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Abstract

Most earth observation satellites (EOSs) are equipped with optical sensors, which cannot see through clouds. Hence, many
observations will be useless due to the presence of clouds. In this work, we study the scheduling problem of multiple EOSs
under uncertainties of clouds. In order to improve the possibility of completing tasks, we take the scheduling of each task to
multiple resources (orbits) into account and establish a novel non-linear mathematical model. To solve the problem efficiently,
an exact algorithm based on enumeration is proposed, in which each subproblem is solved by path programming, and all the
feasible solutions of subproblems are combined to solve the master problem. Furthermore, three heuristics are designed to
solve the large-scale problems. From the experimental results on random samples, it is observed that the solutions of our
model perform better than those of the previous studies. Besides, both our exact algorithm and a mixed-integer nonlinear
programming solver - Couenne can solve our model optimally for small problems, but our algorithm is more efficient than
Couenne. For large-scale problems, we reveal the strengths and weaknesses of the proposed heuristic algorithms while solving
different instances of various sizes.
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1. Introduction

Earth Observation Satellite (EOS) scheduling means to allocate the tasks submitted by users to satellites, making the
schedule satisfy the operational constraints. Because of some special advantages, e.g. an expansive coverage area, long-term
surveillance, a high frequency of repeated observations, accurate and effective information access and unlimited airspace
borders, EOSs have been extensively employed in earth resources exploration, nature disaster surveillance, urban planning,
crop monitoring, etc. Due to the explosively increased number of applications, the number of satellites, in spite of having
increased quickly, is still too limited. Hence, it is nontrivial for EOS scheduling to achieve high observation effectiveness and
efficiency.

Up to now, a great number of studies focusing on EOS scheduling have been proposed, in which the scheduling of non-agile
EOSs was formulated and solved in different ways:

Mathematical programming: Without considering memory and energy constraints, Benoist et al. [4], Habet et al.
[17, 18, 19] and Lemâıtre et al. [23] formulated the problem with mathematical programming models. In addition, mixed
integer programming (MIP) models were constructed on the basis of a “flow variable” formulation [8, 9, 13, 14, 43], in which
the precedence relations between tasks are well defined. Moreover, Lin et al. [27, 28, 29] and Marinelli et al. [30] proposed
“time-indexed” formulations of EOS scheduling, and established integer programming models. Hall et al. [20] formulated
the problem as a longest path problem with time windows, and set up an integer linear programming model.

Constraint satisfaction problem (CSP): Verfaillie et al. [38] formulated EOS scheduling as constraint satisfaction
problems. Agnèse et al. [1], Bensana et al. [5] and Verfaillie et al. [39] proposed valued constraint satisfaction problem
(VCSP) formulations for SPOT-5 satellite scheduling, without considering energy constraints.

Knapsack problem: Vasquez et al. [36, 37] formulated EOS scheduling as 0-1 knapsack problems that include large
numbers of capacity, binary and ternary “logical” constraints. Specifically, the knapsack formulation is based on binary
variables, each representing a photo camera: xi = (p, c) takes the value 1 if the photo p is taken by the camera c and 0
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Table 1: Formulation methods

Categories Content references general forms pros cons

Mathe-
matical
pro-
gram-
ming

• General
mathematical
programming;
• ”flow
variable”
formulation;
•
”time-indexed”
formulation

[4, 8, 9,
13, 14,
17, 18,
19, 20,
23, 43]

• General mathematical programming:
maxgkGk

∀j ∈ [1, n] Y2j−1 + Y2j ≤ 1
∀j ∈ [1, n] if tw(j) > j then
(Y2j−1 = Y2tw(j)−1 and Y2j = Y2tw(j))∑

i∈[1,2n] X0→i ≤ 1
∑

i∈[1,2n] Xi→2n+1 ≤ 1

• ”flow variable” formulation:
ϕc

jk = 1 that denotes task j is the direct predecessor of task k

for observation on camera c, and the objective function,
constraints are defined, respectively;
• ”time-indexed” formulation:
decision variables are defined as αit and γkit in which αit = 1 if
task i begins to be observed at time t and otherwise αit = 0,
and γkit is a step function indicating the setup status of
processing task k to task i at time t.

accurate;
rigorous;
directly
solved
by
mature
solvers
and
algorithms.

difficult
to be ob-
tained;
vulnera-
ble; any
changes
in pa-
rameters
may in-
validate
the
models

Constraint
satis-
faction
prob-
lem

General CSP;
Value CSP;

[1, 5,
38, 39]

< X, D, C > in which X = {x1, x2, ..., xn} is the set of
variables, D = {D(x1), D(x2), ..., D(xn)} is the set of domains
and D(xi) represents the domain of variable xi . Besides,
C = {c1, c2, ..., ce} is the set of constraints.

fast
solution
process

not guar-
anteed
to be
optimal

Knapsack
prob-
lem

0-1 knapsack
problem;
Window-
Constrained
Packing
Problem

[36, 37,
44]

• 0-1 knapsack problem:
xi = (p, c) takes the value 1 if the photo p is taken by the
camera c and 0 otherwise.
• Window-Constrained Packing Problem:
n jobs {jobi|i = 1, ..., n} and jobi must be done within its
opportunity window [wsi, wei] . xi = 1 means that jobi is
scheduled.

easy to
under-
stand;
easy to
solve

fail to
describe
the
complex
constraints;

Graph-
based
formu-
lation

directed
acyclic graph
(DAG);
graph coloring
problem

[12, 33,
48]

• directed acyclic graph:
G = (X, U): the candidate observations are denoted by the set
of vertices X, and the precedence relations between
observations are represented by the set of arcs U . For any pair
(j, k) ∈ X ×X, (j, k) ∈ U if and only if task k can be observed
just after task j.
• graph coloring problem:
the set of jobs is represented as the set of vertices V and the
collection of resources (satellites) as k (the number of colors).
Assign a resource to a job while respecting the following
constraint: a job can be associated with any resources as long
as the job is not in conflict with other jobs in the timeline

easy to
under-
stand;
easy to
solve

not
suitable
for the
complex
schedul-
ing
problems

otherwise. Thus, a schedule corresponds to the non-zero components of a binary vector. In addition, Wolfe et al. [44] defined
the problem as a “Window-Constrained Packing Problem” (WCPP).

Graph-based formulation: Gabrel et al. [12] adopted a directed acyclic graph (DAG) model to describe the satellite
scheduling problem. In their formulation, the observations were denoted by vertices, and the precedences between observations
were represented by arcs. Hence, the scheduling problem was formulated as the selection of a multiple criteria path in a
graph. In addition, Sarkheyli et al. [33] and Zufferey et al. [48] modeled EOS scheduling as graph coloring problems.

