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Abstract.

Objective: The performance of a novel unobtrusive system based on capacitively-

coupled electrocardiography (ccECG) combined with different respiratory measure-

ments is evaluated for the detection of sleep apnea. Approach: A sleep apnea de-

tection algorithm is proposed, which can be applied to electrocardiography (ECG)

and ccECG, combined with different unobtrusive respiratory measurements, including

ECG derived respiration (EDR), respiratory effort measured using the thoracic belt

(TB) and capacitively-coupled bioimpedance (ccBioz). Several ECG, respiratory and

cardiorespiratory features were defined, of which the most relevant ones were identi-

fied using a random forest based backwards wrapper. Using this relevant feature set,

a least-squares support vector machine classifier was trained to decide if a one minute

segment is apneic or not, based on the annotated polysomnography (PSG) data of 218

patients suspected of having sleep apnea. The obtained classifier was then tested on

the PSG and capacitively-coupled data of 28 different patients. Main results: On the

PSG data, an AUC of 76.3 % was obtained when the ECG was combined with the

EDR. Replacing the EDR with the TB led to an AUC of 80.0 %. Using the ccECG

and ccBioz or the ccECG and TB resulted in similar performances as on the PSG

data, while using the ccECG and ccECG-based EDR resulted in a drop in AUC to

67.4 %. Significance: This is the first study which tests an apnea detection algorithm

on capacitively-coupled ECG and bioimpedance signals and shows promising results

on the capacitively-coupled data set. However, it was shown that the EDR could not

be accurately estimated from the ccECG signals. Further research into the effect that

respiration has on the ccECG is needed to propose alternative EDR estimates.
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1. Introduction

The most common sleep related breathing disorder is obstructive sleep apnea (OSA),

which presents itself as partial or complete cessations of breathing during sleep. It

is estimated that worldwide, almost 1 billion people suffer from OSA, most of them,

however, remain undiagnosed and consequently untreated (Benjafield et al., 2019).

This is partly due to the expensive and cumbersome way of diagnosing by means of a

polysomnography (PSG), which is a diagnostic test usually performed using an overnight

stay in the hospital during which several physiological parameters are measured. Based

on this PSG, sleep stages and respiratory events are afterwards manually scored by a

sleep expert according to a set of scoring rules (Berry et al, 2012).

Several studies have been performed to develop home-monitoring systems for the

detection of sleep apnea in order to enable screening on a larger scale, and to follow-

up patients on the longer term. This long-term follow-up can be useful to obtain a

quantitative assessment of the effect of different OSA treatments and lifestyle changes

(Adult Obstructive Sleep Apnea Task Force of the AASM, 2009). Respiratory sensors

used during the PSG, such as the nasal pressure sensor and the thoracic and abdominal

respiratory effort belts have been used to automatically detect OSA (Mendonca et al.,

2018; Uddin et al., 2018). Apneas have been shown to cause secondary responses,

such as bradycardia, which is followed by tachycardia when the breathing is restored

(Guilleminault et al., 1984). Moreover, the heart rate variability is modulated by

the respiration by means of the respiratory sinus arrhythmia, and this modulation

is attenuated during apneic events (Varon et al., 2015a). This, combined with the

development of several methods to extract an ECG derived respiration (EDR) (Varon

et al., 2020), has led to the development of multiple ECG-based OSA detection

algorithms (Faust et al., 2016; Mendonca et al., 2018; Varon et al., 2015a).

Although using only an ECG patch for the detection of sleep apnea is already

much more comfortable for the patient than the full PSG, electrode-skin-contact is still

required, which makes it not ideal for long-term monitoring (Spinelli and Haberman,

2010). As a consequence, non-contact ECG sensors have been developed. In this study, a

capacitively-coupled ECG (ccECG) sensor, integrated in the mattress, was used (Castro

et al., 2019b). In this sensor, the galvanic contact between the skin and the electrode is

replaced by a capacitive coupling between the skin and the conductive plate of the sensor.

All non-conductive materials in between, such as the bed sheets and clothing, serve

as dielectric. The sensor also includes a capacitively-coupled bioimpedance (ccBioz)

measurement, which can be used to extract the respiratory signal (Castro et al., 2019b).

The goal of this study was to develop an automated apnea detection algorithm

which can be applied on the (cc)ECG signals combined with different respiratory

measurements such as the thoracic belt (TB) and unobtrusive tools: an EDR estimate,

and the ccBioz. The algorithm was developed based on the ECG and TB, extracted

from the PSG. In the testing phase, these gold-standard signals were replaced by their

capacitively-coupled alternatives. As such, the usability and limitations of ccECG and
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ccBioz measurements for the automatic detection of sleep apnea were explored. To

our knowledge, this is the first study investigating automatic OSA detection based on

ccECG and ccBioz recordings. This study builds upon the work described in (Varon

et al., 2015a) and (Castro et al., 2018). Here, additional cardiorespiratory measures

were investigated and features extracted from the gold-standard PSG signals and the

capacitively-coupled measurements were compared. A set of relevant features were

selected with and without taking into account if a feature behaves similar when extracted

from the PSG and capacitively-coupled signals. Furthermore, the use of a state-of-the-

art EDR signal was evaluated for the first time on ccECG.

