contained within161

intervals [θi, θi], i = 1, . . . , nθ. These parameters describe specific distribution properties and are collected162

in the vector θ ∈ Rnθ . The Cartesian product of the intervals is also denoted as Dθ, i.e., it holds θ ∈ Dθ.163

Hence, a parametric p-box yields the set of possible CDFs {FX(·,θ) ∈ F | θ ∈ Dθ} for the unknown CDF164

of the random variable X. An example of a parametric p-box can be defined as the Gaussian distribution165

family with parameters θ = (µ, σ) contained in Dθ = [µ
X
, µX ]× [σX , σX ]. Parametric p-boxes have the166

property to clearly distinguish between aleatory uncertainty, represented by the distribution family, and167

epistemic uncertainty, represented by the intervals for the parameters θ. The upper and lower bounding168

CDFs of a parametric CDF can be computed as169

FX(x) = min{FX(x,θ) | θ ∈ Dθ}, (3)

FX(x) = max{FX(x,θ) | θ ∈ Dθ} (4)

for x ∈ DX . Note that the distribution-free p-box defined by these bounds does not correspond to the170

parametric p-box as the latter one is more restrictive in general, i.e. there are CDF within these bounds171

not belonging to the family of the parametric p-box. Both types of p-boxes are illustrated in Fig. 1.172

In order to account for more information about the shape of CDFs, such as an admissible distribu-173
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tion family, symmetry, or about bounds on one or more statistical moments of FX , a p-box can also174

be described by a quintuple
(
FX , FX , µ

I
X , σ

I
X ,F

)
, see [13]. Here, the confidence interval of the mean175

value µIx ⊆ [−∞,∞], the confidence interval σIx ⊆ [0,∞] of the standard deviation, and the family of176

admissible CDFs F ⊆ F can be specified. Note that a distribution-free p-box can also be represented177

as a quintuple, noted
(
FX , FX , [−∞,+∞], [0,∞],F

)
. Furthermore, the p-box framework was also re-178

cently extended to account for imprecision in stochastic processes by explicitly accounting for additional179

epistemic uncertainty in the process’ autocorrelation structure [37, 38].180

In the following subsections, the connection of p-boxes to some closely related uncertainty models for181

imprecise probabilities is demonstrated. This may help the reader in both understanding the similarities182

and differences between p-boxes and these models and converting them into p-boxes or vice versa.183

2.2. Hierarchical probabilistic models184

An alternative approach to deal with parametric p-boxes is to apply hierarchical probabilistic models.185

Following this approach, the epistemic uncertainty related to the parameters θ of the CDF FX(·,θ) are186

represented using a random variable Θ with distribution FΘ. On the one hand, hierarchical probabilistic187

models can be regarded as a special case of a p-box where intervals are used to bound possible values of188

θ. According to possibility theory, these intervals encode the set of all distribution functions bounded by189

the interval. As such, selecting a single distribution function out of this set introduces knowledge into the190

analysis that might not be fully objective. On the one hand, parametric p-boxes might be constructed191

using credible intervals from Bayesian methods along with hierarchical probabilistic models, see Section192

3.4. In this case, p-boxes describe an excerpt of this modelling where the tails of FΘ are neglected.193

Using hierarchical probabilistic models, the effect of the epistemic uncertainty on the probabilis-194

tic measure under consideration depends on the applied propagation schemes. For instance, when re-195

weighting schemes such as presented in [39, 40, 41] are applied to infer the bounds, this is not problematic196

since they allow for a clear separation between aleatory and epistemic uncertainty. In these types of meth-197

ods, the distribution FΘ is a purely instrumental tool to determine a functional relationship between P198

and θ, the influence of which is integrated out of the result in later stages of the analysis, see Section 4.199

However, when this single distribution is used to make strong inference on the bounds of P, e.g., via200

sampling, this will lead to inherent bias on the results of the analysis.201

2.3. Random sets202

A p-box can be regarded as a special case of a random set, which has important implications for203

some of the propagation methods explained in Section 4. To see this, consider a probability space204

(Ω,FΩ, PΩ) and a subset KX of the power set of DX ⊆ X. A random set ΓX is then a mapping205
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ΓX : Ω→ KX , α 7→ ΓX(α), where each ΓX(α) ∈ KX ,α ∈ Ω, is called a focal element. When distribution-206

free p-boxes are defined as ΓX(α) =
[
F
−1
X (α), F−1

X (α)
]

for α ∈ Ω and Ω = [0, 1] with uniform probability207

distribution, they are a specific case of random sets, see [42]. Furthermore note that for finite KX , random208

sets correspond to a Demspter-Shafer structures, see also [42].209

Since a random set is not capable of representing a single parameterized distribution family, a direct210

relationship with parametric p-boxes cannot be established [43, 44]. Conversion is possible however by211

first converting the parametric p-box into a distribution-free p-box, see Eq. (3) and (4). Moreover, ΓX(α)212

can also be defined directly here via the inverse distributions of the family FX(·,θ), θ ∈ Dθ, i.e.,213

ΓX(α) =

[
min
θ∈Dθ

F−1
X (α,θ), max

θ∈Dθ
F−1
X (α,θ)

]
, (5)

as shown in [44].214

2.4. Fuzzy probabilities215

An extension to the p-box is provided by fuzzy probabilities, which allow for considering a fuzzy set of216

probability models, each having their own level of plausibility according to the available information [3].217