The above formulation methods have been summarized in Table 1. Furthermore, the solution approaches for EOS
scheduling can be classified into the following three categories, as is shown in Table 2.

Exact algorithms: Agnèse et al. [1] and Bensana et al. [5] proposed depth-first branch-and-bound algorithms for the
scheduling of the SPOT-5 satellite. Also, Bensana et al. [5] and Verfaillie et al. [39] suggested Russian Doll search algorithms,
which are based on branch-and-bound, but replace one search by n successive searches on nested subproblems, using the
results of each search when solving larger subproblems, in order to improve the lower bound on the global valuation of any
partial assignment. Besides, Gabrel et al. [12] and Hall et al. [20] developed dynamic programming methods to obtain the
optimal solutions of non-agile EOS scheduling problems.

Metaheuristics: A large number of metaheuristics were proposed for non-agile EOS scheduling, which primarily contain
tabu search algorithms [5, 36, 46, 48], evolution algorithms [2, 21, 24, 32, 34, 44, 46], ant colony algorithms [25, 40, 45], local
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Table 2: Solution algorithms

Categories Content references general forms pros cons

Exact
algo-
rithms

•
branch-and-bound;
• Russian Doll
search;
• dynamic
programming

[1, 5, 12,
20, 39]

• branch-and-bound:
divide the solution space into some subspaces
(branching process), and eliminate the subspaces
that do not contain the optimal solution (pruning
process)
• Russian Doll search:
based on branch and bound, replace one search by
n successive searches on nested subproblems
• dynamic programming:
formulate the scheduling problem as multistage
decision problems, consider which task to be
scheduled at each stage, and the task that cannot
produce the optimal solution will be eliminated

optimal
guarantee

consume too
much time;
consume too
much memory;
not available
for large-scale
problems;
dependent on
the problem
modeling

Meta-
heuristics

tabu search
algorithms;
evolution
algorithms;
ant colony
algorithms;
local search
algorithms;
simulated annealing
algorithms

[2, 5, 15,
16, 21, 24,
25, 32, 34,
36, 38, 40,
44, 45, 46,
48]

stochastic searching in the solution space, first
obtain an initial solution or multiple initial
solutions (population), and then find some better
solutions from neighborhood search. In addition,
some rules are adopted to avoid premature end

universal
applicabil-
ity;
faster than
exact
methods;
controllable
solution
time

not guaranteed
to be optimal;
cannot
evaluate the
quality of
solutions;
slow
convergence
rate

Heuristics
greedy algorithms;
constructive
algorithms;

[1, 5, 7,
8, 10, 20,
30, 41,
42, 44,
47]

the solution is constructed based on some
problem-specific rules (such as priority rule, shortest
processing time, first come first service, etc.)

fast for
solution;
easy to
design

not guaranteed
to be optimal;
bad
performance in
some cases;
problem-
specific, cannot
be universally
used;

search algorithms [35, 38] and simulated annealing algorithms [15, 16, 46].
Heuristics: Agnèse et al. [1] and Bensana et al. [5] proposed greedy algorithms to get feasible solutions for non-agile

EOS scheduling problems. On the basis of some problem-specific rules, Bianchessi et al. [7, 10], Hall et al. [20], Wang et al.
[41, 42], Wolfe et al. [44] and Xu et al. [47] developed constructive algorithms that can solve the problems efficiently, without
guaranteeing the optimality of the solutions. Bianchessi et al. [8] and Marinelli et al. [30] adopted lagrangian relaxation
heuristics to solve the problems, obtaining close-to-optimal solutions.

Many observations performed by EOSs are lost due to the presence of clouds, because most EOSs are equipped with
optical sensors that cannot see through clouds [15, 16]. For example, around 80% of the observations with the currently
operational optical SPOT satellites are useless due to the presence of clouds [3]. Hence, the impact of clouds is a nontrivial
issue for EOS scheduling, which cannot be ignored. Unfortunately, to the best of our knowledge, only a few studies have
considered the impact of clouds. Lin et al. [27, 28, 29] formulated the presence of clouds as a set of covered time windows, and
forbade the tasks to be observed in the covered time windows. In practice, the drawback and infeasibility of Lin’s approach
is that there exist large uncertainties of clouds, which are always changing over time [2, 6, 22] and cannot be forecasted
exactly, so decision makers cannot get the deterministic information beforehand. Liao et al. [26] considered the uncertainties
of clouds, formulated the presence of clouds for each observation window as a stochastic event, and established a model with
the objective of maximizing the weighted sum of a function of the profits and the expected number of executed tasks.

In deterministic multi-satellite scheduling, a task will be completed successfully once it has been scheduled. Hence, for
each task, it is sufficient to schedule it to only one orbit, and there is no difference between scheduling it to one orbit or to
multiple orbits. In contrast, in the scheduling of multiple EOSs under uncertainties, a scheduled task can fail to be completed
at a certain probability. If a task can be allocated to multiple resources, the probability of completing this task will be higher.
Unfortunately, in the previous studies of uncertain EOS scheduling, the characteristics of deterministic scheduling were simply
and inadequately migrated, and each task was scheduled to only one resource, which is not appropriate for the scheduling of
EOSs under uncertainties of clouds.
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Differently from the previous studies, this paper suggests to schedule each task to multiple orbits and establishes a
corresponding expectation model, for the purpose of increasing the probability of the successful observation for each task.
Because of the complexities of the problem, the proposed model is neither linear nor quadratic, which brings many challenges
for its solution. Both exact and heuristic algorithms are proposed to find optimal and feasible solutions, respectively. For
the problems of small size, an exact algorithm based on enumeration is developed, in which each subproblem is solved
using path programming and all the feasible solutions of subproblems are combined to solve the master problem. Compared
to the mixed integer nonlinear programming solver - Couenne that can solve our problem optimally, our exact algorithm
reduces the complexity of solving the model using a divide-and-conquer strategy. In addition, a number of efficient heuristic
algorithms are designed to generate feasible solutions that are close-to-optimal for large-scale problems. Afterwards, an
extensive simulation experiment is conducted to demonstrate that the solutions of our model perform better than those of
previous studies. The experimental results indicate that our exact algorithm is much faster than Couenne for solving small
to medium size problems. Finally, the feasibility of both the exact algorithm and the heuristics is verified, coupled with an
evaluation of the quality and the performance of each solution.

The remainder of the paper is organized as follows. In the next section, we formulate the problem with a novel math-
ematical model, and propose an exact algorithm based on enumeration. Section 3 suggests a number of efficient heuristic
algorithms for the large-scale problems. In Section 4, a real case study is provided. Subsequently, numerical computational
results of our approaches are presented in Section 5. The last section offers conclusions and directions for future research.