In the next sections, the data sets will be discussed, followed with the data

preprocessing including heart rate and EDR extraction. Subsequently, the feature

extraction, selection and classification will be explained. In Section 4 the results will be

presented, which will be further discussed in Section 5.

2. Materials

This study includes three data sets of gold standard in-hospital PSGs, recorded from

subjects suspected of suffering from OSA at the sleep laboratory of the University

Hospitals Leuven (UZ Leuven). The inclusion of these data sets was approved by the

ethical committee of UZ Leuven (S53746, S60319) and all patients signed an informed

consent. An overview of the patient demographics of each data set can be found in

Table 1.

The first data set, denoted OSA ref, contains 218 PSGs and was used to train

the classifier. The second data set, called OSA cc, is used to test the classifier and

consists of 28 PSG recordings, for which ccECG and ccBioz signals were simultaneously

measured using an array of sensors embedded in the mattress. This sensor configuration

was provided by Imec, and it is described in (Castro et al., 2018) and (Castro et al.,

2019b). An overview of the recording set-up is shown in Figure 1. Due to technical

problems (i.e. unidentified electrode disconnection in the prototype), the simultaneous

ccBioz signal could only be collected for 11 subjects. The third data set, used to test

Table 1: Patient demographics of the included data sets

Data set # Sub. Age BMI AHI AHI Male
Years Kg/m2 Events/h ≥15

OSA ref 218 49±12 30±6 27±24 58% 65%
(41, 58) (25, 34) (8, 39)

OSA cc 28 48±14 30±5 28±26 57% 50%
(38, 55) (25, 35) (6, 58)

OSA Varon 10 48±11 30±5 33±20 80% 90%
(43, 54) (27, 31) (27, 44)

Age, BMI and AHI are presented as mean ± standard deviation, with the 25 % and 75% quantile

values underneath.
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Figure 1: Recording setup of the mattress with capacitively-coupled sensors embedded,

measuring ccECG and ccBioz.

the classifier, corresponds to the data set used in (Varon et al., 2015a), which contains

10 PSGs. This data set is referred to as OSA Varon.

An overview of the recording characteristics for each of the data sets is given in

Table 2. All data sets were manually annotated by sleep specialists according to the

AASM 2012 scoring rules (Berry et al, 2012) or the Chicago criteria (Quan et al., 1999).

When the AASM 2012 scoring rules are followed, apneas are scored when the airflow

amplitude decreases more than 90 %. Hypopneas, on the other hand, only need a

decrease of at least 30 %, accompanied by either an arousal or an oxygen desaturation

of at least 3 %. Whereas, according to the Chicago criteria, events are scored when either

an airflow drop larger than 50 % occurs, or when a clear airflow amplitude reduction is

observed accompanied by an arousal or an oxygen desaturation of at least 3 %. Both

scoring rules require events to last at least 10 seconds.

These annotations were provided together with the PSG ECG and thoracic

respiratory effort belt (TB), recorded using a respiratory inductance plethysmography

belt. The PSG signals were sampled at 500 Hz, or at 200 Hz for the older OSA Varon

data set, whereas the capacitive sensor recorded at 512 Hz. The PSG signals were,

therefore, upsampled to 512 Hz in order to match the capacitive sensor’s sampling

frequency. The signals from both measurement systems were synchronized using the

tachograms extracted from the PSG ECG and ccECG.

Table 2: Overview of the recording characteristics for each data set. The used apnea

scoring rules, the sampling frequency (Fs) for the PSG and capacitive sensor recordings,

and number of available recordings per channel are denoted.

Data set Scoring PSG Capacitive sensor

rules Fs (Hz) # ECG # TB Fs (Hz) # ccECG # ccBioz

OSA ref AASM 2012 500 218 218 - 0 0

OSA cc AASM 2012 500 28 28 512 28 11

OSA Varon Chicago 200 10 0 - 0 0
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3. Methods

Before analyzing the signals, the data was preprocessed in order to remove noise and

artefacts. Then, the EDR and RR-interval time series were extracted. From these

signals, an apnea detection classifier was developed based on the PSG data; features

were computed of which the most relevant ones were selected and fed to a classifier. This

model was then tested on the capacitively-coupled signals and additional experiments

were performed in order to further analyze the obtained results.

3.1. Data preprocessing

An overview of the preprocessing steps needed to prepare the different signals for feature

extraction is given in Figure 2. These steps will be discussed in more detail below. After

signal prefiltering, all signals were split into 1-minute windows and the further analysis

was performed on a window base.

