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Abstract

Water retention and saturated hydraulic conductivity are soil properties that

are key determinants in crop growth and hydrological modelling. They are

commonly estimated from basic soil characteristics such as bulk density,

organic carbon content and texture by means of pedotransfer functions (PTFs).

In order to assess and compare the inherent performance and the functional

applicability in the Zambezi River Basin (ZRB) of the widely used Saxton &

Rawls PTFs and a set of newly developed PTFs, we compiled measurements of

water retention at pF0.0, 1.0, 2.0, 2.8, 3.4 and 4.2 and of saturated hydraulic

conductivity (Ksat) on 631 soil samples throughout the ZRB. A total of 329 of

the samples were related to 55 soil profiles available in the Africa Soil Profile

database, whereas our own field campaign carried out in a 2,426-km2 subbasin

of the ZRB provided the remaining 302 samples related to 119 soil profiles.

Apart from evaluating the Saxton & Rawls PTFs, we developed multiple linear

regression (MLR) PTFs, and PTFs derived by three machine learning

(ML) models: artificial neural network (ANN), random forest (RF) and support

vector machine (SVM). All PTFs were first evaluated based on a comparison of

the estimated and measured property values by means of R2, mean absolute

error (MAE) and root mean squared error (RMSE). For the ensemble of MLR-

PTF and ML-PTFs, the R2 of the six water content variables and the Ksat

ranged from 0.55 to 0.85, whereas for the Saxton & Rawls PTFs the range was

between 0.10 and 0.50. Secondly, all PTFs were subjected to a functional evalu-

ation using the Food and Agriculture Organization (FAO) AquaCrop crop

growth model. Dry season irrigation requirements for maize as computed by

AquaCrop with measured versus estimated soil hydraulic properties revealed

that ANN-PTFs provide AquaCrop outputs that come closest to AquaCrop out-

puts generated with measured soil hydraulic properties. This study shows the
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importance of performing functional evaluation of pedotransfer functions

before their widespread application.

Highlights

• Developed machine learning and multiple linear regression pedotransfer

functions (PTFs).

• The Saxton & Rawls PTFs are not recommended for use in the Zambezi

River Basin.

• PTFs were functionally evaluated through use of estimated soil hydraulic

properties in AquaCrop.

• More accurate PTFs have better functional performance, although differ-

ences are small.

KEYWORD S

artificial neural network, machine learning, multiple linear regression, random forest, saturated

hydraulic conductivity, support vector machine

1 | INTRODUCTION

Soil hydraulic properties such as soil water retention
characteristics (SWRC) and saturated hydraulic conduc-
tivity (Ksat) are crucial for crop growth and hydrological
modelling. As such data are seldom measured, they often
need to be estimated using pedotransfer functions (PTFs)
that rely on basic and more easily available soil charac-
teristics such as granulometry (sand, silt, clay and coarse
fractions), bulk density, organic matter content and
pH. Scanning through the International Soil Reference
and Information Centre (ISRIC) Africa Soil Profiles Data-
base (Batjes, Ribeiro, & Van Oostrum, 2019; Leenaars,
van Oostrum, & Gonzalez, 2014) for the Zambezi River
Basin (ZRB), we observed 1,481 legacy soil profile sites
with measured basic soil characteristics for various depth
layers or horizons. However there are no data on Ksat
and out of these 1,481 legacy soil profiles, only 55 have
water retention measurements of SWRC at two matric
potentials: field capacity (pF2.0) and wilting point
(pF4.2). In the absence of measured soil hydraulic prop-
erties but with the capability to sufficiently accurately
estimate them with PTFs, digital soil mapping (DSM)
models (McBratney, Mendonça Santos, & Minasny, 2003)
can be used for estimating them at the basin scale, as, for
example, for the whole ZRB. Digital maps of soil hydrau-
lic properties can then be used as input in spatial explicit
crop-water and hydrologic models.

Pedotransfer functions for soil hydraulic properties have
been developed since the early 1980s (Gupta & Larson,
1979; Maclean & Yager, 1970; Rawls, Brakensiek, & Saxton,
1982; Saxton, Rawls, Romberger, & Papendick, 1986; van

Genuchten, 1980). In 1996, Timlin, Pachepsky, Acock, and
Whisler (1996) published a review of 49 PTFs, whereas more
recently Botula, Van Ranst, and Cornelis (2014) also
reviewed 35 PTFs for predicting water retention of soils in
the humid tropics. The latter authors observed that 26% of
the water-retention PTFs for tropical soils were developed
for soils in Brazil, 26% for soils in India, 11% for soils in other
countries in tropical America, and 11% for soils in Africa.
Therefore, few studies have developed PTFs for soil hydrau-
lic properties using machine learning (ML) techniques. The
ones we found are all outside the Zambezi River Basin
(ZRB) and include artificial neural network (ANN)
(Haghverdi, Cornelis, & Ghahraman, 2012; Minasny,
Mcbratney, & Bristow, 1999), random forest (RF) (Sequeira,
Wills, Seybold, & West, 2014; Szabó et al., 2019) and support
vector machine (SVM) (Lamorski, Pachepsky, Sławi�nski, &
Walczak, 2008; Nguyen et al., 2017).