According to this framework, the fuzzy membership function serves as an instrument to combine various218

plausible intervals [FαX(x), F
α
X(x)], α ∈ [0, 1], for x ∈ DX to define distribution-free p-boxes in a single219

scheme, and hence, allows for assessing the sensitivity of the bounds Pα and Pα of P. Indeed, sensitivities220

of P are found by considering the rate of change of the bounds on the interval with respect to the size of the221

input intervals represented in the fuzzy numbers. It holds [FαiX (x), F
αi
X (x)] ⊆ [F

αj
X (x), F

αj
X (x)], x ∈ DX222

and therefore [Pαi ,Pαi ] ⊆ [Pαj ,Pαj ] for 0 ≤ αj ≤ αi ≤ 1. Furthermore, the concept can be also applied223

to parametric p-boxes, see [45]. Here, the fuzzy membership function is used to assign an α-level to the224

parameters θ of FX(·,θ). Then, the same analysis can be conducted as for distribution-free p-boxes. As225

the methods discussed further in the paper, which are developed for p-boxes, can always be applied to226

fuzzy probabilities in an α-cut sense, the latter are not discussed in more detail.227

3. Construction of p-boxes for engineering analysis228

This section provides an overview how distribution-free and parametric p-boxes can be constructed229

based on given information. Here, a distinction is made between the three types of information: incom-230

plete or imprecise distribution properties, datasets, or multiple sources of p-boxes. In the following, the231

focus is put on distribution-free p-boxes first. They are recommended when there is no knowledge in232

favour of a particular distribution family. If this information is available but the parameters θ of FX(·,θ)233
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are unknown, parametric p-boxes are preferred. A guide to find an appropriate construction method is234

provided in Table 1.235

Furthermore note that distribution-free p-boxes can be always constructed as an approximation or236

an actual conversion of uncertainty models yielding lower and upper probabilities for events X ≤ x, see237

Section 2. For a general introduction on the construction of p-boxes, the reader is referred to [34], where238

most of the approaches presented in the following are included. A comparison of selected methods can239

be found, e.g. in [46, 47].240

Table 1: Overview of which sections in the paper provide an appropriate p-box construction method depending on the
available information and p-box type.

type distribution-free p-box parametric p-box

incomplete distribution information mean, variance, support: Sec. 3.1 parameters: Sec. 3.4.1
dataset Sec. 3.2 Sec. 3.4.2
multiple sources Sec. 3.3

3.1. Incomplete distribution properties241

In the case that only a limited number of distribution properties are known, like its shape or support,242

moments, or quantiles, various methods to construct a p-box are available, see [34]. These methods use243

the information about the distribution properties to derive proper bounds on the distribution. Often,244

they are based on well-known statistical inequalities. In the following, three methods addressing the245

support DX and the first two moments of a random variable X are presented exclusively. These assume246

limited but precisely known distribution properties.247

3.1.1. Support248

If only the support of a distribution is known, the interval DX = [x, x] can be used as a representation249

in case the support is bounded. This corresponds to a p-box described by two unit step functions Hx and250

Hx at its minimum and maximum values x and x, i.e., FX(x) = Hx(x) and FX(x) = Hx(x) for x ∈ DX .251

3.1.2. Mean and variance252

If the values of the mean µX and the variance σ2
X are known, the two-sided Chebyshev’s inequality253

can be used to construct a p-box as described in [48], i.e.,254

FX(x) =

 0 for x < µ+ σ,

1− σ2

(x−µ)2
, for x ≥ µ+ σ,

(6)

FX(x) =

 σ2

(x−µ)2
, for x < µ− σ,

1, for x ≥ µ− σ.
(7)
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for x ∈ DX . Instead of Chebyshev’s inequality, Cantelli’s inequality is used to construct a p-box based255

on the mean and variance in [49].256

3.1.3. Mean, variance, and support257

If both its bounded support DX and its first two moments are known, the p-box bounds can be258

formulated as259

FX(x) =



0 for x ≤ µ+ σ2

µ−x ,

1− b(1+a)−c−b2
a for µ+ σ2

µ−x < x < µ+ σ2

µ−x ,

1

1+ σ2

(x−µ)2
for µ+ σ2

µ−x ≤ x < x,

1 for x ≥ x,

(8)

FX(x) =



0 for x ≤ x,
1

1+
(x−µ)2
σ2

for x < x ≤ µ+ σ2

µ−x ,

1− b2−ab+c
1−a for µ+ σ2

µ−x < x < µ+ σ2

µ−x ,

1 for x ≥ µ+ σ2

µ−x ,

(9)

where a = x−x
x−x , b = µ−x

x−x , c = σ2

(x−x)2
, see e.g. [50]. Eq. (8) and (9) are based on the one-sided Chebyshev’s260

inequalities and are tighter compared to the bounds in Section 3.1.1 and 3.1.2.261

3.2. Dataset262

In case limited information about the probability distribution is available in form of a dataset X ⊂263

Rnx , the properties that are used in the methods of Section 3.1 can be estimated. In order to account for264

this estimation however, these methods need to be slightly adapted to inform the p-boxes, as described265

in [51, 49] for the sample mean and sample variance. Moreover, there are also methods which do not266

require an estimation of distribution properties for a given dataset: the methods of Kolmogorov-Smirnoff267

confidence bounds and robust Bayes. They are widely used in literature and are described briefly below.268

Note that data-based methods generally do not provide absolute bounds for p-boxes due to their nature,269

e.g. by using a confidence level smaller than 1 to avoid conservatism.270

3.2.1. Distribution support estimation271

In case very few data-points are available, estimating the bounds of the support of the p-box might272

be the only option for an analyst. This estimation can for instance be based on worst-case likelihood273

estimation [52], potentially in combination with Bayesian approaches [53]. Scenario optimization [54] can274

also be used in this context to obtain bounds with a proven degree of robustness under mild assumptions.275
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3.2.2. Kolmogorov-Smirnoff confidence bounds276

