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ABSTRACT
In cell-free Massive MIMO systems, a large number of distributed
wireless access points (AP) are simultaneously serving a number of
user equipments (UEs). This setup has the ability to offer a good
quality of service, be it that there is still a need for low-complexity
signal processing algorithms. In this paper, the problem of optimal
uplink receive combining is tackled by providing an efficient dis-
tributed MMSE algorithm, with a minimal number of exchanged pa-
rameters between the APs and the network center. Scalable versions
of this distributed MMSE algorithm are also proposed ensuring that
the algorithm can be used in large networks with many UEs.

Index Terms— Cell-free Massive MIMO, uplink receive com-
bining, distributed algorithms, user-centric networking

1. INTRODUCTION

Cell-free Massive MIMO systems have recently been introduced
[1, 2] where a large number of access points (AP) jointly serve a
smaller number of user equipments (UEs). The APs use channel
estimates, possibly obtained from received uplink pilots, and apply
receive combining and transmit beamforming to transfer data from
and to the UEs. It has been shown that Massive MIMO systems pro-
vide better performance compared to small-cell systems, even with
the simple local maximum-ratio (MR) combining scheme [2–4].

An improved performance is obtained when the simple MR
combining scheme is replaced with minimum mean squared error
(MMSE) combining schemes [5–7], where typically the channel
state information (CSI) has to be transmitted to a network center
(NC) in order to determine the receiver vectors. The NC can either
be a physical processing unit that is responsible for processing the
signals of all UEs, or can be seen as a virtual set of tasks that are
performed somewhere in the network. Although a significant per-
formance increase can be achieved, the drawbacks of network-wide
MMSE combining schemes, namely the need for centralizing the
CSI and the increased computational complexity when the number
of UEs and APs grows large, make them not very practical.

In this paper, the problem of optimal uplink receive combining is
tackled where these drawbacks are resolved. An efficient distributed
MMSE algorithm is proposed where the CSI of an AP is required
only locally and only a small number of parameters have to be ex-
changed between the APs and the NC. Scalable versions of this dis-
tributed MMSE algorithm based on a user-centric approach [4, 7]
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ensure that the algorithm can also be used for large networks with
many UEs. The paper also includes simulations to show the perfor-
mance of the proposed algorithms.

2. SIGNAL MODEL

Consider a cell-free Massive MIMO system consisting of K single-
antenna UEs and L APs randomly deployed over the considered
area, with Ml antennas in the l-th AP and with local processing ca-
pabilities in each AP. The APs are connected to a NC via a physi-
cal network. This setup allows for coherent reception of data from
the UEs. In the cell-free Massive MIMO literature [1, 8] it is of-
ten assumed that M � K and that both M and K are large, with
M =

∑L
l=1 Ml the total number of antennas in the considered area.

The UEs use τu time slots for uplink data transmission and τp
time slots are reserved for channel estimation1. The channel from
UE k to AP l is denoted by hkl ∈ CMl such that the channel
from UE k and all the APs is given by hk = [hT

k1 ... h
T
kL]

T ∈
CM . The channel hkl is assumed to remain constant during a co-
herence block τc = τp + τu and can be approximated as being
drawn from an independent correlated Rayleigh fading realization
NC(0,Rkl). Rkl ∈ CMl×Ml is a positive semi-definite spatial cor-
relation matrix describing the large-scale fading, including geomet-
ric pathloss, shadowing, antenna gains, and spatial channel correla-
tion [9]. The Complex Gaussian distribution models the small-scale
fading. Due to the spatial distribution of the APs in the network, the
channel vectors of different APs are independently distributed, i.e.
E{hklh

H
kn} = 0Ml×Mn for l 6= n, such that the channel estimation

can be performed independently at each AP.