2. The uncertain EOS Scheduling Problem

This study focuses on the scheduling of multiple EOSs under uncertainties of clouds, where the presence of clouds for
observations is formulated as stochastic events. Essentially, the problem is a stochastic programming problem, and a novel
mathematical model is constructed for this problem.

2.1. Problem description
In the previous studies, researchers usually formulate the satellites as the resources, and assume a task will have at most

one observation window on each resource. However, most EOSs are nearly polar heliosynchronous satellites, and they can
pass over a strip for multiple times if the scheduling horizon is long enough. Hence, the observation windows for a task
on each satellite will not be unique [41, 42], which makes the problem difficult for modeling and solving. To handle the
difficulties, we formulate the orbits of the satellites as the resources. Hence, there will be at most one observation window
for each task on each resource.

Some notations of this study are summarized in Table 3. Let T be the set of tasks (strips) submitted by users and let
O be the set of orbits within the scheduling horizon. Each task i ∈ T is associated with a profit ωi. Each orbit k ∈ O is
associated with a memory capacity Mk, an energy capacity Ek, a memory consumption for each unit of observation time mk

and an energy consumption for each unit of observation time ek. Let bik = 1 denote that task i can be observed on orbit k,
otherwise bik = 0. [sik, fik] denotes the time duration for task i on orbit k. Specifically, sik represents the start time of task
i on orbit k and fik represents the finish time.

After observing a task, the satellite requires a sequence of transformation operations (sensor shutdown→ slewing→
attitude stability→ startup) to observe the next one. Hence, there should be sufficient setup time between two consecutive
tasks, and the required setup time can be calculated by the following formula:

uk
ij = sdk + |θik − θjk|/σk + ask + suk, (1)

where uk
ij is the setup time between task i and task j on orbit k, and sdk, ask and suk are the time of sensor shutdown,

attitude stability and startup of orbit k, respectively. Besides, σk is the slewing velocity of orbit k, and θik and θjk are the
slewing angles of tasks i and j on orbit k, respectively.

Let ρk
ij denote the energy consumption of slewing between consecutive tasks i and j on orbit k, which can be calculated

by the formula below:
ρk

ij = |θik − θjk|πk, (2)

where πk is the energy consumption for each unit slewing angle on orbit k.
Considering the uncertainties of clouds, we formulate the presence of clouds for observations as stochastic events, denoted

by 0-1 stochastic variables λ̃ik, i ∈ T, k ∈ O. λ̃ik = 1 if the observation of task i on orbit k can be successfully observed
without the presence of clouds, otherwise λ̃ik = 0. Let pik denote the probability for a successful observation of task i on
orbit k, i.e., no presence of clouds, thus we can obtain p{λ̃ik = 1} = pik and p{λ̃ik = 0} = 1− pik.
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Table 3: Notations

T set of tasks, T = {1, ..., n}
i, j, j′ task index, i, j, j′ ∈ T ∪ {s,t} , in which s, t are

dummy tasks
ωi profit of task i, i ∈ T
O set of orbits, O = {1, ..., m}
k orbit index, k ∈ O
bik bik = 1 if orbit k is available for the observation

of task i, otherwise bik = 0, i ∈ T, k ∈ O
Mk, Ek memory capacity and energy capacity of orbit k,

k ∈ O
mk, ek memory and energy consumption for each unit time

of observation of orbit k, k ∈ O
[sik, fik] time duration of observation of task i on orbit k,

i ∈ T, k ∈ O
θik slewing angle of observation of task i on orbit k,

i ∈ T, k ∈ O
uk

ij setup time between task i and task j on orbit k,
i, j ∈ T, k ∈ O

ρk
ij energy consumption for slewing between task i and

task j on orbit k, i, j ∈ T, k ∈ O
sdk time of sensor shutdown of orbit k, k ∈ O
ask time of attitude stability of orbit k, k ∈ O
suk time of startup of orbit k, k ∈ O
σk slewing velocity of orbit k, k ∈ O
πk energy consumption for each unit slewing angle on

orbit k, k ∈ O

λ̃ik binary stochastic variable, λ̃ik = 1 denotes that
task i can be successfully observed on orbit k,
otherwise λ̃ik = 0, i ∈ T, k ∈ O

pik probability that task i will be successfully observed
on orbit k, i ∈ T, k ∈ O
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2.2. Mathematical model
In this paper, we model the scheduling of EOSs with a directed acyclic graph (DAG) formulation. For each orbit k, a

directed acyclic graph Gk = (V k, Ak) is first defined. With the task-on-node representation, the nodes in V k represent the
tasks that are available for orbit k, plus two special nodes {s, t} representing the dummy starting and dummy terminating
tasks. Ak is the set of arcs for orbit k, which is defined as follows:

• ∀j ∈ V k ∪ {t}, (s, j) ∈ Ak;

• ∀j ∈ V k ∪ {s}, (j, t) ∈ Ak;

• ∀i, j ∈ V k, (i, j) ∈ Ak iff task j can be observed after task i on orbit k, i.e. the setup time between tasks i and j is
sufficient.

In this formulation, for each orbit k, binary decision variables xk
ij ∈ {0, 1},∀i, j ∈ T, k ∈ O, (i, j) ∈ Ak, bik, bjk = 1 are

used as flow variables that are equal to 1 if edges (i, j) ∈ Ak are selected and 0 otherwise. Clearly, a path from the starting
node s to the final node t that satisfies the memory and energy constraints represents a feasible schedule. A non-linear
mathematical model of our scheduling problem is given below:

max
∑

i∈T

ωi · {1−
∏

k∈O

(1− pik ·
∑

j ∈ T ∪ {t}
j 6= i

xk
ij)} (3)

subject to

∑

j ∈ T ∪ {t}
j 6= i

xk
ij =

∑

j′ ∈ T ∪ {s}
j′ 6= i

xk
j′i,

∀i ∈ T, k ∈ O, (i, j) ∈ Ak, (j′, i) ∈ Ak, bik, bjk, bj′k = 1

(4)

∑

j ∈ T ∪ {t}
j 6= i

xk
ij ≤ 1,∀i ∈ T, k ∈ O, (i, j) ∈ Ak, bik = 1. (5)

∑

i∈T

∑

j ∈ T ∪ {t}
j 6= i

xk
ij(fik − sik)mk ≤ Mk,∀k ∈ O,

(i, j) ∈ Ak, bik = 1, bjk = 1.

(6)

∑
i∈T

∑
j ∈ T ∪ {t}
j 6= i

xk
ij(fik − sik)ek +

∑
i∈T

∑
j ∈ T
j 6= i

xk
ijρ

k
ij ≤ Ek,

∀k ∈ O, (i, j) ∈ Ak, bik = 1, bjk = 1.

