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Abstract—The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient
quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth.
In recent years, both optimization-based and learning-based approaches have been proposed to deal with the guided depth
reconstruction problems. In this paper, we introduce a weighted analysis sparse representation (WASR) model for guided depth image
enhancement, which can be considered a generalized formulation of a wide range of previous optimization-based models. We unfold
the optimization by the WASR model and conduct guided depth reconstruction with dynamically changed stage-wise operations. Such
a guidance strategy enables us to dynamically adjust the stage-wise operations that update the depth image, thus improving the
reconstruction quality and speed. To learn the stage-wise operations in a task-driven manner, we propose two parameterizations and
their corresponding methods: dynamic guidance with Gaussian RBF nonlinearity parameterization (DG-RBF) and dynamic guidance
with CNN nonlinearity parameterization (DG-CNN). The network structures of the proposed DG-RBF and DG-CNN methods are
designed with the the objective function of our WASR model in mind and the optimal network parameters are learned from paired
training data. Such optimization-inspired network architectures enable our models to leverage the previous expertise as well as take
benefit from training data. The effectiveness is validated for guided depth image super-resolution and for realistic depth image
reconstruction tasks using standard benchmarks. Our DG-RBF and DG-CNN methods achieve the best quantitative results (RMSE)
and better visual quality than the state-of-the-art approaches at the time of writing. The code is available at
https://github.com/ShuhangGu/GuidedDepthSR
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1 INTRODUCTION

High quality, dense depth images play an important role in many
real world applications such as human pose estimation [1], hand
pose estimation [2], [3] and scene understanding [4]. Traditional
depth sensing is mainly based on stereo or lidar, coming with a
high computational burden and/or price. The recent proliferation
of consumer depth sensing products, e.g., RGB-D cameras and
Time of Flight (ToF) range sensors, offers a cheaper alternative
to dense depth measurements. However, the depth images gen-
erated by such consumer depth sensors are of lower quality and
resolution. It therefore is of great interest whether depth image
enhancement can make up for those flaws [5], [6], [7], [8], [9],
[10], [11]. To improve the quality of depth images, one category
of methods [5], [6] utilize multiple images from the same scene
to provide complementary information. These methods, however,
heavily rely on accurate calibration and are not applicable in
dynamic environments. Another category of approaches [7], [8],
[9], [11], [12] introduce structure information from a guidance
image (for example, an RGB image) to improve the quality of the
depth image. As in most cases the high quality RGB image can be
acquired simultaneously with the depth image, such guided depth
reconstruction has a wide range of applications [13].

A key issue of guided depth enhancement is to appropriately
exploit the structural scene information in the guidance image.
By incorporating the guidance image in the weight calculating
step, joint filtering methods [14], [15], [16], [17] directly transfer
structural information from the intensity image to the depth
image [18], [19]. Yet, due to the complex relationship between
the local structures of intensity and depth, such simple joint

filtering methods are highly sensitive to the parameters, and often
copy unrelated textures from the guidance image into the depth
estimation. To better model the relationship between the intensity
image and the depth image, optimization-based methods [7], [8],
[9] adopt objective functions to characterize their dependency.
Although the limited number of parameters in these heuristic
models has restricted their capacity, these elaborately designed
models still capture certain aspects of the joint prior, and have
delivered highly competitive enhancement results. Recently, dis-
criminative learning solutions [10], [20], [21], [22] have also been
proposed to capture the complex relationships between intensity
and depth. Due to the unparalleled non-linear modeling capacity
of deep neural networks as well as the paired training data,
deep learning based methods [21], [22] have achieved better
enhancement performance than conventional optimization-based
approaches.

To deal with the guided depth reconstruction task, recent solu-
tions [20], [21], [22] utilize deep neural networks (DNN) to build
the mapping function from the low quality inputs and the guidance
images to the high quality reconstruction results. As for other
dense estimation tasks [23], [24], [25], an appropriate network
structure plays a crucial role in the success of the DNN-based
guided depth reconstruction system. Recently, a large number of
works [25], [26], [27], [28] have shown that some successful
optimization-based models could provide useful guidelines for
designing network architectures. By unrolling the optimization
process of variational or graphical models, network structures have
been designed to solve image denoising [26], [27], compressive
sensing [29] and semantic segmentation [25]. These networks
employ domain knowledge as well as paired training data and
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Fig. 1. Illustration of the unfolded optimization process of a WASR model. The WASR model takes low quality depth estimation Y and guidance
intensity image G as input, aims to achieve a high quality depth image X . Each step of the optimization process can be termed as a stage-wise
operation. By dynamically changing the stage-wise operation, we construct the DG-RBF and DG-CNN model for fast and accurate guided depth
reconstruction.

have achieved state-of-the-art performance for different tasks. In
this paper, we analyze and generalize previous optimization-based
approaches, and propose better network structures to deal with the
guided depth reconstruction task.

Work related to this paper is that of Riegler et al. [30],
which unrolls the optimization steps of a non-local variational
model [31] and proposes a primal-dual network (PDN) to deal
with the guided depth super-resolution task. Yet, PDN follows
the unrolled formula of the non-local regularization model [31]
strictly, and only adopts the pre-defined operator (Huber norm) to
penalize point-wise differences between depth pixels. As a result,
the PDN method [30] has limited flexibility to take full advantage
of paired training data. In this paper, we propose a more flexible
solution to exploit paired training data as well as prior knowledge
from previous optimization-based models. We analyze previous
dependency modeling methods and generalize them as a weighted
analysis sparse representation regularization (WASR) term. By
unfolding the optimization process of the WASR model, we get the
formula of a stage-wise operation for guided depth enhancement,
and use it as departure point for our network structure design.
In Fig. 1, we provide a flowchart of the general formula of the
unfolded optimization process of the WASR model. Each iteration
of the optimization algorithm can be regarded as a stage-wise
operation to enhance the depth map.

WASR is a generalized model which shares many of
the characteristics common to previous optimization-based ap-
proaches [7], [32]. Unfolding its optimization process provides us
with a framework to leverage the previous expertise while leaving
our model enough freedom to take full advantage of training data.
With the general formula of the stage-wise operation established,
we adopt two approaches to parameterize the operations. The first
approach parameterizes the unfolded WASR model in a direct
way. Based on the unfolded optimization process, the stage-wise
operations consist of simple convolutions and nonlinear functions.
We learn the filters and nonlinear functions (parameterized as
the summation of Gaussian RBF kernels [26], [27]) for each
stage-wise operation, in a task-driven manner. Although such
model shares its formula for the optimization with a simple
WASR model, its operations are changed dynamically to account
for the depth enhancement. As a result, it can generate better
enhancements in just a few stages. In the remainder of this paper,
we denote this model as dynamic guidance with RBF nonlinearity
parameterization (DG-RBF). An illustration of one stage of the
DG-RBF operation can be found in Fig. 2.

Besides the DG-RBF model, we also propose to parameterize
the stage-wise operation in a loose way. In particular, we analyze
the stage-wise operation’s formula and divide the operation into

three sub-components: the depth encoder, the intensity encoder
and the depth decoder. Instead of using one large filter and one
nonlinear function to form the encoder and the decoder in the
stage-wise operation, we use several layers of convolutional neural
networks (CNN) to improve the capacity of each sub-component.
The overall model of this dynamic guidance with CNN non-
linearity parameterization (DG-CNN) is designed based on the
unfolded optimization process of the WASR model, while its sub-
components are parameterized with powerful CNNs. As DG-CNN
builds upon the conventional optimization-based approach and the
recent advances in deep learning, it generates better enhancement
results than the existing methods. An illustration of a two stage
DG-CNN model can be found in Fig. 3, details of the networks
will be introduced in section 5.

The formula of the WASR model and some experimental
results of the DG-RBF method have been introduced in our earlier
conference paper [33]. In this paper, we provide more information
about the WASR model and DG-RBF method, and provide the
DG-CNN approach, a new parameterization of the WASR model.
Due to its unparalleled nonlinearity modeling capacity, CNN
based parameterization often generates better enhancement results
than the Gaussian RBF based method, especially in challenging
cases with large zooming factors. Furthermore, the well optimized
deep learning tool box makes the CNN based method (DG-CNN)
more efficient than DG-RBF in both training and testing.

The contributions of this paper are summarized as follows:

• By analyzing previous guided depth enhancement meth-
ods, we formulate the dependency modeling of depth and
RGB images as a weighted analysis sparse representation
(WASR) model. We unfold the optimization process of
the WASR objective function, and propose a task-driven
training strategy to learn stage-wise dynamic guidance
for different tasks. A Gaussian RBF kernel nonlinearity
modeling method (DG-RBF) and a special CNN (DG-
CNN) are trained to conduct depth enhancement at each
stage.

• We conduct detailed ablation experiments to analyze the
model hyper-parameters and network architecture. The
experimental results clearly demonstrate the effectiveness
of the optimization-inspired network architecture design.

