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Abstract—In this work, a detection and classification method
for sleep apnea and hypopnea, using photopletysmography (PPG)
and peripheral oxygen saturation (SpO2) signals, is proposed.
The detector consists of two parts: one that detects reductions in
amplitude fluctuation of PPG (DAP) and one that detects oxygen
desaturations. To further differentiate among sleep disordered
breathing events (SDBE), the pulse rate variability (PRV) was
extracted from the PPG signal, and then used to extract features
that enhance the sympatho-vagal arousals during apneas and
hypopneas. A classification was performed to discriminate be-
tween central and obstructive events, apneas and hypopneas. The
algorithms were tested on 96 overnight signals recorded at the UZ
Leuven hospital, annotated by clinical experts, and from patients
without any kind of co-morbidity. An accuracy of 75.1% for the
detection of apneas and hypopneas, in one-minute segments, was
reached. The classification of the detected events showed 92.6%
accuracy in separating central from obstructive apnea, 83.7% for
central apnea and central hypopnea and 82.7% for obstructive
apnea and obstructive hypopnea. The low implementation cost
showed a potential for the proposed method of being used as
screening device, in ambulatory scenarios.

Index Terms—Apnea detection, apnea classification, PPG,
SpO2, PRV, DAP.

I. INTRODUCTION

SLEEP disordered breathing events (SDBE) detection and
classification are presented in this work, focusing on apnea

and hypopneas. Sleep apnea is the absence of airflow during
sleep, while hypopnea is a sleep airflow reduction [1]. Both
can be obstructive or central: obstructive if the breathing
effort continues, while there is a mechanical obstruction of
the airways, resulting in interruptions of the airflow; central
if no breathing effort is present. This disorder disrupts the
normal sleep pattern and is associated with daytime sleepiness
and fatigue [2]. The stress that the heart and brain undergo
with each apnea/hypopnea, can lead to long-term complica-
tions: high blood pressure, cardiovascular disease, stroke and
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diabetes [3], [4]. For this reason its detection, diagnosis and
treatment are important.

Benjafield et al. in 2019, published the first study to report
global prevalence of obstructive sleep apnea, showing that
almost 1 billion people are globally affected, with prevalence
exceeding 50% in some countries. The number of affected
individuals was highest in China, followed by the USA, Brazil,
and India. The study estimated that, globally, 936 million
adults aged 30-69 years (men and women) have mild to severe
obstructive sleep apnea and 425 million adults aged 30-69
years have moderate to severe obstructive sleep apnea [5].

The diagnosis of sleep apnea and hypopnea is done us-
ing either polysomnography or polygraphy. Polysomnography
(PSG) is the gold standard procedure for its diagnosis. It con-
sists of an overnight recording of different electrophysiological
signals such as electroencephalogram, electromyogram, elec-
trooculogram, electrocardiogram, airflow, peripheral oxygen
saturation (SpO2) and photoplethysmogram (PPG), chest and
abdominal movements. The acquisition and analysis of these
signals require human expertise and specialized equipment,
being a very uncomfortable and costly procedure. This is why
sleep disorders are often under-diagnosed. Polygraphy is a less
restrictive examination only measuring (cardio-)respiratory
parameters usually including airflow, respiratory movement
and oxygen saturation. This technique can more easily be
performed at home and requires the use of a nasal cannula,
which is cumbersome and could interfere with the natural
sleep. So different techniques for home sleep apnea/hypopnea
monitoring were extensively developed [6], minimizing the
equipment used. It motivated multiple studies focused on
developing low cost and unobtrusive systems for sleep ap-
nea/hypopnea detection, based on few physiological signals.
Pulse oximetry, which exploits the PPG and SpO2 signals
recorded at the level of peripheral parts of the body, would
be less invasive and more convenient.

The PPG signal is obtained by means of a pulse oximeter,
which illuminates the skin, and measures changes in light
absorption of the blood volume [7]. The SpO2 signal, fur-
thermore, is computed by combining the information of two
PPG signals, acquired at different wavelengths: infrared and
red light, usually at the level of the index finger [8].

From the PPG signal, reductions in blood flow can be
observed. These fluctuations in the amplitude are markers of
sympathetic discharge [9], [10] that produces vasoconstriction
[11]–[13], possibly related to transient arousals. Movements
and deep inspiratory gasps produce sympathetic activation
and besides them, the same effect is also caused by apneas
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and hypopneas [14]. This activation occurs because after the
manifestation of SDBE, the ANS tries to restart the normal
breathing with a discharge of the sympathetic activity. In ad-
dition, hypoxia plays a key role during apneas and hypopneas
[15], [16], and it can be quantified using the SpO2 signal.
Therefore, these effects can be detected using pulse oximeter
systems, by combining the information of PPG and SpO2

signals [9], [10], [17]–[19].
Heart rate variability (HRV) represents fluctuations in the

heart rate, related to autonomic nervous system (ANS) control.
High frequency (HF) components between 0.15 and 0.4 Hz
represent the vagal tone, while frequencies from 0.04 to 0.15
Hz manifest the activation of both parasympathetic and sym-
pathetic nervous systems, and these are labeled low-frequency
(LF) components. The ratio between LF and HF is defined as
the sympatho-vagal balance [20]. The pulse rate time series,
or so-called pulse rate variability (PRV), can be derived from
the PPG and is a surrogate of the heart rate time series.
Its usefulness was for instance demonstrated in [21], during
tilt table tests, when the sympathetic activation significantly
influences the heart rate modulation.

