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Abstract

A crucial aspect in system identification is the assessment of the accuracy of the identified system matrices. Stochastic
Subspace Identification (SSI) is a widely used approach for the identification of linear systems from output-only data
because it combines a high computational robustness and efficiency with a high estimation accuracy. Practical approaches
for estimating the (co)variance of system matrices that are identified using SSI exist for the case where the system matrices
are obtained from the shift-invariant structure of the extended observability matrix. However, in data-driven SSI, the
system matrices are often obtained in a different way, using identified state sequences. This case is treated in the present
work, for three common types of weighting. First, it is shown that the estimated system matrices depend entirely on
sample output correlation estimates, the covariance of which can be straightforwardly estimated. Subsequently, a linear
sensitivity analysis of the data-driven SSI algorithm is performed, such that the covariance of the identified system matrices
can be also computed. A memory efficient implementation is obtained by computing the related Jacobian only implicitly.
An extensive numerical validation, covering a range of parameter choices, demonstrates the accuracy of the estimated
variance of the identified system description. Finally, the practical use of the method in the context of operational modal
analysis is demonstrated in an experimental case study.
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1. Introduction

Stochastic subspace identification (SSI) is an approach for estimating a linear time-invariant system model from
output-only data that relies on the orthogonal projection of a matrix containing the most recent data onto the subspace
spanned by the rows of a matrix containing the least recent data [1]. The approach is very widely used for the identifi-
cation of mechanical systems from response-only data, in particular in the context of operational modal analysis, where
the aim is to extract natural frequencies, damping ratios and mode shapes [2, 3, 4]. The main reason for this popularity is
that SSI combines a high computational robustness and efficiency with a high estimation accuracy [4]. Several variants of
SSI exist, but it has been demonstrated that, as far as the identification of the extended observability matrix is concerned,
they boil down to the same basic algorithm with a different choice of weights [5]. This general algorithm is often termed
data-driven SSI or SSI-data in the operational modal analysis literature, while covariance-driven SSI or SSI-cov desig-
nates a particular choice of weights that reduces the orthogonal projection step in the algorithm to a single data correlation
[6]; the SSI-cov weighting is known as the principal component (PC) weighting in the automatic control literature [5].
Once the extended observability matrix has been identified, the system matrices can be identified as well. In SSI-cov,
this is usually achieved by exploiting the shift-invariant structure of the extended observability matrix, while in SSI-data,
identified Kalman filter state sequences are often employed [6].

In order to use the identified system matrices or related modal characteristics with confidence, it is important that
their accuracy can be assessed. In-depth theoretical analyses of the asymptotic statistical properties of SSI are available
from the automatic control literature, generally in the setting of Hilbert spaces of random variables. Important theoretical
results include proofs that the identified system matrices are asymptotically normally distributed [7, 8, 9], and that they
have asymptotically minimum variance (in other words, they are statistically efficient) for a specific type of weighting,
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the canonical variate analysis (CVA) weighting [10]. Analytical expressions that relate the asymptotic covariance of the
identified system matrices to the exact system matrices and to covariances of the unkown inputs and state estimation
errors, have also been derived [8, 9, 11, 12], but explicit practical expressions for the actual covariance estimation from
experimental data are not available from these works. Such expressions are available from the experimental vibration
analysis literature, at least for the special case where the system matrices are identified from the shift-invariant structure
of the identified observability matrix, and for unity left projection weighting [13, 14, 15].

The approach that has been taken to arrive at these practical expressions, is to perform a detailed first-order sensitivity
analysis of the entire algorithm, resulting in the derivatives (or more precisely, the Jacobian matrix containing the deriva-
tives) of the identified system matrices to the sample output correlations where the algorithm starts from. When combined
with an estimate of the covariance of the sample output correlations, these derivatives then result in the covariance of the
identified system matrices. The first such analysis was performed for the SSI-cov algorithm [13]; it was later extended
to SSI-data for the case where the system matrices are estimated from the shift-invariant structure of the observability
matrix, and unweighted principal component (UPC) weighting [15]. A detailed experimental validation of the covariance
estimation of the system matrices identified with SSI-cov has been presented in [16].

In the present work, a practical approach is developed for estimating the covariance of the system matrices that are
identified with SSI-data using identified Kalman filter state sequences. The analysis comprises three common types of
weighting: UPC, PC and CVA. First, it is shown that the estimated system matrices depend entirely on sample output
correlation estimates, the covariance of which can be straightforwardly estimated. Subsequently, a linear sensitivity
analysis of the data-driven SSI algorithm is performed, such that the covariance of the identified system matrices can
be computed. A memory efficient implementation is automatically obtained by computing the related Jacobian only
implicitly. In this way, the memory issues that can arise when the Jacobian is explicitly computed [14] are obviated in a
natural way.

The remainder of this paper is structured as follows. In section 2, the system models that are identified with stochastic
subspace identification are discussed. The identification itself is presented in section 3. The relation between the identified
system matrices and the sample output correlations is investigated in section 4. The estimation of the covariances of the
identified system matrices is presented in section 5. The computation of modal characteristics and their covariances is
outlined in section 6. Numerical verifications and an application involving experimental data are presented in sections 7
and 8, respectively.

2. State-space models for linear systems with unknown inputs and measurement errors

The aim of the present section is to introduce the forward innovation model, which is the system model that is identified
in the general SSI-data setting, as well as the related notation. The more conventional stochastic state-space model is
introduced first, followed by the non-stationary Kalman filter which leads to the forward innovation model.

2.1. Conventional stochastic state-space model

The input-output relationship of a linear time-invariant system can, after discretization in time, be described with the
following state-space model:

xk+1 = Axk + Buk (1)
yk = Cxk + Duk + em

k , (2)

where xk ∈ Rn is the state vector of the system with n the system order, yk ∈ Rny is the output vector with ny the number
of outputs, uk ∈ Rnu is the input vector with nu the number of inputs, and A, B, C and D are the system matrices. In
operational modal analysis, only the outputs yk are observed, with measurement error em

k , and usually little information
on the unobserved loading uk and the unknown measurement error em

k is available, other than that they take finite values
that are centered around zero. For this reason uk and em

k are assumed to be white noise random processes. This is a good
assumption as long as the ambient excitation spectrum is not dominated by specific frequency components, which is for
instance the case when strong harmonics are present in the excitation [4]. The white noise model also follows naturally
from a Bayesian perspective, because it represents a state of maximum information entropy (or maximum uncertainty)
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given the available information [17]. Since uk and em
k are assumed to be discrete white noise random processes, the

state-space model can be reformulated as

xk+1 = Axk + wk (3)
yk = Cxk + vk, (4)

where wk := Buk and vk := Duk + em
k are called the process noise and output noise, respectively, and

E

([
wk

vk

] [
wk+l

vk+l

]T)
=

[
Q S
ST R

]
δ1(l). (5)

The noise covariance matrices Q ∈ Rn×n, S ∈ Rn×ny and R ∈ Rny×ny are time-invariant, and δ1(l) represents the unit
impulse function, i.e., δ1(0) = 1 and δ1(l) = 0, l 6= 0, with l denoting a time lag in number of samples.