When PTFs are used, the variability of the basic soil
properties is directly translated into variations in soil
hydraulic properties and subsequently to variations in sim-
ulated functional soil behaviour (Pringle, Romano,
Minasny, Chirico, & Lark, 2007; Wösten, Pachepsky, &
Rawls, 2001). In addition to the effect of soil variability,
the estimation error of a pedotransfer function itself results
in variations in the predicted soil hydraulic properties
(Araya & Ghezzehei, 2019; McNeill, Lilburne, Carrick,
Webb, & Cuthill, 2018), which will also be transferred to
model outputs in, for example, crop growth modelling
simulation studies. Functional evaluation of pedotransfer
functions dealing with soil hydraulic properties was
addressed by, among others, Cresswell & Paydar (2000),
Espino, Mallants, Vanclooster, & Feyen (1996), Li, Chen,
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White, Zhu, & Zhang (2007), Nemes, Schaap, & Wösten
(2003) and Wösten, Finke, & Jansen (1995). They evalu-
ated the outputs of pedotransfer functions as inputs in
various mechanistic models. This was also done by
Timlin et al. (1996), who evaluated the outputs of
pedotransfer functions as inputs into the GLYCIM crop
model for four locations in Colorado (USA). They found
that simulated crop yields were affected more by the PTF
for estimating the water retention curve than by the PTF
for estimating the saturated hydraulic conductivity (Ksat).
This finding was later confirmed by Gijsman, Jagtap, and
Jones (2003), who also evaluated eight PTFs for estimat-
ing the soil hydraulic properties and found that simulated
soybean yield varied greatly as a consequence of the PTFs
that were used to estimate the water retention curves.
However, studies that compare the performance of such
PTFs in terms of agreement with measured soil hydraulic
properties or in terms of agreement between the output
(such as irrigation water requirements) of a model fed
with measured versus PTF-estimated properties are even
more scarce in the ZRB. The only ones we came across
include those of Gijsman et al. (2003) and Timlin et al.
(1996), which are also outside the ZRB and are based on
multiple linear regression (MLR) and not machine learn-
ing (ML). Moreover, in none of these studies were the
irrigation water requirements used as the functional crite-
rion to evaluate the PTFs. Therefore, in this study we per-
formed a similar functional evaluation by using the Food
and Agriculture Organization (FAO) AquaCrop crop
model to investigate the relative effect of the selected
PTFs for estimating water content and Ksat-values on the
irrigation water requirements as calculated by AquaCrop
crop model.

Despite PTFs of the MLR type being successfully
applied in a wide variety of studies related to agricultural
hydrology and water management, Gijsman et al. (2003)
and Wassar, Gandolfi, Rienzner, Chiaradia, and
Bernardoni (2016) argued that it is difficult to recom-
mend a particular PTF due to big discrepancies between
the methods used in measuring the water retention of the
soil samples on which the PTFs are based. In addition,
according to Minasny et al. (1999), the performance of a
PTF may vary with pedological origin of the soil and
location on which it was developed, and subsequently
may not be directly transferable elsewhere. Furthermore,
Carsel and Parrish (1988) suggest that kaolinitic tropical
soils often used for agriculture usually have clay contents
ranging from 60% to 90%, whereas in temperate climates,
soils with more than 60% of clay are considered as heavy
clays with very low saturated hydraulic conductivity
(Ksat) and regarded as non-agricultural soils. This was
also affirmed by Corréa (1984), Hodnett & Tomasella
(2002), Minasny & Hartemink (2011), Tomasella &

Hodnett (1996) and van den Berg, Klamt, van
Reeuwijk, & Sombroek (1997), suggesting that kaolinitic
tropical soils tend to exhibit lower bulk densities of about
0.7–1.2 g/cm3, higher saturated hydraulic conductivity
values, usually 10–1,000 mm/hr, and lower available
water capacity (AWC) of about 70 mm/m when com-
pared with typical temperate clayey soils. Their investiga-
tions highlight the importance of being cautious when
selecting PTFs for a particular application.

The aim of this study was to assess, compare and func-
tionally evaluate the performance of the broadly used
PTFs of Saxton and Rawls (2006) and four newly devel-
oped PTFs to estimate saturated hydraulic conductivity
and water retention at agronomically relevant matric
potentials over the vast territory of the Zambezi River
Basin, which has relatively scarce data. The specific objec-
tives were: (a) to assess and compare the performance of
different models for deriving PTFs where we particularly
wanted to compare “classical/conventional” models rely-
ing on MLR with machine learning (ML) models as these
are becoming more popular; and (b) to compare and evalu-
ate the functional repercussions of the output obtained by
these PTFs when used in the crop-water model AquaCrop
(Raes, Steduto, Hsiao, & Fereres, 2009; Steduto, Hsiao,
Raes, & Fereres, 2009).