2.1. Channel estimation

It is assumed that AP l can obtain a local estimate ĥkl of hkl =
ĥkl + h̃kl for UE k in each coherence block. Furthermore, the esti-
mation is assumed to be unbiased with an estimation error h̃kl that is
uncorrelated with the estimation ĥkl and with known variance Ckl:

h̃kl ∼ NC(0,Ckl). (1)

There exist multiple channel estimation techniques, that provide
these quantities for example based on training sequences [7, 10] or
Bayesian learning [11], where often an estimate of the spatial corre-
lation matrix Rkl is required.

1The uplink receive combining schemes considered in this paper can also
be used for downlink transmit beamforming when the APs and UEs operate
using a TDD protocol exploiting the duality between uplink and downlink
[9].



2.2. Uplink signal model

During uplink data transmission, the received signal yl ∈ CMl at
AP l is given by

yl =

K∑
k=1

hklsk + nl = Hls+ nl (2)

where sk ∈ C is the signal transmitted by UE k with transmit power
pk = E{sksHk } and nl ∼ NC(0,Rnlnl) is an additive Gaussian
noise component, modeling antenna noise and quantization noise.
The noise components of the different antennas of an AP are of-
ten assumed to be independent, i.e. Rnlnl = σ2IMl , but here a
more general case is considered with a general Rnlnl . Furthermore,
Hl = [h1l ... hKl] is the concatenation of the channels from all
the UEs to AP l and s = [s1 ... sK ]T . Stacking the received sig-
nals of all APs in y = [yT

1 ... yT
L ]

T ∈ CM as well as the noise
components in n = [nT

1 ... nT
L ]

T ∈ CM ∼ NC(0,Rnn) where
Rnn = Blkdiag{Rn1n1 , ...,RnLnL}, results in the network-wide
signal model:

y = Hs+ n (3)

with H = [HT
1 ...HT

L ]
T = [h1 ... hK ].

2.3. Uplink receive combining

In network-wide receive combining the signals s are estimated by
linearly combining the received signals y by means of a receiver
matrix V ∈ CM×K . Note that this linear combining can be per-
formed in the network if AP l selects the local receiver matrix Vl =
[v1l ... vKl] ∈ CMl×K in V = [VT

1 ... VT
L ]

T and computes the
local estimate zl = VH

l yl. The NC then estimates s by combining
the local estimates as

ŝ =

L∑
l=1

zl =

L∑
l=1

VH
l yl = VHy. (4)

The goal is then to choose a local receiver matrix Vl that pro-
vides a good estimate ŝ, but where the CSI of an AP is required
only locally. In cell-free Massive MIMO literature a MR comb-
ing scheme is often used with Vl = Ĥl [2–4]. Other heuristic
schemes that perform generally better, but require more processing
power of the AP are local MMSE combining schemes [12]. In this
paper, network-wide MMSE receive combining schemes [7] will be
considered, requiring typically network-wide CSI. However, in Sec-
tion 3 it is shown that if a small number of parameters can be ex-
changed between the NC and the APs, this network-wide MMSE re-
ceive combining can still be obtained efficiently at the NC where the
CSI is used only locally leading to an efficient distributed MMSE
algorithm. Since the number of combining vectors that an AP has
to compute, grows with the number of UEs in the network, inspired
by [7], scalable versions of this distributed MMSE algorithm are also
derived, resulting in combining schemes that scale independently of
the number of UEs in the network presented in Section 4.

3. DISTRIBUTED MMSE RECEIVE COMBINING

The network-wide MMSE receiver matrix VN-RC = [vN-RC
1 ... vN-RC

K ]
is obtained by minimizing the mean squared error between the trans-
mitted signal s and the estimate obtained by linearly combining the
received signals y

VN-RC = argmin
V

E{||s−VHy||2} (5)

where E{.} is the expected value operator and ||.|| is the Euclidean
norm. The optimal solution of this convex optimization problem has
a closed form and is given by