2.2. Reference-based Kalman filter and forward innovation model

The Kalman filter plays an important role in data-driven stochastic subspace identification, in the sense that it enables
to transform the system model (3-4) into an alternative form that can be employed for estimating the system matrices A
and C from a sequence of observed responses yk. The essential steps that are necessary for arriving at this alternative
system description are summarized here.

The Kalman filter operates in the following setting. Suppose that the system matrices A and C and the noise covari-
ance matrices Q, R and S are known, as well as the outputs y0, . . . ,yk. Given that the stochastic terms wk and vk in (3-4)
are not known, how can the next state xk+1 and the next output yk+1 (which has not been observed yet) be estimated?
Kalman [18] offered a solution to this problem by constructing linear estimates x̂k+1 and ŷk+1 that are unbiased and have
minimum variance. Reynders and De Roeck [19, App. A] extended the conventional Kalman filter to a reference-based
version. In the reference-based Kalman filter, only a subset of the outputs, called reference outputs yref

k , are employed for
the construction of the estimates xk+1 and yk+1. They are defined as

yref
k = Sryk, (6)

where Sr ∈ Rnr×ny is a selection matrix and nr denotes the number of reference outputs. A selection matrix is a matrix
of which each row contains only a single nonzero element, and this element equals unity. The set of reference outputs can
be chosen arbitrarily as long as all system modes are observable in this set. However, the best reference-based Kalman
filter state estimates are usually obtained when the output channels with the highest ratios of signal to measurement noise
are chosen as reference outputs. In multi-setup testing, the set of reference outputs is usually chosen equal to the set of
outputs that are common to all setups. If there is no specific reason for working with references, the set of reference
outputs can be taken equal to the entire set of outputs, in which case Sr = I.

The construction of the reference-based Kalman filter state and output estimates can be summarized in the following
recursive set of equations [19]:

ŷk+1 = Cx̂k+1 (7)

x̂k+1 =
(
A−KkCref

)
x̂k + Kkyref

k (8)

Kk =
(
APkCrefT + Sref

)(
Rref + CrefPkCrefT

)−1
(9)

Pk+1 = APkAT + Q−
(
APkCrefT + Sref

)(
Rref + CrefPkCrefT

)−1 (
APkCrefT + Sref

)T
(10)

where Cref := SrC, Rref := SrRSrT, Sref := SSrT, Kk is the non-stationary reference-based Kalman filter gain, and
Pk is the correlation of the state estimation error:

Pk := E
[
ekeT

k

]
where ek := xk − x̂k. (11)

As starting values for the Kalman filter, x̂0 = 0 and P0 = 0 are commonly chosen.

3



The forward innovation ef
k is defined as the error between the true system output yk and the system output ŷk that is

obtained from the reference-based Kalman filter state estimate x̂k:

ef
k := yk − ŷk. (12)

The innovations are uncorrelated with the outputs from which the estimate ŷk is constructed [4]. Combining the above
definition with eqs. (7-8) leads to

x̂k+1 = Ax̂k + KkSref
k (13)

yk = Cx̂k + ef
k (14)

The system model (13-14) is termed the (non-stationary) forward innovation model of the system. It is easy to show that,
when the starting point for the construction of the Kalman filter is k = l > 0 instead of k = 0 (i.e., the starting values are
x̂l = 0 and Pl = 0), then (13-14) modifies into

x̂
(l)
k+1 = Ax̂

(l)
k + Kk−lS

re
f(l)
k , k ≥ l (15)

yk = Cx̂
(l)
k + e

f(l)
k , (16)

where x̂
(l)
k denotes the Kalman filter state sequence for which the starting value was fixed at k = l, and e

f(l)
k denotes the

corresponding forward innovation.

3. Data-driven stochastic subspace identification

The reference-based data-driven stochastic subspace identification (SSI-data) algorithm aims at identifying the sys-
tem matrices A and C, and sometimes also the noise covariance matrices Q, R and S, from a sequence of outputs
y0, . . . ,yN−1 where N denotes the total number of output samples. It is assumed that the system of interest obeys the
stochastic state-space model or, equivalently, the forward innovation model that was presented in the previous section.
The purpose of the present section is to concisely introduce the SSI-data method and the related notations; more detailed
treatments and mathematical proofs can be found in e.g. [5, 20].

The method starts by collecting the outputs into a large block Hankel matrix H with 2i block rows and j columns:

H :=

[
Yref

0|i−1
Yi|2i

]
:=

1√
j



yref
0 yref

1 . . . yref
j−1

yref
1 yref

2 . . . yref
j

...
... . . .

...
yref
i−1 yref

i . . . yref
j+i−2

yi yi+1 . . . yj+i−1
yi+1 yi+2 . . . yj+i

...
... . . .

...
y2i y2i+1 . . . yN


. (17)

The outputs are scaled with a factor 1/
√
j for reasons that will be explained further. Subsequently, an LQ factorization of

this matrix is performed, i.e., a factorization into a lower triangular matrix and a matrix with orthonormal rows:

H =


Yref

0|i−1

Yref
i|i

Y∼refi|i
Yi+1|2i−1

Y2i|2i

 =


L11 0 0 0 0

L21 L22 0 0 0
L31 L32 L33 0 0
L41 L42 L43 L44 0
L51 L52 L53 L54 L55




Q1

Q2

Q3

Q4

Q5

 (18)

Note that the bottom part Yi|2i of H has been divided into smaller parts and that the corresponding definitions will be
employed in what follows. Yref

i|i is the part of Yi|i containing the reference channels, while Y∼refi|i is the part containing
the non-reference channels.
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Each column of the block Hankel matrix H represents a data sequence. The top part, Yref
0|i−1, contains the ‘past’ part

of each sequence, that will be employed for constructing the next Kalman filter state. The bottom half of the block Hankel
matrix, Yi|2i contains the ‘future’ part of each sequence. This part is now elaborated in forward innovation form. As an
example, consider the first column of Yi|2i−1. By employing the forward innovation model (15-16), it can be elaborated
as 

yi

yi+1

...
y2i−1

 =


C

CA
...

CAi−1


︸ ︷︷ ︸

:=Oi

x̂
(0)
i +


I 0 . . . 0

CKiS
r I . . . 0

...
... . . .

...
CAi−2K2i−2S

r CAi−3K2i−3S
r . . . I


︸ ︷︷ ︸

:=Fi


e
f(0)
i

e
f(0)
i+1
...

e
f(0)
2i−1

 (19)

Note that x̂
(0)
i represents the reference-based Kalman filter state corresponding to the initial values K0 = 0 and P0 = 0,

and e
f(0)
i till e

f(0)
2i−1 are the corresponding forward innovations. The matrix Oi which is defined in Eq. (19) is termed the

observability matrix. It contains the unknown system matrices A and C, and the first step of the SSI-data algorithm is the
identification of the observability matrix from the measured outputs. In order to achieve this, a similar decomposition as
in (19) is performed for all subsequent columns of Yi|2i−1, which leads to

Yi|2i−1 = OiXi|i + F iE
f
i|2i−1 (20)

where the matrices Oi and F i have been defined in Eq. (19),

Xi|i :=
1√
j

[
x̂
(0)
i x̂

(1)
i+1 . . . x̂

(j−1)
j+i−1

]
and Ef

i|2i−1 :=
1√
j


e
f(0)
i e

f(1)
i+1 . . . e

f(j−1)
j+i−1

e
f(0)
i+1 e

f(1)
i+2 . . . e

f(j−1)
j+i−2

...
... . . .