Given a dataset X withN samples, an empirical distribution FX can be computed. Then, Kolmogorov-277

Smirnoff (K-S) confidence bounds for FX define the bounds of a p-box as proposed in [34]. For x ∈ DX ,278

it holds279

FX(x) = min(1,max(0, FX (x)−Dα
N )), (10)

FX(x) = min(1,max(0, FX (x) +Dα
N )), (11)

where Dα
N is a K-S critical value at significance level α for a dataset with N samples which can be found280

in [55].281

3.2.3. Robust Bayes282

Furthermore, a p-box can be obtained by using robust Bayes methods, introduced by [56]. Here, the283

basic idea is to consider the parameters θ also as random variables expressed in Θ and to apply standard284

Bayesian inference to all plausible likelihood functions L(·,X ) and all plausible prior distributions. Here,285

fΘ denotes the PDF of the prior and L(·,X ) is the likelihood of observing X depending on the incorpo-286

rated distribution family FX(·,θ). This implies a class of posterior PDFs of Θ, denoted by fΘ(·|X ), via287

Bayes theorem288

fΘ(θ|X ) =
L(X ,θ)∫

DΘ
L(X ,θ)fΘ(θ) dθ

fΘ(θ) (12)

and pairwise combination. Then, a p-box can be constructed by the envelope of all resulting CDFs using289

Bayesian point estimates, see [57], or credible intervals/regions like discussed in Section 3.4.2, see [46].290

Moreover, a Bayesian pointwise approach that considers specific percentiles of all resulting CDFs can be291

used for the construction of a p-box as well, see [58].292

3.3. Aggregation of p-boxes293

In the methods above, the intention was to obtain a p-box based-on given information. If there are294

already np p-boxes [F
(j)
X , F

(j)
X ] available to describe a single quantity, aggregation methods can be used.295

In the following, three popular methods, namely the envelope, intersection, and mixture strategy, are296

reviewed. For further methods, the reader is once again referred to [34].297

3.3.1. Envelope and intersection298

If there are multiple p-boxes of which it at least one encompasses the unknown CDF of X, but there is299

no information which p-boxes really encompass it, the envelope strategy can be used. Here, an envelope300
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p-box is defined as301

FX(x) = min{F (j)
X (x) | j = 1, . . . , ns}, (13)

FX(x) = max{F (j)
X (x) | j = 1, . . . , ns} (14)

for x ∈ DX . This corresponds to a conservative modelling. Opposite to the envelope strategy, there is302

the intersection strategy for which all available p-boxes are considered as reliable. Here, the intersection303

of all p-boxes is used, see [34]. For this strategy, the min and max operators in Eq. (13) and (14) are304

exchanged.305

3.3.2. Mixture306

If there are multiple p-boxes which were constructed for specific situations that suffer under variability,307

the mixture strategy can be used for the condensation in a single p-box. Here, the idea is to use weights308

wj > 0 with W =
∑ns

j=1wj to express the relative frequencies. Then, the mixture p-box is defined as309

FX(x) =
1

W

ns∑
j=1

wjF
(j)
X (x), (15)

FX(x) =
1

W

ns∑
j=1

wjF
(j)
X (x) (16)

for x ∈ DX . A special case are even weights, e.g., wj = 1, j = 1, . . . , ns with W = ns, which correspond310

to an arithmetic averaging of the p-boxes.311

3.4. Parametric p-box construction312

In order to construct a parametric p-box, the distribution family must be known. Hence, the problem313

of constructing a p-box reduces to establishing bounding intervals for the corresponding parameters θ of314

FX(·,θ). Usually, these intervals are assumed or estimated for a given dataset, see the methods below.315

Note that all methods to obtain a parametric p-box can be also used to build a distribution-free p-box316

by using Eq. (3) and (4) which yield the envelope of the parametric p-box.317

3.4.1. Bounds on distribution parameters318

In case bounds on the parameters θ are available, e.g., from expert knowledge, the intervals for319

these parameters can be specified directly. For lower bounds θi and an upper bounds θi, i = 1, . . . , nθ320

their domain is denoted by Dθ(see Section 2.1). If there are ns sources that provide different intervals,321

aggregation methods similar to Section 3.3 could be used, e.g., an envelope of all candidate domains D
(j)
θ ,322

where θi = min{θ(j)
i | j = 1, . . . , ns} and θi = max{θ(j)

i | j = 1, . . . , ns}, i = 1, . . . , nθ.323
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3.4.2. Dataset324

Given a dataset X , there are several methods to obtain interval estimates for the parameters θ325

of FX(·,θ). Popular methods comprise confidence intervals from classical statistics, which cover the326

unknown, but deterministic parameters with a probability α, or credible intervals from Bayesian statistics,327

in which the random vector Θ, representing the parameters of the CDF, can be found with a probability328

α, see [59] for further information on their computation. Note that in general independence between the329

parameters θ needs to be assumed for nθ > 1 in order to obtain interval regions.330

4. Propagation methods for p-boxes331

This section discusses commonly applied numerical schemes for propagating p-boxes towards bounds332

on the nth central moment of the model response to a load and/or the probability of failure of the333

designed structure, system or complex network. In the case where X is represented as a p-box, a direct334

calculation of P, as introduced in Eq. (2), is no longer possible since a set of PDFs that are consistent335

with the definition of the p-box has to be considered. Indeed, the consideration of a set of fX causes336

the probabilistic measure P to become set-valued, too. The solution of this problem requires dedicated337

numerical procedures, which are described in the proceeding sections.338

4.1. Double loop approaches339

In case X represents a distribution-free p-box, the lower and upper bounds P ≤ P ≤ P can be340

obtained by solving the following optimization problems:341

P = min
fX

∫
DX

H(x)fX(x) dx (17)

and:342

P = max
fX

∫
DX

H(x)fX(x) dx. (18)