3.1.1. ECG signals

ECG prefiltering: A band pass butterworth filter was applied using cutoff

frequencies of 0.67 and 40 Hz (Castro et al., 2019b, 2018). The used low-pass cut-

off frequency of 40 Hz is lower than what is recommended by the task force of heart

rate variability (Malik, 1996). But, when this upper limit is increased for unobtrusive

ECG measurement systems, a significant increase in noise levels is observed. Therefore,

the IEC 60601-2-47 standard for ambulatory ECG systems was followed to define the

filtering band.

Check for signal inversion: A check for signal inversion needed to be

implemented since for the PSG signals the placement of the ECG electrodes was

sometimes adapted, and the ccECG array sensor will select every minute the best two

electrodes to record the ccECG (Castro et al., 2019b). Therefore, signal inversion can

ECG 
prefiltering

Check 
for signal 
inversion

Artefact 
detection

RR 
interval 

extraction

EDR extraction

PSG ECG 
resampled 
at 512 Hz

ccECG

Bioz 
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Visual 
artefact 

detection

Robust 
standardization

Thoracic belt 
resampled at 

512 Hz

Bioz

Performed over 1 minute segments

RR-interval
time series

Preprocessed 
respiratory 

signals

Figure 2: Overview of the applied signal preprocessing methods.
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occur between segments for the ccECG. When the absolute value of the 1st percentile

value was larger than the 99th percentile value, lead inversion was assumed and the

signal was inverted.

Artefact detection: For each 1-minute window, a signal quality score was

computed. For the PSG ECG, this was done based on the auto correlation function

of the ECG (Moeyersons et al., 2019). Segments with a quality score lower than 90

were discarded. Whereas for the ccECG, the algorithm proposed by Castro et al. was

applied (Castro et al., 2019a). In this case, only the high quality data segments were

included using the high-threshold linear SVM model from (Castro et al., 2019a).

RR-interval extraction: The R-peaks were extracted from the ECG segments

using the algorithm discussed in (Varon et al., 2015a), which makes use of the upper

and lower envelopes to flatten the ECG signal. Based on the location of the detected

R-peaks, the RR-interval time series, or tachogram was derived.

EDR extraction: From each 1-minute window, where at least 30 R-peaks were

detected, the EDR was computed. Two EDR algorithms were compared: the R-wave

amplitude (Ramp) and the downward slope of the the R-wave (RS slope) (Lázaro et al.,

2014). These were extracted as described in (Varon et al., 2020).

3.1.2. Respiratory signals

ccBioz prefiltering: The bioimpedance signals were lowpass filtered at 1 Hz. The

PSG TB signals were clean and did not require any additional prefiltering.

Visual artefact detection: No artefact removal was necessary for the TB

respiratory signal, as we assumed movement artefacts overlapped with the ones detected

in the PSG ECG. For the ccBioz signals, on the other hand, a visual quality check was

performed per 1-minute window and noisy segments were removed.

Robust standardization: In order to ensure that features extracted from the

different respiratory signals behave similarly, a robust standardization was applied to

all respiratory signals, including the EDRs. The data was rescaled such that the 10th

and the 90th percentile values of the entire signal corresponded to values of, respectively,

-1 and 1.

As a last preprocessing step, the continuous apnea annotations of the PSG were

converted to 1-minute labels. Whenever a 1-minute segment overlapped with an

annotated event (including both apneas and hypopneas), the segment was labeled as

apneic. These 1-minute labels were used as reference to train and test the classifier.

An overview of the available number of clean hours of data per data set and signal

modality can be found in Table 3.

3.2. Training apnea detection classifier

The apnea detection classifier was trained on the preprocessed PSG signals of the

OSA ref data set. The training workflow is depicted in Figure 3 (top). Afterwards, the

classifier was tested on different combinations of ECG and respiratory measurements
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Table 3: Number of hours of clean data for each data set and each signal modality.

Hours of clean data
Normal sleep/Apneic

Data set
Total hours of recording PSG Capacitive sensor

Normal sleep/Apneic ECG TB ccECG ccBioz

OSA cc 255 193 193 74 19
172/83 128/65 128/65 52/22 14/5

OSA ref 1990 1547 1547 NA NA
1381/609 1086/461 1086/461

OSA Varon 99 82 NA NA NA
64/35 55/27

NA: Not available.
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Figure 3: Development of the apnea detection classifier. The top row depicts the

different steps used to train the classifier. Below, an overview is given of the additional

experiments conducted to further analyze the obtained results.

of the PSG and capacitively-coupled data sets, as shown in Figure 4, and additional

experiments were conducted in order to explain the obtained results (see Figure 3). The

different steps in the development of the classifier are explained below. The additional

experiments will be discussed in the next section.

