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Don’t Forget The Past: Recurrent Depth Estimation
from Monocular Video

Vaishakh Patil1, Wouter Van Gansbeke2, Dengxin Dai1 and Luc Van Gool1,2

Abstract—Autonomous cars need continuously updated depth
information. Thus far, depth is mostly estimated independently
for a single frame at a time, even if the method starts from
video input. Our method produces a time series of depth maps,
which makes it an ideal candidate for online learning approaches.
In particular, we put three different types of depth estimation
(supervised depth prediction, self-supervised depth prediction,
and self-supervised depth completion) into a common framework.
We integrate the corresponding networks with a ConvLSTM such
that the spatiotemporal structures of depth across frames can
be exploited to yield a more accurate depth estimation. Our
method is flexible. It can be applied to monocular videos only
or be combined with different types of sparse depth patterns.
We carefully study the architecture of the recurrent network
and its training strategy. We are first to successfully exploit
recurrent networks for real-time self-supervised monocular depth
estimation and completion. Extensive experiments show that
our recurrent method outperforms its image-based counterpart
consistently and significantly in both self-supervised scenarios. It
also outperforms previous depth estimation methods of the three
popular groups. Please refer to our webpage 1 for details.

Index Terms—Deep Learning for Visual Perception, RGB-
D Perception, Sensor Fusion, Novel Deep Learning Methods,
Autonomous Vehicle Navigation,

I. INTRODUCTION

H IGH precision depth estimation is essential for a variety
of applications such as augmented reality, autonomous

vehicles, and mobile robots. The last years have witnessed
tremendous progress in depth estimation, especially after the
wide deployment of deep neural networks. On one hand, super-
vised learning algorithms are constantly improving for depth
estimation from RGB images [1], [2], [3], [4]. On the other
hand, self-supervised depth estimation from camera motion
are also steadily improving [5], [6], [7], [8]. Recently, several
studies on depth completion were made, aiming at completing
the depth map obtained by a high-end LiDAR sensor, namely
HDL-64E, by using a paired image for guidance [9], [10],
[11], [12], [13], [14].
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Fig. 1. Our method trains and tests on time series of data and produces
accurate depth maps for robotic platforms which perceive the world more as
a video stream than as isolated images.

Whereas great progress is being made in all three cases,
none of those methods would seem optimal for mobile robot
applications though. As they move, mobile platforms - be it
cars or assistive robots - perceive the world more as a video
stream than as isolated images. While videos are used in
the training stage of self-supervised depth prediction methods
for computing the view-synthesis loss across neighboring
frames [5], [6], [7], [15], they ignore the intrinsic temporal
dependency across frames at testing. The perceptual inputs
along a trajectory and the underlying scene geometries are
highly correlated [16]. Given our context of robotic applica-
tions, we propose a depth recovery method that both trains and
tests on time series of data. This way, the perception-geometry
correlation can be leveraged the best.

Also, none of the three settings seem to be optimal by them-
selves. The setting of depth prediction from RGB images is
cheap but requires large training datasets with accurate ground
truth; the setting for self-supervised depth estimation from
videos leverages ego-motion information (to some extent) but
have yet to generate the best results; and the setting for depth
completion with a LiDAR sensor and a camera yields good
results but is quite costly.

Hence, in this work, we put the three different types of
depth estimation, i.e. supervised depth prediction from RGB
images [3], [4], self-supervised depth prediction with monocu-
lar videos [7], [15] and self-supervised depth completion [11]
but with monocular videos, into a common framework, and
then integrate their corresponding ‘backbone’ networks with
a convolutional LSTM (ConvLSTM) such that spatiotemporal
information across frames can be exploited for more accurate
depth estimation. The improvement in accuracy is expected
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to arise from the strong correlation between depth maps,
spatially across consecutive views. Unlike the conventional
LSTM, this information can be exploited by the spatial infor-
mation preserving convolution operations, within the pipeline
of convLSTM.