• Experimental results on depth image super-resolution and
noisy depth image reconstruction validate the effective-
ness of the proposed dynamic guidance approach. The
proposed algorithm achieves the best quantitative and
qualitative depth enhancement results among the state-of-
the-art methods that we compared to.
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The rest of this paper is organized as follows. Section 2
briefly introduces some related work. Section 3 analyzes previous
objective functions of guided depth enhancement approaches, and
introduces the task-driven formulation of the guided depth en-
hancement task. By unrolling the optimization process of the task-
driven formulation, Sections 4 and 5 introduce two parameteriza-
tion approaches, i.e. parameterize the nonlinear operation in each
step with Gaussian RBF kernels or parameterize each gradient-
descent stage with convolutional neural networks. Section 6 con-
ducts ablation experiments to analyze the model hyper-parameters
and to show the advantage of the optimization-inspired network
architecture design. Sections 7 and 8 provide experimental results
of the different methods for guided depth super-resolution and
enhancement. Section 9 discusses the DG-RBF and DG-CNN
models. Section 10 concludes the paper.

2 RELATED WORK

In this section, we introduce related work. We start by briefly
surveying the analysis representation model literature to then
review prior guided depth enhancement methods. Finally, we dis-
cuss previous work on optimization-inspired network architecture
design.

2.1 Analysis sparse representation
Sparse analysis representations have been widely applied in image
processing and computer vision tasks [26], [27], [34], [35], [36],
[37]. An analysis operator [38] operates on image patches or
analysis filters [36], [39] operate on whole images to model the
local structure of natural images. Compared with sparse synthesis
representations, the analysis model adopts an alternative view-
point for union-of-subspaces reconstruction by characterizing the
complement subspace of signals [40], and usually results in more
efficient solutions.

Here we only consider the convolutional analysis representa-
tion, with one of its representative forms given by:

X̂ = arg min
X
L(X,Y) +

∑
l

∑
i
ρl((kl ⊗ X)i), (1)

where X is the latent high quality image and Y is its degraded
observation. ⊗ denotes the convolution operator, and (·)i denotes
the value at position i. The penalty function ρl(·) is introduced
to characterize the analysis coefficients of latent estimation,
which are generated by the analysis dictionaries {kl}l=1,...,L

in a convolutional manner. L(X,Y) is the data fidelity term
determined by the relationship between X and its degraded ob-
servation Y. For example, for the task of Gaussian denoising,
L(X,Y) = 1

2σ2 ‖X − Y‖2F shows that the difference between X
and Y is zero mean white Gaussian noise with standard deviation
value σ. In the remainder of this paper, we denote ρl((kl⊗X)i) by
ρl,i(kl⊗X) for the purpose of simplicity. For Gaussian denoising,
one can simply let L(X,Y) = 1

2σ2 ‖X − Y‖2F .
Sparse analysis representation has been studied for several

decades. Rudin et al. proposed a total variation (TV) model [34],
where the analysis filters are gradient operators and the penalty
function is the `1-norm. Subsequently, many attempts were made
to provide better analysis filters and penalty functions, and an
emerging topic is to learn sparse models from training data. Zhu et
al. [41] proposed a FRAME model which aims to learn penalty
functions for predefined filters. Roth et al. [36] proposed a field-of-
expert (FoE) model in which analysis filters are learned for prede-
fined penalty functions. Although FRAME and FoE are originally

introduced from a MRF perspective, they can also be interpreted as
analysis representation models [38]. Recently, Schmidt et al. [26]
and Chen et al. [27] suggested to model the related functions with
linear combinations of Gaussian RBF kernels, and can learn both
analysis filters and penalty functions from training data. Moreover,
by incorporating the specific optimization methods, stage-wise
parameters can be learned in a task driven manner.

Despite their achievements in image restoration, most existing
methods are used for learning analysis representation of images
from a single modality and cannot be applied to guided depth
image reconstruction. Kiechle et al. went a step forward by
introducing a bimodal analysis model to learn a pair of analysis
operators [20]. But the issue of explicit and dynamic guidance
from intensity images remains unaddressed in analysis represen-
tation learning. In this work, we extend the analysis model by
introducing a guided weight function for modeling the guidance
from intensity image and by adopting a task-driven learning
method to learn stage-wise parameters for dynamic guidance.

2.2 Guided depth enhancement
The wide availability of consumer depth sensing equipment has
made depth enhancement an important application. To estimate
high quality depth images, guided depth enhancement can incor-
porate an intensity image of the same scene, as supplementary
information. Based on the co-discontinuous assumption between
the guidance and target images, general joint filtering methods,
such as bilateral filters [16] and guided filters [17], can be directly
applied to transfer structural information from intensity to depth
images. Yet, due to the complex dependency between depth
and intensity, such simple joint filtering methods may transfer
irrelevant texture into the depth estimation.

To better model the dependency, the optimization based meth-
ods combine the input image Y, the output image X and the
guidance image G into an optimization model [7], [8], [9], [32],
[42]. In [7], Diebel and Thrun proposed an MRF-based method
to characterize the pixel-wise co-difference between the depth and
intensity images. Their prior potential function is defined as:∑

i

∑
j∈N (i)

φµ(Gi − Gj)(Xi − Xj)2, (2)

where i and j are the pixel indexes of image, N (i) is the set of
neighboring index of i, and φµ(z) = exp(−µz2). Similar weight
functions have also been adopted in other models, e.g., non-local
mean (NLM) [8], for guided depth enhancement. Besides pixel-
wise differences, other cues such as color, segmentation and edges,
are also considered to design proper weight functions. Instead of
modifying the weight function, Ham et al. [32] adopt Welsch’s
function to regularize the depth differences:∑

i

∑
j∈N (i)

φµ(Gi − Gj)(1− φν(Xi − Xj))/ν. (3)

Moreover, several hand-crafted high order models have also been
proposed, to model the weight function and the depth regular-
izer [9].

Recently, learning-based methods started to exploit training
data to enhance the results. To model the statistical dependency
between the local structures of corresponding intensity and depth
images, analysis [20] and synthesis [10] dictionary learning meth-
ods have been suggested in a data-driven manner. Taking the low
quality depth image and the guidance intensity image as inputs,
[21], [22], [30] directly train a CNN to generate the high quality
enhanced output result.
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2.3 Optimization-inspired network architecture design
The idea of unfolding the optimization or inference steps of
variational model as neural networks has been investigated from
different perspectives. Some early work [28], [43] proposed to
only conduct a limited number of steps in the optimization algo-
rithm for the purpose of efficiency. Gregor et al. [43] shown that
learning the filters and the mutual inhibition matrices of truncated
versions of FISTA [44] and CoD [45] leads to a dramatic reduction
in the number of iterations to reach a given code prediction error.
Domke [28] proposed a truncated fitting approach which only runs
a fixed number of iterations of an inference algorithm to combat
computational complexity.

In addition to the efficiency issue, recent works found that
unfolding the inference steps of optimization algorithm also helps
to increase model flexibility and improve the estimation results for
different applications. Schmidt et al. [26] unfolded the inference
process of conditional random field and proposed a shrinkage field
approach to solve the image denoising problem. Chen et al. [27]
proposed to learn time varying linear filters and penalties from a
reaction-diffusion model point of view. Recently, Kobler et al. [46]
explored links between variational energy minimization methods
and deep learning approaches, and proposed a variational network
for different image reconstruction tasks. Compared with exact
minimization, unfolded networks are able to perform different
operations in each step [47]. Consequently, these methods [26],
[27], [46], [47] achieved great improvements in both run-time and
reconstruction performance over conventional models. Besides
single image reconstruction, the idea of optimization-inspired
network architecture design has also been exploited in other
tasks. To incorporate the CRF model in a CNN-based semantic
segmentation method, Zheng et al. [25] unrolled the mean-field
approximate inference algorithm as a recurrent neural network.
Their proposed CRF-RNN integrates a CRF model with CNNs,
and achieved state-of-the-art performance on the semantic seg-
mentation task. Compressive Sensing (CS) is an effective approach
for fast Magnetic Resonance Imaging (MRI). To improve the MRI
reconstruction accuracy and speed, Yang et al. [29] proposed an
ADMM-Net, which is derived from the ADMM algorithm for
optimizing a CS-based MRI model.

In the field of guided depth super-resolution (SR), Riegler et
al. [30] introduced a two-stage primal-dual network (PDN) ap-
proach. PDN [30] utilizes a fully convolutional network to esti-
mate a coarse high resolution depth image, and adopts an unrolled
variational model to refine the coarse estimation. The PDN method
combines the advantages of a CNN and variational methods to
achieve top depth SR performance. Nonetheless, PDN still strictly
follows the optimization steps of a concrete variational model,
and has limited capacity in adapting to the training data. The
latest DNN-based methods [21], [22] improved over the depth SR
results of PDN. In this paper, we generalize conventional guided
depth reconstruction models, and provide a more flexible solution
to benefit from domain knowledge and training data.

3 TASK-DRIVEN WASR MODEL FOR DEPENDENCY
MODELING

In this section, we first suggest a weighted analysis sparse repre-
sentation (WASR) model to introduce guidance information from
the intensity image. Then, a task-driven parameter training formu-
lation of the proposed model is derived for training parameters in
the objective function.

3.1 Weighted analysis regularization for dependency
modeling
For the conventional analysis sparse representation from Eq. (1),
the regularization term is only a function of the output image X.
Actually, the models in Eqs. (2) and (3) can be treated as special
handcrafted analysis models, in which a group of inter-pixel
difference operators are used as the analysis filters and the weight
function on G is introduced for explicit guidance. Motivated by
this observation, we propose a generalized weighted analysis
model for guided depth reconstruction. Instead of regularizing the
first order inter-pixel differences, the proposed weighted analysis
model adopts high order filters to capture better the structural
dependency between intensity and depth image:∑

i

∑
l
wl,i(G)ρl,i(kl ⊗ X), (4)

where the weight for the l-th analysis operator at position i is
denoted as wl,i(G). The weight function extracts information
from the guidance image G to adaptively regularize the analysis
coefficients.