3.2.1. Feature extraction

ECG features: A total of 27 features were extracted from the PSG ECG and ccECG

segments. The mean, standard deviation (std) and kurtosis of the RR-intervals were

extracted, as well as the SDSD (standard deviation of RR-interval differences) and the

RMSSD (square root of the mean squared differences of successive RR-intervals), the
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Figure 4: Signal modality combinations per data set on which the classifier was tested.

first five serial correlation coefficients of the RR-intervals and the Allan factor (on time

scales of 5, 10, 15, 20, 25 and 30 s) (De Chazal et al., 2003).

Additionally, the QRSmorph feature quantifies changes in the QRS morphology. This

feature was computed by applying principal component analysis on a matrix composed

of the aligned QRS complexes. QRSmorph was taken as the percentage of variance

explained by the second component (Varon et al., 2015a).

Also, the following heart rate variability frequency parameters were included: the

power in the high frequency (0.15-0.4 Hz, HF) and low frequency (0.04-0.15 Hz, LF)

bands, their normalized versions, and the LF/HF.

Finally, the phase rectified signal averaged (PRSA) downward curve of the RR-

intervals was computed with a window length of 10 seconds (Bauer et al., 2006; Varon

et al., 2015b). From this PRSA curve, the amplitude difference between the highest and

lowest peaks around the anchor point, overall slope, slope before and after the anchor

point, and the accelerating capacity were extracted as features.

Respiratory features: From the different respiratory signals, 13 features were

extracted: the mean, standard deviation and kurtosis; the five PRSA features, described

above, extracted from the downward PRSA curve of the respiratory signal with a

window length of 10 seconds; and the power of the signal in the HF and LF bands,

their normalized versions and LF/HF.

Cardiorespiratory interactions: A large number of features to estimate the

cardiorespiratory coupling were investigated. These were computed on each combination

of an ECG and a respiratory signal. An overview of the considered signal modality

combinations can be found in Figure 4. Cardiorespiratory interactions based on

the respiratory bandwidth, information dynamics, bivariate PRSA, time frequency

representation and subspace projections were computed (Morales et al., 2019).

Additionally, the respiratory and RR-interval signals were decomposed in five db4

wavelet levels, from which the respiratory component of the heart rate was extracted

using subspace projections as introduced in (Varon et al., 2015a). The low frequency

respiratory variations (WAVLF, 0 - 0.07 Hz) and high frequency respiratory variations

(WAVHF, 0.07-0.6 Hz) were extracted.
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3.2.2. Feature selection A total of 117 features were extracted from the different

signals, the logarithm was also computed for all of them and considered as feature.

In order to find the most relevant features for the detection of sleep apnea, feature

selection was performed on the OSA ref set.

A random forest based wrapper was implemented (Deviaene et al., 2019). For each

iteration, the feature whose removal resulted in the lowest drop in Cohen kappa value on

the patient-independent out-of-bag samples, was deleted from the feature set. In order

to speed up the computations, highly correlated features were removed on beforehand.

From each feature pair with a correlation coefficient larger than 0.9, only the feature

with the largest F-score was retained (Deviaene et al., 2018).

3.2.3. Classification Once the relevant features were discovered, a classifier was

trained to predict whether or not a 1-minute segment contains an apnea. A fixed-

size least-squares support vector machine (LS-SVM) classifier with RBF kernel was

trained based on the OSA ref data set. The 6000 most representative samples were

selected for training based on the entropy criterion (De Brabanter et al., 2002). The

hyperparameters of the LS-SVM model were tuned using the tunelssvm function. 10-

fold cross-validation was performed on the training set using the misclassification rate as

cost function. The performance of the model was computed on the remaining samples

of OSA ref and the two other data sets, using the area under the receiving operating

characteristic (ROC) curve (AUC), the accuracy (Acc), sensitivity (Se) and specificity

(Sp). The optimal cutoff point on the ROC was selected based on the optimization of the

multiplication of Se and Sp. An overview of the different signal modality combinations

on which the developed algorithm was tested for each data set can be found in Figure

4. For the PSG data, the performance results were compared when different types of

respiratory measurements were used. On OSA cc, the influence on the performance was

studied when the PSG signals were replaced by the capacitively-coupled measurements.

For OSA Varon, only the combination of PSG ECG and EDR Ramp was considered,

for which the performance was compared against the results from (Varon et al., 2015a).

3.3. Additional experiments

In order to further investigate the results, additional experiments were conducted. An

overview of these experiments can be found in Figure 3. Alternative models were

obtained by retraining the LS-SVM classifier from scratch with different training sets

or signal modalities, no transfer learning was applied.