ConvLSTMs have been designed to exploit spatiotemporal
information but it is still unclear how they can be trained
properly for self-supervised depth estimation from current
literature. We claim to be the first to propose an novel and
effective strategy to integrate ConvLSTM into the unified
depth estimation pipeline. The training is challenging because
1) the size of the feature maps is large for dense prediction
which limits the sequence length due to memory issues; and
2) under the standard training strategy, ConvLSTM based
networks need a long sequence to learn the hidden state
properly. Our training strategy addresses these issues.

In summary, this work makes three contributions: 1) a
novel recurrent network to exploit spatiotemporal information
for depth estimation, 2) an innovation to effectively train a
ConvLSTM based network for dense prediction tasks with
video inputs; and 3) extensive experiments and detailed ab-
lation studies. Experiments show that our recurrent method
outperforms its image-based counterpart and the current SOTA
methods in self-supervised prediction and completion while
also presenting a unified framework to solve three different
tasks.

II. RELATED WORK

Supervised Depth Estimation from RGB Images. A
large body of work focuses on depth estimation from images
with varying settings: from using image pairs [17], [18], to
using multiple overlapping images captured from different
viewpoints [19] Here we summarize work related to the
supervised learning of depth from a single RGB image. [20] is
among the earliest work popularizing this idea. Local image
statistics are used to infer 3D planes for local patches and
the final results are optimized globally over a defined Markov
Random Field. Later on, deep convolutional neural networks
were used for this task [2], [21], [22], [3]. The research focus
was mainly on improving the network architecture [2], [3],
formulating multi-task learning [21], and combining CNNs
and CRFs [22]. In order to alleviate the dependency on large-
scale ground-truth depth images, methods that learn directly
from stereo pairs were developed [18]. The core idea is to
use left-right view similarity as the supervisory signal. This
line of work has been further extended to a semi-supervised
setting [23], where direct supervision from LiDAR sensors and
indirect supervision from image warping are combined.

Self-supervised Depth Estimation from Videos. To lower
the dependency on ground truth depth images, many recent
works have shifted the focus to self-supervised depth estima-
tion from monocular videos by using view-synthesis or its
variants as the supervisory signal [5], [6], [7], [24], [8], [15],
[25]. While promising results have been shown, the training
of self-supervised methods requires careful hyper-parameter
tuning and suffers from scale ambiguity, which needs to
be addressed, e.g. by using stereo images [24] or by data

normalization [6]. While consecutive video frames are used
for the view-synthesis loss, the spatiotemporal information is
not exploited, especially at testing time.

Depth Completion. While steady progress has been made
for depth estimation from RGB images, the performance can
be improved when assisted by other sources. One notable
example is that of sparse depth inputs, either from cheap
LiDAR sensors [26] or from SLAM or structure-from-motion
systems [27], [28]. There has been a large body of work [9],
[10], [11], [12], [13], [14] developed for the task of depth
completion defined by the KITTI Depth Completion Bench-
mark [9]. Methods have also been developed for depth comple-
tion with sparse Radar points recently [29]. The main research
focus of this strand is how to spatially propagate Automotive
LiDAR depth data under image guidance. The established
knowledge, such as the design of network architectures for
spatial propagation, can be borrowed to design our recurrent
method. The main focus of our work, however, lies in how to
fuse or propagate depth information over frames.

Depth Estimation for Videos. Our method is designed
for online depth estimation in videos. Similar idea of online
estimation is proposed in recent works [30], [31], where they
use ConvLSTM but in supervised framework. There are also
earlier methods for offline depth estimation from videos [32],
in which local motion cues and optical flow are used to
produce temporally consistent depth maps.

III. APPROACH

As stated in Sec. I, depth estimation has been tackled under
multiple settings, each has its own strengths and weaknesses.
These systems, however, are mostly image-based and lack
the capability of integrating information over video sequences
obtained by moving robotic platforms. In this section, we
first summarize three existing depth estimation methods in a
unified formulation and then define our recurrent framework
for learning time series of depth maps for all the three
methods.