Note that these optimization problems are potentially very complicated since the optimization has343

to be carried out over the set of all possible fX consistent with the definition of the p-box. Hence, this344

constitutes a non-convex, discontinuous optimization problem, which are notoriously difficult so solve345

exactly. In certain cases, tighter bounds on P can be obtained by means of linear programming, without346

having to construct the probability bounds of the input random variables [60, 61].347

A first approach to simplify the optimization problems is to slice the p-box in order to transform348

the above problem into the propagation of a large number of intervals, each having a corresponding349

probability mass, which are then propagated through M to infer bounds on P. The propagation of350

intervals is a well-understood problem in the context of uncertainty propagation [2]. However, following351
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this approach the required number of evaluations of Eq. (1) scales exponentially with nx [62]. This led to352

the development of methods such as interval Monte Carlo simulation [62] or interval-Quasi Monte Carlo353

simulation [63]. These methods manage to break this exponential scaling of the computational cost by354

bounding P using following formulations:355

P =
1

n

n∑
k=1

H(rk), (19)

P =
1

n

n∑
k=1

H(rk) (20)

with H(rk) and H(rk) defined as:356

H(rk) = max{H(x) | F−1
X (rk) ≤ x ≤ F−1

X (rk)}, (21)

H(rk) = min{H(x) | F−1
X (rk) ≤ x ≤ F−1

X (rk)}. (22)

The parameters rk, j = 1, . . . , N are realisations of a sample of N independent and identically dis-357

tributed (i.i.d.) random variables according to a multivariate standard uniform distribution. As is clear358

from these equations, a large number of model evaluations is still required to estimate of the bounds on359

P with sufficiently small variance, especially since an interval propagation problem (Eq. (21)) has to be360

solved for each rk. Note that in the general case, this interval problem has to be solved using global361

optimization approaches to accommodate possible non-convexity in M with respect to x and/or θ [64].362

Further improvement in computational efficiency can be obtained by resorting to efficient interval prop-363

agation schemes such as those based on Bernstein polynomials [65, 66], Cauchy deviates [28] (as recently364

applied in [67] and [68]), the transformation method [69] or Taylor series expansion methods [70, 71].365

Further improvements in terms of efficiency can be obtained by using saddle-point approximations, as366

introduced in [72]. A more general version of the interval Monte Carlo approach was introduced by367

Alvarez in [42, 73] based on random sets (see also subsection 2.3). The main advantage of considering368

the full random set is that this representation is more general, and hence, intervals and Dempster-Shafer369

structures can be considered as well in the same framework [74]. Furthermore, the framework allows for370

including efficient sampling schemes, such as e.g., subset simulation [74].371

In the case of parametric p-boxes, the extrema represented by Eq.(17) and Eq.(18) can be determined372

directly since the set of all possible fX is readily parameterized. In this case, for each realisation of these373

parameters of fX , a reliability problem is solved, for instance for linear limit-state functions using FORM374

as presented in [75], or in more general cases using simulation methods. Using simulation methods, even375

in the simplest case where the p-box describes a set of possible fX by means of interval-valued statistical376
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moments, such calculation can be prohibitively demanding from a numerical standpoint. On the one377

hand, the calculation of the failure probability for a fixed value of the parameters associated with the378

stochastic process is quite costly. On the other hand, solving the associated optimization problems379

in this simple case is far from trivial, as it constitutes a double loop problem, where the inner loop380

comprises probability estimations, leading to possibly non-smooth behaviour of the objective function381

due to the inherent variance on the estimator of P. Hence, apart from considering near-trivial simulation382

models, the propagation of p-box-valued parameters towards the bounds on the probabilistic measure383

P is computationally intractable. Note that in some very specific cases, analytical solutions are also384

available [76].385

4.2. Decoupling methods386

The class of decoupling methods aims at decoupling the double loop, presented in Eqs. (17) and (18)387

by separating the propagation of aleatory and epistemic uncertainties. This class of methods includes388

techniques based on importance sampling and operator norm theory. Both methods are restricted to389

parametric p-boxes, more precisely, p-boxes that are constructed by defining some parameters θ of the390

distribution FX(x|θ) to be interval valued.391

4.2.1. Importance sampling-based methods392

The core idea of importance sampling based methods is to propagate a single, well-chosen realisation393

f̂X of a parameterized p-box (where f̂X is optimal with respect to a predefined measure), and reweigh394

the obtained samples of y to infer bounds on P.395

A first such method is Extended Monte Carlo simulation, as introduced by [39], which is applicable to396

the propagation of parameterized p-boxes subjected to epistemic uncertainty in their first two moments, as397

well as the probability of failure. As a first step, the parameters θ of the p-box, which account for µx and398

σx in the quintuple description, are represented by a subjective probability model fΘ(θ) =
∏nθ
i=1 fΘi(θi).399

Then, a local estimation for P, being p̂f, is derived as:400

P̂(θ) =
1

N

N∑
k=1

H(xk)
fX(xk | θ)

fX(xk | θ∗)
(23)

which is an unbiased estimator, but highly affected by the selection of θ∗. ‘Local’ in this context denotes401

that the estimator is derived for a fixed value of θ inside its support θI . This fixed value, θ∗, should402

be selected such that it minimizes the variance on the estimator P̂(θ) [77], similarly to conventional403