VN-RC = E{yyH}−1E{ysH} (6)

with the uplink correlation matrix E{yyH} given as

E{yyH} = E{HssHHH}+ E{nnH}

= ĤE{ssH}ĤH + E{H̃ssHH̃H}+ E{nnH}

= ĤPĤH +

K∑
k=1

pkCk +Rnn

(7)

where Ck = Blkdiag{Ck1, ...,CkL} and E{ssH} = P =

diag{p1, ..., pK}. In the second step, H is replaced by Ĥ + H̃

and the fact that Ĥ and H̃ are uncorrelated is also used. In the last
step, independence between the signals and the channel estimation
error is used. Furthermore, the cross-correlation matrix E{ysH} is
given by

E{ysH} = ĤP. (8)

The closed form expression for the network-wide MMSE receiver
matrix VN-RC is then obtained as

VN-RC = (ĤPĤH +

K∑
k=1

pkCk +Rnn︸ ︷︷ ︸
T

)−1ĤP. (9)

It is shown [9] that the receiver vector vN-RC
k maximizes the achiev-

able spectral efficiency (SE) of UE k given by

SEk =
τu
τc
E{log2(1 + SINRk)} (10)

where the expectation is with respect to the different channel real-
izations and where SINRk is given by the ratio

pk|vH
k ĥk|2∑K

i=1,i6=k pi|vH
k ĥi|2 + vH

k Tvk

(11)

which will be used as a performance measure in the simulations.
To obtain this filter, all the APs have to send their local estimate

Ĥl ∈ CMl×K , estimation error variance
∑K

k=1 pkCkl ∈ CMl×Ml

and Rnlnl to the NC, which leads to a significant communication
cost, especially when the number of antennasMl of an AP l is large.
The NC then has to invert an M ×M matrix to obtain VN-RC. Dur-
ing receive combining, the NC needs to have access to all M re-
ceived signals y, which requires a larger network communication
than when the local estimates can be combined in the network as in
(4).

However the expression for the network-wide MMSE receiver
matrix VN-RC can be rewritten as

VN-RC =

[
T−1 −T−1Ĥ

(
P−1 + ĤHT−1Ĥ

)−1

ĤHT−1

]
ĤP

= T−1Ĥ
(
P−1 + ĤHT−1Ĥ

)−1

=

W1

...
WL

(P−1 +X
)−1

(12)



with

Wl =

(
K∑

k=1

pkCkl +Rnlnl

)−1

Ĥl (13)

and

X =

L∑
l=1

ĤH
l Wl. (14)

The Sherman-Morrison-Woodbury formula and the fact that T is a
block-diagonal matrices are used in (12).

Based on this equivalence, an efficient way of obtaining the
network-wide MMSE estimate is presented in Algorithm 1 as the
network-wide distributed MMSE receive combining (N-DRC) al-
gorithm. Here the CSI is only used locally to construct Wl and
ĤH

l Wl, but does not need to be transmitted to the NC.
A simple procedure to obtain the in-network sum in step 2 of

Algorithm 1 is based on the formation of a tree topology using the
available physical links between the APs [13] with the NC as root
node. A leaf node AP l with only one neighbor starts with transmit-
ting its transformed signals to its neighbor. An AP l with more than
one neighbor waits until it has received signals from all its neighbors,
except one denoted by n and transmits wl +

∑
l̄∈{Nl\n}

wl̄ to AP
n, where Nl denotes the set of neighbors of node l. This continues
until the root node NC has received signals from all its neighbors.
The root node NC can then compute w straightforwardly. A similar
procedure can be followed to construct X, but since X is Hermitian
symmetric, the transmission of only K2+K

2
i.s.o. K2 parameters is

required.

Algorithm 1: Network-Wide Distributed MMSE Re-
ceive Combining (N-DRC)

Perform the following steps in each coherence block:
1 - Each AP l obtains a local estimate of Ĥl and Rnlnl and

computes Wl using (13).
- Each AP l transmits the parameter ĤH

l Wl ∈ CK×K and
the transformed signals wl = WH

l yl ∈ CK for all
received signals in the coherence block to the NC.