Eq. (4) is a generalized version of Eq. (2) and Eq. (3). Like the
previous methods, WASR aims to capture the co-discontinuous
property between depth and intensity images for better depth
reconstruction. Specifically, by extracting the local information
of the guidance image, the weight function in Eq. (4) adaptively
regularizes the penalty on the analysis coefficient of the depth
image, and consequently determines the locations of sharp edges
in the depth image. Analyzing previously proposed guided depth
enhancement methods [7], [8], [9] under our WASR framework,
we note that different weighting and penalty functions have been
suggested in a handcrafted manner. In the next subsection, we
introduce the task-driven formulation of the proposed WASR
model, which provides a method to learn better model parameters
to fit the guided depth reconstruction task.

3.2 Task-driven learning of WASR parameters
Having the weighted analysis regularization term, the depth en-
hancement can be achieved by solving

min
X
L(X,Y) +

∑
i

∑
l
wl,i(G)ρl,i(kl ⊗ X), (5)

where the data fidelity term L(X,Y) in Eq. (5) is specified by
the depth reconstruction task to indicate the relationship between
latent high quality estimation X and the observation Y. The WASR
regularization term provides prior information to reconstruct the
depth image and plays a crucial role to the reconstruction quality.

Since the model parameters may vary for different tasks, we
provide a task-driven formulation to learn task-specific parameters
for Eq. (5) [48], [49].

We denote by D = {Ys,Xsgt,Gs}Ss=1 a training set of S
samples, and by Ys, Xsgt, and Gs the s-th input depth image,
ground truth depth image, and ground truth intensity image,
respectively. Following [48], [49], the task-driven formulation can
be written as a bi-level optimization problem,

{ρ∗l , w∗l , k∗l }Ll=1 = arg min
{ρl,wl,kl}Ll=1

∑S

s=1
‖Xsgt − Xs‖22

s.t. Xs=arg min
X
L(X,Ys)+

∑
l

∑
i
wl,i(Gs)ρl,i(kl ⊗ X).

(6)
Eq. (6) optimizes the parameters in the objective function (5),
makes the solution Xs of (5) as close (in terms of `2 distance as
chosen in (6)) as its corresponding ground truth image Xsgt.
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3.3 Dynamic guidance with unfolded WASR model

The lower-level problem in Eq. (6) defines an implicit function
on {ρl, wl, kl}l=1···L, making the training problem very difficult
to optimize. The high non-convexity of the lower-level problem
further adds difficulty to obtaining the exact solution. Moreover,
along with the enhancement procedure, more details of Xs will be
recovered. Thus, instead of employing the same model parameters
in all the iterations, by dynamically adjusting the model to better
fit the reconstruction task both the efficiency and the enhance-
ment result may benefit. To address this issue, we unfold the
optimization process of the lower-level problem and train stage-
wise operations for guided depth enhancement. Such stage-wise
formulation not only reduces the difficulty of training, but also
enables us to introduce the guidance information dynamically to
cooperate with the newly updated estimation Xt+1.

To unfold the optimization process of (5), we assume that both
the fidelity term L(X,Y) and the penalty function ρl,i(kl⊗X) are
differentiable with respect to X. Then, solving (5) with gradient
descent, the updated result Xt+1 can be obtained by,

Xt+1 =

Xt − τ t
(
L′(Xt,Y) +

∑
l
ktl ⊗

(
Wt
l(G)� Pt′l (ktl ⊗ Xt)

))
,

(7)
where L′(·) is the derivative of the fidelity term, and τ t is the
step-length in step t. Pt′l (ktl ⊗ Xt) has the same size as ktl ⊗ Xt,
and its value in position i is the derivative of the penalty function
ρt′l,i(ktl ⊗ Xt). Wt

l(G) is the corresponding weight function, and

its value in position i is wtl,i(G). ktl is obtained by rotating ktl 180
degrees.

Eq. (7) enables us to write Xt+1 as a function of the input
variables {Xt,G,Y}. With {τ t, {ρtl , wtl , k

t
l}Ll=1}, the function

determines one stage of operation which generates Xt+1 from
the current estimation Xt. Instead of solving Eq. (6) which
requires the operations in each step to be the same, we propose
to adopt different operations in each step. Concretely, by allowing
{τ t, {ρtl , wtl , k

t
l}Ll=1} to be different in each stage t, we adopt

a series of stage-wise operations to conduct the guided depth
reconstruction. Compared with keeping the model parameters
unchanged and solving the optimization problem in Eq. (5),
such dynamic guidance approach allows the proposed model to
generate high quality depth estimations in several stages.

In order to get the optimal stage-wise operations, we propose
to adopt a similar task-driven strategy as we introduced in Eq. (6).
In the next two sections, we introduce two parameterization
strategies for the stage-wise operation, which enable us to learn
optimal operations in a task-driven manner.

4 LEARNED DYNAMIC GUIDANCE WITH RBF KER-
NEL PARAMETERIZATION

In the previous section, we analyzed the WASR model and
analyzed the formula of the stage-wise operation for the guided
depth reconstruction. Based on Eq. (7), the (t + 1)-th estimation
Xt+1 is determined by the current estimation Xt, guidance image
G, observation Y and the stage-wise operations. In order to learn
stage-wise operations, we adopt a greedy training strategy to train
the stage-wise operations sequentially. Concretely, we minimize
the difference between Xgt and the new estimation Xt+1 with
respect to the operation parameters. In this section, we introduce
one parameterization strategy of the stage-wise operation. We
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Fig. 2. Illustration of one stage-wise operation in the DG-RBF model.
DG-RBF follows the unfolded optimization process of WASR strictly,
the current enhancement result xt and the guidance image g are first
convolved with the corresponding L analysis filters, respectively. After a
nonlinear transform, the filtering responses of xt and g are combined
via an element-wise product, and further convolved with the L adjoint
filters to form the result with a regularization term. Finally, the results
of regularization and the fidelity terms are summarized to obtain the
updated result xt+1.

follow the formula of Eq. (7) and parameterize the stage-wise
operation of the WASR model in a direct way. The derivation
of the penalty function is parameterized with a group of RBF
kernels, and we call the proposed model dynamic guidance with
RBF nonlinearity parameterization (DG-RBF).

4.1 Learning step length τ

In Eq. (7), τ t is the step length for the t-th stage-wise oper-
ation. τ t is a scalar and we can directly learn it without any
parameterization. However, as τ affects both the two components
L′(Xt,Y) and

∑
lk
t
l ⊗

(
Wt
l(G)� Pt′l (ktl ⊗ Xt)

)
, calculating its

gradient with respect to the training loss is time consuming. Since
we will parameterize the prior term in our DG-RBF model, the
stage-variant step length for the prior term can be absorbed into
the parameterization of

∑
lk
t
l ⊗

(
Wt
l(G)� Pt′l (ktl ⊗ Xt)

)
. Thus,

in the proposed DG-RBF model, we assume τ t only affects the
gradient of fidelity term, i.e. Xt+1 = Xt− τ tL′(Xt,Y)−

∑
lk
t
l ⊗(

Wt
l(G)� Pt′l (ktl ⊗ Xt)

)
.

4.2 Parameterizing the filter k

k in Eq. (7) are the analysis filters used to extract structural
information from the depth image. Previous works have found
that meaningful analysis filters often are zero-mean, thus, we also
parameterize the filters {kl}Ll=1 to ensure them to be zero-mean
filters. Specifically, we require that each kl is the summation of a
zero-mean Discrete Cosine Transform (DCT) basis:

kl =
I∑
i=1

αl,ibi, (8)

where {bi}Ii=1 are the zero-mean DCT basis. The above parame-
terization helps us to constrain the filters {ktl}Ll=1 to be zero-mean.

4.3 Parameterizing the penalty functions ρ

A good penalty function plays a crucial role in the success of
analysis sparse representation models. Different functions have
been suggested for generating sparse analysis coefficients in
conventional optimization models. In this paper, we parameterize
{ρl(·)}Ll=1 to allow them to have more flexible shapes. Actually,
from Eq. (7) one can see that what we should parameterize is not
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the penalty function ρtl(z) but the influence function ρt′l (z). Here
we write the influence function ρt′l (z) as

ρt′l (z) =
∑M

j
βtl,j exp

(
−(z − µj)2

2σ2
j

)
, (9)

which is the summation of M Gaussian RBF kernels with centers
µj and scalar factors σj . This formulation can provide a group of
highly flexible functions for image restoration [26], [27].

The number M as well as the means {µj}Mj=1 and scaling fac-
tor σ are the hyper-parameters of our model. The means {µj}Mj=1

determine the location of the kernels and the scaling factors
their band width. The two parameters cooperate to determine the
flexibility and cover range of the parameterization.

4.4 Parameterizing the weight functions w

As we have analyzed in section 3.1, the weight function extracts
local structures from the intensity image to adaptively regularize
the penalty of the depth analysis coefficients. In previous hand-
crafted models, some simple weight functions have been suggested
to capture the co-difference of the depth and intensity images. In
this paper, we adopt a similar form which utilizes filters to extract
local structures of the intensity image to adaptively regularize the
depth discontinuities.