Importance Sampling, as:404

θ∗ = argmin

∫
Dθ

T (θ,θ∗)fΘ(θ) dθ (24)
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with T (θ,θ∗) = V [H(X)fX(X | θ)/fX(X | θ∗)] and V is the variance operator with respect to fX(· |405

θ∗). The global version of this approach is based on realizations (xk,θk), k = 1, . . . , N of a joint sample406

distributed according to a joint PDF fX,Θ. The estimator P̂(θ) is in this case expressed as:407

P̂(θ) =
1

N

N∑
k=1

H(xk)
fX(xk | θ)

fX(xk | θk)
(25)

where xk and θk are generated by applying the correct inverse probabilistic transform to the corresponding408

variables of a multivariate standard uniform distribution. The global estimator gives a better estimation409

of P over the entire support of θ, at the cost of lower accuracy around θ∗ and a higher computational410

cost, since in this case, also convergence in terms of the effect of θ has to be ensured.411

An alternative optimal sampling density to propagate parameterized p-boxes following a reweighted412

sampling scheme was proposed by [78, 79]. Following the approach of [78, 79], the optimal density413

should obtained by minimizing the total expected squared Hellinger distance between fX(· | θ) and414

the optimal sampling density fX(· | θ∗) under an isoperimetric constraint that ensures that the derived415

optimal sampling density is a valid density function. The main difference with optimal sampling density416

presented in Eq. (24) is that this approach is not aimed at minimizing the variance, but rather that the417

sampling density is as close as possible to the target density.418

4.2.2. Advanced Line Sampling419

As an alternative decoupling strategy to deal with p-box valued uncertainty, Advanced Line Sampling420

was recently introduced [80]. Opposed to ‘conventional’ line sampling [81], this approach adaptively421

looks for the so-called important direction in standard normal space. Furthermore, due to this adaptive422

refinement, the same important direction can be used for the entire p-box analysis. Additionally, the423

method allows for reusing samples that are generated within the inner loop to be re-used during other424

iterations of the outer loop, significantly increasing the computational efficiency [80]. Based on these425

properties, a gain in computational efficiency of a factor of 4 over regular line-sampling approaches can426

be obtained, as reported in [80].427

4.2.3. Operator norm theory428

Operator norm theory provides an alternative pathway to decouple the double loop in Eq. (17)429

and (18), as presented first in [82] for the case of the class of linear models M. In case an affine430

formulation of the imprecise random variables in terms of their parameters is possible, the propagation of431

the imprecise stochastic load can be performed in a two-step procedure. First, the values of the epistemic432

parameters that yield an extremum for P are determined by maximizing/minimizing the operator norm.433
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Specifically, the operator norm is computed over the product of the linear mapping provided by the434

numerical model M with a basis B that represents the auto-correlation of the load on the model:435

θ∗ = argmin
θ∈θI

‖A(θ)‖p(1),p(2) (26)

436

θ∗ = argmax
θ∈θI

‖A(θ)‖p(1),p(2) (27)

with A = MB, where B can for instance be determined following the well-known Karhunen-Loève437

expansion [82]. The operator norm ||A||p(1),p(2) is generally defined as [83]:438

||A||p(1),p(2) = inf
{
c ≥ 0 : ||Av||p(1) ≤ c · ||v||p(2) ∀v ∈ RnKL

}
, (28)

and gives a measure for how muchA lengthens vector v in the maximum case. The practical calculation of439

the operator norm is case dependent. For instance, when considering first excursion problems [84, 85, 86],440

i.e., P ≡ pf, the selection of p(1) →∞ and p(2) = 2 has been found to be a good choice [87]. In this case, the441

operator norm corresponds to the maximum L2 norm of a row of A [83]. Then, two failure probabilities,442

corresponding to pf(θ
∗) and pf(θ

∗) have to be computed to determine the bounds on P. As such, the443

double loop is effectively replaced by two deterministic optimizations and two crisp reliability estimations.444

Gains in computational efficiency with several orders of magnitude have been reported [82, 87]. The main445

drawback of the method is the limited scope, since the approach is only applicable to uncertain linear446

models with epistemic uncertain structural parameters, subjected to imprecisely defined load conditions.447

4.3. Surrogate modelling for p-boxes448

Surrogate models approximate well-selected ‘regions’ of M by a computationally more efficient sur-449

rogate model M̂(· | a). For instance, in the specific case of reliability analysis, M̂(· | a) is designed450

to be highly accurate in the region around the limit state function (i.e., M(x) = 0. This surrogate451

M̂, which is parameterized by a vector a ∈ Rna , is usually trained by means of a set of training data452

{(xi,yi) | i = 1, ..., N} via a supervised learning approach as to minimize the discrepancy between453

ŷi = M̂(xi | a) and yi, according to a predefined measure (e.g., in an L2 sense). These training data454

are generated either a priori (e.g., in case of sensitivity analysis) or enriched following active learning455

approaches [88, 89], which is most commonly applied in the field of reliability analysis. Examples of456

such maps to represent M̂ that have been used in the context of propagating p-boxes include Gaus-457

sian process models [90] (also known as Kriging), polynomial response surface models [91] or techniques458

based on Taylor series expansions [92]. Also adaptive schemes based on Kriging have been introduced459

in literature [57] that are applicable to both parametric and distribution-free p-boxes. In this section,460
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three classes of methods are explained in detail that are highly promising from an engineering point of461

view due to their ‘black-box’ nature (i.e., they require no interaction with the inner operations of M),462

theoretical implications and numerical efficiency. Note that in essence, each type of surrogate model can463

be used in combination with a double-loop approach since they are very cheap to evaluate. The selection464

of the appropriate type of surrogate model in fact only depends on M.465

4.3.1. Polynomial Chaos Expansions & Kriging models466

Polynomial chaos expansion (PCE) and Kriging are two widely used surrogate modelling techniques467

that approximate M via intricate regression schemes. In general, PCE and Kriging have different fields468

of application in the propagation of uncertainties. On the one hand, if the analyst is interested in469

propagating uncertainty in general (e.g., when H(x) = (y − µY )n ) PCE generally is better suited.470