3.3.1. Alternative respiratory signals To improve the comparison between the use

of different PSG respiratory modalities, an alternative classifier model was trained

with features computed from the PSG ECG combined with EDR RS slope and TB for

OSA ref train.
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3.3.2. Comparison of features extracted from PSG and capacitively-coupled

measurements The feature selection is solely based on the PSG based features from

the training data set. But, as concluded in (Castro et al., 2018), not all ECG based

features can be extracted accurately from the ccECG signals. The obtained features

might therefore not be the most relevant ones for the ccECG. In order to investigate

the relationship between features extracted from the ccECG and PSG ECG, a linear

regression was performed in which the ccECG features were used as regressors and the

PSG features as target values. The R-squared values of these regressions were used to

evaluate how well the PSG features could be extracted from the capacitively-coupled

signals.

An additional feature selection was then performed in which only features which had

an R-squared value above a certain threshold were considered. Based on this new feature

set, an alternative classification model was trained using the PSG data of OSA ref.

3.3.3. Classification model based on capacitively-coupled data In order to further

optimize the classification model towards the capacitively-coupled measurements, the

model was trained based on the ccECG and EDR Ramp data of OSA cc. Unfortunately,

not enough ccBioz data was available to be included in this experiment.

10-fold cross validation was performed on the patients included in this data set.

The patients were ranked according to their AHI. Every group of 10 patients in this

ranking was then spread over the 10 folds, as such, each fold included a wide range of

OSA severity levels.

3.3.4. Training model using OSA Varon The apnea scoring rules have changed since

the OSA Varon data set was recorded, and moreover, the patient demographics differ

between OSA Varon and OSA Ref. Therefore, a model trained on the latter data

set might not generalize well on the former. In order to ensure a fair comparison to

the results obtained in (Varon et al., 2015a), a model was retrained on a subset of

OSA Varon.

4. Results

4.1. Extracted features

Seven features were identified to be the most relevant ones using the OSA ref data set.

These include:

• two ECG features: the log standard deviation of the RR-intervals and QRSmorph.

• two respiratory features: Log standard deviation and log kurtosis of the respiration.

• three cardiorespiratory interaction features: WAVLF, log WAVHF and the log 3-dB

bandwidth of the respiratory power spectral density estimate (log PSD BW resp).

In Figures 5 and 6, four of the selected features are plotted for different combinations

of ECG and respiratory measurements for the OSA cc data set. In Figure 5, the
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Figure 6: Log kurtosis of the respiration and Log WAVHF feature extracted from OSA cc

for normal (N) and apneic (A) segments using different signal modality combinations.

QRSmorph and log std RR features are compared when extracted from the PSG ECG

and ccECG. It is clear that the separation between normal (N) and apneic (A) segments

is better for the PSG ECG signals than for the ccECG, especially when using a

morphology-related feature, as suggested in (Castro et al., 2018). Figure 6 depicts

the log kurtosis of the different respiratory measures. The TB and ccBioz respiratory

signals show a better separation than when EDR signals are used. The selected

cardiorespiratory interaction features, on the other hand, show a similar separation

for all signal modality combinations, as can be seen for log WAVHF in Figure 6.

Using the Kruskal-Wallis test, the features in Figures 5 and 6 were shown to be

statistically different between normal sleep and apneic segments with a significance level

of 0.05. The QRSmorph feature, however, had the highest p values with a value of 0.03

when using the ccECG.

4.2. Apnea detection

Using the seven extracted features, three classifiers were trained using the OSA ref

PSG ECG combined with the different respiratory measurements (EDR Ramp, EDR

RS slope and TB). The performance results on the test set of OSA ref and the PSG

data of OSA cc can be found in Table 4. The performances on the OSA cc data set are

slightly better than on the OSA ref test set. Using the TB an AUC of 80 % is obtained
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Table 4: Apneic segment classification performance on the PSG data, trained on the

corresponding signal combination.

OSA ref test OSA cc

EDR EDR TB EDR EDR TB

Ramp RS slope Ramp RS slope

AUC [%] 73.5 73.3 79.5 76.3 75.1 80.0

Acc [%] 68.8 68.6 74.2 68.9 68.4 72.9

Se [%] 63.9 62.1 67.1 67.0 66.2 69.5

Sp [%] 70.8 71.4 77.1 69.8 69.4 74.5

on OSA cc, whereas the EDR combinations only obtain AUCs of 76.3 (Ramp) and 75.1

% (RS slope). For the OSA Varon data set a similar AUC of 75.9 % is obtained using

the EDR Ramp, as can be seen in the first column of Table 7.

The classification results on the OSA cc data for segments with clean capacitive

sensor data are presented in Table 5. Overall, lower sensitivities can be observed

compared to Table 4 in the reduced data set, even for the PSG based classification.

Nevertheless, when the combination of ECG with the TB is compared between the

PSG ECG and ccECG signals, only a slight drop in AUC of about 1 % is observed.

However, further analysis has shown that when using the TB, the respiratory features

are dominant in the classifier. When a model was retrained using only the three features

extracted from the TB (std, kurtosis and PSD BW resp), still a performance with an

AUC, Acc, Se and Sp of, respectively, 80.3, 77.9 57.6 and 86.7 % was obtained.