Multiple studies investigated the diagnosis of obstructive
sleep apnea syndrome (OSAS) based on the detection of
vasoconstriction, using peripheral arterial tonometry [13], [22],
[23]. The relationship between autonomic nervous system
and PPG was also studied in [12], [24]. Detection of sleep
apnea and hypopnea, from PPG [25] and HRV were already
explored in literature [26]–[29]. The decreases in the amplitude
fluctuation of PPG (DAP) detector was tested for detecting
obstructive hypopnea events in [25] and combined with HRV
analysis in [30], [31], thereby demonstrating the usefulness of
DAP to diagnose OSAS in children.

Since studies [9], [10], [14], [17]–[19] already showed
that DAP and oxygen desaturation information are linked to
apneas/hypopneas, the aim of this work is to test the DAP
detector on adults, combining it with oxygen desaturation
events for detecting SDBE. The performances of the proposed
method are then compared with other methods, tested on the
same database. In literature several studies also explored the
possibility of detecting apneas and hypopneas by investigating
the oxygen desaturation signal. The most promising techniques
used a machine learning approach [32], [33]. In [32], Deviaene
et al. reached an averaged desaturation classification accuracy
of 82.8% using a random forest classifier, over different test
sets of the Sleep Heart Health Study containing 8052 subjects
in total. Mostafa et al. in [33] implemented a Deep Belief
Network and used a 10-fold cross validation on two public
databases: one with 8 subjects and other with 25 subjects.
They achieved, respectively, an accuracy of 85.26% and of
97.64%.

Finally, another hypothesis tested in the present paper, is
whether the use of sympatho-vagal balance and oxygen desatu-
ration information could be significant to classify the different
types of apneas and hypopneas. Besides the detection, a respi-
ratory event classification was performed per apneic/hypopneic
SDBE detected, comparing different classifiers. Classification
in central or obstructive apnea is as relevant as the distinction
between apnea and hypopnea, to discover the nature of the

event.
The aim of this study is to detect and later classify SDBEs

from a PPG and a SpO2 signal, both acquired at the level of the
index finger. Events of Central Apnea (CA), Central Hypopnea
(CH), Obstructive Apnea (OA), Obstructive Hypopnea (OH)
and Mixed Apnea (MA) were all initially considered as Sleep
Disruptive Breathing Events (SDBE). First, SDBE detection
is performed without identifying the SDBE nature. Next, a
classification is performed by including features derived from
PRV, for separating Central (C) from Obstructive (O) SDBEs
and Apneic from Hypopneic SDBEs.

The system proposed in this work is designed for feasible
ambulatory monitoring, based on oximetry devices providing
both SpO2 and PPG signals. It would be of great interest for
an ambulatory sleep monitoring system, not intended as an
alternative to the PSG but as a first screening step.

This paper is organized as follows: at first, the DAP detector
and the oxygen-desaturation detector, used to discriminate
between apneic and non-apneic SDBEs, are described; next,
the classification of the SDBEs as apneic or hypopneic,
central or obstructive is presented. This classification was
performed by introducing indexes of the PRV spectral-analysis
that give relevant information about the ANS activity. Both
detection and classification results are then introduced. In the
discussion section, a comparison of the proposed algorithms,
with those present in literature and those implemented on the
same database, is presented; the final conclusions and further
improvements close the paper.

II. MATERIALS AND METHODS

A. Data
A database consisting of 96 overnight recordings of patients

suspected to suffer from sleep apnea-hypopnea syndrome and
without any cardiovascular co-morbidity, was provided by the
Sleep Laboratory of the University Hospitals Leuven (UZ
Leuven, Belgium). Each record contains a PPG and an SpO2

signal sampled at 500 Hz, and the apnea-hypopnea index
(AHI) was calculated as the amount of respiratory events per
hour of sleep, scored according to the AASM 2012 rules [34].
The average AHI in the dataset is 31.3 and 39% of the subjects
had an AHI larger than 30; 53% of them had an AHI between
5 and 30 and the remaining 8%, an AHI less or equal to 5.
The annotations contain the beginning and duration of CA,
CH, OA, OH and MA. Table I shows the total number of
annotations per SDBE category, in the database.

TABLE I
TOTAL NUMBER OF SLEEP DISORDERED BREATHING EVENTS, PER

CATEGORY, IN THE DATABASE

CA CH OA OH MA
Number of events 765 689 4984 14140 750

Percentage of events 3.6% 3.2% 23.4% 66.3% 3.5%

B. Apnea and hypopnea detection
The algorithm for sleep apnea and hypopnea detection

was based on the detection of DAP and desaturation events.
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This whole detection process is summarized in the flowchart
depicted in Fig.1.

Fig. 1. Apneic and hypopneic events detection flowchart.

1) Pre-processing: Both the PPG (x(n)) and SpO2

(xSpO2(n)) signals, acquired at 500 Hz, were down-sampled
at 100 Hz. After that, the SpO2 samples were rounded to
the nearest integer. These two operations aim at simulate
signals acquired with low time resolution acquisition devices:
this makes it possible to test the usability of the proposed
algorithm, to a wider range of acquisition hardware. The
PPG signal x(n) was then detrended by removing the time-
varying mean value, obtained with a moving average filter: the
resulting detrended signal was referred to as xd(n). Then, the
mean PPG cardiac cycle length, T, was estimated using a zero-
crossing detector applied to xd(n). An artifact detector based
on Hjorth parameters [35] was implemented and the artifact
signal segments were rejected as in [25].