...
e
f(0)
2i−1 e

f(1)
2i . . . e

f(j−1)
N−1

 . (21)

Note that the columns of Xi|i do not belong to the same Kalman filter state sequence, because each column is estimated
from i past outputs, and therefore the starting index of the filtering process is different. The corresponding matrix with
initial values is

X0|0 := 1/
√
j
[
x̂
(0)
0 x̂

(1)
1 . . . x̂

(j−1)
j−1

]
= 0 (22)

Eq. (20) can be interpreted as follows: the future output sequence matrix Yi|2i−1 can be decomposed into a free vibration
sequence matrix which depends on the initial condition matrix Xi|i, and a forced vibration sequence matrix which depends
on the excitation sequence matrix Ef

i|2i−1.
The key step of the subspace identification algorithm is the following. Since the forward innovation vectors in Ef

i|2i−1
are uncorrelated from the corresponding Kalman filter states in Xi|i, they are also uncorrelated from the corresponding
past reference outputs in Yref

0|i−1. The Kalman filter states however are fully correlated with the past outputs. The free
vibration part of the future output matrix can therefore be asymptotically recovered by projecting the future output matrix
onto the row space of the past reference output matrix:

a.s. limj→∞Yi|2i−1/Y
ref
0|i−1 = OiXi|i (23)

With the LQ decomposition defined above, the projection can be computed as

Yi|2i−1/Y
ref
0|i−1 =

L21

L31

L41

Q1. (24)

Eq. (23) reveals that the observability and state matrices can be estimated from a singular value decomposition of the
projected data matrix P :

P := W1

(
Yi|2i−1/Y

ref
0|i−1

)
W2 = USVT (25)
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which leads to
Ôi = W−1

1 US
1
2 and X̂i|i = Ô

†
iYi|2i−1/Y

ref
0|i−1. (26)

The matrices W1 and W2 which appear in the above expressions are weighting matrices that can be chosen arbitrarily as
long as W1 has full rank, and W2 preserves the rank of the matrices with which it is multiplied. Particular combinations
of weights result in specific algorithms, such as [5]

• the unweighted principal component (UPC) algorithm, for which W1 = I and W2 = I;

• the principal component (PC) algorithm, for which W1 = I and W2 = Yref
0|i−1

T
(
Yref

0|i−1Y
ref
0|i−1

T
)− 1

2

Yref
0|i−1;

• the canonical variate algorithm (CVA), for which W1 =
(
Yi|2i−1Y

T
i|2i−1

)− 1
2

and W2 = I.

The estimates Ôi and X̂i|i are strongly consistent, which means that they converge to their true values, when the
number of columns j in the data block Hankel matrix H becomes larger and larger. This is because the projection of the
future output matrix onto the past reference output matrix results in the exact free response for j →∞, see Eq. (23).

Several options are available for estimating the system matrices A and C. One option is to make use of the shift
structure of the observability matrix Ôi, as is done in covariance-driven stochastic subspace identification (SSI-cov).
However, in the SSI-data algorithm as introduced in [6] for modal testing, the system matrices are estimated from the
identified Kalman filter state sequence. In order to recover the Kalman filter state matrix Xi+1|i+1 which relates to Xi|i
and the initial condition X0|0, an expression similar to (20) can be derived:

Yi+1|2i = OiXi+1|i+1 + F i+1E
f
i+1|2i. (27)

A strongly consistent estimate of Xi+1|i+1 is then

X̂i+1|i+1 := Ô
†
iYi+1|2i/Y

ref
0|i . (28)

The orthogonal projection which appears in this expression can be computed with the LQ decomposition that was defined
earlier:

Yi+1|2i/Y
ref
0|i =

[
L41 L42

L51 L52

] [
Q1

Q2

]
. (29)

Application of the reference-based forward innovation model results in[
X̂i+1|i+1

Yi|i

]
=

[
A
C

]
X̂i|i +

[
KiS

rEf
i|i

Ef
i|i

]
. (30)

Since the estimation errors Ef
i|i are uncorrelated from the Kalman filter states Xi|i, the following estimate of the system

matrices is strongly consistent: [
Â

Ĉ

]
:=

[
X̂i+1|i+1

Yi|i

]
X̂†i|i (31)

where the operator † denotes the Moore-Penrose pseudo-inverse.

4. Relation between the identified system matrices and sample output correlations

In the previous section, the SSI-data algorithm was presented in its conventional form [5, 6]. In the present section,
the algorithm is analyzed in more detail in order to reveal that the identified system matrices are exclusively estimated
from output sample correlation matrices. Such a demonstration can also be found in [15] for a different version of the
SSI-data algorithm with UPC weighting, in which the system matrices are obtained from the observability matrix instead
of the state sequences.
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Before starting this analysis, it is helpful to review the following two basic results from linear algebra. Consider
any two matrices A and B with an equal number of columns and suppose that B has full row rank. First, under these
conditions, the pseudo-inverse of B equals

B† = BT
(
BBT

)−1
. (32)

Second, the projection of A onto the row space of B equals

A/B = AB†B. (33)

With the second result, one finds from (26) and (28) that, respectively,

X̂i|i = Ô
†
iYi|2i−1Y

ref
0|i−1

†
Yref

0|i−1 (34)

and
X̂i+1|i+1 = Ô

†
iYi+1|2iY

ref
0|i
†
Yref

0|i . (35)

Subsequent application of the first result leads to

X̂†i|i = Yref
0|i−1

T
(
Yi|2i−1Y

ref
0|i−1

†)T (Ô†i)T J−11 (36)

with

J1 := Ô
†
iYi|2i−1Y

ref
0|i−1

†
Yref

0|i−1Y
T
i|2i−1

(
Ô
†
i

)T
. (37)

It may be noted that (36) requires that X̂i|i has full row rank. This is indeed the case thanks to the persistency of excitation
of the white noise input [21]. Substitution of these expressions into (31) results in[

Â

Ĉ

]
:=

[
Ô
†
iYi+1|2iY

ref
0|i
†
Yref

0|i
Yi|i

]
Yref

0|i−1
T
(
Yi|2i−1Y

ref
0|i−1

†)T (Ô†i)T J−11 . (38)

This result already reveals that, apart from the observability matrix estimate Ôi that will be analyzed next, the estimated
system matrices are obtained exclusively from output sample correlation matrices. This is because the parts of the output
Hankel matrix H that are involved in this expression do not appear on their own, but always in multiplication with the
transpose of another part. For example, the first block column of Yi|iY

ref
0|i−1

T equals

Yi|iY
ref
0|0

T
=

1

j

j−1∑
k=0

yk+iy
ref
k

T
such that a.s. limj→∞Yi|iY

ref
0|i−1

T
= E

(
yk+iy

ref
k

T
)
. (39)

The second equality states that the sample correlation converges almost surely to the true correlation.
In order to obtain the link between the estimate of the extended observability matrix, Ôi, and the sample output

correlations, one can proceed as follows [15]. Let us first define the matrix P as