(7)

xk
ij ∈ {0, 1},∀i, j ∈ T ∪ {s, t}, k ∈ O, (i, j) ∈ Ak,

bik = 1, bjk = 1.
(8)

The objective (3) is to maximize the expectation value of the profits of the executed tasks under uncertainties of clouds,
in which 1−∏

k∈O(1− pik ·
∑

j ∈ T ∪ {t}
j 6= i

xk
ij) denotes the completion probability for task i when it is scheduled to multiple

orbits. The set of constraints (4) are flow balance constraints, which ensure that the number of predecessors is equal to the
number of successors for each task. Besides, constraints (4) also guarantee that the selection of edges constitutes a feasible
path from the starting node s to the terminating node t. Constraints (5) enforce that each task can only be scheduled to the
orbits that are available for it. Constraints (6) check that the memory consumption of the scheduled tasks cannot exceed the
memory capacity for each orbit. Constraints (7) compute the energy consumption of the task sequence for each orbit, and
enforce that the energy consumption must be less than or equal to the capacity.
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2.3. An exact solution algorithm
It has been known that the proposed model is neither linear nor quadratic, which makes it challenging to find an optimal

solution. As far as we know, Couenne is able to solve the model and obtain optimal solutions for small problems. In addition
to Couenne, this paper proposes another exact algorithm based on enumeration to get optimal solutions faster.

With respect to Couenne, a spatial branch-and-bound algorithm is implemented to solve non-convex mixed integer non-
linear programming (MINLP) problems [49]. It should be noted that Couenne is a general solver, and it may lose the specific
formulation information for some problems. With respect to the problem in our study, only the objective function is coupled,
and the constraints are independent for each orbit. Therefore, based on the divide-and-conquer approach, we divide the
problem into multiple subproblems, reducing the complexity of solving the model. Hence, the proposed algorithm is faster
than Couenne in finding the optimal solution.

In detail, the enumeration algorithm can be described as follows:
Step 1. Solve each subproblem with a path programming algorithm, and obtain all non-dominated solutions for each

orbit.
Step 2. Enumerate all feasible solutions for the master problem, which are corresponding to all combinations of feasible

solutions for the subproblems.
Step 3. Compute the objective function value for each feasible solution, and select the solution with maximum objective

value as the optimal solution.

3. Heuristic algorithms

Because of its large space complexity, the proposed exact algorithm will fail to handle large-scale problems in practice.
Hence, heuristics are required to solve the large-scale problems efficiently. Although a lot of heuristic algorithms have been
proposed for EOS scheduling, such as greedy algorithms [5, 44], heuristics based on some problem-specific rules [20] and some
heuristic algorithms for emergency scheduling [42], all of them are designed for the deterministic scheduling problem where
each task needs to be scheduled only once. Hence, the algorithms are not suitable for this work where each task requires
being scheduled multiple times due to the uncertain impact of clouds.

In addition, the above heuristic algorithms are all deterministic and single-pass, and the quality of the derived solutions
cannot be guaranteed. Hence, in this study, three stochastic and multi-pass heuristic algorithms are designed to obtain
multiple unique feasible solutions among which the best one is chosen. The proposed algorithms can be grouped into two
categories: column-based heuristics and a knapsack-based heuristic.

3.1. Column-based heuristics
The first heuristic algorithm Heuristic 1 is based on all the non-dominated solutions (columns) for each subproblem

(orbit), which can be obtained by path programming as described in the exact algorithm. Afterwards, the L best solutions
are selected on each orbit, and the other solutions are cut off. Differently from the exact algorithm that enumerates all
combinations of the columns to get all feasible solutions, Heuristic 1 selects columns for each orbit from the L solutions
and combines them heuristically to get a subset of combinations, which are corresponding to a subset of feasible solutions.
Afterwards, the feasible solution in the subset with the maximum objective will be marked as the best solution.

Heuristic 1: Column-based heuristic selection
Step 1. Obtain the set of columns COLk for each orbit k, k ∈ O, with path programming algorithm (see Section

2.3).
Step 2. Compute the profits of the columns with profkr =

∑
i∈T ωi · pik · πirk, for each column colkr ∈ COLk, each

orbit k ∈ O, in which πirk = 1 if task i is scheduled to orbit k in column colkr, otherwise πirk = 0.
Step 3. For each orbit k ∈ O, choose a predefined number L of columns from COLk with maximum profits to form

a new and small column set COLk, and delete the other columns.
Step 4. Generate a certain number Z of feasible solutions based on the heuristic combination of the columns. For

each orbit k ∈ O, Select a column colkr from COLk with biased random sampling, with the profits of the
columns being priority values, and the priority rule is to select the column with the highest priority value.
Combine the obtained columns for each orbit to form a feasible solution soll, and put soll into the solution
set SOL.

Step 5. Select the best solution from SOL, i.e., the solution with the maximum objective value.
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Step 1’. Generate a predefined number of columns for each orbit
For each orbit k ∈ O

For l = 1, . . . , L
j ← t // t is the terminate node of orbit k
While j 6= s // s is the starting node

Select node i, i ∈ Γ−1(j) with biased random sampling, in which Γ−1(j) is the set of all predecessors
of j. The priority value of node i is the sum of the profit of node i and the profits of all predecessors
of node i, and the priority rule is to select the predecessor with the highest priority value.
j ← i

End while
Obtain the column colkl, COLk ← COLk ∪ {colkl}

End for
End for

Heuristic 1 gets all columns for each orbit with path programming which will consume too much time. Besides, if
there is not enough time to obtain all columns for each orbit, neither optimal nor feasible solutions will be produced. To
overcome this drawback, Heuristic 2 is developed, which considers obtaining a subset of columns for each orbit by using
a backtracking approach. In detail, the procedure starts from the dummy terminating node t, and it selects a predecessor i
using biased random sampling. Subsequently, the above procedure will be repeated until reaching the starting node s, which
implies that a feasible solution has been produced. Finally, the above procedures will be repeated L times to get L feasible
solutions. As a consequence, Heuristic 2 is identical to Heuristic 1 except that Step 1 is replaced by Step 1’, and Step
3 is removed.

3.2. Knapsack-based heuristic
Both Heuristic 1 and Heuristic 2 can be attributed to column-based heuristics, which combine the columns for each

orbit to form feasible solutions. In contrast, Heuristic 3 handles the problem as a knapsack problem and solves it based on
task allocation and retraction. Before describing Heuristic 3 in detail, some definitions and details are proposed below:

Definition 1. Task Requirement
The task requirement TRi represents the priority to schedule task i:

TRi =
ωi · [1−

∏
k∈O(1− pikbik)]∑

k∈O

bik
(9)

Definition 2. Conflict
A conflict, say Confik, is defined as the set of conflicting tasks that are scheduled to orbit k and that are violating the

setup time constraints with task i.
Definition 3. Conflict Set
The conflict set ConfSeti of task i denotes the set of all distinct conflicts on all orbits.
Definition 4. Task Retraction Expense
The task retraction expense TREik is defined as the decrease in expected profits if task i is retracted from orbit k.