Before going into the details, we define certain notations
used by the methods. Let us denote by I(x, y) the RGB vector-
valued image, D̄(x, y) the input sparse depth, and D(x, y) the
ground truth depth map; all three have the same dimensions
H × W . While I(x, y) is dense, D(x, y) has regions with
missing values which are indicated by zero. D̄(x, y) is much
sparser compared to D(x, y); it is usually a sub-sampled
depth map from D(x, y) to simulate sparse input patterns
that can be obtained via a low resolution LiDAR sensor. The
detailed sampling procedures for varying sparse input patterns
are given in Sec. III-C. The timestamp of time series data is
denoted by t in subscript, where t ∈ {1, 2, ..., T} with T the
total number of frames of a data sequence. We assume that
the image and the depth maps are synchronized throughout
the sequence.

A. Supervised Depth Prediction with RGB Images

Supervised depth prediction with monocular RGB images
has been a popular research topic. Tremendous progress has
been made in the past years [4], [33], [21], [2], [34]. The
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task is to learn a function f : I → D̂, where D̂ has the same
resolution H×W and has predictions for all pixel coordinates
(x, y) where x ∈ {1, ..,H} and y ∈ {1, ...,W}. We represent
the depth estimation network as an encoder-decoder type of
network architecture. Then, the learning takes the form:

X = fencoder(I), (1) D̂ = fdecoder(X), (2)

where X is the summarized representation by the encoder,
which is compact and will be used to pass information across
video frames for depth estimation from a video sequence as
presented in Sec. III-D.

We follow [3] and use the berHu loss, which gives slightly
better results than the L1 and L2 loss. Let us define a binary
mask M(x, y) of dimensions H × W , where M(x, y) = 1
defines (x, y) locations of valid values for the ground truth
depth map D(x, y). The loss can then be formulated as

LberHu =
∑
t

‖Mt ◦Dt −Mt ◦ D̂t‖δ, (3)

where ‘◦’ denotes the Hadamard product in order to ignore
the invalid pixels of the ground truth depth picture Dt when
computing the loss, and ‖.‖δ is set by following [3].

B. Self-supervised Depth Prediction with Monocular Video

Self-supervised depth estimation from monocular video has
been quite successful in recent years [15], [17], [18], [5].
We will mostly follow the presentation of the state-of-the-
art method Monodepth2 [15] in this section. We represent
the depth estimation network with the same encoder-decoder
network as defined in Eq. 1 and Eq. 2. Since there is no
ground-truth depth map D(.), the view-synthesis loss is used
instead of the standard supervised loss functions.

In particular, if K denotes the camera intrinsic matrix,
and Φt→t+∆t the relative camera pose from view t to a
neighboring view t+ ∆t, the warped image is:

It+∆t→t = It+∆t

〈
KΦt→t+∆tD̂tK

−1
〉
, (4)

where 〈.〉 is a bilinear sampling function to sample the source
image. The view-synthesis loss of our method is defined as

Lvs(t+∆t→t) =
α

2
(1− SSIM(It, It+∆t→t))

+(1− α)‖It − It+∆t→t‖1,
(5)

where α = 0.85.
In addition to estimating depth, the model also needs to

estimate the camera pose Φt→t+∆t. This involves training
a pose estimation network that predicts the corresponding
camera transformations with the same sequence of frames as
input. The Lvs(t+∆t→t) is computed at multiple scales of the
decoder, similar to [15].

The final view-synthesis loss is aggregated over all consid-
ered source (neighboring) frames. In this work, ∆t ∈ {−1, 1},
i.e. for each frame t, the previous frame t − 1 and the next
frame t + 1 are used to compute the loss. Following [15], at
each pixel, we use the minimum photometric error over all
source images. Thus, the final view-synthesis loss is

Lvs = min
∆t∈{−1,1}

Lvs(t+∆t→t). (6)

Following [15], we also use the edge-aware smoothing loss:

Ld

Ld

Ld

Lvs

Lvs

Encoder Decoder
Predicted 

dense depth

Pose NetRGB

Sparse depth
Ct-2Ht-2

Ht-1 Ct-1

Ht Ct

Ht+1 Ct+1

5
0

%
 O

ve
rl

ap
Ti

m
e

 (
t)

Dataset Sequence

Fig. 2. The pipeline of our recurrent learning framework for depth recovery
with monocular video and sparse depth sensing.