P := PPT. (40)

For the UPC and CVA algorithms, one has that

P = W1

(
Yi|2i−1Y

ref
0|i−1

T
)(

Yref
0|i−1Y

ref
0|i−1

T
)−1 (

Yi|2i−1Y
ref
0|i−1

T
)T

WT
1 (41)

while for the PC algorithm, a simpler expression is obtained:

P =
(
Yi|2i−1Y

ref
0|i−1

T
)(

Yi|2i−1Y
ref
0|i−1

T
)T

(42)

In both cases P is seen to consist entirely of sample output correlations. With (25), one has that

P = US2UT (43)

This means that the matrices U and S of which Ôi is composed according to (26), can be obtained as the matrix with
eigenvectors and squared eigenvalues of P, respectively.
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5. Covariance of the estimated system matrices

5.1. General approach
As discussed previously and illustrated in (39), the elements of HHT represent sample output correlations. As they

are estimated from a finite number of samples j, they differ from the true output correlations. In order to simplify the
notation, let us define the statistical estimator of the output correlations as θ̂, and the matrix with the true values as θ:

θ̂ := vec
(
HHT

)
and θ := E

(
θ̂
)
, (44)

where vec is a vectorization operator that stacks the columns of a matrix on top of each other. The estimation error is then
defined as

∆θ := θ̂ − θ. (45)

The analysis in the previous section has revealed that the estimated system matrices Â and Ĉ are an implicit function
of the elements of HHT: vec

(
Â
)

vec
(
Ĉ
)
 =

f
(
θ̂
)

g
(
θ̂
)
 =

[
f (θ + ∆θ)

g (θ + ∆θ)

]
, (46)

where f and g are vector functions. As a result, the matrices Â and Ĉ are (non-exact) estimates of the system matrices A
and C, even when the true system perfectly obeys all assumptions that have been outlined in Sec. 2. If the errors ∆θ are
sufficiently small, then an approximate linear relation between the system matrix errors and the output correlation errors
can be obtained with a first-order Taylor expansion:[

vec (∆A)

vec (∆C)

]
≈

[
Jf

Jg

]
∆θ, (47)

where Jf and Jg are Jacobian matrices, i.e., their elements are first order derivatives:

Jf,kl :=
∂fk(θ)

θl
and Jg,kl :=

∂gk(θ)

θl
. (48)

The covariance of the system matrix estimates is then approximately obtained as

CovAC := E

[vec (∆A)

vec (∆C)

][
vec (∆A)

vec (∆C)

]T ≈ [Jf

Jg

]
E
(
∆θ∆θT

) [Jf

Jg

]T
(49)

The covariance matrix of the output sample correlations can be obtained by splitting up the data Hankel matrix H into
nb blocks of jb columns each:

H =
[

H1 H2 . . . Hnb

]
=

[
Yref

0|i−1,1 Yref
0|i−1,2 . . . Yref

0|i−1,nb

Yi|2i,1 Yi|2i,2 . . . Yi|2i,nb

]
. (50)

The output sample correlations are then computed as

HHT =

nb∑
b=1

HbH
T
b (51)

If the block length jb is sufficiently large, the data blocks are approximately statistically independent. If this is indeed the
case, the covariance of the output sample correlations can be estimated as

E
(
∆θ∆θT

)
= E

(
vec
(
∆
(
HHT

))
vec
(
∆
(
HHT

))T)
(52)

≈ nbE
(

vec
(
∆
(
HbH

T
b

))
vec
(
∆
(
HbH

T
b

))T)
(53)
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Let us now denote the output Hankel matrix that is constructed from the observed data in a specific experiment as H̄,
i.e., H̄ is an observation of H. The expected value which appears in the previous expression can then be obtained as the
sample mean estimate that is obtained from the observed block samples:

E
(

vec
(
∆
(
HbH

T
b

))
vec
(
∆
(
HbH

T
b

))T) ≈ 1

nb

nb∑
b=1

∆θ̄b∆θ̄
T
b (54)

where

∆θ̄b := vec

(
j

jb
H̄bH̄

T
b − H̄H̄T

)
. (55)

This derivation illustrates that it is possible to estimate the covariance of the identified system matrices as follows:
estimate the errors for each data block as in (55), estimate subsequently the covariance of the sample output correlations
from (53) and (54), compute the Jacobian matrices Jf and Jg, and finally apply (49). This is the approach that was
followed in previous works on practical covariance estimation for SSI algorithms that make use of the shift-invariant
structure of the observability matrix [13, 15]. However, the derivation of explicit expressions for the Jacobian matrices
involves the extensive use of Kronecker algebra, and the matrices involved tend to have large dimensions, leading to
substantial memory usage unless an optimized implementation is developed, as in [14].

Therefore, a different approach is proposed in the present work. The main idea is not to derive explicit expressions for
the Jacobians anymore, but rather to directly estimate the first-order errors ∆Ab and ∆Cb that are caused by the errors
on the sample output correlation estimates for a specific block b, ∆θb. Once ∆Ab and ∆Cb are obtained for every block
b, the covariance of the system matrix estimates, CovAC, follows directly from these estimated errors. Both the explicit
and the implicit approaches yield the same final result, as can be seen from the substitution of (53) and (54) into (49):

CovAC ≈
nb∑
b=1

[
vec
(
∆Āb

)
vec
(
∆C̄b

)] [vec
(
∆Āb

)
vec
(
∆C̄b

)]T where

[
vec
(
∆Āb

)
vec
(
∆C̄b

)] ≈ [Jf

Jg

]
∆θ̄b (56)

The mathematical derivation is however less complex for the implicit approach, and memory issues are also automatically
avoided since the dimensions of the matrices involved do not exceed those that appear in the original algorithm.

5.2. Computation of first-order system matrix errors

5.2.1. General first-order sensitivity results
Before starting the detailed analysis, it is again helpful to review some results from matrix algebra. If a matrix A is

square and has full rank, then it follows immediately from the identities

AA−1 = I and (A + ∆A)
(
A−1 + ∆A−1

)
= I (57)

that, up to first-order accuracy,
∆A−1 ≈ −A−1∆AA−1. (58)

Combining this result with (32), one finds that, if A is not necessarily square but has full row rank,

∆A† ≈
(
I−A†A

)
∆AT

(
AAT

)−1
−A†∆AA†. (59)

Similarly, when A has full column rank,

A† =
(
ATA

)−1
AT and ∆A† ≈

(
ATA

)−1
∆AT

(
I−AA†

)
−A†∆AA†. (60)

If A is a real symmetric matrix of full rank and with unique eigenvalues, then it admits an orthonormal eigenvalue
decomposition of the form

A = UΛUT with UTU = UUT = I, (61)
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where Λ is a diagonal matrix, the nonzero diagonal elements of which are denoted as λk. The corresponding columns of
U are the orthonormal eigenvectors uk, such that

Auk = λkuk and uT
kA = λkuT

k (62)

from which it directly follows that
∆λk ≈ uT

k ∆Auk (63)

and

∆uk ≈
(

I− A
λk

)†(
∆Auk

λk
− Auk

λ2k
∆λk

)
. (64)

5.2.2. First-order error on the observability matrix estimate Ôi

In this section, the error on the estimated observability matrix due to errors in the sample output correlation matrices
of a particular data block b is derived. Application of the chain rule to (26) leads to

∆Ôi,b = ∆
(
W−1

1

)
b
US

1
2 + W−1

1 ∆UbS
1
2 + W−1

1 U∆
(
S

1
2

)
b

(65)

The error on the weighting matrix is zero for the UPC and PC algorithms. For the CVA weighting, this error will be
quantified in section 5.2.5.