Substituting the TB by the Ramp EDR signal, causes only a slight drop in AUC

of 3.4 % for the PSG ECG signal, whereas, for the ccECG signal this causes a drop of

12.7 %. Using the RS slope EDR estimation, a slightly worse performance is observed

with a similar AUC of 67.7 %, but a sensitivity of only 50.3 % for the ccECG data.

On the other hand, when comparing the PSG based combination of PSG ECG and TB

Table 5: Apneic segment classification performance on the OSA cc data for segments

with clean capacitive sensor data.

Respiration TB EDR Ramp TB ccBioz

ECG PSG* ccECG PSG* ccECG PSG** PSG** ccECG

AUC [%] 81.2 80.1 77.8 67.4 81.1 80.4 79.1

Acc [%] 77.9 77.2 73.7 63.5 83.0 80.7 80.4

Se [%] 59.0 60.7 54.4 54.4 58.3 58.3 66.7

Sp [%] 86.2 84.3 82.0 67.4 87.5 84.8 82.9

* Including only segments with clean ccECG signal.
** Including only segments with clean ccECG and ccBioz signal.
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against the completely capacitively-coupled combination of ccECG and ccBioz, only

slight changes in performance are observed.

4.3. Additional experiments

4.3.1. Comparison of features extracted from PSG and capacitively-coupled

measurements Only three of the selected features show a weak to moderate correlation

between features computed based on the PSG ECG + EDR Ramp and ccECG + EDR

Ramp: the log std RR (R2 = 0.31), WAVLF (R2 = 0.12) and log WAVHF (R2 = 0.17).

The other features all have R-squared values below 0.05, meaning these features do not

show the same characteristic behavior when extracted from ccECG in comparison to the

contact ECG case. As described in (Castro et al., 2018), the most probable reason for

this is that these features rely either on the complete ECG morphology or use the ECG

for EDR extraction. As a consequence, when only features with an R-squared value

larger than 0.1 were considered, all respiratory features were removed, pointing towards

an inaccurate EDR extraction from the ccECG. Feature selection on the remaining

features resulted in a set of five features, including the three features mentioned above,

the log mean of the RR-intervals and the power in the HF band of the RR-intervals.

When a model was trained on the OSA ref data set using these five features,

and tested on the ccECG + EDR Ramp signals, a slight increase in performance was

observed. An AUC, accuracy, sensitivity and specificity of, respectively, 68.0, 67.5,

48.7 and 75.6 % were obtained. The sensitivity was, however, further decreased. This

indicates the need of a good respiratory measure in order to obtain an acceptable

sensitivity of the classifier. Better EDR estimates of the ccECG signal, or alternative

unobtrusive signals such as ccBioz, are thus needed.

4.3.2. Training a model based on capacitively-coupled data A model was trained based

on the ccECG data of the OSA cc set using 10-fold cross validation. The averaged

performance measures can be found in Table 6 for both the training and test data.

When using an RBF kernel, a test AUC of 62.0 % is obtained, which is worse than

the results obtained in Table 5. Nevertheless, the training set performance achieved an

AUC of 81.4 %, showing the potential of retraining based on the ccECG. When more

ccECG training data would have been available, a better generalization might have been

reached. However, with this data set size, the model overfitted to the training set, and

high variances are seen in the performance results.

A simpler model might therefore, be more appropriate. LS-SVM models with a

linear kernel were tested. A slightly better test AUC of 63.4 % was achieved. In this

case, the model did not overfit to the training set, and the training and test performances

are similar. It is thus not clear if similar accuracies to the ones obtained using the PSG

data are achievable, even with a larger data set.
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Table 6: 10-fold cross validated apnea segment classification performance for model

trained on the capacitively-coupled data. Mean performance measures ± standard

deviation are presented.

RBF kernel Linear kernel

Training Test Training Test

AUC [%] 81.4 ± 4.6 62.0 ± 7.4 64.6 ± 1.2 63.4 ± 6.9

Acc [%] 74.1 ± 4.5 58.4 ± 5.9 61.2 ± 1.4 58.6 ± 9.2

Se [%] 74.3 ± 3.7 53.8 ± 14.8 64.1 ± 4.1 62.2 ± 17.7

Sp [%] 74.0 ± 5.0 62.9 ± 11.0 60.0 ± 3.6 57.8 ± 15.4

Table 7: Performance comparison to the study by Varon et al. (Varon et al., 2015a)

Trained on Retrained on Original study

OSA ref OSA Varon (Varon et al., 2015a)

AUC [%] 75.9 85.2 90.0

Acc [%] 68.7 79.9 75.9

Se [%] 66.1 64.1 78.8

Sp [%] 69.9 86.0 84.6

4.3.3. Retraining the model with OSA Varon Retraining the classifier using a subset

the OSA Varon data set caused an increase in AUC performance of 10 % to 85.2% for

the test portion of this data set, as can be seen in Table 7.