However, although the intensity and the depth images arise
from the same scene and are strongly dependent, the values in the
two images have different physical meaning. For example, a black
box in front of a white wall or a gray box in front of a black wall
may correspond to the same depth map but totally different edge
gradients for the intensity images. Therefore, the weight function
should be able to avoid the interference of such structure-unrelated
intensity information, while extracting useful salient structures to
help the depth map locate its discontinuities. To this end, the
intensity map is locally normalized, to avoid the effect of different
intensity magnitude. Specifically, given the vectorization of the
guided intensity image g, we introduce the operator Ri to extract
the local patch at position i by Rig. The local normalization of
Rig can then be attained by ei = Rig

||Rig||2 .
With ei, we define the weight function for the l-th analysis

operator βl at position i as,

wl,i(G) = exp
(
−(γTl ei)2

)
. (10)

The analysis operator γl can serve as a special local structure
detector. If the local normalized patch ei contains local structures
such as edges, wl,i(G) will be very small to encourage that the
depth patch exhibits the corresponding local structure.

4.5 Training of DG-RBF parameters

After parameterization, the stage-wise operations can be deter-
mined by the parameters Θt = {τ t, {αtl ,βtl ,γtl }Ll=1}. Plugging
Xs,t+1(Xt,G,Y;Θt) into the task-driven formula of Eq. (6), we
are able to learn optimal stage-wise operations by minimizing:

Θt = arg min
Θ

1

2

∑S

s=1
||Xsgt − Xs,t+1(Xt,Gs,Ys;Θt)||2F .

(11)
The gradient of the loss function with respect to the parameters
Θt = {τ t, {αtl ,βtl ,γtl }Ll=1} can be achieved by the chain rule:

∂loss(Xgt,Xt+1)

∂Θt
=
∂loss(Xgt,Xt+1)

∂Xt+1 · ∂Xt+1

∂Θt
. (12)

Fig. 3. Illustration of DG-CNN structure (with two stage-wise operations)
for guided depth reconstruction. The light orange, purple and gray
components in the figure correspond to the depth encoder, the intensity
encoder and the joint decoder, respectively.

The detailed derivations of ∂Xt+1

∂Θt are introduced in the appendix.
Having the gradients, we learn the parameters for each stage

with the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm [50], [51]. We learn the stage-wise parameters
in a greedy manner. Given initialization X0, we learn one stage
operator to generate estimation X1 by minimizing the difference
between X1 and target ground truth X; then, taking X1 as input,
we learn another operation for estimating X2 in the same manner.
For both the noise-free and noisy depth SR experiments, we use
the results of bicubic interpolation as the initialization of X0. The
initialization of X0 for other tasks will be introduced in each
experiment. We experimentally found that we can get very good
results after only a few stages of processing, i.e., T . After greedy
learning, joint training is utilized to learn the parameters of the T
stages simultaneously. All the experiments for the DG-RBF model
were implemented with Matlab. We used the L-BFGS toolbox
provided by [51] to train our model. For all the models, we first
conduct 200 iterations of the L-BFGS algorithm for each stage in
a greedy manner, and then perform another 50 iterations on all the
stages simultaneously. More implementation details are given in
the experiments sections.

5 LEARNED DYNAMIC GUIDANCE WITH CNN
In the previous section, we proposed a DG-RBF model which
parameterizes the filters as well as the nonlinear functions in
the stage-wise operations introduced in Eq. (7). By exploring
the dynamic guidance strategy and learning optimal parameters
in a task-driven manner, the proposed DG-RBF method greatly
improves the flexibility of the original WASR model. But since
DG-RBF follows the formula of stage-wise operation strictly -
which only conducts one group of convolutions and nonlinear
functions on the depth image - we adopted a group of RBF kernels
to parameterize the penalty function in order to have a strong
capacity towards nonlinearities. Furthermore, we utilize the L-
BFGS algorithm [50] to train DG-RBF and it needs to calculate
the gradient on the whole training set. The above reasons render
the training of the complex DG-RBF model on a large training
dataset time and memory consuming. In this section, we provide
another parameterization of stage-wise operations for the guided
depth enhancement. Specifically, we analyze the formula of Eq. (7)
and use convolutional neural networks (CNNs) to approximate the
stage-wise operations in a more flexible way.

5.1 Stage-wise operation with intensity/depth encoder
and joint decoder
In Eq. (7), the difference between the current estimation Xt and
the new estimation Xt+1 consists of two components. The first
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component L′(Xt,Y) comes from the data fidelity term of the
objective function. It put the residual between current estimation
and input observation back into the next estimation. The second
component

∑
lk
t
l ⊗

(
Wt
l(G)� Pt′l (ktl ⊗ Xt)

)
comes from the

regularization term. It extracts high-dimensional features (analysis
coefficients in the case of the WASR model) from the local
structure in the image, and adjusts the features in the feature space
to let the new estimation better fit the prior model.

When the optimization algorithm is adopted to minimize the
objective function, the backward part L′(Xt,Y) prevents the
estimation X to move too far away from the observation Y,
and the algorithm converges when the two components get in
balance. Since, in this paper, only a fixed number of stage-wise
operations are performed to generate the high quality estimation,
the backward part can be ignored for the purpose of simplicity. By
ignoring the fidelity part, we get the following residual formulation
of the stage-wise operation:

Xt+1 = Xt +
∑

l
ktl ⊗

(
Wt
l(G)� Pt′l (ktl ⊗ Xt)

)
. (13)

In the residual component, an intensity encoder Wt
l(G), a depth

encoder ρt′l (Xt) and a joint decoder
∑
l ktl ⊗ (·) cooperate to

adjust the local structure in the current estimation. In particular, the
intensity encoder and depth encoder extract local features from the
intensity and depth images, resp.; then, after generating the joint
coefficients with the point-wise product operator, the joint decoder
reconstructs the final residual estimation. Denoting the intensity
encoder, depth encoder and joint decoder by FI(·), FD(·) and
FR(·), we can rewrite Eq. (13) in the form:

Xt+1 = Xt + FR
(
FD

(
Xt
)
� FI (G)

)
. (14)

In our DG-CNN model, we formulate the encoders and decoders
in Eq. (14) with several layers of CNN. Compared with the DG-
RBF model, the CNN parameterization is able to provide more
powerful encoders and decoders with stronger nonlinear modeling
capacity. Furthermore, well optimized CNN toolboxes enable us
to train the DG-CNN model easily on large training datasets.

5.2 DG-CNN network structure
Based on our analysis from the previous section 5.1, the stage-
wise operation for the WASR can be formulated with an intensity
encoder, a depth encoder and a joint decoder. To parameterize the
encoder and decoder with a CNN, one simple solution is to directly
use several convolution and activation layers to form the encoder
and the decoder, and to gradually improve the quality of the depth
estimations {Xt}t=1,...,T . Yet, such a strategy reconstructs the
joint features back into the image domain where several stages of
operation are concatenated together and the reconstructed image
acts as a bottleneck in the deep neural network. The bottlenecks
may affect the training speed of the neural networks. Furthermore,
reconstructing the feature maps back into the image domain
impedes the increasing of the network perceptual field. In order
to avoid the appearance of bottlenecks in the networks, for the
multi-stage DG-CNN model, the t-th depth encoder takes the
feature maps of the (t−1)-th joint decoder as input. Furthermore,
in order to increase the perceptual field of the intensity encoder,
the intensity encoder in each stage takes the output feature maps
from previous intensity encoder as well as the guidance intensity
image as inputs. An illustration of a two-stage DG-CNN model
can be found in Fig. 3. The orange, the purple and the gray blocks
represent the depth encoder, the intensity encoder and the joint

decoder, respectively. Each encoder consists of 5 convolution,
batch normalization [52] and leakyReLU [53] layers, and each
decoder consists of 3 convolution, batch normalization [52] and
leakyReLU [53] layers. Each convolution layer generate 32 feature
maps. Except for the first depth encoder block which takes the
observed depth image as input, all the remaining depth encoders
take the feature maps of the joint decoder as input. Another
convolution layer (red rectangle in Fig. 3) is utilized to reconstruct
the feature maps of the decoder back into the image domain.

All the DG-CNN experiments conducted in this paper were
implemented with the Pytorch toolbox [54]. We train our model
with the Adam [55] solver (β1 = 0.9), and set the weight decay
parameter to 10−4. We start from a learning rate of 0.001 and
divide it by 10 every 105 iterations. The total number of training
iterations is 3 × 105. An Nvidia Titan XP GPU was utilized to
train our model. More details on each dataset can be found in the
experiments sections.

6 MODEL ANALYSIS AND DISCUSSION

Before comparing the proposed method with state-of-the-art ap-
proaches, we conduct ablation experiments to analyze the effect
of hyper-parameters and network architecture design choices. We
first introduce the general setting of our ablation experiments, and
then present experimental results to analyze the proposed DG-RBF
and DG-CNN models, respectively.