From (43), it is clear that the columns uk of U are the orthonormal eigenvectors of P, and the squares of the diagonal
elements sk of S are the eigenvalues of P. One can then invoke the general results (63) and (64) to arrive at

∆uk,b =

(
I− P

s2k

)†(
∆Pb

uk

s2k
− Puk

s4k
∆s2k,b

)
(66)

and
∆s2k,b = uT∆Pbu such that ∆s

1/2
k,b =

1

4s
3/4
k

uT∆Pbu. (67)

The remaining question is then, how errors on P are related to errors on output covariance matrices. For the UPC and
CVA algorithms, the chain rule can be applied to (41), leading to

∆Pb ≈ ∆P1,b + (∆P1,b)
T

+ ∆P2,b + (∆P2,b)
T

+ ∆P3,b (68)

with

∆P1,b = ∆W1,b

(
Yi|2i−1Y

ref
0|i−1

T
)

JT
p with Jp := W1

(
Yi|2i−1Y

ref
0|i−1

†)
(69)

∆P2,b = W1∆
(
Yi|2i−1,bY

ref
0|i−1,b

T
)

JT
p (70)

∆P3,b = −Jp∆
(
Yref

0|i−1,bY
ref
0|i−1,b

T
)

JT
p (71)

where in the final equality, the general result (58) has been employed. For the PC algorithm, one can easily derive from
(42) that

∆Pb = ∆P4,b + ∆PT
4,b with ∆P4,b := ∆

(
Yi|2i−1,bY

ref
0|i−1,b

T
)(

Yi|2i−1Y
ref
0|i−1

T
)T

. (72)

5.2.3. First-order error on the output matrix estimate Ĉ

The previous results are now employed for deriving the error on the estimated system matrices due to errors in the
sample output correlation matrices of a particular data block b. Application of the chain rule in the expression for Ĉ as
available from (38) leads to

∆Cb ≈ ∆C1b + ∆C2b + ∆C3b + ∆C4b (73)
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where

∆C1b := ∆
(
Yi|i,bY

ref
0|i−1,b

T
)(

Yi|2i−1Y
ref
0|i−1

†)T (Ô†i)T J−11 (74)

∆C2b :=
(
Yi|iY

ref
0|i−1

T
)

∆
(
Yi|2i−1Y

ref
0|i−1

†)T
b

(
Ô
†
i

)T
J−11 (75)

∆C3b :=
(
Yi|iY

ref
0|i−1

T
)(

Yi|2i−1Y
ref
0|i−1

†)T (
∆Ô

†
i,b

)T
J−11 (76)

∆C4b := −
(
Yi|iY

ref
0|i−1

T
)(

Yi|2i−1Y
ref
0|i−1

†)T (Ô†i)T J−11 ∆J1,bJ
−1
1 . (77)

The evaluation of ∆C1b is straightfoward. ∆C2b can be computed by noting that

∆
(
Yi|2i−1Y

ref
0|i−1

†)
b

= ∆
(
Yi|2i−1,bY

ref
0|i−1,b

T
)(

Yref
0|i−1Y

ref
0|i−1

T
)−1

(78)

−
(
Yi|2i−1Y

ref
0|i−1

†)
∆
(
Yref

0|i−1,bY
ref
0|i−1,b

T
)(

Yref
0|i−1Y

ref
0|i−1

T
)−1

=
(

∆
(
Yi|2i−1,bY

ref
0|i−1,b

T
)
−Yi|2i−1Y

ref
0|i−1

†
∆
(
Yref

0|i−1,bY
ref
0|i−1,b

T
))(

Yref
0|i−1Y

ref
0|i−1

T
)−1

.

(79)

For the evaluation of ∆C3b, one can first invoke (60) and derive that

∆Ô
†
i,b =

(
Ô

T

i Ôi

)−1
∆Ô

T

i,b

(
I− ÔiÔ

†
i

)
− Ô

†
i∆Ôi,bÔ

†
i (80)

The computation of ∆Ôi,b has been treated in section 5.2.2. The computation of ∆C4b requires a first-order sensitivity
analysis of J1. Application of the chain rule to (37) leads to

∆J1,b := ∆J11,b + ∆JT
11,b + ∆J12,b + ∆JT

12,b + ∆J13,b (81)

where

∆J11,b := ∆Ô
†
i,bYi|2i−1Y

ref
0|i−1

†
Yref

0|i−1Y
T
i|2i−1

(
Ô
†
i

)T
(82)

∆J12,b := Ô
†
iYi|2i−1Y

ref
0|i−1

†
∆
(
Yref

0|i−1,bY
T
i|2i−1,b

)(
Ô
†
i

)T
(83)

∆J13,b := −J131∆
(
Yref

0|i−1,bY
ref
0|i−1,b

T
)

JT
131 with J131 := Ô

†
iYi|2i−1Y

ref
0|i−1

†
. (84)

5.2.4. First-order error on the system matrix estimate Â

Application of the chain rule in the expression for Â as available from (39) leads to

∆Âb = ∆Â1,b + ∆Â2,b + ∆Â3,b + ∆Â4,b + ∆Â5,b + ∆Â6,b (85)

where

∆Â1,b = ∆
(
Ô
†
i

)
b
Yi+1|2iY

ref
0|i
†
Yref

0|iY
ref
0|i−1

T
(
Yi|2i−1Y

ref
0|i−1

†)T (Ô†i)T J−11 (86)

∆Â2,b = Ô
†
i∆
(
Yi+1|2iY

ref
0|i
†)

b
Yref

0|iY
ref
0|i−1

T
(
Yi|2i−1Y

ref
0|i−1

†)T (Ô†i)T J−11 (87)

∆Â3,b = Ô
†
iYi+1|2iY

ref
0|i
†
∆
(
Yref

0|i,bY
ref
0|i−1,b

T
)(

Yi|2i−1Y
ref
0|i−1

†)T (Ô†i)T J−11 (88)

∆Â4,b = Ô
†
iYi+1|2iY

ref
0|i
†
Yref

0|iY
ref
0|i−1

T
∆
(
Yi|2i−1Y

ref
0|i−1

†)T
b

(
Ô
†
i

)T
J−11 (89)

∆Â5,b = Ô
†
iYi+1|2iY

ref
0|i
†
Yref

0|iY
ref
0|i−1

T
(
Yi|2i−1Y

ref
0|i−1

†)T (
∆Ô

†
i

)T
b

J−11 (90)

∆Â6,b = −Ô
†
iYi+1|2iY

ref
0|i
†
Yref

0|iY
ref
0|i−1

T
(
Yi|2i−1Y

ref
0|i−1

†)T (Ô†i)T J−11 ∆J1,bJ
−1
1 . (91)
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Following the same lines as in the derivation of (79), one has that