Lsmooth = |∂xD̂∗t |e‖−∂xIt‖ + |∂yD̂∗t |e‖−∂yIt‖, (7)

where D̂∗t is mean-normalized D̂t to avoid shrinking the depth
values. Our learning algorithm is trained with a combined loss:

Lself pred = µLvs + νLsmooth. (8)

µ represents the pixel-wise masking of the view-synthesis loss
to ignore certain objects. This addresses the problem that a car,
travelling at the same speed as the camera, will be predicted
at infinite depth [15].

C. Self-supervised Depth Completion with Monocular Video
and Sparse Depth Maps

Supervised depth prediction methods (Sec. III-A) are able to
achieve good performance but require large training sets with
accurate ground truth depth and have difficulty to generalize
to new scenarios. Self-supervised depth prediction methods
(Sec.III-B) are easy to ‘generalize’, but have yet to yield
the state-of-the-art results. In this section, we present another
stream of method called self-supervised depth completion
following [11].

The method requires a monocular video (I1, I2, ..., IT ) and
synchronized sparse depth maps (D̄1, D̄2, ..., D̄T ) as inputs.
While it is hard to obtain dense depth map Dt, sparse depth
map D̄t are relatively cheap and easy to acquire, e.g. via
2D LiDAR sensors. Compared to self-supervised depth pre-
diction, this vein of research also focuses on developing a
suitable network architecture to better fuse the information
from these two modalities. Typical examples include a simple
concatenation of the two inputs as done in [27] or adding
a distance transformation map to indicate the location of the
sparse values [28].

We process both inputs individually with few convolutions
before fusing them together. We find that this method works
better than the ones used in [27] and [28]. As to the con-
volutional network, we again use an encoder-decoder type of
network architecture. The encoder takes the form:

X = fencoder(I, D̄), (9)

and the decoder is the same as defined in Eq. 2. As to the loss
functions, in addition to the view-synthesis loss (Eq. 6) and
the edge-aware smoothing loss (Eq. 7) used for self-supervised
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depth prediction task, the berHu loss is also used but applied
to the input sparse depth map D̄t and its binary mask M̄(x, y).

The total loss for self-supervised depth completion is

Lself comp = λLsparse
berHu + µLvs + νLsmooth. (10)

Sparsity loss can act as supplemental loss to View-synthesis
loss. The self-supervision from sparsity loss can handle scale
ambiguities and textureless regions. It also stabilizes the
training process and helps to converge faster. On the other
hand, the view-synthesis loss is computed densely and can
alleviate the effect of noise in the sparse depth maps.

We evaluate our method with three types of sparse patterns.
Following the literature [27], our first pattern denoted by D̄rand

is created by randomly sampling pixels from ground truth
depth image. The second pattern denoted by D̄line is obtained
by sampling the scanning lines ground truth depth images at
a constant stride. The third pattern is the dense depth map D
itself, which is still sparse compared to images.

D. Learning Time Series of Depth Maps

This section presents a framework to extend the three
groups of methods such that they both train and test on
time series of data. We formulate the depth recovery problem
as a translation problem from a spatiotemporal sequence of
multimodal data (i.e. images and sparse depth maps) to a
spatiotemporal sequence of data (i.e. dense depth maps). In
order to model the spatiotemporal dependencies, we add the
ConvLSTM module to the backbone network presented in
the depth prediction section. The ConvLSTM determines the
future state of a certain cell in the grid from the inputs and
past states of its local neighbors. As argued in [35], if the
hidden state is considered as the hidden representations of
visual structures (objects), then ConvLSTM is able to capture
motions of those visual components via its transitional kernels.
Similarly, for the task of learning depth maps from monocular
videos, we try to capitalize on temporal information to boost
performance. The correlation of the geometry of the scene and
the perceived visual stimuli along motion trajectories should
be captured and exploited. Another well established approach
to exploit temporal information is by concatenating multiple
frames at the input. However, these approaches don’t scale to
longer sequences and require expensive 3D convolutions. We
argue that long sequences are potentially beneficial for depth
estimation from video combined with online learning methods.