TREik = ωi · [Pi(Oi)− Pi(Oi \ k)] (10)

in which Oi is the set of orbits on which task i has been scheduled, and Pi(Oi) represents the relevant completion probability
of task i. It must be noted that Pi(Oi) = 0 if Oi = ∅.
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Heuristic 3 Knapsack-based heuristic
Step 1. Initialize the current optimal solution OptSol = ∅, current optimal objective value OptObj = 0, solution

index l = 0, predefined number of solutions Z.
Step 2. If l < Z, Go to Step 3, otherwise the algorithm ends.
Step 3. Initialize the task set T , the orbit set O, the set of scheduled tasks Schek = ∅ for each orbit k, k ∈ O, and

the conflict set ConfSeti = ∅ for each task i, i ∈ T .
Step 4. If T = ∅, go to Step 5; otherwise, go to step 6.
Step 5. Compute the objective value Objl of the current solution Soll. If Objl > OptObj: OptObj ← Objl,

OptSol ← Soll. Afterwards, l ← l + 1, go to Step 2
Step 6. Select task i from T with maximum task requirement TRi, T ← T \ i.
Step 7. Schedule task i on each feasible orbit

For each orbit k ∈ O
If there is no conflict of task i on orbit k

Schedule task i to orbit k, Schek ← Schek ∪ {i};
While memory and energy constraints are not all satisfied

Select task j from Schek with regret based biased random sampling, with the task retraction expense
TREjk being the priority values, and the priority rule is to select the task with the smallest priority
value.
Retract task j from orbit k, Schek ← Schek \ j, and update the relevant memory and energy.

End while
Else

Obtain the conflict Confik, ConfSeti ← ConfSeti ∪ {Confik}
End if

End for
Step 8. If task i has been successfully scheduled to at least one orbit, go to Step 4, otherwise go to Step 9.
Step 9. Calculate the conflict expense ConfEik for each conflict Confik, Confik ∈ ConfSeti

Step 10. Select the conflict Confik from ConfSeti with regret based biased random sampling, with the priority
values being ωipik −ConfEik for each conflict, and the priority rule is to select the conflict with the highest
priority value.

Step 11. Retract all the tasks in conflict Confik, then Schedule task i to orbit k. If both memory and energy
constraints are satisfied, which implies that task i has been successfully scheduled, update the schedule
Schek; otherwise, return to the previous schedule Sche′k. Go to Step 4

Definition 5. Conflict Expense
The conflict expense ConfEik of Conflict Confik is defined as the decrease in expected profits if the conflicting tasks in

Confik is retracted:
ConfEik =

∑

j∈Confik

TREjk (11)

Firstly, Heuristic 3 selects the task i from the set T with maximum requirement, and schedules i to each orbit. For an
orbit k, if there are no conflicting tasks, task i will be scheduled on k, and we retract some tasks based on regret-based biased
random sampling to satisfy both the memory and energy constraints if necessary. If task i has been successfully scheduled
on at least one orbit, the next task will be accessed; otherwise, a conflict Confik will be selected from the set ConfSeti with
regret-based biased random sampling. Subsequently, the tasks in Confik will be retracted to accommodate task i if both the
memory and energy constraints are satisfied. Then the next task will be selected until T = ∅, which implies that a feasible
solution has been obtained. Finally, the above procedure will be repeated Z times to get Z feasible solutions, and the best
solution will be selected.

4. Case study

In this section, a real-world case is provided to validate the feasibility of our methods. The observation requests that
were submitted to the China Centre for Resource Satellite Data and Application (CCRSDA) are illustrated in Table 4. The
relevant targets needed to be observed for disaster monitoring, and the optical observations required being executed between
8:00 and 16:00 on July 24, 2018.

Six earth observation satellites (GF-1, GF-2, ZY1-02C, ZY1-04, ZY3 and ZY3-02) that are under control of the CCRSDA
were selected to execute the submitted requests, and the orbital parameters of the satellites are referred to the website
of CCRSDA [51]. In addition, the relevant observation windows are illustrated in Table 5. The probabilities of successful
observations are obtained from the cloud coverage of the observation target, and the cloud coverage is provided by the National
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Table 4: Observation requests

No. Region Latitude Longitude Profit
0 Gaolan County, Gansu Province 36◦26′47.194′′ N 103◦50′47.953′′E 1
1 Shanke County, Heilongjiang Province 48◦41′55.442′′N 128◦9′6.596′′E 6
2 Beijing Tongzhou District 39◦52′17.211′′N 116◦36′58.646′′E 6
3 Huize County, Yunnan Province 26◦28′39.034′′N 103◦27′48.256′′E 3
4 Lanshan District, Shandong Province 35◦23′39.27′′N 119◦0′59.376′′E 8
5 The rear banner of Wulat, bayannur city, Inner Mongolia autonomous region 41◦34′23.599′′N 108◦31′58.994′′E 10
6 The middle banner of Wulat, bayannur city, Inner Mongolia autonomous region 41◦5′24.797′′N 107◦4′52.108′′E 1
7 Balikun kazak autonomous county, Hami city, Xinjiang uygur autonomous region 43◦36′17.488′′N 93◦1′22.805′′E 5
8 Yuepu lake county, Kashgar, Xinjiang uygur autonomous region 39◦14′21.967′′N 76◦47′3.746′′E 5
9 Shouguang, Shandong Province 36◦47′56.400′′N 118◦41′16.799′′E 8
10 Southern of Henan Province 32◦19′12′′N 114◦36′36′′E 8
11 Northern of Anhui Province 32◦31′12′′N 116◦8′24′′E 9
12 Southern of Anhui Province 30◦44′24′′N 117◦10′48′′E 4
13 Northern of Jiangxi Province 29◦19′48′′N 116◦22′48′′E 8

Meteorological Information Center [50]. In addition, for all the heuristics, the predefined number of obtained solutions Z is
set to 1000. The number of columns L for each orbit is set to 20 for Heuristic 1 and Heuristic 2.