5. Discussion

5.1. Selected features

The seven selected features are very comparable to those selected in (Varon et al., 2015a).

Only the kurtosis of the respiration and the PSD BW resp feature were not considered

by (Varon et al., 2015a), but the serial correlation coefficient was included instead. A

lot of different methodologies were tested to estimate the cardiorespiratory interactions,

of which the wavelet based subspace projection features were selected in the final set.

This might be due to the fact that the wavelet decomposition acts as a filter which

smooths out estimation errors in the EDR, while the other cardiorespiratory features

take the unfiltered EDR signals as input. This would also explain the relatively high

correlation between ECG and ccECG estimates for these features, as seen in Section

4.3.1, compared to the other respiratory features which all obtained R-squared values

below 0.1. From these R-squared values, it is clear that the EDR-related features and the

QRSmorph feature were not accurately estimated from the ccECG signal. This could be

expected because these are largely dependent on the QRS morphology, while the ccECG

signal can change between different leads from segment to segment and is obtained from
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different electrode locations than the PSG ECG. This causes the QRS morphology not

to be consistent with that of the PSG ECG. In order to improve the EDR estimate

from this ccECG signal, further research is needed related to the effect respiration has

on the ccECG signals. The obtained results suggest that the ccBioz signals are a better

source to extract respiratory features than the EDR from the ccECG signals. The

possibility to have a fully unobtrusive apnea detection solution using ccECG and ccBioz

measurements is therefore promising and should be further validated in a larger data

set.

5.2. Apnea detection

On the PSG data, our algorithm obtained an ECG based AUC of 76.3 % and an AUC of

80.0 % when the TB was included. This performance might seem rather low compared

to studies from the literature in which AUCs of 89-94 % are reported (Mendonca et al.,

2018). But most of the studies use the Physionet Apnea-ECG data set. This data set

is rather easy to classify, since the control subjects are volunteers instead of patients

with sleep related complaints (Penzel et al., 2000). When algorithms trained on the

Apnea-ECG data set are tested on clinical data with more complex disease patterns,

drops in accuracy of up to 15 % can be seen (Papini et al., 2018). Therefore, only a

direct comparison to the algorithm by Varon et al. (Varon et al., 2015a) was included,

since this clinical data set, OSA Varon, was available for this study. The results of this

comparison using the Ramp EDR can be found in Table 7. Applying our pre-trained

model to the OSA Varon data set gave similar performances for the other two data

sets. However, the AUC of 75.9 % is much lower than the AUC of 90.0 % in (Varon

et al., 2015a). This performance drop might be explained by the difference in apnea

scoring rules between OSA ref and OSA Varon, but also by a difference in patient

demographics. In Table 1, it can be observed that OSA Varon contains more men, of

which a larger percentage has moderate to severe sleep apnea resulting in a larger average

AHI and a smaller range of AHI values. When analyzing the different apnea subtypes, it

was discovered that in this data set of all segments labeled as apneic, containing apneas

or hypopneas, 22 % contained obstructive apneas. These are in general the most severe

events, and the easiest to automatically detect. Whereas for the OSA ref and OSA cc

data sets this was, respectively, only 10.9 and 11.8 %. When the model was retrained

on the OSA Varon data set, the AUC on the OSA Varon test subset increased to 85.2

%. This is still slightly lower than the results in (Varon et al., 2015a), this drop is due

to the lowered sensitivity, which is caused by the change in feature set since this one

was optimized for OSA ref.

Another difficulty with using a clinical data set is the fact that OSA patients

often suffer from cardiovascular (CV) comorbidities (Bradley and Floras, 2009). These

comorbidities will distort the RR-interval rhythm and the cardiorespiratory interactions,

and might thus distort the extraction of the proposed features. In our study, the presence

of CV comorbidities was not considered as an exclusion criterion, since otherwise more
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than half of the patients coming into the sleep lab for diagnosis would have been

excluded. For the OSA ref set, the presence of CV comorbidities was recorded as

explained in (Deviaene et al., 2020). Of those patients, 151 had a CV comorbidity

at the time of the PSG, 46 were controls and for the other patients the CV data was

incomplete. When the apnea detection performance using the Ramp EDR was compared

between them, a slight drop in AUC to 73.1 % was observed for the CV group, compared

to an AUC of 75.3 % for the controls. Further investigation into the differences between

those two groups also revealed an increased correlation between changes in RR-intervals

and the EDR time series, measured using the PRSA parameters, for the CV comorbidity

group during normal sleep. This increased correlation was not present when the EDR

time series was substituted by the TB. This might indicate that in these patients, the

EDR methods do not capture the true cardiorespiratory interactions, but rather just

the changes in heart rate, which should be studied further.