6.1 Experimental setting
We utilize the commonly used Middlebury dataset [56] to conduct
our ablation experiments. Following the experimental settings
from previous works [9], [32], we use the Art, Books and Moebius
images as testing images. To prepare training data, we use 46 depth
and intensity image pairs from the Middlebury dataset [56] and
augment them with flipping, rotation and scaling operations [57].
Both the training and testing samples are generated by a bicubic
resizing of the high quality depth maps. The training and testing
datasets are strictly separated, and there is no overlap between the
scenes of the training and testing images. To train our DG-RBF
model, we crop 3000 small images of resolution 72×72 from the
46 images as training set. We did not use all the patches from
the 46 training images because the L-BFGS method [50] used
to train DG-RBF needs to calculate the gradient on the whole
training set, and training the model on large datasets is time and
memory expensive. In comparison, for our DG-CNN model, all
the 46 large images and their augmentations have been adopted as
the training dataset. In each training iteration, we randomly crop
32 136 × 136 patches from the 46 images to train our model.
Although the augmentation improves the structural variety of the
training samples, the training data is still not diverse enough as the
color palette is rather poor. In our experiments, we use only the
gray intensity image to guide the reconstruction.

6.2 Analyzing DG-RBF
6.2.1 Initialization and model regularization
Before investigating the hyper-parameters of our model, we study
two key aspects of the proposed method: the initialization and the
model regularization. Specifically, DG-RBF has two main groups
of parameters for the filters and the non-linear functions, and
we investigated the effect of initialization approaches for both
parameter groups. Furthermore, we follow [27] and require the
filters in DG-RBF to be zero-mean. We also provide experimental
results to show the effect of the zero-mean constraint.
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To analyze the effect of zero-mean constraint, we compare
two parameterization schemes for the filters. The first scheme
adopts the zero-mean constraint and requires the filters to be the
summation of zero-mean DCT filters. While, the second scheme
does not regularize the filters, and directly learns the values in
the filters. For both the filters and the penalty functions, we test
two kinds of initialization approaches: random initialization and
model-inspired initialization. In particular, we initialize the filters
with random values or point-wise difference filters, as widely
done in previous optimization-based depth enhancement work;
and initialize the penalty functions with random values or the
commonly used influence function as adopted in [27]. We adopt
different initialization settings to train our DG-RBF models to
super-resolve the testing images with a factor 8. We train a 5-
stage DG-RBF model with 48 7 × 7 filters on 3000 training
samples. We first initialize the penalty function with the commonly
used influence function and evaluate the effect of initialization
and parameterization methods on the filters. The experimental
results are reported in Table 1. The initialization approach as well
as the parameterization method for the filters greatly affect the
performance of the unrolled network. Domain knowledge such as
zero-mean filters and point-wise difference filters are beneficial in
designing as well as initializing network structures.

TABLE 1
Experimental results (Avg. RMSE) on the 3 test images [56] with

different initialization methods and constraints for the filters.

Random Init. Model Init.
W/ Zero-mean Cons. 3.00 2.25
W/o Zero-mean Cons. 3.22 3.23

The effect of the initialization method for the penalty functions
is not as significant as that for the filters, changing from the model-
inspired initialization to random initialization will only slightly
increase the RMSE value on the Middlebury dataset [56] from
2.25 to 2.37.

6.2.2 Filter size and number
After investigating the effect of initialization and model regular-
ization, we study the most important hyper-parameters for DG-
RBF: the filter size and the number of filters. We train DG-RBF
models with different numbers of filters as well as filter sizes
with 3000 training samples. We utilize the same initialization
and parameterization scheme for all the models. The SR results
as well as the average inference time on the 3 testing images
[56] of different models are shown in Table 2. The experiments
were conduct in the Matlab environment and we test different
models on a PC with Intel i7-4790 CPU. All the models utilize
5 stage-wise operations to super-resolve the testing images with
a factor 8. Generally, increasing the filter number and size both
help to improve the SR performance. The filter size plays a more
import role than the number of filters in the DG-RBF model. In
the remainder of this paper, we set the filter size to 9×9 and filter
number to 24, seeking a balance between performance and speed.

6.2.3 Number of RBF kernels
In the DG-RBF model, the parameterization of non-linear penalty
functions is the same as in [27]. In [27], 65 kernels with scaling
parameter 10 have been utilized to cover the activation range
between -310 to 310. This said, we experimentally found that
the penalty functions work well even when we only parameterize

TABLE 2
Experimental results (Avg. RMSE / Runtime [s]) on the 3 testing images

[56] by DG-RBF variations with different filter sizes and numbers.

F. num. 12 24 48 72
5× 5 2.47 / 3.29s 2.45 / 5.70s 2.42 / 10.56s 2.39 / 15.88s
7× 7 2.34 / 4.69s 2.32 / 8.02s 2.25 / 14.77s 2.28 / 21.57s
9× 9 2.28 / 6.52s 2.18 / 11.26s 2.14 / 20.40s 2.15 / 29.31s
11× 11 2.29 / 9.03s 2.16 / 15.27s 2.13 / 28.32s 2.13 / 41.98s

a smaller activation range. The SR results with different kernel
numbers and scaling factors are reported in Table 3. All the
models utilize 5 stage-wise operations to super-resolve the testing
images with a factor 8. The proposed DG-RBF model achieves
good results for a wide range of kernel numbers. It is robust to
this hyper-parameter. For similar parameterization ranges, scaling
factors 2.5, 5 and 10 can achieve similar SR results and a scaling
factor 20 will lead to a performance drop due to insufficient
parameterization accuracy. In addition, although DG-RBF cannot
achieve good SR performance with very small parameterization
range, we do not need to parameterize the penalty function for the
complete possible activation range. Outside [-170, 170], a further
enlargement of the parameterization range will not improve the
SR results. Due to the above reasons, we utilize 33 kernels with
scaling factor 10 to parameterize the penalty functions used in
DG-RBF method.

TABLE 3
Experimental results (Avg. RMSE) on the 3 test images [56] by

DG-RBF variations with different penalty parameterization approaches.

Kernel Num.
Scaling Factor 2.5 5 10 20

17 - 2.33 2.22 2.30
33 2.32 2.20 2.18 2.23
65 2.24 2.17 2.19 -

6.2.4 Stage Number
Another important hyper-parameter in the proposed DG-RBF
model is the number of stages. As we utilize the L-BFGS [50]
algorithm to train the stage-wise operations in a greedy manner,
more stages can always lead to smaller training error. Yet, despite
reducing the training error, adopting more stage-wise operations
will also introduce more computational burden and increase the
risk of over-fitting. In Table 4, we present the average RMSE
and run-time on the three testing images in the Middlebury
dataset [56]. For simple cases such as zooming factors 2 and 4,
DG-RBF is able to achieve good results with a small number of
stage-wise operations; whereas for challenging cases the proposed
model needs more operations to deliver a good estimation. As the
DG-RBF model provides a very easy way to vary computational
complexity, we propose to adopt different operation points to pro-
cess different zooming factors. For SR experiments with zooming
factor 2, 4, 8 and 16, we utilize 3, 4, 5 and 6 stage-wise operations,
respectively, in the DG-RBF model. Note that we adopt different
numbers of stage-wise operations for the purpose of balancing the
computational burden and the reconstruction performance. As can
be found in Table 4, with a large stage number, DR-RBF is able
to achieve high quality depth reconstruction results for different
zooming factors.

6.3 Analyzing DG-CNN
Our DG-CNN also has a large number of hyper-parameters,
including the feature map number and filter size, as well as
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(a) Single Stage + Global Res. (b) Multi-Stage + Global Res. (c) Multi-Stage + Stage-wise Res.

Fig. 4. Ablation networks used to validate the effectiveness of the stage-wise residual learning structure. More details can be found in section 6.3.2.

TABLE 4
Experimental results (Avg. RMSE and Run-time) on the 3 testing
images [56] by DG-RBF variations with different stage numbers.

Stage S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=8
×2 0.84 0.73 0.73 0.74 0.74 0.74 0.74 0.75
×4 1.74 1.39 1.29 1.27 1.27 1.27 1.27 1.27
×8 2.88 2.40 2.26 2.22 2.18 2.18 2.19 2.19
×16 5.73 4.08 3.82 3.76 3.74 3.73 3.72 3.72

Time [s] 3.65 5.50 7.36 9.10 10.93 12.80 14.55 16.32

training parameters such as the learning rate. For most of these
parameters, we follow some commonly used settings in other CNN
based approaches, and did not conduct experiments to analyze the
effect of these parameters. In this subsection, we first present the
depth reconstruction performance of DG-CNN with different stage
numbers. Then, we analyze two properties of the proposed DG-
CNN, which come from the unrolled optimization steps of the
WASR model. Our ablation experiments show the advantages of
the optimization-inspired network architecture design.

6.3.1 Stage Number
We evaluate the proposed DG-CNN method with different stage
numbers (from one to four) on the Middlebury data set. Table 5
summarizes the SR results for all the different factors with
different numbers of stage-wise operations. Similarly to our DG-
RBF model, with complex networks (more stage-wise operations),
the DG-CNN is able to achieve good results on all the zooming
factors. For simple cases with small zooming factors a large
number of stage-wise operations is not necessary and the DG-
CNN is able to deliver high quality results with a small number
of stage-wise operations. The same as for the DG-RBF model, we
adopt different numbers of stage-wise operations in the DG-CNN
for SR tasks with different zooming factors. For zooming factors
2, 4, 8 and 16, we utilize 1, 2, 3 and 4 stage-wise operations,
respectively, in the proposed DG-CNN method.