The actual schedule obtained by the current system is illustrated as below:

Satellite 0: s → 9 → 3 → t
Satellite 1: s → 13 → 6 → t
Satellite 2: s → 5 → 8 → t
Satellite 3: s → 1 → 10 → t
Satellite 4: s → 11 → 7 → t
Satellite 5: s → 12 → 2 → t

The optimal solution of our model obtained by both our exact algorithm and Couenne is shown as follows:

Satellite 0: s → 9 → 3 → 7 → 8 → t
Satellite 1: s → 1 → 13 → 5 → t
Satellite 2: s → 1 → 5 → 8 → t
Satellite 3: s → 1 → 10 → 8 → t

Satellite 4: s → 11 → 7 → t
Satellite 5: s → 13 → 2 → 7 → t

The solutions of Heuristic 1 and Heuristic 2 are the same with the above optimal solution. The solution of Heuristic
3 is described as below:

Satellite 0: s → 9 → 3 → 7 → 8 → t
Satellite 1: s → 1 → 13 → 5 → t
Satellite 2: s → 1 → 5 → 8 → t
Satellite 3: s → 1 → 10 → 8 → t
Satellite 4: s → 12 → 2 → 7 → t

Satellite 5: s → 11 → 7 → t

With respect to the above solutions, 20 sample tests were conducted to compare the performances of the solutions. For
each sample test, 10,000 samples were randomly produced according to the probabilities of successful observations that are
described in Table 5. The minimum observation profit, average observation profit and maximum observation profit on the
samples are listed in Table 6.

As shown in Table 6, although the maximum profits of the optimal solution, the solution of Heuristic 1 and the solution
of Heuristic 2 on the samples are normally less than those of the current schedule, the solutions of them outperform the
current schedule on average. In addition, the solution of Heuristic 3 is compared with the current schedule, and it turns
out that the minimum profits, the average profits and the maximum profits of Heuristic 3 are higher.
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Table 5: Time windows

Task
No.

Satellite
GF-1 GF-2 ZY1-02C ZY1-04 ZY3 ZY3-02

Wind Prob Wind Prob Wind Prob Wind Prob Wind Prob Wind Prob
0 – – – – [14:51:31.307,

14:54:03.321]
0.36 [14:51:02.540,

14:53:33.382]
0.42 – – – –

1 – – [13:04:36.851,
13:06:50.993]

0.32 [13:14:14.429,
13:16:45.943]

0.29 [13:13:52.603,
13:16:22.803]

0.35 – – – –

3 [12:05:55.136,
12:08:13.094]

0.38 – – – – – – – – – –

4 [10:30:57.692,
10:33:14.462]

0.42 – – – – – – – – – –

5 – – [14:39:58.030,
14:42:10.814]

0.28 [14:52:38.005,
14:55:09.914]

0.29 [14:52:09.194,
14:54:39.696]

0.34 – – – –

6 [14:39:54.780,
14:42:08.218]

0.42 [14:52:34.874,
14:55:05.936]

0.38 [14:52:06.059,
14:54:35.771]

0.36

7 [12:10:54.700,
12:13:11.537]

0.33 – – – – – – [16:04:42.395,
16:06:16.420]

0.35 [16:04:42.395,
16:06:16.420]

0.35

8 [13:47:07.059,
13:49:27.218]

0.42 – – [16:32:56.462,
16:35:29.494]

0.44 [16:32:20.470,
16:34:52.385]

0.41 – – – –

9 [10:31:20.561,
10:33:37.355]

0.56 – – – – – – – – – –

10 – – [14:37:15.975,
14:39:28.623]

0.42 [14:49:49.201,
14:52:24.587]

0.38 [14:49:20.667,
14:51:54.488]

0.47 [14:27:06.915,
14:28:38.119]

0.41 [14:27:06.915,
14:28:38.119]

0.41

11 – – [14:37:14.271,
14:39:28.436]

0.32 – – – – [14:27:05.678,
14:28:36.882]

0.35 [14:27:05.678,
14:28:36.882]

0.35

12 – – [14:36:43.123,
14:38:57.959]

0.28 – – – – [14:26:35.645,
14:28:06.894]

0.27 [14:26:35.645,
14:28:06.894]

0.27

13 – – [14:36:23.737,
14:38:37.053]

0.38 – – – – [14:26:16.467,
14:27:47.388]

0.36 [14:26:16.467,
14:27:47.388]

0.36

Table 6: Results of sample test

Sample
No.

Optimal Solution Heuristic 1 Heuristic 2 Heuristic 3 Current Schedule
Min Ave Max Min Ave Max Min Ave Max Min Ave Max Min Ave Max

0 0 37.030 68 0 37.030 68 0 37.030 68 0 36.421 72 0 29.067 72
1 0 37.001 68 0 37.001 68 0 37.001 68 0 36.236 72 0 29.117 72
2 5 37.069 68 5 37.069 68 5 37.069 68 0 36.412 72 0 29.263 72
3 0 36.925 68 0 36.925 68 0 36.925 68 0 36.176 72 0 28.845 65
4 0 37.157 68 0 37.157 68 0 37.157 68 0 36.373 72 0 29.279 66
5 0 36.997 68 0 36.997 68 0 36.997 68 0 36.273 72 0 29.045 69
6 0 37.189 68 0 37.189 68 0 37.189 68 0 36.638 72 0 29.267 73
7 3 37.242 68 3 37.242 68 3 37.242 68 0 36.463 72 0 29.232 73
8 0 36.964 68 0 36.964 68 0 36.964 68 3 36.276 72 0 29.083 72
9 5 36.997 68 5 36.997 68 5 36.997 68 0 36.297 72 0 29.150 67
10 0 36.969 68 0 36.969 68 0 36.969 68 0 36.333 72 0 28.988 69
11 0 36.944 68 0 36.944 68 0 36.944 68 0 36.298 72 0 29.053 72
12 0 37.161 68 0 37.161 68 0 37.161 68 3 36.426 72 0 29.166 69
13 0 37.060 68 0 37.060 68 0 37.060 68 0 36.353 72 0 28.969 69
14 0 37.173 68 0 37.173 68 0 37.173 68 0 36.460 72 0 29.238 70
15 0 36.812 68 0 36.812 68 0 36.812 68 0 36.075 72 0 29.041 72
16 0 36.909 68 0 36.909 68 0 36.909 68 0 36.225 72 0 28.993 67
17 0 37.059 68 0 37.059 68 0 37.059 68 0 36.387 72 0 29.009 70
18 0 36.959 68 0 36.959 68 0 36.959 68 0 36.313 72 0 29.012 68
19 0 37.149 68 0 37.149 68 0 37.149 68 0 36.401 72 0 29.227 70
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Table 7: Parameters of satellites

Satellite
Slewing Startup ShutdownStabilityMemoryEnergy Energy
velocity time time time /time /time /deg

CBERS-2 2 5 8 3 2 1.5 1.5
IKONOS-2 2.5 8 5 6 4 2.5 4
SPOT-5 3 10 10 9 3 3.5 1

Table 8: Performance comparisons between the enumeration algorithm and Couenne

m n
Enumeration Algorithm Couenne

Obj Time(s) Obj Time(s)

9

10 12.5441 <0.001 12.5441 0.080
20 26.3332 <0.001 26.3332 0.240
30 28.8549 <0.001 28.8549 1.520
40 50.5927 0.343 50.5927 6.060
50 55.5849 0.671 55.5849 16.900
60 59.1567 0.358 59.1567 14.620

21
10 27.8513 <0.001 27.8513 0.530
20 64.4809 <0.001 64.4809 3.430
30 91.2543 5.492 91.2543 34.020

5. Computational results

For this section, a great number of problem instances were created in order to evaluate the effectiveness and efficiency of
our proposed approaches. The computational tests have two components: on some small instances, the superiority of our
proposed non-linear robust model is verified and the feasibility of both the exact algorithm and the heuristics is assessed; on
the other hand, the performances of the heuristics are compared on some large problem instances.