2) Envelope and adaptive threshold estimation: In order to
follow the amplitude fluctuations of the PPG, its envelope was
analyzed. It was computed from xd(n), by using the root mean
square series method as in [25]:

xe(n) =

√√√√ 1

Np

n∑
k=n−(Np−1)

x2d(k) , (1)

where Np is the number of samples in two cardiac cycles.
A DAP event was identified when xe(n) was lower than

an adaptive threshold ζ(n), [25], computed as a percentage
(Up) of the mean of the last Lp non-artifact samples of the
envelope:

ζ(n) =


Up

100Lp

n∑
k=n−(Lp−1)−TLp,n

xe(k) n, k ∈
{
na
}
ζ

ζ(n− 1) n ∈
{
nc
}
ζ

(2)
where

{
na
}
ζ

is the sample set eligible for the computation
of the adaptive threshold and Lp is the number of samples
in
{
na
}
ζ
. Then,

{
nc
}
ζ

is the sample set not eligible for the
computation and TLp,n is the number of samples in

{
nc
}
ζ
.

The ineligibility condition of a sample (n ∈
{
na
}
ζ
), for the

adaptive threshold computation, keeping constant ζ(n), is any
of the following:

• the sample belongs to a DAP event, xe(k) < ζ(n− 1)
• the sample belongs to an artifact according to the Hjorth

parameters artifact detector
• the sample belongs to an abrupt change in the xe(n)

signal. A change was considered abrupt when

|xe(n)− xe(n− 1)| > α

fs
Ae (3)

where Ae is half of the mean oscillation amplitude range
of xd(n) in the recording, fs is the sample frequency
and α was experimentally chosen equal to 5 on accuracy
basis.

3) DAP detector: A DAP event was identified when the
PPG envelope was lower than the predefined adaptive thresh-
old ζ(n), for a minimum time duration (∆nDAP ), set a priori.
Fig.2 shows an example of DAP detection from a PPG signal.
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Fig. 2. The DAP detection method applied on a PPG signal. The threshold
was computed with Up = 70%.

4) Oxygen-desaturation detector: At first, an artifact detec-
tor was applied to the whole SpO2 signal. A signal segment
was annotated as artifact when xSpO2

(n) < 50%: if so, the
segment was excluded from the analysis. SpO2 values lower
than 50% are usually indication of PPG signal degradation.
Afterwards, the oxygen-desaturation detector receives as input
the time instants, at which the i-th DAP event starts nio (named
the onset), and ends nie. Then, an enlarged window around the
DAP event was used, by considering ∆no = 5 ∗ fs samples
before the DAP onset and ∆ne = 15 ∗ fs after the DAP
ends. The parameters ∆no and ∆ne were defined a priori,
taking in consideration the delay the SpO2 signal has over
the PPG [8]. In these new enlarged DAP temporal windows,
the oxygen-desaturation detector analyzes if a drop in SpO2,
∆SpO2% takes place. A SDBE was detected, when to the
i-th DAP event was associated a drop in amplitude between
the maximum value of the SpO2 (within the enlarged window)
and its minimum, equal or higher than different ∆SpO2 tested
levels (from 1% to 3%):
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max[xSpO2(n)]−min[xSpO2(n)] ≥ ∆SpO2

with n ∈ [nio −∆no, n
i
e + ∆ne]

(4)

This computation does not consider a deviation from a SpO2

predefined reference baseline, since the baseline oxygenation
level can vary throughout the night. Moreover, the first part of
each SpO2 signal segment could not either be used as reference
since, in case of consecutive SDBE, the normal oxygenation
values can be present at the end of the DAP instead of the
beginning.

Fig.3 presents a detection example of obstructive-hypopnea:
the three plots show respectively the nasal pressure signal,
DAP detections and oxygen-desaturation detections.

Fig. 3. Apneic and hypopneic events detection. Starting from the top: the
first figure shows the nasal pressure signal, where the red portion highlights
an annotated obstructive hypopnea event; the second plot visualizes the PPG
signal with DAP detections; in the last figure, an oxygen-desaturation was
detected in the SpO2 signal.

5) Performance evaluation: For the overnight sleep ap-
nea/hypopnea detection, each recording was divided in seg-
ments of one-minute. This segmentation represents the field
standard in literature and was used, in the present work, for
state-of-the-art comparison. In addition, splitting data into 60s
epochs, gave the possibility to take into account the delay
between the SDBE occurrence in the airflow signal (annotated
manually by experts [34]) and its manifestation in the PPG and
SpO2 signals. This delay depends on the subject physiological
characteristics and lasts approximately 30s [36].

The DAP detector is event-based and a SDBE was defined
apneic/hypopneic if a desaturation event was associated to the
corresponding DAP. Each segment was labeled as true positive
(TP) if it contained both: an apneic/hypopneic reference anno-
tation and a detected apneic/hypopneic SDBE. Otherwise, if
the segment contained none of them, the segment was labeled

as true negative (TN). In case the segments contained only an
apneic/hypopneic SDBE, then it was assigned the label false
positive (FP). On the contrary, if only the apneic/hypopneic
reference annotation was present, it was labeled as false
negative (FN). No overlap was considered neither between
one minute windows, nor between the annotations and the
one minute windows. However, if an apneic/hypopneic SDBE
was crossing the border of two one-minute windows, it was
considered present in both windows. A receiver operating
characteristic (ROC) analysis was performed and the sensi-
tivity (Se), specificity (Sp) and accuracy (Acc) indexes were
computed. To get the best classification, it was necessary
to maximize Se and Sp, by varying the parameters of the
proposed detectors. Finally, in the ROC curve, the combination
of parameters that gave the pair (1-Sp, Se) closer to the point
(0, 1), was selected.