∆
(
Yi+1|2iY

ref
0|i
†)

b
=
(

∆
(
Yi+1|2i,bY

ref
0|i,b

T
)
−Yi+1|2iY

ref
0|i
†
∆
(
Yref

0|i,bY
ref
0|i,b

T
))(

Yref
0|iY

ref
0|i

T
)−1

. (92)

5.2.5. First-order error on the weighting matrix W1 in the CVA algorithm
Since the matrix Yi|2i−1Y

T
i|2i−1 is symmetric and of full rank, it admits an eigenvalue decomposition with orthonor-

mal eigenvectors:
Yi|2i−1Y

T
i|2i−1 = UcΛcU

T
c with UcU

T
c = UT

c Uc = I (93)

such that, for the CVA algorithm,

W−1
1 =

(
Yi|2i−1Y

T
i|2i−1

) 1
2

= UcΛ
1/2
c UT

c . (94)

Application of the chain rule then leads to

∆
(
W−1

1

)
b
≈ ∆Uc,bΛ

1/2
c UT

c + Uc∆
(
Λ1/2

c

)
UT

c + UcΛ
1/2
c ∆UT

c,b. (95)

Using the general results (63) and (64), one has for the eigenvalues λc,k:

∆
(
λ

1
2

c,k

)
b
≈ 1

2λ
1
2

c,k

uT
c,k∆

(
Yi|2i−1,bY

T
i|2i−1,b

)
uc,k (96)

and for corresponding eigenvectors uc,k

∆uc,k,b =

(
I−

Yi|2i−1Y
T
i|2i−1

λc,k

)†(
∆
(
Yi|2i−1,bY

T
i|2i−1,b

) uk

λc,k
−

Yi|2i−1Y
T
i|2i−1uk

λ2c,k
∆λc,k

)
. (97)

Finally, (58) results in
∆W1,b ≈ −W1∆

(
W−1

1

)
b
W1. (98)

5.3. Algorithmic summary
The procedure for estimating the covariance of the identified system matrices Â and Ĉ can be summarized as follows:

1. For the chosen system order n and half number of block rows i, estimate the system matrices Â and Ĉ as detailed
in Section 3. Keep the matrices Ôi, U, S and W1 which appear in the intermediate steps (25-26).

2. Compute the sample output correlation matrix Y0|2iY
ref
0|i

T. All sample correlation matrices that are needed for the
variance calculation can be straightforwardly obtained as sub-matrices by appropriate block indexing.

3. Compute the matrices Yi|2i−1Y
ref
0|i−1

† and Yi+1|2iY
ref
0|i
†. They can be straightforwardly obtained from the LQ-

factorization (18).
4. Compute J1 from (37), Jp from (69) and J131 from (84).
5. For each data block b

(a) Compute the sample output correlation matrix Y0|2i,bY
ref
0|i,b

T by using the data of block b only. Estimate

∆Y0|2i,bY
ref
0|i,b

T as ∆Y0|2i,bY
ref
0|i,b

T ≈ Y0|2i,bY
ref
0|i,b

T − Y0|2iY
ref
0|i

T. All sample output correlation error
estimates that are needed for the variance calculation can be straightforwardly obtained as sub-matrices by
appropriate block indexing.

(b) Estimate the first-order error on the observability matrix, ∆Ôi,b, as detailed in Section 5.2.2. In case the CVA
algorithm is employed, estimate the error ∆W1,b first as detailed in Section 5.2.5.

(c) Estimate the first-order error on the system matrices, ∆Ĉb and ∆Âb, as detailed in sections 5.2.3 and 5.2.4,
respectively.

6. Using the estimates ∆Ĉb and ∆Âb for all blocks, apply (56) for computing the covariance of the system matrix
estimates Â and Ĉ.
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6. Operational modal analysis

In this section, the link between the identified state-space matrices and the modal characteristics (natural frequencies,
damping ratios and mode shapes) of the system is highlighted, such that the relevance of the above sections on SSI-data
and its uncertainty quantification for operational modal analysis is clarified.

The prime goal in operational modal analysis is the identification of the system matrices A and C from the observed
output sequence yk, because the knowledge of A and C is sufficient for estimating the modal characteristics. Indeed, an
eigenvalue analysis of the matrix A,

Aψk = λkψk, k = 1, . . . , n, (99)

where λk denotes an eigenvalue andψk the corresponding eigenvector, yields the continuous-time eigenvalues λck, eigen-
frequencies fk, and damping ratios ξk (in % of critical) of the considered system [4]:

λck = fs lnλk, fk =
|λck|
2π

, and ξk = −100
R (λck)

|λck|
, (100)

where R ( ) denotes the real part of a variable, and fs denotes the sampling frequency. Combining the eigenvectors of A
with C yields the mode shapes φk in terms of the measured quantities:

φk = Cψk. (101)

The system matrices A and C are not exactly known, but they are identified from output-only data using the SSI-data
method, which results in the estimates Â and Ĉ. For each mode k, a first-order sensitivity analysis of the above relations
between the system matrices and the modal characteristics can be performed, leading to the related Jacobian:

∆


fk
ξk

R (φk)
I (φk)

 ≈ Jk

[
vec (∆A)
vec (∆C)

]
, (102)

where R ( ) denotes, as before, the real part of a variable, vector or matrix, and I ( ) denotes the imaginary part. Expres-
sions for Jk are available from the literature; see, e.g., [13] or [16, App. A]. A first-order Taylor approximation of the
covariance matrix between the identified characteristics of modes k and l can then be computed from

Cov




f̂k
ξ̂k

R
(
φ̂k

)
I
(
φ̂k

)

 ,


f̂l
ξ̂l

R
(
φ̂l

)
I
(
φ̂l

)



 ≈ JkCov

vec
(
Â
)

vec
(
Ĉ
)
JT

l . (103)

For large systems, the covariance matrix of Â and Ĉ can have very large dimensions. The related memory issues can be
circumvented by application of (102) to each block estimate of ∆Ab and ∆Cb, and by computing the sample covariance
matrix of the modal characteristics directly from the related block values. This leads to exactly the same result as the
direct application of (103).

7. Numerical simulations

7.1. Verification of the proposed variance estimation approach
The performance of the proposed variance estimation approach is verified here, using a numerical model of the four

degree of freedom shear frame that is pictured in Fig. 1. A simple mass-spring-damper model is used to represent the
dynamic behavior, where the mass mj assigned to each floor (j = 1, . . . , 4) equals 2 kg and the stiffness assigned to the
columns kj equals 2500 N/m. The overall equations of the system are then, in continuous time,

M
d2yd(t)

dt2
+ Cd

dyd

dt
+ Kyd(t) = u(t), (104)
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where u is the vector containing the horizontal forces applied at each floor, and yd is the vector collecting the horizontal
floor displacements. The model is first converted into continuous-time state-space form, with the horizontal force applied
at each of the 4 floors as inputs, and the horizontal acceleration of each floor as outputs, such that y(t) = d2yd(t)

dt2 .
Subsequently, the continuous-time state-space form is converted into a discrete-time state-space form (1-2), using a zero-
order hold assumption on the input force and a sampling frequency of 50 Hz. The conversion procedures are described in
detail in [4, Sec. 2.2.4-2.2.5].

k4 k4

k3k3

k2 k2

k1k1

c4 c4

c3c3

c2 c2

c1c1

m4

m3

m2

m1

y4 (t)

y3 (t)

y2 (t)

y1 (t)

u4 (t)

u3 (t)

u2 (t)

u1 (t)

M =


m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4



K = 2


k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4
0 0 −k4 k4


Cd = K/1000

Figure 1: Four-story shear building model (left) and its mass, damping, and stiffness matrices (right). Input forces are denoted as u(t), output accelera-
tions as y(t).