Our encoder-decoder network, defined in Eq. 1 and Eq. 9,
generates feature representations at varying levels. The output
by the encoder X is chosen as the input to our ConvLSTM.
The choice is made due to the compactness of X and its
high information density, which leads to a more efficient op-
timization for the ConvLSTM. More specifically, the learning
process at frame t starts with spatial convolutions with the
encoder to get Xt, which is followed by temporal convolutions
with the ConvLSTM

Ht, Ct = fConvLSTM((Xt ⊕Ht−1), Ct−1), (11)

and then followed by spatial convolutions with the decoder,
such that D̂ = fdecoder(Ht). The whole network is trained in
an end-to-end manner. Its pipeline is sketched in Fig. 2 for the
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General 
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Sequencem
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Fig. 3. Training procedure for hidden state of ConvLSTM.

most complicated task self-supervised depth completion. The
pipelines for supervised depth prediction and self-supervised
depth prediction can be inferred according to their inputs and
loss functions.

IV. TRAINING FRAMEWORK

A. Network Architecture

The network architecture consists of a depth prediction
network and a pose network. The encoder branch of both net-
works contains separate ResNet-18 modules [36]. The decoder
unit of the depth network contains four upconvolutional blocks
inspired from DispNet [37]. The output of the encoder is
connected with the ConvLSTM [35] module. The ConvLSTM
module receives hidden state Ht−1 and cell state Ct−1 of Con-
vLSTM from the previous frame t− 1 (details in Sec. III-D).
The output of this network is disparity extracted at different
spatial resolution from each unit of decoder. The pose decoder
consist of stack of Conv(1) and Conv(3) blocks and produces
a 6 element vector representing axis angle and translation. For
simplicity, we combine the hidden representation H and cell
state C in the ConvLSTM and refer to it further as the hidden
state. The initial hidden state refers to the initialization of the
hidden state.

B. ConvLSTM Training Strategy

In vanilla LSTM based network training, the default strat-
egy is to initialize the hidden state to zero. This is a well
established practise in sequence to sequence learning models.
Here, the impact of the initial hidden state is either trivial or
the length of the sequence is relatively long compared to the
size of the hidden state. In case of training a ConvLSTM based
network with monocular video, the size of the feature maps
in the bottleneck increases drastically. This demands increased
capacity of the hidden state due to the concatenation (Eq. 11).
With more learnable parameters and shorter sequence lengths
during training, the effect of the initial hidden state becomes
dominant. In our training procedure, we try to mitigate the
effects of a zero initial hidden state. The training is divided
into two stages as depicted in Fig. 3. In the first stage, the
initial hidden state is considered as a learnable parameter. The
training begins with the hidden state initialized with zeros.
Further on, for every iteration we first load the initial hidden
state and backpropagate through the hidden state to update
the initial hidden state of the ConvLSTM. The training is
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Fig. 4. Qualitative results on the KITTI Eigen split. Our self-supervised recurrent method generates more accurate depth maps compared to competing
methods [15], [6], [18], [8], [24], [7], especially for small objects like poles, tree trunks and traffic signs.

performed on fully randomized batches. This procedure allows
us to learn a general initial hidden state. In the second stage,
the trained initial hidden state is used at the start of every
new sequence. Hence, the training is performed on the video
sequences as opposed to the previous stage. This means that
the weights of ConvLSTM module are adjusted based on
the pretrained hidden state from the first stage. The training
weights from the second stage along with learned initial hidden
state from the first stage are used during testing. It enables
the ConvLSTM to adapt to the sequence faster, resulting in
superior performance as shown in Sec. V-B. The weights are
updated for every frame to optimize for training speed and
memory footprint (i.e. truncated BPTT [38] with window size
of 1). Although this technique is effective for a large dataset
with long sequences, it can result in overfitting when updating
the weights per single image. To alleviate this issue, we also
train in batches during the second stage. This allows us to
update the batch statistics and average the gradients. This
greatly benefits the generalization. Not all sequences have
the same length, therefore we first divide the original video
sequences into smaller “sub-sequences” for training, and load
multiple random “sub-sequences” in parallel afterwards. This
whole procedure is depicted in Fig. 3. The batch is shown by
the dotted blue rectangle. The influence of the sequence length
is evaluated in Sec. V-B.