To get the best parameters for the DAP and oxygen-
desaturation detectors, a 3-fold cross-validation (CV) [37] was
used. At each fold, 2/3 of the patients present in database
were used to train the detectors and 1/3, to test the trained
detectors. The 3-fold CV was performed per patient without
re-substitution. Since PPG features can be patient specific, it
was taken into account that each patient should be either in
the detection test set or in the detection training set, in order to
ensure a good generalization on new subjects. Data balancing
was not performed for SDBE detection because at this stage,
no separation of SDBE was considered.

The parameters modified during the Se and Sp maximization
procedure were, for the DAP detector, the percentage of
the adaptive threshold Up (from 30% to 80% of the PPG
envelope) and DAP minimum duration ∆nDAP (from 0 to
3 s). In the oxygen-desaturation detector, the desaturation
threshold ∆SpO2 was varied from 1% to 3%. The detector
sensitivity lowered as the desaturation threshold increased: for
this reason, results for a desaturation threshold larger than 3%
were not taken into account.

C. Sleep disordered breathing events classification
The method used to classify SDBEs involved the implemen-

tation of three binary classifications (C-O, CA-CH, OA-OH),
instead of one classification with five predictors (CA, CH,
OA, OH, MA). Using 5 predictors would result in separating
SDBEs that are not completely independent, with less perfor-
mant classifiers (e.g. CA and CH have both a central origin).
SDBEs classification was accomplished in a two steps process.
First central versus obstructive SDBEs were classified, as
they have independent causes. Then apnea and hypopnea
were independently discriminated for central and obstructive
SDBEs. From the original database, a subset was selected by
extracting all the true positive apneic/hypopneic SDBEs whose
duration was falling inside any SDBE annotation. In this way
all normal activity was removed and all FP DAP, whose link
to the SDBE was not directly visible, were discarded. At first,
central SDBEs were separated from the obstructive ones and
then, within each category, apneic DAP were separated from
hypopneic. Finally, three binary DAP identification problems
were defined for classification: central versus obstructive ap-
neic DAP, central apneic DAP versus central hypopneic DAP,
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obstructive apneic DAP versus obstructive hypopneic DAP.
The proposed classification is presented in Fig.4. Each SDBE
was labeled as central or obstructive, apneic or hypopneic, in
correspondence to the respiratory event that occurred during
the DAP event. According to the AASM 2012 rules, an event
labeled as apneic should last at least 10s [34]; for this reason,
in the database it never occurred that, during a DAP, different
SDBE were present. The classification was performed using
right-shifted windows around the DAP events, and not per one
minute windows: this because, within one minute, there could
be multiple DAP events corresponding to different irregular
respiratory events.

Fig. 4. For classification, three binary DAP identification problems were
defined: 1) central versus obstructive apneic SDBEs; 2) central apneic
SDBEs versus central hypopneic SDBEs; 3) obstructive apneic SDBEs versus
obstructive hypopneic SDBEs.

A set of features was extracted from the PPG and SpO2 sig-
nals for each apneic/hypopneic SDBE. A time-frequency anal-
ysis, on the PRV signal, was used to quantify the sympatho-
vagal response due to a respiratory event. From the ensemble
of the features, only those that minimized the misclassification
error (MCE) were selected for the classification. The MCE is
defined as the number of misclassified observations divided
by the number of observations. Finally, a 10-fold CV classifi-
cation was performed.

In order to have more generalization power, the ap-
neic/hypopneic SDBE classification was not performed per
patient. In fact, in some patients, the number of samples for
a certain SDBE sub-type was too low and it would cause
a classifier overfitting [37]. The underlying conception was
based on the idea of letting the detection task to recognize
apneic/hypopneic SDBEs and the classifier to label them.

1) Features extraction and features set: A total of 37 fea-
tures were extracted from both the PPG and the SpO2 signals.
These include PPG features, SpO2 features, pulse rate time
domain features and pulse rate frequency domain features;
the latter computed by using the smooth pseudo Wigner-Ville
distribution (SPWV) [38] and the Lomb periodogram [39],
[40].

All features were extracted from an enlarged temporal
analysis window right-shifted around the apneic/hypopneic
SDBE: the temporal DAP windows were enlarged to 15s
before the apneic/hypopneic DAP starts and 50s after the

apneic/hypopneic DAP finishes. The duration of the temporal
analysis window was at least 65 s, limiting the minimum
computed spectral power frequency to 0.03 Hz.

In this temporal DAP window, the PPG signal xd(n) was
considered. Each peak of the PPG signal represents the pulse
occurrence time. To detect the pulse, a search rule was imple-
mented by using the MATLAB R© Signal Processing Toolbox
[41]: it detects peaks with a minimum prominence, fixed by
empirical analysis on the database. The peak prominence is
an adimensional parameter that measures how much the peak
stands out, due to its intrinsic height and its location, relative to
other peaks. This strategy was chosen to discriminate among
pulses, discarding some pronounced dicrotic notches of the
PPG signal that, otherwise, could be detected as single pulses.
A further analysis to discover and handle ectopic pulses was
implemented following the works in [42], [43], under the
assumption that the pulse rate time series is a surrogate of
the heart rate time series.

By analyzing the pulse-to-pulse time instants, the same
indexes, that usually are exploited in the RR (or NN if normal
beats) intervals of the electrocardiogram, were computed.
These indexes belong to the time domain features.