TABLE 5
Experimental results (Avg. RMSE) on the 3 testing images [56] by

DG-CNN variations with different numbers of stage-wise sub-networks.

Stage S=1 S=2 S=3 S=4 S=5
×2 0.45 0.43 0.43 0.43 0.42
×4 0.88 0.84 0.82 0.82 0.81
×8 1.57 1.42 1.35 1.37 1.35
×16 2.80 2.50 2.40 2.36 2.36

6.3.2 Stage-wise Residual Learning
In each stage of the DG-CNN, we utilize encoder networks
{FI , FD} and a decoder network {FR} to approximate the
difference between the current estimation and the next estimation
Xt+1 − Xt. Each stage-wise operator can be seen as a special
residual block, which has been proved to be a highly effective
structure in deep neural networks [58]. In this part, we conduct

ablation experiments to show the advantage of stage-wise residual
learning. In particular, we compare the proposed network archi-
tecture with two ablation architectures, which are shown in Fig. 4.
The first ablation network (Fig. 4 (a)) adopts a one-stage encoder-
decoder network to estimate the residual between the input and the
target high quality depth image. The second ablation network (Fig.
4 (b)) adopts stage-wise operations but only contains a global skip
connection between the input and output image. For multi-stage
networks with/without stage-wise residual learning we utilize the
same encoder-decoder sub-networks, whereas for the single stage
network we incorporate two times more convolutional layers in
the encoder and decoder sub-networks. All three networks have
the same computational complexity. The competing results of
different networks can be found in Table 6, showing that the
optimization-inspired stage-wise residual learning is beneficial for
the guided depth reconstruction task.

TABLE 6
Experimental results (Avg. RMSE) on the 3 testing images [56] by

DG-CNN and ablation network architectures shown in Fig. 4.

Single Stage
+ Global Res.

Multi-Stage
+ Global Res.

Multi-Stage
+ Stage-wise Res.

1.42 1.53 1.35

6.3.3 Dependency Modeling

WASR summarizes previous optimization-based methods and uses
point-wise multiplication to combine the intensity and depth
features. We adopt the multiplication strategy also in our DG-
CNN network structure. Most of previous CNN-based guided
depth reconstruction approaches [21], [22] use the concatenation
operation to combine the intensity and depth features. Compared
with concatenation, the point-wise multiplication helps to reduce
the number of parameters as well as the computational burden
of the network. By exchanging multiplication with concatenation,
each stage-wise operation gets about 5% more parameters and
running time. Furthermore, as reported in Table 7, combining
feature maps with multiplication instead of concatenation achieves
comparable or slightly better SR results on the Middlebury dataset.

TABLE 7
Experimental results (Avg. RMSE) on the 3 testining images [56] by

DG-CNN variations with different feature maps combinations.

Feature maps combination ×2 ×4 ×8 ×16
concatenation 0.44 0.86 1.36 2.41
multiplication 0.45 0.84 1.35 2.36
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TABLE 8
Experimental results (RMSE) on the 3 noise-free test images.

Art Books Moebius Average
×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 2.57 3.85 5.52 8.37 1.01 1.56 2.25 3.35 0.91 1.38 2.04 2.95 1.50 2.26 3.27 4.89
Bilinear 2.83 4.15 6.00 8.93 1.12 1.67 2.39 3.53 1.02 1.50 2.20 3.18 1.66 2.44 3.53 5.21
GF [18] 2.93 3.79 4.97 7.88 1.16 1.58 2.10 3.19 1.10 1.43 1.88 2.85 1.73 2.27 2.98 4.64
MRF [7] 3.12 3.79 5.50 8.66 1.21 1.55 2.21 3.40 1.19 1.44 2.05 3.08 1.84 2.26 3.25 5.05

Yang 2007 [59] 4.07 4.06 4.71 8.27 1.61 1.70 1.95 3.32 1.07 1.39 1.82 2.49 2.25 2.38 2.83 4.69
Park [8] 2.83 3.50 4.17 6.26 1.20 1.50 1.98 2.95 1.06 1.35 1.80 2.38 1.70 2.12 2.65 3.86
TGV [9] 3.03 3.79 4.79 7.10 1.29 1.60 1.99 2.94 1.13 1.46 1.91 2.63 1.82 2.28 2.90 4.22

Yang 2014 [60]1 3.13 4.76 7.79 13.44 1.30 2.16 5.44 13.00 1.16 1.99 3.30 7.02 1.86 2.97 5.51 11.15
SDF [61] 3.31 3.73 4.60 7.33 1.51 1.67 1.98 2.92 1.56 1.54 1.85 2.57 2.13 2.31 2.81 4.27
DJF [21] 2.77 3.69 4.92 7.72 1.11 1.71 2.16 2.91 1.04 1.50 1.99 2.95 1.64 2.30 3.02 4.53

MSG-Net [22]2 0.66 1.47 2.46 4.57 0.37 0.68 1.03 1.60 0.36 0.66 1.02 1.63 0.46 0.94 1.50 2.60
DG-RBF (ours) 1.06 1.98 3.40 6.07 0.57 0.92 1.62 5.57 0.55 0.92 1.56 2.55 0.73 1.27 2.19 4.73
DG-CNN (ours) 0.63 1.31 2.17 3.94 0.36 0.61 0.95 1.60 0.33 0.58 0.92 1.47 0.44 0.83 1.35 2.34

7 GUIDED DEPTH SUPER-RESOLUTION EXPERI-
MENTS

In this section, we compare the proposed methods with other
depth super-resolution methods. Two commonly used datasets
(Middlebury [56] and NYU [4]) are utilized to evaluate the depth
upsampling performance of the proposed methods. Besides the
baseline bicubic and bilinear upsampling methods, we compare
the proposed methods with a variety of guided depth super-
resolution methods. The comparison methods include three fil-
tering based methods [18], [59], [62], an MRF based optimiza-
tion method [7], a non-local mean regularized depth upsampling
method [8], a total generalized variation (TGV) method [9], the
joint static and dynamic filtering (SDF) method [61], and the
recently proposed CNN-based deep joint filtering method [21]
and primal-dual network (PDN) [30]. In [22], Hui et al. also
evaluated their proposed MSG-Net on the 3 testining images in
the Middlebury [56] dataset. However, Hui et al. [22] utilized
the Gaussian blur + downsampling operation to generate the low
resolution input images, which is considered to be easier than the
bicubic downsampling setting in the SR literature [63]. Here we
also reported the performance by the MSG-Net [22] for reference.
Details about the experimental setup will be introduced in the
following subsections.

7.1 Super-resolution results on the Middlebury dataset
Following the experimental setting of [9], we conduct super-
resolution experiments with both the noise-free and noisy low
resolution depth map for four zooming factors, i.e. 2, 4, 8 and 16.
The settings of the noise-free experiment have been introduced in
Section 6. To compare different methods with noisy low-resolution
inputs, we utilize the testing images provided in [8]. To synthesize
real noisy depth images, Park et al. [8] added conditional Gaussian
noise to the low resolution depth maps. The Gaussian noise
variance depends on the distance between the camera and the
scene, and Park et al. did not provide the details for the noise
hyper-parameters. To generate training data, we add i.i.d Gaussian

1. The memory consumption of this algorithm [60] is large. In order to adopt
this algorithm on large images, we divide the image into patches and process
each patch individually.

2. The experimental setting in [22] is different than our experimental
settings. [22] utilizes more training data. In addition, the low resolution depth
images in [22] were generated via Gaussian blur + downsampling, while in this
paper we utilize Matlab bicubic operation to generate low resolution images.
We provide [22]’s results here for reference.

white noise with σ = 6 to the 46 clean images used in our noise-
free experiments.

The super-resolution results on the 3 noise-free testing images
of the different methods are shown in table 8. The proposed DG-
RBF and DG-CNN methods consistently show their advantage
over the competing methods. The proposed DG-RBF method
outperforms all the optimization-based approaches as well as a re-
cently proposed CNN-based method DJF [21]. DG-CNN achieves
the best results on all the 3 images with different zooming factors.
In Fig. 5, we give visual examples of the super-resolution results
for the Moebius image with zooming factor 16. In the figure we
can see that the guided filter method [18] and the MRF method [7]
cannot generate very sharp edges. The results of [59], [8] and [9]
have some artifacts around the edges. Our methods are able to
generate high quality depth maps with sharper edges and fewer
artifacts.

We further evaluate the proposed methods for noisy depth
super-resolution. For both the DG-RBF and DG-CNN models,
we utilize the same hyper-parameters as we adopted in the noise-
free experiment. The results by different methods are shown in
Table 9. We do not provide the results of DJF [21] because the
authors have not provided their network and have not reported
results for such setting. The results by [12] are also included, a
method designed to handle noise in depth super-resolution tasks.
The proposed methods again achieve the best results.

7.2 Super-resolution results on the NYU dataset

In [21], Li et al. utilize the first 1000 images of the NYU
dataset [4] as training data, and evaluate their DJF method on
the last 449 images of the NYU dataset. In this section, we follow
their experimental setting and compare different methods on the
449 images. The results of the other methods are provided by the
authors of [21]. For the DG-RBF model, we crop 3000 72×72
subimages as the training set. For the DG-CNN model, we use all
the 1000 images as training dataset. The hyper-parameters for both
the DG-RBF and DG-CNN models are the same as our settings on
the Middleburry [56] dataset. The experimental results are shown
in Table 10. Compared with other methods, the proposed DG-RBF
and DG-CNN achieve the best results in terms of RMSE. Some
visual examples of the SR results of different algorithms have been
provided in Fig. 6.
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TABLE 9
Experimental results (RMSE) on the 3 noisy test images.