C. Implementation Details

Training Details. The weights ν and λ are respectively used
for the smoothing and sparsity loss in Eq. 10. The former is
set to 0.001 while the latter is iteration dependent. In fact,
λ(i) changes during training to prevent overfitting on a low

number of LiDAR points. We start with the view-synthesis loss
and smoothing loss first and gradually increase the influence
of the sparsity loss afterwards. This happens linearly with the
number of iterations i, such that λ(i) = 10−2 ·min(1, 10−3 ·i).
After all, the network should be prevented from learning the
identity function in order to discover semantics and depth.
For all experiments, we use a batch size of 12, with the
Adam optimizer and a learning rate of 10−4. The images are
resized to a resolution of 192x640 as in Monodepth2 [15]
baseline. Training takes 10 epochs for the first stage, while we
finetune on sequences during the second stage for 20 epochs.
For the encoder, we used pretrained ImageNet [43] weights.
This is important to achieve competitive results as in [40],
[33], [15], [39]. All the other weights are initialized with He
initialization [44], except for the biases of the convolution
layer at the forget gate. To make the ConvLSTM focus on
the hidden state at the start of training, we set the biases to 1
as in [45]. We replaced the Tanh activations in the ConvLSTM
with ELU [46] in order to match the scale with the output of
encoder (Eq. 11).

V. EXPERIMENTS

To show the effectiveness of our approach, we address the
previously defined conditions in Sec. III: 1) the supervised
depth prediction setup with raw LiDAR ground truth, 2)
the self-supervised depth prediction setup and 3) the self-
supervised depth completion setup. For each case, numbers
are reported on the KITTI dataset in order to evaluate with
other monocular depth estimation methods. We consider Mon-
odepth2 [15] as our baseline in the following self-supervised
depth estimation experiments.
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TABLE I
RESULTS FOR SELF-SUPERVISED DEPTH PREDICTION.

Method ↓ RMSE ↓ RMSE(log) ↓ Abs Rel Diff ↓ Sq Rel Diff ↑ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253

SFMLearner [5] 6.709 0.270 0.183 1.595 0.734 0.902 0.959
DDVO [6] 5.583 0.228 0.151 1.257 0.810 0.936 0.974
GeoNet [7] 5.567 0.226 0.149 1.060 0.796 0.935 0.975
CC [39] 5.464 0.226 0.148 1.149 0.815 0.935 0.973
EPC++ [40] 5.350 0.216 0.141 1.029 0.816 0.941 0.976
Struct2depth (w/o ref.) [41] 5.291 0.215 0.141 1.026 0.816 0.945 0.979
GL-Net (w/o ref.) [42] 5.230 0.210 0.135 1.070 0.841 0.948 0.980
Monodepth2 [15] 4.863 0.193 0.115 0.903 0.877 0.959 0.981
Ours (Average over 5 runs) 4.730 0.188 0.112 0.863 0.879 0.960 0.981
Ours (Best) 4.650 0.187 0.111 0.821 0.883 0.961 0.982

TABLE II
RESULTS OF SELF-SUPERVISED DEPTH COMPLETION.

Input Method ↓ RMSE ↑ δ < 1.25

D̄rand
500

Image-based 2.885 0.970
Recurrent 2.738 0.973

D̄line
8

Image-based 2.750 0.962
Recurrent 2.586 0.968

D̄line
64

Ma et al. [11] 1.922 0.985
Image-based 1.653 0.988

Recurrent 1.592 0.990

The supervised depth prediction and self-supervised depth
completion experiments are evaluated on the Eigen split de-
fined by Eigen et al. [21]. This split contains 28 raw KITTI
sequences for training, 5 sequences for validation and 28
sequences for testing, all with variable length. Our approach
is not limited to the fixed sequence length adopted during
training. To show this generalization towards longer sequences,
we always evaluate on the complete video sequences during
testing. Only for the self-supervised depth prediction task, we
use a filtered version in order to leave out static frames, as
defined by Zhou et al. [5]. Furthermore, to achieve absolute
depth, our predictions are rescaled with the median ground
truth depth per frame, as done in previous works [15], [41],
[5], [39], [40], [6]. It is worth noting that the predictions of
the self-supervised depth completion setup do not require re-
scaling since the sparsity loss (Eq. 10) enables the predictions
to be scale-aware. The quantitative results are reported on
the selected 697 frames from the 28 test sequences unless
mentioned otherwise. In all our experiments, we cap the
maximum predictions of all networks to 80m.