For the time-frequency analysis, the inverse interval function
diif (ti) [44], [45], resampled at 2 Hz by cubic spline interpo-
lation, was used. The resulting time series was then centered
by subtracting the mean value. The spectral information of the
pulse rate time series was then obtained, by both applying the
SPWV [46], [47] and the Lomb periodogram [48]. The spectral
analysis was performed by using two mathematical functions,
in order to test if the Lomb periodogram would be enough
for a low cost computation of the spectral information, or a
higher time-frequency resolution was needed. Before applying
the SPWV distribution, the Hilbert transform was applied to
the diif (ti) in order to get its analytic function. The parameters
of the quadratic time-frequency distribution were then selected
on the basis of recommendations and experimental results
reported in the studies [30], [49], [50]. For smoothing in
time, a Hamming window of 10.5s was selected, whereas for
smoothing in frequency, a Hamming window of 64.5s was
used.

Using the spectral analysis, the high frequencies power
(PHF ) was extracted, as well as the low frequencies (PLF )
and the very low frequencies power (PV LF ). The sympatho-
vagal information is quantified by the power ratio RLF/HF =
PLF /PHF : a value of RLF/HF higher than the unity reveals a
sympathetic activation. This activation, caused by an obstruc-
tive hypopnea is presented in Figure 5. Once the main LF/HF
peak was detected in the DAP enlarged window, thanks to the
quadratic energy distribution, it was possible to compute the
VLF, LF and HF spectral power in correspondence to the time
instant of the LF/HF main peak.

The SPWV high resolution in the frequency domain, allows
also to determine which frequency was carrying the most
energy, per frequency band (e.g. LF, HF) in the PRV signal.
For each of the frequencies present in the selected band,
the total spectral power was computed and compared to the
spectral power evaluated for the adjacent frequencies. Finally
the frequency carrying the most power was selected.
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Fig. 5. This figure shows a sympatho-vagal arousal in the LF/HF, linked to
an obstructive hypopnea occurrence.

The list of the extracted feature is reported in Table II. For
a detailed description, please refer to the original papers.

TABLE II
CLASSIFICATION FEATURES

PPG and SpO2 features
DAP duration, DAP area (PPG area between the threshold and
the envelope, during the DAP event), DAP amplitude (distance
between the DAP minimum and the corresponding threshold
value) and desaturation loss (∆SpO2 desaturation drop in the
SpO2 signal during the DAP event).

Pulse rate, time and frequency domain features [51], [52]
NNmean, NNmode, NNmedian, NNvariance, NNskew,
NNkurt, NNiqr, SDNN, RMSSD, pnn50, PRSA AC, PRSA
DC, SDANN, SDNNI, SD1, SD2, SD2/SD1; using the
Lomb periodogram: vlf (power in very low frequency
range), lf (power in low frequency range), hf (power in high
frequency range), lfhf ratio and ttlpwr (total spectral power,
approximately < 0.4 Hz).

Pulse rate, SPWV frequency domain features [53]
signal main HF frequency (frequency carrying the most energy
in HF frequency band), signal main frequency (frequency
carrying the most energy among the VLF, LF and HF bands),
maximum value of the LF/HF power signal in the enlarged
DAP time window, LF/HF main peak prominence, the VLF,
LF and HF power corresponding to the LF/HF main peak,
the LF/HF peak total energy (sum of the spectral power of
VLF, LF, HF), the VLFn (ratio between VLF and LF/HF peak
total energy), the LFn (ratio between LF and LF/HF peak total
energy), the HFn (ratio between HF and LF/HF peak total
energy).

2) Data balancing: For the binary classifiers, it was nec-
essary that both classes were well represented by the same
amount of data. The imbalanced data problem was solved
by both generating additional data for the least represented
class and by removing data from the most represented one.
As first step, the ADASYN algorithm proposed in [54] was
used. The ADASYN method allows to improve class balance
by synthetically creating new samples, via linear interpolation
between existing minority class samples. ADASYN is an
extension of SMOTE method [55], creating more samples
in the vicinity of the boundary between the two classes,

than in the interior of the minority class. After applying this
oversampling method, if still a class disparity exists, samples
from the more represented class were randomly removed, until
the equality was reached.

3) Features selection: The objective of features selection
was to reduce the data dimension by finding a small subset of
important features which could result in a good classification
performance. To help interpretability, two filter and a wrapper
method were used [56].

Specifically, at this point, the database was split for a 10%
hold-out validation. The 90% of the database was used to
discover the best features subset (classification training set)
and the remaining 10% of it (classification test set) was used to
test the classifier performance with the best subset of features.
On the classification training set, the 10-fold CV was then
used, for sequential feature selection. The overall procedure
for feature selection is shown in Fig.6.

Fig. 6. Feature selection schematics: from the hold-out validation, the
classification training set was used to perform the 10-fold CV for sequential
features selection, and the classification test set was used to evaluate the
performance of the best subgroup of features.

A t-test was computed on all the features of the classifica-
tion training set, to discard any interaction among them. So
the p-value of each feature was compared, as a measure of
how effective the feature was at separating groups, and only
those having p-values smaller than 0.05 were kept.

Features selected from the list, based on their individual
ranking, may also contain redundant information. Following
this reasoning, as second filter method, the correlation matrix
among all the features was calculated. For each couple of fea-
tures, if the absolute value of the linear correlation coefficient
was equal to or higher than 0.9, only the feature that was the
least correlated with others was kept. In case none of the two
had other correlations, one of them was randomly discarded.