Conversely, when considering reliability analysis, Kriging approaches are generally more performing since471

they allow for performing active learning [89, 93, 94], even though active learning approaches for PCE472

have also been introduced [95].473

A sparse PCE surrogate model is given by:474

M̂(x | a) =
∑
α∈A

aαφα(x), (29)

where φα are multivariate orthonormal polynomials and A ⊂ Nnx is a finite set of multi-indices that475

is obtained by sparse decomposition. In [96], distribution-free p-boxes are propagated in a two-level476

approach in which first M, and second M and M (in the sense of Eq (21) and (22)) are substituted477

using sparse PCE. The training set is generated for an auxiliary input vector X and least angle regression478

(LARS) is used for training. In case of parametric p-boxes, it is proposed in [97] to model the sparse479

PCE coefficients aα as quadratic polynomial functions of the parameters θ of the p-box and using a480

double-loop sampling for the propagation.481

Whereas PCE methods focus on the global behaviour of M and are therefore suitable for a general482

propagation of p-boxes, Kriging methods focus on a local behaviour ofM and are therefore often preferred483

for reliability analysis. Indeed, in this context, a high accuracy in the vicinity where {M = 0} is especially484

crucial. Using Kriging, a surrogate M̂ for the limit-state function is considered to be a realization of a485

Gaussian process. It is:486

M̂(x | a) = βT
aψ(x) + Za(x, ω), (30)

where the first term, consisting of coefficients βa and regression functions ψ, is the mean value of the487

process, and the second term is a zero-mean, stationary Gaussian process, characterized by a variance and488

an auto-correlation function depending on a. Similar to above, a two-level approach in which first M,489
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and second M and M are substituted is considered for distribution-free p-boxes in [57]. Here, adaptive490

Kriging Monte Carlo simulation (AK-MCS) is used for an accurate estimation of the failure probabilities491

and random slicing is used to obtain P and P, see Eq. (19) and (20). Also in [57], a failure probability492

P(θ) which depends on the parameters θ is estimated via AK-MCS and efficient global optimization493

(EGO) for parametric p-boxes. A similar, but more detailed, Kriging-based procedure for parametric494

p-boxes is also described in [98].495

4.3.2. High-dimensional model representation based methods496

The Extended Monte Carlo framework, as introduced in Section 4.2.1 allows for propagating parametrized497

p-boxes by a single probabilistic simulation and a reweighting step. Nonetheless, still a considerable num-498

ber of evaluations ofM are required, which might impede practical applications. Therefore, in [39], both499

the local and global Extended Monte Carlo methods were integrated with a high-dimensional model500

representation (HDMR) decomposition of M as a surrogate modelling strategy. Following a HDMR501

deceomposition, P can be represented as:502

P(θ) = pf,0 +

nθ∑
i=1

pf,i(θi) +
∑

1≤i<j≤d
pf,ij([θi, θj ]) + . . .

+ pf,12...nθ(θ).

(31)

Note that HDMR decompositions are more widely applicable than to represent P. In the context503

of propagating p-boxes, in [39], it is proposed to apply a cut-HDMR strategy in combination with504

the local Extended Monte Carlo Method, allowing for a rigorous estimation of the variances of the505

estimators, as well as an estimation of the sensitivity of the parameters in θ. Similarly, it is proposed506

to perform a Random Slicing HDMR decomposition in combination with the Global Method. For the507

details concerning the implementation of these techniques, as well as the corresponding proofs, the reader508

is referred to [39]. These methods were recently also extended to be applied in combination with Line509

Sampling in [99].510

An alternative application of the Sobol-Hoeffding decomposition in the context of propagating im-511

precise probabilities through numerical models is given by [100]. In [100], the authors apply a fuzzy512

probabilistic approach in the study of designing cylindrical shells under geometric imperfections, which513

are modelled as a random field. Specifically, imprecision in the auto-correlation structure of the random514

field is accounted for by means of fuzzy arithmetic, and the S-H decomposition is applied to speed up515

the corresponding α-level optimization.516
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4.3.3. Interval predictor models517

An interval predictor model (IPM), as introduced in [101], is a type of surrogate model that approx-518

imates M by means of an interval-valued map M̂I(·,θ) : Rnx → IR, where IR is the set of all intervals519

in R. This map can be constructed with a minimal number of assumptions on the mapping provided by520

M. Specifically, M̂I(x,θ) given by:521

M̂I(x,θ) =
{
y = θTφ(x) | θ ∈ θI

}
(32)

with φ a basis (e.g., polynomial or trigoniometric), θ the fitting parameters of the IPM and θI = [θ,θ] an522

nθ-dimensional hyper-rectangular set. An optimal IPM is constructed by minimizing E
[
(θ − θ)|φ(x)|