A. Analysis

In this section, we discuss the qualitative and quantitative
results. We achieve a new state-of-the art for both self-
supervised setups, proving its effectiveness.
Self-Supervised Depth Prediction The results in Table I
shows that our method outperforms recent state-of-the-art
methods. We improve over our baseline by a relatively large
margin (-0.133m RMSE). The qualitative results are depicted
in Fig. 4. The baseline method only use short-range video in-
formation when computing the view-synthesis loss, while our
method leverages longer-range temporal information. Highly
reflective surfaces (e.g. mirrors) or dynamic objects can still
cause problems due to limitations of the self-supervision loss.

We do not report results obtained by refining the model during
test time using test images as in [41] [42].
Self-Supervised Depth Completion. We perform experiments
with three sparse patterns as defined in Sec. III-C. For all
patterns, we compare our recurrent method to its image-based
counterpart. Since our method also uses the input patterns
of 64 LiDAR lines by Velodyne HDL-64E, we report the
results on the common 652 images of Eigen set [21] and
the KITTI depth benchmark dataset for which the corrected
ground truth are available. The results are reported in Table II.
The table shows that the proposed recurrent framework out-
performs its image-based counterpart for all three different
sparse patterns. Our method also outperforms the state-of-the-
art self-supervised depth completion method [11]. In addition
to the use of longer-range temporal information, the better
performance can also be attributed to the good features of
our baseline Monodepth2: pixel-wise masking of the loss and
better strategy to handle occlusions.
Supervised Depth Prediction. The quantitative results are
shown in the Table III. Performing regression towards the re-
projected LiDAR points is not ideal, due to the noisy LiDAR
data [10]. We hypothesize that our recurrent approach can add
consistency and produce more accurate predictions (-0.172m
RMSE). This can be supported by 1) only marginal im-
provement is observed, when training on the corrected KITTI
ground truth (dense), 2) δ1 is considerably higher (+1%) than
in our baseline supporting our claim. In this setup we are still
outperformed by [4]. However, they use a complex network
architecture (ResNet-101) with fully connected layers with
inference time of 500 ms. Thi is not applicable to real-time
depth prediction tasks, as in autonomous driving compared to

TABLE III
RESULTS OF SUPERVISED DEPTH PREDICTION.

Method ↓ RMSE ↓ Abs Rel Diff ↑ δ < 1.25

Eigen et al. [2] fine 7.156 0.215 0.692
Liu et al. [22] 6.986 0.217 0.647

Kumar et al. [31] 5.187 0.137 0.809
Wang et al. [47]* 5.106 0.128 0.836

Kuznietsov et al. [23] 4.621 0.113 0.862
Yang et al. [33] 4.442 0.097 0.888
Guo et al. [34] 4.422 0.105 0.874

Zhang et al. [30] 4.139 0.104 0.883
Fu et al. [4]* 3.714 0.099 0.897

Ours (w/o recurrent) 4.320 0.113 0.874
Ours 4.148 0.102 0.884
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TABLE IV
RESULTS ON EIGEN SPLIT WITH LIDAR SUPERVISION EVALUATED FOR

DIFFERENT ACTIVATION LAYERS AND SEQUENCE LENGTHS.

Activat. Frames ↓ RMSE ↓ Abs Rel ↑ δ < 1.25 ↑ δ < 1.252

None 30 4.210 0.108 0.881 0.965
Tanh 30 4.370 0.115 0.874 0.964
ReLU 30 4.173 0.104 0.884 0.965
ELU 30 4.148 0.102 0.884 0.966
ELU 15 4.234 0.107 0.882 0.964
ELU 50 4.155 0.103 0.884 0.966
ELU 100 4.170 0.103 0.883 0.965

our inference time of 10 ms. Note that, here we re-evaluate [4]
with our setting. Also, we report corrected result of [47]
in supervised setting based on predictions provided by the
authors and omit erroneous results for the unsupervised case
in [47].

Fig. 5. Accumulated average RMSE (RMSE averaged over all previous
frames) for three KITTI video sequences.