To further reduce the number of features, a backwards
wrapper method was used. Different classifier methods were
tested: decision trees, discriminant analysis, logistic regression
classifiers, naive Bayes classifiers, support vector machines,
nearest neighbor classifiers and ensemble classifiers, with all
features included. Finally, the k-Nearest Neighbor (k-NN) with
euclidean distance metric was chosen, because it showed the
best balanced-class accuracy. To decide the number of features,
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the MCE was computed implementing the 10-fold CV in the
backwards wrapper method, on the classification training set,
as a function of the number of features used to fit the model.
As first step, all features were taken into consideration for 10-
fold CV, and the MCE was computed; in the second iteration
one feature was discarded from the group and the remaining
ones were used to compute the MCE in the 10-fold CV. This
process was iterated until a minimum was reached. Finally,
the selected best subgroup of features for classification, was
the one that corresponded to the first local minimum of the
MCE.

When the best subgroup of features was obtained, these
features were used to compute the MCE on the classification
test set, from the hold-out validation.

4) Model selection and evaluation: At this point, the best
subgroup of extracted features was obtained and it was pos-
sible to find the best binary classifiers for the dataset. In
this step, the entire original dataset for classification, with
balanced data, was partitioned for a 10-fold CV. All the
classifiers present in Table VII were then trained and evaluated.
The evaluation of each of these classifiers was performed by
computing the Se, Sp and Acc indexes, using MATLAB R©

Classification Lerner.

III. RESULTS

A. Apnea and hypopnea detection results

ROC curves in Fig.7 show the performance of the proposed
algorithm for the detection training set of each of the three
CV. The best results were highlighted with a circle. Se, Sp
and Acc results for the detection training and test set of each
CV fold, using the best detection parameters, are shown in
Table III. For all the 3-fold CV, the best parameters resulted
to be: Up = 70%, ∆nDAP = 0s and ∆SpO2 = 2%. The
same identical values, obtained for the tested parameters in
the validation, show a robust generalization of the method.

TABLE III
APNEA AND HYPOPNEA DETECTION RESULTS

CV fold Dataset Se [%] Sp [%] Acc [%]

All SDBE

1 Training 75.1 73.6 74.4
Test 80.1 72.6 76.4

2 Training 76.7 72.5 74.6
Test 77.4 74.6 76.0

3 Training 78.9 73.7 76.3
Test 73.1 72.5 72.8

All data 76.9 73.2 75.1
Event Type CA CH MA OA OH

Total Se [%] 86.6 73.3 88.2 86.4 76.2

An overall 75.1% accuracy was reached in detecting all
sleep apneas and hypopneas from a PPG and a SpO2 signal
on the UZ Leuven database. In Table III are reported the
CV results for apnea/hypopnea detection. In addition, the
results obtained by testing the detector on the whole detection
database, using the best subset of parameters, are expressed in
the row Total of the table. Finally, the last row contains the
total Se computed in the CV, by grouping the SDBE in apnea
or hypopnea, central or obstructive: it is possible to notice,
that hypopnea was the most difficult to detect.

To test the detector performances on those patients with low
AHI index, the best detection parameters earlier obtained, were
used for apnea/hypopnea detection on patients with AHI≤5.
These results are presented in Table IV. In these results,
considering for example the central apnea detection, a FP
event was considered when an apneic/hypopneic SDBE did
not correspond to a central apnea annotation, even if other
apnea types were present.

TABLE IV
APNEA/HYPOPNEA DETECTION RESULTS ON PATIENTS WITH AHI≤5

Event Type Se [%] Sp [%] Acc [%]
All 79.9 75.8 76.1

Central Apnea 100 72.0 72.2
Central Hypopnea 83.6 72.4 72.6

Mixed - - -
Obstructive Apnea 88.9 63.6 63.8

Obstructive Hypopnea 76.8 74.2 74.3

B. Classification results of sleep disordered breathing events

Fig.8 shows three plots (one per binary classification),
visualizing the MCE versus the number of features used for
the 10-fold CV on the classification training set. In the plots is
visible that after an initial phase in which the MCE decreases
as the number of features increases, follows a phase in which
the MCE starts increasing. This can be explained by the
fact that an overfitting was reached. To avoid overfitting and
generalize the model, a subgroup of features was used. From
the overall 37 features used for the classification, the first 7
ones were selected for C versus O classification: the selection
was arrested before entering the MCE plateau. Also, for CA
- CH classification, 7 features were selected, by having the
MCE lower than 0.2. Instead, for the OA - OHA classification,
8 features were selected in order to get closer to the 0.2 value
of MCE and also by not entering the following MCE plateau.
All the selected features are reported in Table V. Finally,
Table VI details the MCE, corresponding to the classifications
performed by the best subset of features, computed on the
classification test and training set using the 10-fold CV.

TABLE V
BEST CLASSIFICATION FEATURES

Best subset of features for C-O classification
DAP amplitude, DAP duration, NNmedian, lfhf, signal main
frequency, signal main HF frequency, LFn.

Best subset of features for CA-CH classification
DAP amplitude, DAP duration, NNmedian, lf, lfhf, ttlpwr,
LFn.

Best subset of features for OA-OH classification
DAP amplitude, Desaturation loss (∆SpO2), NNmedian, lf,
ttlpwr, lfhf, signal main HF frequency, LFn.

After the selection and evaluation performance of the best
subgroup of features, this subset was used to perform a 10-
fold CV on the whole classification dataset, using different
classifiers for each of the three binary classifications. The
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Fig. 7. ROC curves for sleep apneas/hypopneas detection. The curves were built by varying the desaturation threshold from 1% (blue) to 2% (red) until 3%
(green). The DAP minimum duration scales from 0 to 3s and is represented by the size of the marker. The DAP threshold percentage, instead, was varied of
30% (+), 40% (o), 50% (square), 60% (diamond), 70% (star), 80% (x).