In order to verify the effectiveness and efficiency of our algorithm, the tasks are randomly generated in the area: latitude
0◦-60◦ and longitude 0◦-150◦. Without loss of generality, the profits of tasks are integers, uniformly distributed in the
interval [1,10]. In correspondence with the literature [5, 11, 21, 31], three different satellites are considered in this paper. The
parameters of the satellites are outlined in Table 7. In addition, the memory capacity and energy capacity for each orbit are
randomly generated in the intervals [120,160] and [180,240], respectively. Considering the uncertainties of clouds, for each
time duration of observation, the probability that there is no presence of clouds, i.e. the observation is successful, will be
uniformly distributed in [0.2,1].

The algorithms were implemented in C++ and ran on a personal laptop equipped with an Intel(R) Core(TM) i5-2430M
2.40 GHz (2 processors) and 4 Gb RAM, with operating system Windows 7. Besides, the non-convex MINLP solver is
Couenne-0.3.2.

5.1. Performance evaluation on the small problem instances
In this section, the scheduling horizon is first set to 6 hours, which is corresponding to 9 orbits. The numbers of tasks

are 10, 20, 30, 40, 50 and 60, respectively. Then the number of orbits is increased to 21, and the numbers of tasks are set
to be 10, 20 and 30, respectively. It must be noted that for 21 orbits, we can only test instances with fewer than 30 tasks
due to the high memory requirements. For each parameter setting, 10 problem instances will be randomly generated. For
all problem instances, Couenne, the exact algorithm and the heuristics were applied. With respect to the heuristics, the
predefined number of feasible solutions Z is set to 1000, and the number of columns for each orbit L is 20.

5.1.1. Performance comparisons between Couenne and our exact algorithm
Firstly, the solution performances of our exact algorithm is compared with those of Couenne. The comparison results are

illustrated in Table 8 in which column “m” denotes the number of orbits, and “n” indicates the number of tasks. Besides,
columns “Obj” indicate the average objective values for the 10 problem instances, and columns “Time” represent the total
solution time. As shown in Table 8, both Couenne and our exact algorithm can solve the problems to obtain optimal solutions,
but our exact algorithm consumes less time.
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Table 9: Performance evaluation on the samples

m n
Exact Algorithm Heuristic1 Heuristic2 Heuristic3 CPLEX

a b c a b c a b c a b c a b c

9

10 1.0 12.70 18.2 1.0 12.70 18.2 1.0 12.70 18.2 1.0 12.55 18.2 0.1 11.92 18.2
20 2.8 26.69 36.8 2.8 26.69 36.8 2.8 26.69 36.8 1.9 25.95 36.8 0.9 24.43 36.8
30 6.0 29.97 39.5 6.0 29.92 39.5 5.5 29.82 39.5 5.1 28.81 38.2 2.5 27.45 38.9
40 15.7 54.35 75.2 15.7 54.31 75.2 15.4 53.04 74.1 11.4 49.92 72.1 9.7 48.35 73.5
50 19.8 60.63 84.1 19.8 60.01 83.7 19.5 60.09 83.5 14.2 55.23 79.0 11.0 52.10 80.8
60 19.3 64.52 93.4 20.2 64.40 93.4 19.8 63.01 91.3 14.7 58.59 87.8 10.7 54.75 91.3

21
10 4.9 27.97 36.4 4.9 27.97 36.4 4.9 27.97 36.4 4.5 27.86 36.4 1.5 24.97 36.4
20 23.7 66.04 88.4 23.7 66.04 88.4 23.6 65.90 88.3 22.1 64.00 88.0 17.3 60.12 88.0
30 46.4 94.47 121.8 44.9 93.83 120.5 44.9 92.22 119.7 41.6 90.39 118.6 33.0 84.13 121.2

Table 10: Performance evaluation on the small problems

m n
Optimal
solution

Heuristic1 Heuristic2 Heuristic3
Obj Time(s) Obj Time(s) Obj Time(s)

9

10 12.544 12.544<0.001 12.544<0.001 12.5440.002
20 26.333 26.333<0.001 26.215 <0.001 25.951 0.002
30 28.855 28.847 <0.001 28.828 <0.001 28.809 0.004
40 50.593 50.590 0.002 49.397 0.003 49.907 0.008
50 55.585 55.249 0.002 53.816 <0.001 54.937 0.014
60 59.157 58.827 <0.001 56.512 0.002 58.656 0.016

21
10 27.851 27.8510.003 27.851<0.001 27.8510.008
20 64.481 64.422 0.004 64.129 0.002 63.987 0.010
30 91.254 90.532 0.004 88.803 0.002 90.076 0.030

5.1.2. Performance comparisons between Liao’s model and our model
In order to verify the superiority of our model, the solutions of our model are compared with those of Liao & Tang’s

model [26]. Liao & Tang also formulated the presence of clouds as stochastic events with some probabilities, and considered
scheduling a task to only one resource and performing it only once, which resembles the traditional deterministic scheduling.
In addition, the objective function is described as below [26]:

max
γ

E[
∑

k

ωkxk +
I∑

i=0

N∑
n=1

yin

I∑

j=1,j 6=i

γijn]. (12)

The objective is two-fold: 1) maximize the profits of the complete tasks without uncertainties; 2) maximize the expected
number of complete tasks under uncertainties of clouds. In this study, Liao & Tang’s model is directly solved by CPLEX
because it is a standard mixed integer programming model.

For the sake of comparison, the obtained solutions were tested on a large sample with the sample size being 100,000 for
each instance. Table 9 shows the comparison results for each problem instance, in which column “m” shows the number
of orbits, and “n” indicates the number of tasks. Besides, columns “a”, “b” and “c” represent the mean values over 10
instances of respectively the minimum, the average and the maximum scheduling profits obtained over all scenarios in the
sample. Because CPLEX is used to solve Liao & Tang’s model that schedules each task to at most one orbit and therefore
lacks robustness, the solutions of CPLEX are on average worse than those of our algorithms, which has been shown in Table
9. Hence, we can conclude that the proposed model is superior to Liao & Tang’s model under uncertainties of clouds.