]
.523

Scenario Optimization [54] can be used to judge the generalization properties of the IPM. In case the524

corresponding optimization problem is convex, the reliability R of the IPM (i.e., the probability that a525

future unobserved data point will be contained in the IPM) is bounded by:526

P (R ≥ 1− ε) > 1− β, (33)

where ε and β are the confidence and reliability parameters, which for our hyper-rectangular model can527

be obtained from528

β ≥
(
k + nθ − 1

k

) k+nθ−1∑
i=0

(
N

i

)
εi(1− ε)N−i, (34)

where k is the number of data points discarded by some algorithm and ε can be chosen as a very small529

number (e.g., ε = 1 · 10−06). An approach to apply IPMs in the context of propagating parametrized530

p-boxes is introduced by [102]. They show that IPMs can be used as surrogate model to speed up the531

calculation of Eq.(17) and Eq.(18), including a strategy to intelligently construct the set {(xi,yi) | i =532

1, ..., N}. Furthermore, they show that the IPM can also be used as a surrogate model for g, which in533

its turn can be used in combination with importance sampling to determine [P,P]. Other applications534

include estimating the bounds on P resulting from the surrogate model inaccuracy in a deterministic535

case [103].536

The main advantages of these techniques are that (1) they are completely black-box as they don’t537

require any assumption on M and (2) that under the mild assumption of convexity of the training538

guaranteed reliability bounds on the accuracy are obtained based on the rigorous framework of Scenario539

Optimization, which was recently extended to non-convex optimization problems too [54]. Unfortunately,540

active learning of this type of surrogate models is not feasible, since this violates the required assumptions541

on independence between the training samples [103].542
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4.4. Concluding discussion543

As an attempt to create some clarity in the applicability of the multitude of available methods for544

the propagation of p-boxes, Table 2 summarizes the discussed methods, including their class, limitations545

and to which type of p-box they are applicable. Note that no precise statements on accuracy and/or546

numerical efficiency are given, as these depend fully on the problem under consideration. For instance, for547

linear models, the operator norm will undoubtedly give the best results from all ’direct’ solution methods,548

as it reduces the solution of the problem to two deterministic optimization problems and two reliability549

analyses. On the other hand, for highly nonlinear problems, this method will fail, and potentially methods550

based on surrogate modelling will outperform the other methods. To make a fully fair comparison between551

these methods in this respect, a dedicated benchmark is study is required, which falls outside the scope of552

this paper. It should be noted, however, that in case there is no prerogative to use the numerical model,553

the computational efficiency of propagating imprecise probabilities with surrogate modelling approaches554

is orders of magnitude higher as compared to the approaches that directly use the numerical model.555

This is particularly true when advanced active learning methods such as AK-MCS [89] are applied in the556

context of reliability analysis.557

Table 2: Summary of black-box propagation schemes for p-boxes

Method class Type p-box Limitation ref

Double loop Direct Both Computational cost
Interval Monte Carlo Direct Free Computational cost [62]
Random set methods Direct Both1 Computational cost [74]

Advanced Line Sampling Decoupling Param. Moderate linearity [80]
Extended Monte Carlo Decoupling Param. Stochastic hyper-parameters [39]

Operator norm Decoupling Param. Linear models [82]
PCE Surrogate Both Global approximation of M [57]

Kriging Surrogate Both Local approximation of M [104]
HDMR Surrogate Param. Dimension of x [100]

IPM Surrogate Param. No adaptive refinement [102]

Generally, optimization approaches such as double loop or sampling methods provide inner approx-558

imations of the bounds on Pf as they generate realisations within [FX(x), FX(x)] and try to approach559

P, respectively P from the inside-out [43]. Note that, in case distribution-free p-box methods such560

as those based on random sets are applied to parametric p-boxes, this effectively constitutes an outer561

approximation.562

1More general imprecise probability models can be considered too, please refer to Section 2.3 for more information
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5. Conclusions563

The development of highly efficient approaches to perform engineering computations with imprecise564

probabilities, represented as p-boxes, is a quickly expanding field of research. The main challenge in565

this context is to overcome the required double loop propagation framework to estimate the bounds566

on probabilistic measures of the structure under consideration (such as, e.g., the probability of failure).567

Apart from near-trivial numerical simulation models, such double loop calculations are computationally568

intractable without resorting to high-performance computing facilities.569

This problem is currently being tackled from two sides: (1) by improving the propagation efficiency of570

p-boxes aimed at breaking the double loop and (2) developing efficient surrogate models for the numerical571

models to be used in the double loop. Concerning the former set of solutions, highly efficient propagation572

schemes have been introduced in recent years. However, these methods are either limited in terms of573

the admissible descriptions of the uncertainty, or the non-linearity of the underlying numerical model.574

Future developments in these areas should concentrate on expanding the scope of applicability of these575

techniques. Concerning the latter, surrogate models usually only require some smoothness constraints576

on the underlying numerical model, which allows for a greater flexibility. Nonetheless, the accuracy of577

the calculation of the bounds on the probabilistic measures is limited to the accuracy of the underlying578

surrogate model. Furthermore, also the training of these surrogate models can entail a non-negligible579

numerical cost, which is commonly mitigated by resorting to active learning.580

As such, to conclude, the last 15 years brought many highly performing approaches to compute with581

imprecise probabilities in general, and p-boxes in specific. The main challenge at this point appears582

to translate this set of highly performing methods to industrial applications involving multi-physical583

and/or million degree-of-freedom numerical models. Further work in this domain will include continuing584

developments on a theoretical side (e.g., constrained distribution-free p-boxes) and propagation aspects585