Fig. 8. Sequential Feature Selection with 10-fold Cross-Validation. The MCE was minimized by 7
features for central and obstructive classification, 7 for central apnea and central hypopnea, 8 for obstructive apnea and

obstructive hypopnea.

TABLE VI
FEATURES SELECTION MCE

MCE [%]
Classification C-O CA-CH OA-OH

10-fold CV Training Set 8.6 19.4 21.5
Test Set 7.4 13.9 19.6

performances of each of these classifiers were reported in
Table VII. The best classifier for the three classifications,
revealed to be the Fine Gaussian Support Vector Machines
(SVM) classifier with Gaussian kernel with 0.56 scale. The
overall accuracy reached with the classification was 92.6%

for central and obstructive apnea, 83.7% for central apnea
and central hypopnea and 82.7% for obstructive apnea and
obstructive hypopnea. The True Positive rate (TPr=Se) and
False Positive rate (FPr=1-Sp), as well as the Acc and ROC
area under the curve (AUC) are shown in Table VIII. For
comparison, on the same database, no other works were
performed, in classifying the SDBE types.

In conclusion to the results section, it is possible to assert
that the detection and classification methods showed to be
consistent for being implemented in a smart device, for sleep
monitoring. The detection task recognizes apneic/hypopneic
SDBEs and the classifier labels the events.
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TABLE VII
CLASSIFIERS ACCURACY PERFORMANCES

Classification Accuracy [%]
Classifier C-O CA-CH OA-OH

Decision Trees
Fine Tree 79.3 74.4 76.4
Medium Tree 74.8 70.6 75.4
Coarse Tree 69.8 71.4 70.2

Discriminant Analysis
Linear Discriminant 66.2 69.0 67.7
Quadratic Discriminant 67.0 67.6 67.4

Logistic Regression Classifiers
Logistic Regression 66.4 69.6 67.8

Naive Bayes Classifiers
Gaussian Naive Bayes 67.4 67.5 65.4
Kernel Naive Bayes 71.6 70.7 69.8

Support Vector Machines
Linear SVM 67.1 69.5 67.8
Quadratic SVM 78.8 74.7 72.5
Cubic SVM 85.2 77.8 82.9
Fine Gaussian SVM 92.6 83.7 82.7
Medium Gaussian SVM 78.1 75.8 73.7
Coarse Gaussian SVM 69.3 69.3 69.7

K-Nearest Neighbor Classifiers
Fine KNN 92.0 82.8 79.5
Medium KNN 84.8 74.4 75.5
Coarse KNN 76.0 70.7 72.0
Cosine KNN 84.2 75.4 74.2
Cubic KNN 84.2 73.7 75.0
Weighted KNN 89.6 81.3 78.3

Ensemble Classifiers
Boosted Trees 77.7 77.4 76.3
Bagged Trees 92.8 79.0 80.4
Subspace Discriminant 66.1 68.5 67.1
Subspace KNN 85.9 68.0 64.7
RUSBoosted Trees 74.8 71.1 75.4

TABLE VIII
RESPIRATORY EVENTS CLASSIFICATION PERFORMANCES FOR FINE

GAUSSIAN SVM

TPr [%] FPr [%] Acc [%] AUC

C-O C 95 10 93 0.97O 90 5

CA-CH CA 86 19 84 0.91CH 82 14

OA-OHA OA 85 20 83 0.89OHA 81 14

IV. DISCUSSION

A. Apnea and hypopnea detection

The DAP detector was designed to highlight PPG signal
shape variations and then those detections were discriminated,
by verifying if a desaturation occurred in those time instances.
The desaturation detector was then essential, in order to lower
the FP detections performed by the DAP. In this case, the
SDBE that were left out corresponded to those that were not
accompanied by desaturation but that were annotated as ap-
neas/hypopneas because they were characterized by an arousal.

The 3-fold CV, for SDBE detection, was performed per patient,
without re-substitution or data balancing. Similar detection
results were obtained for all the the 3-fold CV. The DAP
signal processing technique for apnea and hypopnea detection
improved the interpretability of the recognition algorithm.
However, the performance did not outperform the detection
method, recently presented in [57]. The proposed detection
method used the same DAP detector already applied in [25],
[30], [31], for detecting apneas in 26 children with OSAS. In
this work, the DAP detector was adapted to detect different
kinds of SDBE in adults. Finally, results between this work
and the others implementing the DAP detector, are not directly
comparable because no apneic events annotations existed in
children database and the reference was based on airflow signal
and the final clinical diagnosis.

A results comparison can be performed with the work of
Lazaro et al. [58], where a similar database collected in UZ
Leuven was analyzed. An accuracy of 72.66% in detecting
obstructive sleep apneas using PPG signals, in one minute
segments of 26 polysomnographic recordings, was reported.
This study used a least squares SVM classifier with an RBF
kernel to classify apneic and not apneic one minute recordings
by extracting features of amplitude and width variability, pulse
up-slopes and slope transit time. A comparison with this work,
reveled that the DAP detector performances were better than
those in [58].

Other SDBE detection algorithms present in literature, that
were tested on the same database than the one used for
this paper, also including other patients with cardiovascular
comorbidities, are those in [32], [57], [58]. The best perfor-
mances were reached by Deviaene et al. in [57] using the
classifier implemented in [58], on PPG and SpO2 signals.
In this case, the database consisted of 102 patients and the
results showed an accuracy of 83.4%, with 73.7% Se and
86.6% Sp in detecting sleep apnea/hypopnea minutes; while
only using SpO2, already an accuracy of 82% was obtained.
These results confirmed the importance of using both PPG and
SpO2 information to increases the overall accuracy. The Acc
reached in the work [32], [57] outperformed the Acc obtained
in the present work, indicating that a classification method for
apnea/hypopnea detection performs better than the DAP signal
processing technique.