5.1.3. Performance evaluations of the heuristics
Table 10 describes the performances of the heuristics for solving the small instances, in which the definitions of columns

“m”, “n”, “Obj” and “Time” are the same as those of Table 8, respectively. A bolded number denotes that the heuristic
generates the optimal solutions for all problem instances in that set. From Table 10, it is observed that Heuristic 1 can get
better solutions than Heuristic 2 and Heuristic 3.

5.2. Performance evaluation on the large problem instances
Due to its large space complexity, it is truly infeasible for the exact algorithm to solve the large-scale problems that are more

practical. Hence, heuristics will be applied more extensively in practice. In this section, in order to evaluate the performance
of the proposed heuristics, a number of large-scale problem instances were randomly created. In detail, the numbers of tasks
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Table 11: Performance comparisons of the heuristics for 21 orbits

Time
Limits

Number
of tasks

Heuristic 1 Heuristic 2 Heuristic 3
Obj #F Obj #F Obj #F

1
120 251.586 10 232.257 10 264.269 10
160 309.153 10 300.236 10 291.534 10
200 375.375 8 364.202 10 301.453 10

10
120 256.141 10 239.850 10 264.568 10
160 362.915 10 336.405 10 297.419 10
200 449.676 10 416.366 10 305.165 10

60
120 259.896 10 241.476 10 266.497 10
160 370.867 10 343.158 10 300.905 10
200 463.934 10 435.598 10 308.597 10

Table 12: Performance comparisons of the heuristics for 42 orbits

Time
Limits

Number
of tasks

Heuristic 1 Heuristic 2 Heuristic 3
Obj #F Obj #F Obj #F

1
120 403.608 10 387.431 10 424.069 10
160 476.767 8 464.958 10 480.738 10
200 - 0 611.007 10 590.293 10

10
120 431.473 10 409.055 10 432.770 10
160 552.304 10 521.883 10 500.973 10
200 692.670 10 660.999 10 606.546 10

60
120 440.953 10 416.056 10 434.317 10
160 564.523 10 530.659 10 502.300 10
200 714.795 10 676.523 10 610.697 10

are set to 120, 160 and 200, respectively, and the numbers of orbits are 21 and 42, respectively. Similarly to the former
experiments, 10 problem instances were randomly created for each parameter setting. Besides, differently from the former
experiments, the number of solutions is not limited beforehand, but a time limit is imposed for each heuristic, and thus the
numbers of solutions considered depend on the solution time. The time limits are set to 1, 10 and 60 seconds, respectively.

In order to make the performances of the algorithms as best as possible, the column number for each orbit of both Heuristic
1 and Heuristic 2 has been reasonably set to 100 based on preliminary test results. The performances of different heuristics
with different time limits are listed in Tables 11 and 12, where columns “Obj” are the average objective values of the solvable
instances, and “#Fea” are the numbers of problem instances that can be solved to get feasible solutions. For columns “Obj”,
the bold numbers imply the largest average value for this parameter setting, without considering the number of instances
that are solved successfully.

It is illustrated in Table 11 that for the problems of 21 orbits, when the number of tasks is smaller, namely 120 tasks,
Heuristic 3 performs somewhat better than the other algorithms. However, if the number of tasks increases to 160 or 200,
Heuristic 1 will be the best option for most cases. In addition, the performances of Heuristic 3 are clearly worse than
those of the other heuristics for the larger problems with the number of tasks being 160 or 200. Besides, if the time limit is
small and there are more tasks, Heuristic 1 fails to get feasible solutions for some instances. That is because Heuristic 1
is based on all columns for each orbit that will be obtained by path programming, of which the solution time will increase
exponentially with the number of tasks. Thus, if the path programming algorithm cannot get all feasible columns for each
orbit within the time limit, Heuristic 1 cannot get any feasible solutions. Hence, Heuristic 1 is not available for large-scale
problems when the time limits are very small.

Table 12 shows the comparison results for the problems of 42 orbits, from which we can also conclude that for fewer tasks
or a small time limit, Heuristic 3 is the best algorithm. However, for more tasks (160 or 200) and larger time limits (10 or
60 seconds), Heuristic 1 will be the best option. In addition, similarly to the previous experiments, for small time limits
and large-scale problems (1 second for 160 or 200 tasks), Heuristic 1 will fail to get feasible solutions for some instances.
Comparing Heuristic 2 and Heuristic 3, for fewer tasks (120), Heuristic 3 performs better because it can get higher
scheduling profits, and for more tasks (160 and 200), Heuristic 2 performs better with only one exception (1 second, 160
tasks). From the above analysis, we can conclude that if the solution time is sufficient, Heuristic 1 shall be adopted to get
very good solutions. Besides, if the solution time is very limited, for problems with more tasks Heuristic 2 should be used,
whereas for problems with fewer tasks Heuristic 3 is a better choice.
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6. Conclusions and future work

This paper formulated the presence of clouds as stochastic events, and then investigated the scheduling of multiple EOSs.
Due to the uncertainties of clouds, a task that is scheduled to multiple resources will be completed at a higher probability than
if scheduled to one resource only. Hence, we took into account scheduling each task to multiple resources and formulated the
problem with a novel mathematical model. First of all, an exact algorithm was suggested to solve the problem optimally, in
which each subproblem is solved by path programming, and all feasible solutions are combined to solve the master problem.
Due to its large space complexity, the exact algorithm mostly fails to solve large-scale problems that are more practical. To
overcome this drawback, three heuristic algorithms were designed to solve the large-scale problems.

From the simulation experiments, the superiority of our robust model was verified compared with the traditional model
that allocates each task to only one orbit. In addition, it was proved that for small-size problems, our exact algorithm is
faster than Couenne for solving the problem to optimality. Besides, the heuristics can obtain feasible solutions that are very
close to the optimal ones for small problems. Finally, for large-scale problems, the performances of the different heuristics
were evaluated. The comparison results reveal that for not too many tasks or small time limits, Heuristic 3 performs best,
whereas Heuristic 1 will be the best for larger problems and larger time limits.

In the future, we will consider the scheduling of agile EOSs under uncertainties. Different from the non-agile satellites in
this study, the agile satellites do not only have the maneuverability of slewing, but also the maneuverability of pitching, along
with the orbit. Hence, the satellite will have a longer time window for observation. Consequently, the scheduling will have
more freedom, and managers need not only to allocate the tasks to the orbits, but also to decide the starting and finishing
times. Furthermore, the sequence of task executions will also not be fixed, as for any two tasks i and j, it is now possible
to start the execution of task i before that of task j, or the execution of task j before that of task i, which obviously will
make the problem more complicated. Besides, to make our work more practical, future research will focus on the combined
scheduling of observations and data downloads.
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