(e.g., operator norm theory for nonlinear dynamics). We expect that the current rapid developments586

in the domain of machine learning and big data can play a pivotal role in (1) the characterization of587

uncertainties, where the uncertainty characteristics are added by the machine learning algorithm, (2)588

the propagation and inverse identification of p-boxes, much alike active learning surrogate models, (3)589

performing dimension reduction by finding optimal representations of the uncertainty and (4) detecting590

dependencies in very high-dimensional datasets.591
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[29] B. Möller, M. Beer, Fuzzy Randomness, Springer, Berlin, 2004. URL:661

http://link.springer.com/10.1007/978-3-662-07358-2. doi:10.1007/978-3-662-07358-2.662

[30] M. Beer, M. Zhang, S. Quek, S. Ferson, Structural reliability assessment with fuzzy probabilities,663

in: [30], 2011.664

[31] A. Decadt, G. de Cooman, J. De Bock, Monte Carlo Estimation for Imprecise Probabilities: Basic665

Properties (2019). URL: http://arxiv.org/abs/1905.09301. arXiv:1905.09301.666

[32] M. Troffaes, Imprecise monte carlo simulation and iterative importance sampling for the estimation667

of lower previsions, Int. J. Approximate Reasoning 101 (2018) 31 – 48.668

[33] J. W. Hall, Uncertainty-based sensitivity indices for imprecise probability distributions, Reliability669

Engineering & System Safety 91 (2006) 1443–1451.670

[34] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, K. Sentz, Constructing Probability Boxes671

and Dempster-Shafer Structures, Technical Report January, Technical report, Sandia National672

Laboratories, 2003.673

[35] W. L. Oberkampf, W. T. Tucker, J. Zhang, L. Ginzburg, D. J. Berleant, S. Ferson, J. Haja-674

gos, R. B. Nelsen, Dependence in probabilistic modeling, Dempster-Shafer theory, and prob-675

ability bounds analysis., Technical Report, Sandia National Laboratories (SNL), Albuquerque,676

NM, and Livermore, CA, 2004. URL: http://www.osti.gov/servlets/purl/919189-POVF66/.677

doi:10.2172/919189.678

[36] I. Montes, E. Miranda, Bivariate p-boxes and maxitive functions, In-679

ternational Journal of General Systems 46 (2017) 354–385. URL:680

25



https://www.tandfonline.com/doi/full/10.1080/03081079.2017.1305960.681

doi:10.1080/03081079.2017.1305960.682

[37] M. Dannert, A. Fau, R. Fleury, M. Broggi, U. Nackenhorst, M. Beer, A probability-box approach on683

uncertain correlation lengths by stochastic finite element method, PAMM (Proceedings in Applied684

Mathematics and Mechanics) 18 (2018) e201800114.685

[38] M. Faes, D. Moens, Imprecise random field analysis with parametrized kernel functions, Mech.686

Syst. Sig. Process. 134 (2019) 106334.687

[39] P. Wei, J. Song, S. Bi, M. Broggi, M. Beer, Z. Lu, Z. Yue, Non-intrusive stochastic analysis with688

parameterized imprecise probability models: I. performance estimation, Mech. Syst. Sig. Process.689

124 (2019) 349 – 368.690

[40] P. Wei, J. Song, S. Bi, M. Broggi, M. Beer, Z. Lu, Z. Yue, Non-intrusive stochastic analysis with691

parameterized imprecise probability models: II. reliability and rare events analysis, Mech. Syst.692

Sig. Process. 126 (2019) 227 – 247.693

[41] M. G. R. Faes, M. A. Valdebenito, X. Yuan, P. Wei, M. Beer, Augmented Reliability Analysis694

for Estimating Imprecise First Excursion Probabilities in Stochastic Linear Dynamics, preprint695

submitted to elsevier (2020).696

[42] D. A. Alvarez, On the calculation of the bounds of probability of events using infinite random sets,697

International Journal of Approximate Reasoning 43 (2006) 241–267. doi:10.1016/j.ijar.2006.04.005.698

[43] E. Patelli, D. A. Alvarez, M. Broggi, M. de Angelis, Uncertainty Management in Multidisciplinary699

Design of Critical Safety Systems, Journal of Aerospace Information Systems 12 (2014) 140–169.700

[44] D. A. Alvarez, J. E. Hurtado, J. Ramı́rez, Tighter bounds on the probability of failure than those701

provided by random set theory, Computers and Structures 189 (2017) 101–113.702
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[81] P. Koutsourelakis, H. Pradlwarter, G. Schuëller, Reliability of structures in high dimensions, part794

I: Algorithms and applications, Probab. Eng. Mech. 19 (2004) 409–417.795

29



[82] M. Faes, M. A. Valdebenito, D. Moens, B. Michael, Bounding the First Excursion Probability of796

Linear Structures Subjected to Imprecise Stochastic Loading, preprint submitted to elsevier (2020).797

[83] J. A. Tropp, Topics in Sparse Approximation, Ph.D. thesis, The University of Texas at Austin,798

2004.799

[84] T. Soong, M. Grigoriu, Random Vibration of Mechanical and Structural Systems, Prentice Hall,800

Englewood Cliffs, New Jersey, 1993.801

[85] K. Marti, Differentiation of probability functions: The transformation method, Computers &802

Mathematics with Applications 30 (1995) 361–382.803

[86] Y. Zhang, A. Der Kiureghian, First-excursion probability of uncertain structures, Probab. Eng.804

Mech. 9 (1994) 135–143.805

[87] M. G. R. Faes, M. A. Valdebenito, Fully Decoupled Reliability-Based Design Optimization of806

Structural Systems Subject to Uncertain Loads, Computer Methods in Applied Mechanics and807

Engineering (2020).808

[88] S. Marelli, B. Sudret, An active-learning algorithm that combines sparse polynomial chaos expan-809

sions and bootstrap for structural reliability analysis, Struct. Saf. 75 (2018) 67 – 74.810
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