2 The network is used to perform an in-network sum to obtain

w =
L∑

l=1

wl, X =
L∑

l=1

ĤH
l Wl. (15)

3 The NC then computes the network-wide MMSE estimate
as

ŝ =
(
P−1 +X

)−H
w. (16)

4. SCALABLE DISTRIBUTED MMSE RECEIVE
COMBINING

4.1. Scalability issue and solution

The N-DRC algorithm presented in the previous section scales with
the number of UEs K in the network. Each AP needs to compute
Wl for all UEs in the network. Therefore an AP has to estimate all
channels Ĥl and transmits aK×K matrix in each coherence block.
Since the received signal hklsk at AP l becomes weaker when the
distance between AP l and UE k increases, the estimate ĥkl will be

worse due to background noise and interference from other UEs that
are in the proximity of AP l. Also the number of parameters that
need to be transmitted and received in each iteration, may become
too large for the obtained benefit in performance.

As proposed in [7], this issue can be solved by moving to a user-
centric approach, where a UE k is only served by a subset of APs
for which a good channel estimate ĥkl can be obtained. This will be
represented by defining the binary serving matrix D as

[D]kl =

{
1 if AP l is serving UE k
0 else.

(17)

Defining the set of UEs that are served by AP l as Dl =
{k|Dkl = 1}, each AP l only needs to compute a local receiver
vector vkl ∀k ∈ Dl instead of for all UEs in the network. Heuristic
approaches to obtain D such that |Dl| (where |.| denotes the car-
dinality of a set) is constant or independent of the total number of
UEs K, are presented in [7] and it is assumed that the NC knows
the UE-assignment. By also bounding the number of interfering
UEs in the MMSE estimation, fully scalable MMSE receive com-
bining objectives can be proposed for which a distributed algorithm
can be derived. Two scalable objectives are presented in the next
subsections.

4.2. Scalable network-wide distributed MMSE receive combin-
ing

In this scalable version of N-DRC, each AP l only estimates hkl

if k ∈ Dl and ignores the effect of the other channels by setting
them to 0, i.e. ĥkl = 0 and Ckl = 0 if [D]kl = 0. If these
modifications are used in (5), a similar expression for the scalable
network-wide MMSE receiver matrix VSN-RC as (12) is obtained,
but with a different expression for Wl and X given by

WS
l =

∑
k∈Dl

pkCkl +Rnlnl

−1

ĤlDl (18)

and

XS =

L∑
l=1

DlĤ
H
l WS

l (19)

where the diagonal matrix Dl has 1 on its k’th diagonal element
if [D]kl = 1 and zero otherwise. The N-DRC algorithm can be
transformed to the scalable network-wide distributed MMSE receive
combining (SN-DRC) algorithm by replacing the matrices Wl and
X with the scalable versions defined above. Since here only |Dl|
elements of wl and |Dl|×|Dl| elements of DlĤ

H
l WS

l are non-zero,
this will strongly reduce the transmitted data of an AP l. However,
care should be taken when the in-network sums are constructed using
a tree topology, since the different signals need to added in a coherent
way.

4.3. Scalable partial distributed MMSE receive combining

Even with the communication reduction proposed in the previous
section, the NC still has to invert a K × K matrix to construct the
estimate ŝ in (16), which still scales with the number of UEs K.
In [5] it is stated that the interference affecting UE k is mainly gen-
erated by a small subset of other UEs. Therefore, the subset of UEs

Pk = {i|∃l : DklDil = 1} ⊂ {1, ...,K} (20)



Table 1: Comparison of proposed algorithms.