Art Books Moebius Average
×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 5.32 6.07 7.27 9.59 5.00 5.15 5.45 5.97 5.34 5.51 5.68 6.11 5.22 5.58 6.13 7.22
Bilinear 4.58 5.62 7.14 9.72 3.95 4.31 4.71 5.38 4.20 4.57 4.87 5.43 4.24 4.83 5.57 6.84
GF [18] 3.55 4.41 5.72 8.49 2.37 2.74 3.42 4.53 2.48 2.83 3.57 4.58 2.80 3.33 4.24 5.87
MRF [7] 3.49 4.51 6.39 9.39 2.06 3.00 4.05 5.13 2.13 3.11 4.18 5.17 2.56 3.54 4.87 6.56

Yang 2007 [59] 3.01 4.02 4.99 7.86 1.87 2.38 2.88 4.27 1.92 2.42 2.98 4.40 2.27 2.94 3.62 5.51
Park [8] 3.76 4.56 5.93 9.32 1.95 2.61 3.31 4.85 1.96 2.51 3.22 4.48 2.56 3.23 4.15 6.22
TGV [9] 3.19 4.06 5.08 7.61 1.52 2.21 2.47 3.54 1.47 2.03 2.58 3.56 2.06 2.77 3.38 4.90

Chan [12] 3.44 4.46 6.12 8.68 2.09 2.77 3.78 5.45 2.08 2.76 3.87 5.57 2.54 3.33 4.59 6.57
Yang 2014 [60] 5.37 6.06 9.33 15.02 4.98 5.06 7.62 16.13 4.73 5.32 5.73 9.19 5.03 5.48 7.56 13.45

SDF [61] 3.36 3.86 4.93 7.85 1.59 1.92 2.60 4.16 1.64 1.85 2.67 4.21 2.20 2.54 3.40 5.41
PDN [30] 1.87 3.11 4.48 7.35 1.01 1.56 2.24 3.46 1.16 1.68 2.48 3.62 1.35 2.12 3.07 4.81
FBS [62] 2.93 3.79 4.95 7.13 1.39 1.84 2.38 3.29 1.38 1.80 2.38 3.23 1.90 2.48 3.24 4.55

DG-RBF (ours) 1.91 3.06 4.75 8.10 1.21 1.77 2.55 4.12 1.32 1.84 2.86 4.13 1.48 2.22 3.39 5.45
DG-CNN (ours) 1.74 2.53 3.51 5.14 1.09 1.40 1.93 2.80 1.20 1.47 2.01 2.91 1.34 1.80 2.48 3.62

(a) Color Image (b) Ground Truth (c) GF [18] (d) MRF [7] (e) Yang et al. [59]

(f) TGV [9] (g) SDF [61] (h) DJF [21] (i) DG-RBF (j) DG-CNN

Fig. 5. Depth restoration results of different methods based on noise-free data (Moebius).

(a) Color Image (b) Ground Truth (c) GF [17] (d) MRF [7] (e) Park et al. [8]

(f) TGV [9] (g) SDF [61] (h) DJF [21] (i) DG-RBF (j) DG-CNN

Fig. 6. Depth SR results by different methods for a testing image in the NYU dataset [4].
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(a) Color Image (b) Input (c) Ground Truth (d) Lu et al. [11] (e) Shen et al. [19] (f) DG-RBF (ours) (f) DG-CNN (ours)

Fig. 7. Depth restoration results of different methods.

8 REALISTIC GUIDED DEPTH RECONSTRUCTION

In this section, we provide some experimental results for other
depth map restoration problems. We evaluate the proposed meth-
ods on two datasets. The first dataset is a synthetic dataset
proposed by Lu et al. [11]. In order to mimic real low-quality
depth images, Lu et al. [11] add zero mean additive Gaussian noise
to the depth images, and then manually set 13% of pixels in the
depth map as missing values to simulate the depth map acquired
from consumer level depth sensors. Moreover, the second dataset
is a real sensor dataset provided by [9]. A Time of Flight (Tof) and
a CMOS camera are used to obtain low resolution depth maps and
intensity images, and the ground truth depth images are generated
by a structured light scanner. The detailed experimental setting
will be introduced in the following subsections.

8.1 Experimental results on synthetic dataset [11]
In [11], Lu et al. propose a synthetic dataset to evaluate guided
depth reconstruction methods. 30 depth and RGB image pairs in
the Middlebury database [56] are included in the dataset. The
size of all the images have been normalized to the same height
of 370 pixels. To compare with previous algorithms, we utilized
the cross-validation method to obtain the reconstruction results
on all the 30 images. Concretely, we divide the 30 images into
10 groups, and utilize 9 groups to train models to estimate the
depth maps in the remainder group. We compare our method with
other methods designed for this task, which include a low rank
based method [11] and the recently proposed mutual-structure
joint filtering method [19].

Since our proposed method does not consider the noise in
the RGB image, for fair comparison, we pre-process the RGB
image by a state-of-the-art denoising method [64], [65] and use
the denoised image to guide the restoration of the depth map.
Such a method has been utilized in the original paper [11] to
compare with other depth restoration methods. In addition, since
the missing values in the depth map are represented as zeros which
may be considered as very sharp edges in the depth map, we use

TABLE 10
Experimental results (RMSE) on the 449 NYU test images.

NYU
×4 ×8 ×16

MRF [7] 4.29 7.54 12.32
GF [18] 4.04 7.34 12.23
JBU [16] 2.31 4.12 6.98
TGV [9] 3.83 6.46 13.49
Park [8] 3.00 5.05 9.73
Ham [32] 3.04 5.67 9.97
DJF [21] 1.97 3.39 5.63
DG-RBF (ours) 1.35 2.69 5.11
DG-CNN (ours) 0.87 1.78 3.53

TABLE 11
Experimental results (RMSE) on the 30 test images in [11].

Lu et al. Shen et al. DG-RBF DG-CNN
[11] [19] (ours) (ours)
2.59 2.64 2.30 2.27

a simple masked joint bilateral filtering [66] method to generate
initialization values for the unknown points in the depth map.

The restoration results by different methods are shown in
Table 11. For both the DG-RBF and DG-CNN model, the
hyper-parameters are the same as used for the super-resolution
experiment with zooming factor 4. The results of [11] and [19]
are downloaded from the websites of the respective authors.
Both proposed DG-RBF and DG-CNN methods outperform the
competing methods. Interestingly, different from our experimental
results for the guided super-resolution task, the results by the DG-
CNN approach are just comparable to the results by DG-RBF. The
main reason is the very limited training data, the 27 low-resolution
images are insufficient to train the complex DG-CNN model for
best performance. In contrast, the DG-RBF model can still achieve
good performance with a small training dataset because its number
of parameters is much lower than that of DG-CNN.

8.2 Experimental results on real Sensor Data
In addition to synthetic data, we also evaluate the proposed method
on a real sensor dataset [9]. We utilize the same 46 images
from the Middlebury dataset [56] as training images. As for our
experiment on the synthetic dataset, we also utilized the joint
bilateral filtering [66] method to generate initialization values for
the unknown points in the depth map. For both the DG-RBF and
DG-CNN model, the hyper-parameters are the same as for the
noise-free Middleburry super-resolution experiment with zooming
factor 4. We compare our methods with other classic or state-of-art
methods. The guided reconstruction results are shown in Table 12.
Our methods get the best results in terms of the mean absolute
error (MAE). From Fig. 8 it is easy to see that our methods are
capable of generating clean estimations, whereas the results by
other methods copy irrelevant textures from the intensity image.

9 DISCUSSION

By analyzing previous optimization-based methods, we proposed
a WASR model for the task of guided depth reconstruction. Instead
of solving the optimization problem of the WASR model, we
proposed to utilize different parameters in the optimization process
and conduct the depth reconstruction with a dynamic guidance
strategy. In particular, we unfolded the optimization process of
WASR and got the formula of stage-wise operation for guided
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(a) Intensity Image (b) Ground Truth (c) TGV [9] (d) SDF [61] (e) DG-RBF (ours) (f) DG-CNN (ours)

Fig. 8. Depth reconstruction results of different methods based on real data (Books).

TABLE 12
Real data results (MAE) on the 3 test images in [9]

Books Shark Devil Average
Nearest Neighbor 18.21 21.83 19.36 19.80
Bilinear 17.10 20.17 18.66 18.64
Kopf [16] 16.03 18.79 27.57 20.80
He [17] 15.74 18.21 27.04 20.33
FBS [62] 13.42 17.07 16.10 15.53
SDF [61] 13.47 16.75 16.36 15.53
TGV [9] 12.36 15.29 14.68 14.11
Yang [60] 12.25 14.71 13.83 13.60
DG-RBF (ours) 12.18 14.48 13.79 13.48
DG-CNN (ours) 12.14 14.46 13.11 13.24

depth reconstruction. Based on the stage-wise formula Eq. (7),
we introduced two networks which parameterize the stage-wise
operation with RBF kernels (DG-RBF) or convolutional neural
networks (DG-CNN). Experimentally, we have shown that both
the DG-RBF and DG-CNN models are able to generate good depth
reconstruction results. In this section, we discuss the respective
merits and drawbacks of the two models.