In Fig. 6, we evaluate the performance of our method
as a function of the number of sparse points in D̄rand and
the number of scanning lines in D̄line. As expected, our
method benefits from having denser depth samples as the
inputs for both evaluated scenarios. Our recurrent framework
is able to exploit the spatial and temporal structures of the
scenes in the case of sparse points and scanning lines as well
and consistently outperforms its frame-based counterpart. The
improvement in RMSE score drops as number of input points
increases. When supervision from LiDAR gets stronger, the
reliance on other sources decreases.
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Fig. 6. Performance of our method as a function of the number of sparse
points and the number of scanning lines.
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Fig. 7. Recurrent method demonstrates better temporal Consistency on KITTI
video sequences over image based method.

B. Ablation Study

Pretrained Initial Hidden State. We compare zero-initialized
training strategy with ours and report the results over KITTI
sequences in Fig. 5. The figure shows that training the initial
hidden state as a variable is more effective than using zeros
as initial states. The pretrained initial state helps to speed up
adaptation and improves generalization at the beginning of a
sequence. For example, we observe better initial predictions
for the recurrent model with a learnable initial hidden state
in (eg. sequence 47) Fig. 5 than with the zero initialization.
However, in sequence 101 we show a counter example. Inter-
estingly, the network is still able to outperform the baseline
over time in this sequence. As one can see from the figure,
our training strategy achieves considerable and consistent
improvement over the zero-initialized training after certain
number of frames. The improvements are noticeable when the
car is stationary or in constant motion. The re-scaling factor
in the self-supervised setup varies less in those regions.

TABLE V
REL. IMPROVEMENT OF RECURRENT METHOD COMPARED TO BASELINE

Method ∆ RMSE ∆ δ < 1.25 ∆ ARTE

Self sup. depth prediction -0.133 0.002 -0.010
Self sup. depth completion -0.061 0.002 -0.005

Temporal consistency. We also evaluate our method for
temporal consistency Fig. 7. The quantitative metrices defined
by [30] are not suitable for Datasets with sparse ground truth.
We define our evaluation metric, Absolute Relative Temporal
Error(ARTE), as follows: 1

T

∑
i∈T

|(|D̂i−D̂i−1|−|Di−Di−1|)|
|Di−Di−1|+ε .

We set ε to 0.001 and evaluate our predictions for self-
supervised depth estimation first. Compared to the image-
based baseline, our frame-recurrent method reduces the ARTE
from 0.1401 to 0.1297. This improvement is also reflected
in the RMSE (Table V). Additionally, we perform the same
experiment for depth completion. The improvement over the
image-based baseline is lower, i.e. 0.005. This is in line with
the numbers in Table II, indicating that temporal consistency
is more beneficial when fewer LiDAR points are available as
input.
Activation Functions. The Tanh activation was introduced in
LSTMs to deal with vanishing gradient problem in very long
sequences. Intuitively, we expect to see better results with
activations which preserve the input range. This is not the
case for Tanh. The scale of Tanh does not match the scale
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of the input, a necessity for concatenation of the input with
the hidden state. We evaluate the effect of different activation
functions operating on the states inside the ConvLSTM. The
results are shown in the Table IV. In our case, Tanh is inferior
to ReLU, ELU [46] and even to no activation. The lowest
RMSE score is achieved with ELU.
Training Sequence Length. The effect the training sequence
length is shown in Table IV. Experiments show that a sequence
length of 30 strikes a good balance between performance
and cost. Using short sequences leads to worse results; using
longer ones does not boost the performance further. Training
on very long sequences, 100 or higher, achieves similar results.
This means that the ConvLSTM is able to capture temporal
information by propagating the hidden state through the whole
sequence.

VI. CONCLUSION

This work has introduced a novel method for estimating
time series of depth maps with monocular video and optionally
sparse depth. Our method exploits the spatio-temporal struc-
tures over data frames both at train and test time for accurate
depth maps. Specifically, a recurrent framework has been
developed and evaluated for three different tasks: supervised
depth prediction, self-supervised depth prediction and self-
supervised depth completion. For both self-supervised scenar-
ios, we outperform current SOTA methods significantly.
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