Scheme Parameters transmitted by each AP Parameters received at NC PC at each AP PC at NC

N-RC MlK +
M2

l +Ml

2
MK +

∑L
l=1

M2
l +Ml

2
- O(M3)

N-DRC K2+K
2

K2+K
2

O(M3
l ) O(K3)

SN-DRC |Dl|2+|Dl|
2

K2+K
2

O(M3
l ) O(K3)

SP-DRC |Dl|2+|Dl|
2

K2+K
2

O(M3
l ) O(K|Pk|3)

is assumed to have a significant effect on the received signals used to
estimate ŝk. The subset considers all the UEs that have at least one
AP in common with UE k.

As such, a heuristic partial MMSE receiver vector vP-RC
k is pro-

posed to estimate sk:

vP-RC
k =

(
ĤQkQ

H
k PQkQ

H
k ĤH +

K∑
k=1

pkCk +Rnn

)−1

ĥkpk

(21)
with Qk = I:,Pk , selecting the |Pk| columns of IK with index
i ∈ Pk. This heuristic partial MMSE receiver vector vP-RC

k can be
rewritten as

vP-RC
k =

W1

...
WL

Qk

((
QH

k PQk

)−1

+QH
k XSQk

)−1

qk

(22)
with qk = QH

k ek. Substituting Wl and X with WS
l and XS from

(18) and (19) respectively results in a fully scalable filter, denoted
by vSP-RC

k . The N-DRC algorithm can again be adapted to provide
the output of the scalable partial MMSE receiver vector vSP-RC

k by
changing the final combining method in step 3 of Algorithm 1 to

ŝk = qH
k

((
QH

k PQk

)−1

+QH
k XQk

)−H

QH
k w (23)

for each UE k and by replacing Wl and X with its scalable versions
(18) and (19) respectively. The obtained algorithm will be denoted
with the scalable partial distributed MMSE receive combining (SP-
DRC) algorithm. A mayor advantage of the SP-DRC algorithm is
that in (23) only a |Pk| × |Pk| matrix needs to be inverted i.s.o. the
K ×K matrix of (16).

As a summary, Table 1 gives a comparison of the different pro-
posed algorithms in terms of the number of parameters that need
to be exchanged in each coherence block as well as in terms of the
processing complexity (PC) of performing the required inversion op-
eration. The algorithms strongly reduce the communication require-
ment of the network and the PC at the NC, but require that each
AP has local processing capabilities. The SP-DRC scales best when
the number of UEs grows large (since |Dl|, |Pk| are independent of
K), but its performance will be shown to be suboptimal to the other
algorithms.

5. SIMULATIONS

Numerical results are provided in this section to demonstrate the per-
formance of the proposed distributed algorithms. A similar setup as
[7] with the MMSE-channel estimator [12] is considered (K = 100
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Fig. 1: Uplink SE per UE for the proposed algorithms.

UEs) but the number of APs is decreased to L = 50 with 16 an-
tennas per AP . Figure 1 shows the cumulative distributed function
(CDF) of the SE per UE, estimated using 25 network realizations
and 1000 channel realizations for the different algorithms. Also the
performance of the conventional MR combining scheme [2–4] and
(scalable) local MMSE ((S)L-RC) combining schemes [7] are pro-
vided as benchmarks.

The results show that the proposed algorithms perform very well
compared to the benchmarks. The performance decrease between
the N-DRC algorithm and the scalable SN-DRC algorithm is very
limited, while the reduction in channel estimations and in the trans-
mission of parameters and transformed signals for the algorithms is
significant since |Dl| = 10 << 100. The SP-DRC algorithm per-
forms better than the (scalable) local MMSE combining schemes for
60% of the UEs and the maximal value for |Pk| is 54 in all the simu-
lations, making this an interesting substitute for local MMSE receive
combining.

6. CONCLUSION

This paper presented different MMSE receive combining algorithms
for cell-free Massive MIMO systems, that allow for an efficient dis-
tributed implementation when a small number of parameters can be
exchanged between the NC and APs. To avoid scalability issues
when the number of UEs grows large, scalable version are proposed
and simulations confirm that their performance is very similar to the
performance of its non-scalable version.
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