The database used in this work, presented also patients with
AHI≤5 (8% of the database subjects) and these detections
can validate the detector performances in subjects whose sleep
health condition was almost normal. The performance on this
group revealed to be consistent with the results obtained on
the overall database. In particular, the lowest Se was obtained
for obstructive hypopnea while the highest (Se=100%) was
obtained for central apnea. The lowest Sp was computed for
obstructive apnea, indicating a higher number of FP. From
these evidences we can conclude that the detector revealed to
be robust also for persons with low AHI.

A point of reflection would be the use of the time-frequency
analysis of the PRV in the SDBE detection algorithms. For
this purpose, a time-frequency algorithm was implemented to
verify if, in a temporal windows of 60s right-shifted around
the DAP event, the peak of LF/HF signal overpass the unity. If
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so, the SDBE was labeled as apneic/hypopneic. Adding this
processing step to the presented detector and re-optimizing
the different hyper-parameters of the detector, the best results
for all SDBE, gave an accuracy of 68.9%. Replacing, instead,
the desaturation detector by the time-frequency algorithm, the
results were not better: they reached a 61.3% in Acc. If the
DAP detector was used alone, the best hyper-parameter value
in the ROC curve gave an accuracy of 64.6%. The desaturation
detector instead, if not combined with the others, showed a
result of 67.1% in Acc and the LF/HF detector a 57.4%.

Finally, it can be concluded that the presented detection
tool, exploiting PPG and SpO2 signals, can be used as first
screening for apnea/hypopnea monitoring. This can validate
the possibility to implement the method in a non-invasive,
home sleep monitoring device.

B. Sleep disordered breathing events classification

For each apneic/hypopneic SDBE, a classification was per-
formed by extracting the features connected to the DAP. This
reached 92.6% accuracy in classifying central and obstructive
apnea, 83.7% for central apnea and central hypopnea and
82.7% for obstructive apnea and obstructive hypopnea. The
Fine Gaussian SVM was chosen, respect to other classifiers,
for its better performances in SDBE classification.

The best set of selected features, confirms the importance
of PRV time-frequency analysis and highlights the role of the
heart rate modulation and ANS activity, during SDBE. It can
be said that DAP amplitude, NNmedian, lfhf and LFn were
the most relevant features in all classification problems. Ad-
ditionally, the frequency analysis performed with the SPWV
distribution added an important contribution, along with the
Lomb periodogram, in discriminating the SDBE classes.

For the classification, all the SDBE events, from all the
patients, were collected and then separated for CV. Differently
from what performed with SDBE detection, during classifica-
tion, patients were not separated for validation. This choice
was motivated by the fact that the distribution of SDBE, over
different patients, was unbalanced. In fact, to CV on patients,
it is necessary to balance data at every fold, for training and
test data-sets; hence removing data at each fold, would result
in a model with less variance, but higher bias.

In the paper of Lazaro et al. [58], no classification in
different SDBE types was performed, but a classifier was used
for obstructive apnea detection. In the present work, features
extracted from the pulse rate time series were used more than
those extracted from the PPG morphology as in [58]. This was
motivated by the fact that the pulse rate was easier to detect
than the morphological features, because the last ones were
more affected by noise.

Others literature works worth mentioning are those pre-
sented in [59] and [60]. The first one uses ECG signals for
apnea classification, while the second one PPG and SpO2, but
not a direct comparison can be performed due to the different
dataset used. In [59], Gubbi et al. differentiate central sleep
apnea and obstructive sleep apneas using wavelet packet anal-
ysis and SVM applied to ECG signals. An advantage of ECG
signals is that they are are less affected by noise than the PPG.

The algorithm showed an overall classification Acc of 91.08%,
Se of 91.02% and Sp of 91.09%, respectively using wavelet
packet analysis on the test set. The study proposed in [60],
explains a method for automatically classifying sleep apnea
and hypopnea events using PPG and SpO2 signals, acquired
from a pulse oximeter. The PPG was used to classify sleep
state, while SpO2 to classify the sleep-disordered breathing
events exploiting a SVM. The classification results showed
sensitivity performances and positive predictive values of
74.2% and 87.5% for apnea, 87.5% and 63.4% for hypopnea.

As suggested in [60], it would be interesting to extend
the presented SDBE analysis, to the classification of sleep
staging from PRV and PPG signals. This might lead to an
improvement in the results and enhance the possibility of
ambulatory information extraction.

V. CONCLUSION

The aim of this study was to validate the hypothesis to
detect and classify sleep disordered breathing events from a
PPG and a SpO2 signal, both acquired at the level of the
index finger. The detection and classification results show this
method to be suitable for a first sleep screening. Because an
oximetry device implements two PPG sensors for computing
the oxygen desaturation, it would be enough to both acquire
PPG and SpO2 signals. In this context, developing a new
device that implements this sensor, would be of great interest
for a home sleep monitoring system. However, the present
study showed that it would not replace clinical devices (like
those based on the nasal pressure signal), due to the noisy
nature of the PPG signal. Nevertheless, the results suggest that
such approach can be used as an initial report to better select
patients at home, before clinical sleep center observation. This
perspective, lights the way for an embedded system for sleep
apnea/hypopnea home monitoring, in a Medical of Things
(MoT) device.
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