In (Varon et al., 2015a), the Ramp method was used to compute the EDR. This

method relies on the amplitude of the R-peaks. In the case of ccECG signals, large

amplitude shifts can occur. Therefore, the RS slope EDR estimate was proposed as an

alternative. From the comparison in (Varon et al., 2020), it was concluded that this was

one of the most robust EDR methods. Our results, however, show almost no difference

when applied on the PSG ECG, and a slightly better performance for the Ramp method

on the ccECG. When the feature selection described in Section 3.2.2 was repeated with

the RS slope EDR data instead of the Ramp EDR, the same feature set was obtained.

The fact that the RS slope method is still dependent on the QRS morphology might

explain these results, further research into the effect that respiration has on the ccECG

is needed. On the other hand, the ccBioz signal could be a good alternative to extracting

the EDR from the ccECG which should be further investigated and tested on a larger

population.

The results in Table 5 show a decreased sensitivity (for both PSG-based

and capacitively-coupled based classification) when only segments containing clean

capacitive data are considered. This can be explained by the fact that apneic events

which have a clear cardiorespiratory reaction, due to an autonomic arousal, will be more

likely to cause (movement) artefacts distorting the capacitive signals. These segments

will thus be removed from the analysis due to the lower signal quality and the apneic

events left in the data set will have a more subtle cardiorespiratory reaction which is

more difficult to detect. This explanation is supported by the observed apnea sub-type

division, when considering the complete OSA cc data set, 64.9 % of apneic segments

were linked to the less severe hypopnea events which only have a partial cessation of

breathing. While for the subset with clean ccECG signals, this percentage increased

to 74.9 %. In this study, segments with a low signal quality were discarded, but the

periodicity and length of artefacts could also be studied in further research to investigate

the link between apneic arousals and certain artefacts, as was proposed in (Huysmans

et al., 2019).

The fully unobtrusive apnea classification based on the ccBioz signal combined with
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the ccECG has shown good results, comparable to the ones obtained using PSG ECG

and TB. These results are, however, based on a very small subset of the data set since

quite some ccBioz data was lost due to sensor failure. This subset only contained 263

normal sleep minutes and 48 apneic minutes. Moreover, the ccBioz processing contained

a manual artefact detection step. In order to obtain a fully automated method based on

the ccBioz signal, an algorithm estimating the signal quality index should be developed.

The obtained results using the ccBioz are promising, but should be further validated

on a larger data set. New data set collections with the capacitively-coupled sensors are

planned. These capacitively-coupled sensors could in the future also be used to assess

other medical conditions, next to OSA, during sleep. The recording setup used in

this study with the capacitively-coupled sensors embedded in the mattress is still in a

prototype stage. In the future, these sensors should be embedded in a flexible mat.

Which could be easily installed below the bed cover and transported if necessary.

6. Conclusion

This paper presented an algorithm for the automatic detection of sleep apnea based on

(capacitively-coupled) ECG and unobtrusive respiratory measurements. A set of ECG,

respiratory and cardiorespiratory parameters were extracted from different combinations

of PSG or capacitively coupled ECG signals with EDR measures, thoracic belt or ccBioz

signals. Using the PSG data, slightly better performances were obtained when using the

thoracic belt instead of the EDR. When tested only on the unobtrusive ccECG data,

a clear drop in performance was observed, which was linked to difficulties extracting

the EDR from the ccECG due to morphological changes within the signal. When the

ccECG signal was instead combined with the TB or ccBioz, similar performances as for

the PSG data set were obtained. Especially the results on the combination of ccECG

with ccBioz are very promising, as this paper is the first to test this fully unobtrusive

solution. These results, should however, be further validated on a larger data collection

of ccBioz signals.

Acknowledgements

This work was supported in part by Bijzonder Onderzoeksfonds KU Leuven (BOF):

The effect of perinatal stress on the later outcome in preterm babies: C24/15/036,

Prevalentie van epilepsie en slaapstoornissen in de ziekte van Alzheimer: C24/18/097.

Agentschap Innoveren en Ondernemen (VLAIO): 150466: OSA+. This research received

funding from the Flemish Government (AI Research Program). KU Leuven Stadius

acknowledges the financial support of imec.

References

Adult Obstructive Sleep Apnea Task Force of the AASM (2009). Clinical guideline for



REFERENCES 18

the evaluation, management and long-term care of obstructive sleep apnea in adults.

J Clin Sleep Med, 5(3):263–276.

Bauer, A., Kantelhardt, J. W., Bunde, A., Barthel, P., Schneider, R., Malik, M., and

Schmidt, G. (2006). Phase-rectified signal averaging detects quasi-periodicities in

non-stationary data. Physica A, 364:423–434.

Benjafield, A. V., Ayas, N. T., Eastwood, P. R., Heinzer, R., Ip, M. S., Morrell, M. J.,
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