The simulated inputs are uncorrelated discrete white noise force signals, applied at each of the floors. The force
samples are drawn from a zero-mean normal distribution with a standard deviation of 1 N. Measurement noise, as repre-
sented by em

k in Eq. (2), is also added to each output channel. The measurement noise sequences are uncorrelated discrete
white noise signals, the samples of which are drawn from a zero-mean normal distribution with a standard deviation of
0.05 m/s2. This results in an output signal-to-noise ratio of approximately 30 dB. With the simulated force-acceleration
data, the entries of the system matrices Â and Ĉ and their covariance matrix are computed with the SSI-data/ref algo-
rithm. Subsequently, the identified modal characteristics and their (co)variances are computed. This process is repeated in
a Monte Carlo analysis with 1000 runs, where in each run, a new realization of the force and measurement noise sequences
are employed. The identified modal characteristics and their covariances are then compared with the corresponding sample
statistics from the Monte Carlo simulation.

Such a comparison is displayed in Table 1, for the following fixed parameters: i = 20, N = 217, nb = 32, UPC
weighting, and all outputs as reference outputs. Nearly identical results, not reproduced here, have been obtained for PC
and CVA weighting. The empirical mean values of the identified natural frequencies and damping ratios, obtained by
sample averaging over the Monte Carlo runs, are very close to the true values. The empirical standard deviations of the
natural frequencies and damping ratios are obtained as sample standard deviations over all Monte Carlo runs. In each
Monte Carlo run, the standard deviation of the natural frequencies and damping ratios are also estimated using the method
that was proposed in Sec. 5, and the mean of these estimates together with the 95% confidence interval, obtained by
computing the sample mean and sample standard deviation over all Monte Carlo runs, are also displayed. These estimated
standard deviations agree very well with the empirical values. For the mode shapes, a similar comparison is performed in
Fig. 2. Again, a very good agreement between the empirical sample standard deviations of the modal displacements and
the estimated standard deviations is observed.

7.2. Influence of the block length jb
Next, the influence of the block length jb on the accuracy of the estimated standard deviations of the modal charac-

teristics is investigated, also by means of Monte Carlo simulations with 1000 runs each. The block length is varied by
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fj [Hz] µf̂j [Hz] σf̂j [Hz] σ̂f̂j [Hz] ξj [%] µξ̂j [%] σξ̂j [%] σ̂ξ̂j [%]

Mode 1 2.7637 2.7637 0.0012 0.0012 ± 0.0003 0.868 0.868 0.047 0.045 ± 0.013
Mode 2 7.9577 7.9576 0.0041 0.0041 ± 0.0010 2.500 2.497 0.051 0.052 ± 0.014
Mode 3 12.1920 12.1917 0.0075 0.0073 ± 0.0019 3.830 3.825 0.062 0.060 ± 0.015
Mode 4 14.9557 14.9555 0.0096 0.0099 ± 0.0025 4.699 4.695 0.065 0.064 ± 0.016

Table 1: Eigenfrequencies and modal damping ratios obtained from repeated system identification (Monte Carlo simulation) using SSI-data with i = 20,
N = 217, nb = 32 and UPC weighting, and comparison to the true values. j: identified mode no., fj and ξj : exact values, µf̂j and µξ̂j : empirical
sample mean obtained from the Monte Carlo simulation, σf̂j and σξ̂j : empirical sample standard deviation obtained from the Monte Carlo simulation,

and σ̂f̂j and σ̂ξ̂j : mean of the estimated standard deviation with 95% (±2σ) confidence interval.
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Figure 2: Identified mode shapes of the shear frame. The empirical sample mean and sample standard deviation (×300) of the estimated mode shapes
as computed from the Monte Carlo ensemble are displayed with solid and dashed lines, respectively. The mean of the estimated standard deviations
(×300) and their 95% confidence intervals are displayed with dotted lines.

keeping the number of blocks nb constant and changing the total number of samples N . The results are displayed in
Fig. 3 for i = 10, nb = 32, and UPC weighting. Nearly identical results, not reproduced here, have been obtained for
PC and CVA weighting. The empirical coefficient of variation (i.e., the standard deviation divided by the mean value)
as computed over all Monte Carlo runs is compared with the mean and the 95% confidence interval of the coefficient of
variation that is estimated using the method that was proposed in Sec. 5.

A number of important observations can be made. First, the standard deviation of any quantity decreases roughly as
1/
√
N , which implies that if the required accuracy need be doubled, the total measurement duration need be multiplied

by four. Second, the mean of the estimated standard deviations is close to the empirical value. Third, the relative width of
the confidence interval of the estimated standard deviations (i.e., the width divided by the center value) is independent of
the number of samples N . This is due to the fact that nb is kept constant in the present analysis.

7.3. Influence of the number of data blocks nb
Finally, the influence of the number of blocks nb on the accuracy of the estimated standard deviations of the modal

characteristics is investigated, again by means of Monte Carlo simulations with 1000 runs. The results are displayed in
Fig. 4 for i = 10, N = 213, and UPC weighting. Nearly identical results, not reproduced here, have been obtained for PC
and CVA weighting. Again, a number of important observations can be made. First, the empirical standard deviation is
invariant to the number of data blocks nb. This is to be expected, since nb does not play a role in the SSI-data algorithm
itself, only in the variance estimation procedure. Second, the mean of the estimated standard deviations is close to the
empirical value. This indicates that the assumption that the different data blocks are statistically independent is a mild
assumption, even for a large number of data blocks and consequently a relatively short block length. Third, the width of
the confidence interval of the estimated standard deviations decreases with increasing number of blocks nb. This is due to
the fact that the accuracy of the sample approximation in Eq. (56) increases when the number of data blocks is increased.
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Figure 3: Coefficients of variation of the natural frequency and damping ratio estimates, obtained using SSI-data with i = 10, nb = 32 and UPC
weighting, as computed from the Monte Carlo ensemble. Solid lines: empirical values, dotted lines: mean and 95% confidence interval of the estimated
values. Upper curves: damping ratio estimates, lower curves: natural frequency estimates.
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Figure 4: Coefficients of variation of the natural frequency and damping ratio estimates, obtained using SSI-data with i = 10, N = 213 and UPC
weighting, as computed from the Monte Carlo ensemble. Solid lines: empirical values, dotted lines: mean and 95% confidence interval of the estimated
values. Upper curves: damping ratio estimates, lower curves: natural frequency estimates.