DG-RBF follows the unfolded optimization process of WASR
strictly and parameterizes the nonlinear penalty functions with
Gauss RBF kernels. In comparison, the DG-CNN model approx-
imates the stage-wise operation in a lose way; we decompose the
stage-wise operation as an intensity encoder, a depth encoder and
a joint decoder, and use several layers of CNN to parameterize
these sub-components. Although both methods benefit from the
domain knowledge of previous researches as well as training
data, they adopt different trade-offs between the two merits.
The DG-RBF method strictly follows the unfolded optimization
process of WASR. It is more related to previous optimization-
based approaches. This prior knowledge about the guided depth
reconstruction problem enables the proposed DG-RBF method to
capture the relationship between the guidance and the depth image
in a more economic way. As a result, the DG-RBF method can be
trained on small datasets and its generalization capacity is better
than that of DG-CNN in general. On the synthetic dataset provided
by Lu et al. [11], which only has 27 small training images, DG-
RBF model achieved comparable results to the DG-CNN model
with much less parameters. Yet, following the unfolded WASR
model strictly limits the flexibility of DG-RBF on datasets with
large amounts of training data. The results generated by the DG-
RBF are not as good as those of some learning-based approaches.
In comparison to DG-RBF, DG-CNN benefits from the overall
structure of the unfolded WASR model. The stage-wise formula
provides useful hints on the design of the DG-CNN, while the
advances in deep learning enable DG-CNN to take full advantage
of training data. Consequently, the DG-CNN achieved stage-of-

the-art performance on different datasets.
Another difference between DG-RBF and DG-CNN resides in

the training. Different from CNNs, where one can use the back-
propagation algorithm for gradient calculation, the computation of
the parameter gradients for the DG-RBF model is time consuming.
In addition, the L-BFGS method [50] used to train DG-RBF re-
quires to calculate parameter gradients for all the training samples.
We have also tried to train DG-RBF with stochastic algorithms,
such as stochastic gradient descent (SGD) [67] and its ADAM
variation [55]. L-BFGS always generates better models which can
generate high quality depth reconstruction results. The limited
performance achieved by the SGD trained DG-RBF model may
be due to our parameterization scheme. Studies [68] in the deep
learning literature have found that components in the network can
greatly affect the training of the network. Inappropriate activation
functions in the network may lead to the vanishing gradient
problem and can render the network hard to train. The complex
parameterization scheme adopted in our DG-RBF model did
not take the training performance into consideration. Stochastic
algorithms with heuristic learning rates may not be able to deliver
a good model. L-BFGS computes accurate gradients on the whole
training set and utilizes a line search method to determine the
step length in each step. It has been utilized to train optimization-
inspired networks in many previous works [27], [29].

10 CONCLUSIONS

To model the dependency between the guiding intensity image
and the depth image we proposed a weighted analysis sparse
representation (WASR) model for guided depth reconstruction. An
intensity weighting term and an analysis representation regulariza-
tion term are combined to model the complex relationship between
the depth image and RGB image. We unfold the optimization
process of the WASR model as a series of stage-wise operations.
Two models, DG-RBF and DG-CNN, have been introduced to
parameterize the stage-wise operation with Gaussian RBF kernels
and CNNs, respectively, and we learn their model parameters in
a task-driven manner. Both models generate high quality depth
estimation in just a couple of stages. We experimentally validated
their effectiveness for guided depth super-resolution and realistic
depth reconstruction tasks using standard benchmarks. To the best
of our knowledge, our proposed DG-RBF and DG-CNN methods
achieve the best quantitative results (RMSE) to date and better
visual quality than the compared state-of-the-art approaches.
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APPENDIX

As introduced in our paper, we learn stage-wise parameters Θt+1

by solving the following problem,

Θt+1 = arg min
Θ

1

2

∑S

s=1
||xsg − xst+1(Θ)||22,

xst+1(Θ) = xst−
(τt+1∇xL(xst , y

s )+
∑

l
kt+1
l ⊗ (Wt+1

l ρt+1
l

′
(kt+1
l ⊗ xst )),

where Θt+1 = {τ t+1, {αt+1
l ,βt+1

l , kt+1
l }Ll=1} are the param-

eters. Since the gradient of loss function on the whole training
datasets can be decomposed to the sum over training samples, in
the following derivation, we omit the sample index s for simplicity
of notation.

First of all, based on the chain rule, we have:

∂loss(xt+1, xg)
∂Θt+1

=
∂xt+1

∂Θt+1
· ∂loss(xt+1, xg)

∂xt+1
.

For our `2-norm loss, ∂loss(xt+1,xg)
∂xt+1

is simply given by

∂loss(xt+1, xg)
∂xt+1

= xt+1 − xg.

Therefore, the main issue is to calculate the gradient of xt+1

with respect to Θt+1 = {τ t+1, {αt+1
l ,βt+1

l , kt+1
l }Ll=1}. We

introduce the derivation of each variable as follows.

Weight parameter τ : We have

∂xt+1

∂τt+1
= (xt − y)TM

1
2 ,

then ∂loss
∂τt+1

is given by

∂loss

∂τt+1
= (xt − y)TM

1
2 (xt+1 − xg).

Filters {kl}Ll=1: We follow the method in [27], and intro-
duce two auxiliary variables ft+1 = −k̄t+1

l and vt+1 =

(Wt+1
l ρt+1

l

′
(kt+1
l ⊗ xst )). Based on the property of convolution,

we have

ft+1 ⊗ vt+1 ⇐⇒ Ft+1vec(vt+1)⇐⇒ Vt+1vec(ft+1),

kt+1
l ⊗ xt ⇐⇒ Xtvec(kt+1

l ).

Then, the gradient with respect to kl is given by

∂xt+1

∂kt+1
l

=
∂ft+1

∂kt+1
l

· ∂xt+1

∂ft+1
+
∂vt+1

∂kt+1
l

· ∂xt+1

∂vt+1

= −PTinvVTt+1 − XTt ΛK̄t+1T

l ,

where Λ is a diagonal matrix, Λi,i = Wt+1
l,i ρ

t+1
l

′′
((kt+1

l ⊗ xt)i).
PTinv inverts the kernel vector (or patches with the same size):
PTinvk = fliplr(flipud(k)). We construct the filters {kl}Ll=1

from DCT basis D with coefficients cl: vec(kl) = Dcl, thus, the
derivation of loss function with respect to cl is given by:

∂loss

∂ct+1
l

=
∂kt+1

l

∂ct+1
l

· ∂xt+1

∂kt+1
l

· ∂loss
∂xt+1

= −DT (PTinvVTt+1 + XTt ΛK̄t+1T

l )(xt+1 − xg).

(15)

Attributed to (xt+1 − xg) introduced by ∂loss(xt+1,xg)
∂xt+1

, we do

not need to construct Vt+1, XTt and K̄t+1T

l in practice. Eq.

(15) can be efficiently calculated by convolutions and point-wise
multiplications.

Filters {βl}Ll=1: By utilizing the chain rule, the gradient with
respect to βl can be calculated as

∂loss

∂βt+1
l

=
∂Wt+1

l

∂βt+1
l

· ∂(Wt+1
l ρt+1′

l (kt+1
l ⊗ xst ))

∂Wt+1
l

· ∂xt+1

∂(Wt+1
l ρt+1′

l (kt+1
l ⊗ xst ))

· ∂loss
∂xt+1

We rewrite Wt+1
l as exp(−(βTl E)2), where E = {e1, . . . , eN}

and ei = Rig
‖Rig‖2 is i-th normalized patch extracted from the

guidance image g. Then, we have

∂loss

∂βt+1
l

=− 2(βt+1
l E)Ediag

(
Wt+1
l

)
diag

(
ρt+1′
l (kt+1

l ⊗ xt)
)

K̄t+1
l (xt+1 − xg).

Influence function {αl}Ll=1: In our work, the influence function
is parameterized as

ρt+1′
l (z) =

M∑
j=1

αt+1
lj ϕ(

|z − µj |
2γ2j

).

To calculate its gradient with respect to αl,j , we rewrite
ρt+1
l

′
(kt+1
l ⊗ xt) as ρt+1

l

′
(z) = W(z)αt+1

l :
ρt+1′
l (z1)

ρt+1
l

′
(z2)

...
ρt+1
l

′
(zN )

 =


ϕ( |z1−µ1|

2γ2
j

) ϕ( |z1−µ2|
2γ2

j
) · · · ϕ( |z1−µM |

2γ2
j

)

ϕ( |z2−µ1|
2γ2

j
) ϕ( |z2−µ2|

2γ2
j

) · · · ϕ( |z2−µM |
2γ2

j
)

...
...

. . .
...

ϕ( |zN−µ1|
2γ2

j
) ϕ( |zN−µ2|

2γ2
j

) · · · ϕ( |zN−µM |
2γ2

j
)



αt+1
l1

αt+1
l2
...

αt+1
lM

 .

Then, we have
∂loss

∂αt+1
l

= −W(kt+1
l ⊗ xt)diag

(
Wt+1
l

)
Kt+1
l (xt+1 − xg).
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