8. Application: progressive damage test on a prestressed concrete beam

In vibration-based structural health monitoring, operational modal analysis is often employed for monitoring the modal
characteristics of a structure, as changes in modal characteristics may indicate the presence of structural damage. However,
the sensitivity of a particular modal characteristic to a particular type of damage may be relatively low, so it is important
to assess whether an observed change is significant or not with respect ot the identification accuracy.

In a recent study [22], a prestressed concrete beam with a width of 24 cm, a height of 20 cm and a length of 500 cm
was subjected to a series of loading-unloading cycles in a four-point bending test as illustrated in Fig. 5a. This progressive
damage test was performed at KU Leuven’s Structural Mechanics Laboratory. After each loading-unloading cycle, the
beam was lifted from its supports using inflatable tires, as illustrated in Fig. 5b. The tires are very flexible, such that
they create dynamic free-free boundary conditions for all beam modes. In this lifted state, the beam was subjected to a
vibration test in which 20 accelerations were measured on top of the beam, as illustrated in Fig. 5b; however, when the
maximal load amplitude P during a loading-unloading cycle exceeded 55 kN, all accelerometers were removed from the
beam, except the ones at positions V1 and V11. The beam was excited with a hammer in the vertical direction at location
V11. The sampling frequency was 1000 Hz and the duration of each vibration test was about 30 s. The data that are
employed here are used for illustrating the uncertainty quantification procedure of section 5. They are part of a larger data
set collected on the same beam; the interested reader is referred to [22] for more information.

In this particular application, the changes in modal characteristics that are induced by the progressive damage test
are expected to be very small. This is because cracks that may appear in the concrete during a loading-unloading cycle,
are to a very large extent closed by the prestressing forces after unloading, and the modal characteristics are identified
in the unloaded state. In this respect, vibration-based damage identification is more challenging for the beam than for
full-sized prestressed concrete structures such as bridges, as the latter have a much higher ratio between the self weight
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Figure 5: Overview of the two types of test performed on the prestressed concrete beam: (a) quasi-static four-point bending test with hinged supports
and loads P provided by hydraulic jacks (side view), and (b) vibration test in which the beam is lifted from its supports by pneumatic tyres, creating
dynamic free-free boundary conditions; the vibrations are captured with accelerometers at positions V1 through V20.

and the externally applied loading [23]. Of course, in-situ testing involves additional challenges such as the elimination
of temperature influences [24, 25], which are not present in laboratory conditions.

After removing the DC offset from the vibration signals, they were processed with the SSI-data method with i = 30,
nb = 16, CVA weighting, and all outputs as reference outputs. A stabilization diagram was constructed for all even model
orders between 2 and 50 in order to remove as much as possible bias errors (which can arise, for example, from the fact that
the excitation and the measurement errors are not perfectly white) from the identified system description [13]. Six modes
can be identified below the Nyquist frequency of 500 Hz. Fig. 6 displays the natural frequencies and the corresponding
95 % confidence intervals. The first few loading cycles induce only minor changes in the natural frequencies of most
modes. This is in agreement with the fact the first cracks were only visually observed when the load reached a value of
P ≈ 27.5 kN [22]. Nevertheless, the zooms in Fig. 6 show that even below this cracking load, statistically significant
changes in the eigenfrequencies of all but the first mode can be observed. They reflect the small loss of stiffness due to
micro-cracking of the concrete that remains after unloading. Due to the increasing loss of stiffness, the natural frequencies
are expected to decay monotonically with the loading amplitude. This is indeed observed, except for mode 3 at 50 and
55 kN. This exception may be due to a slightly different closure of the cracks after unloading.

The identified mode shapes that have been obtained before quasi-static loading, and after the loading-unloading cycle
with amplitude P = 55 kN, which was the last unloading cycle for which the beam was fully instrumented, are plotted in
Fig. 7. All modes are bending modes, except for mode 4 which is a torsional mode. In order to have a better visualization
of the identification accuracy, the±25σ confidence intervals are plotted (instead of the more conventional±2σ). From the
magnified uncertainty plot, it can be observed that there are no statistically significant changes in mode shape. This can
be attributed to the closure of cracks after unloading as discussed earlier, as well as to the fact that cracks were distributed
along the loading region, rather than concentrated at a single location. Other modal characteristics, such as modal macro-
strains obtained from fiber optic data, are more successful in identifying this type of damage, as recently demonstrated in
[22, 23, 26].

A nice feature of the presented uncertainty quantification, besides the detection of statistically significant changes, is
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Figure 6: Identified eigenfrequencies (solid lines) and corresponding 95% confidence intervals (dashed lines) of the prestressed concrete beam, as a
function of the maximum amplitude of the load P during the preceding quasi-static loading-unloading cycle. The dotted vertical line indicates the load
amplitude at which cracking was first visually observed, while the dash-dotted vertical line indicates the removal of all but two accelerometers from the
beam.

that it allows for comparing the accuracy of the identified modal characteristics with respect to each other. For example,
from Fig. 7, it is clear that the identification accuracy of the second and third bending mode shapes is higher that of
the others. In the same Figure, it can also be observed that all mode shapes are identified with higher accuracy in the
undamaged situation than in the damaged one, except for mode 5, where the accuracy is similar in both cases. These
differences in identification accuracy may be due to the fact that not all modes are always equally well excited [16].

Finally, the influence of the weighting scheme (UPC, PC or CVA) on the identification results has been investigated.
In the numerical examples of section 7, in which the model order was known, there were no significant differences.
However, in the present measurement example, the singular value decomposition (25) is truncated at a range of model
orders when constructing the stabilization diagram, and this truncation is influenced by the weighting matrices. As a
result, the stabilization diagrams were different for the three different weighting schemes, and the variance estimates were
also different, indicating a different accuracy of the modal estimates. In general, the UPC and CVA weightings resulted in
variance estimates of similar magnitude, but the UPC variance values were slightly lower at higher model orders. The PC
weighting resulted in significantly higher variance values at higher model orders and for less well excited modes. Further
research is necessary to investigate whether these observations are limited to this particular case study, or whether they
are more generally valid.
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Figure 7: Identified mode shapes (for locations V1 till V10) and corresponding ±25σ confidence intervals of the prestressed concrete beam, before
quasi-static loading (black solid lines) and after the loading-unloading cycle with amplitude P = 55 kN (red dashed lines).

9. Conclusions

In this work, a method was presented for estimating the variance of the system description that is identified with
data-driven stochastic subspace identification, or more precisely, the full covariance matrix between any two entries of
the identified system matrices. The analysis focused on the case where the system matrices are identified from the state
sequences. Three common types of weighting choices were treated. The Jacobian matrices of the linear sensitivity analysis
that underlies the presented method are computed only implicitly, such that a memory efficient implementation can be
achieved in a straightforward way. When compared to the SSI-data algorithm itself, the variance estimation procedure
introduces an additional parameter nb, which represents the number of blocks into which the data matrix is divided for
computing the variance of the output and state correlation matrices.

An extensive numerical validation has been performed. It demonstrates that the estimated variance of the identified
system description is highly accurate for a wide range of parameter values and that the uncertainty on the variance esti-
mate decreases with an increasing number of data blocks nb. Finally, the practical use of the method in the context of
operational modal analysis and vibration-based structural health monitoring was demonstrated in an application involving
experimental vibration data from a prestressed concrete beam for increasing levels of damage.
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