1.1 | Multiple linear regression
and PTFs

Multiple linear regression (MLR) requires that there is a
linear relation between the dependent and the indepen-
dent variables, and the independent variables are indepen-
dent from each other. Furthermore, the model residuals
should be normally distributed and the variance of error
terms similar across the values of the independent vari-
ables. The most popular PTFs of the MLR-type are the
ones proposed by Saxton and Rawls (2006). These PTFs
have been promoted for use in crop growth models across
the globe (e.g., by the FAO through its AquaCrop crop
growth and yield prediction model) (Raes et al., 2009;
Steduto et al., 2009), despite the fact that they are based
on measured data for North American soils. The PTFs of
Saxton and Rawls (2006) allow estimating soil moisture
content of a saturated soil (pF0.0) at field capacity (pF2.0)
and at wilting point (pF4.2). They also encompass a PTF
to estimate the saturated hydraulic conductivity (Ksat).

1.2 | Machine learning and PTFs

In contrast to multiple linear regression (MLR), machine
learning (ML) techniques do not impose stringent
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assumptions about the statistical characteristics of the
input data; hence they provide flexible application poten-
tial (Hastie, Tibshirani, & Friedman, 2009). These tech-
niques have become more popular with the wider
availability of powerful computing capacity and open
access software such as R and in proprietary software
(R Core Team, 2018), and so ML techniques do not need
much greater programming skills compared with using
MLR. What is different is that in contrast to MLR, ML
techniques are of the black box type, meaning that extra
procedures must be used to evaluate the importance of
the considered predictors for the estimates obtained. ML
is an umbrella term, encompassing, among others, artifi-
cial neural networks (ANNs), tree-based models such as
random forest (RF) and support vector machines (SVMs).

1.3 | ANNs

In artificial neural networks (ANNs), the feed-forward
back propagation is a network that is not recursive; that
means neurons in one layer are only connected to neu-
rons in the next layer, and they do not form a cycle, such
that signals travel only in one direction towards the out-
put layer (Pham, Kim, Yoon, & Choi, 2019; Sharma,
Sandooja, & Yadav, 2013). In the context of regression
analysis, artificial neural network models have been used
as a special class of PTFs using feed-forward back propa-
gation or radial basis functions to approximate any con-
tinuous (non-linear) function (Van Looy et al., 2017).
According to Zhang and Schaap (2017), a typical feed-
forward ANN contains an input layer, one or more hid-
den layers and an output layer, where the neurons in the
hidden layer extract useful information from the input
layer and utilize it to determine the output in the output
layer. The number of neurons in the hidden layer is
determined empirically and/or co-determined by the
quality of the calibration and validation datasets.

1.4 | RF

Random forest (RF) is among a popular set of tree-based
ensemble machine learning models, which are highly data
adaptive and able to account for correlations as well as
interactions in explanatory variables, thus making them
particularly appealing for estimating soil hydraulic prop-
erties (Touw et al., 2012; Tyralis, Papacharalampous, &
Langousis, 2019). RF was developed by Breiman (2001),
who combined the bagging method (Breiman, 1996) with
the random variable selection. In essence, bagging or
bootstrap aggregation is an ensemble learning method
(Sagi & Rokach, 2018) that generates a bootstrap sample

from an original training dataset and trains a model using
the generated sample. This procedure is repeated (ntree)
times so that the bagging's prediction is the average of the
predictions of the (ntree) trained models. This way, bag-
ging reduces the variance of the prediction function,
although it requires that unbiased models are efficient
(Hastie et al., 2009).

1.5 | SVM

Support vector machines (SVMs) are based on simple
ideas that originated in statistical learning theories
(Karatzoglou, Meyer, & Hornik, 2006). SVM regression is
based on the generalized regression formulation, where
the explanatory variables are first mapped onto an m-
dimensional space using some fixed (non-linear) mapping,
and then a linear regression model relating the explana-
tory and response variables is constructed (Twarakavi,
Šimůnek, & Schaap, 2009). The goal of SVM is to create a
smooth boundary, called a hyperplane, which leads to
fairly homogeneous partitions of observations on either
side of the plane (Lantz, 2013). Support vector machines
gained popularity in many fields that were traditionally
dominated by ANNs. SVMs have the advantage of being
more robust and efficient than ANNs as they allow neg-
lecting small errors, making the regression sparse and so
avoiding local minimum issues. They also require fewer
input variables/data/calibration points (Lamorski et al.,
2008; Valyon & Horváth, 2005). In this way, SVMs are less
susceptible than ANNs to overfitting (Lamorski et al.,
2008; Yi Lin, Cheng, & Wing Chau, 2007). The simplicity
comes from the fact that an SVM applies a simple linear
method to the data but in a high-dimensional feature
space that is non-linearly related to the input space and
can be imagined as a surface that defines a boundary
between various points of data that represent examples
plotted in multidimensional space according to their fea-
ture values.

2 | MATERIALS AND METHODS

2.1 | Soil data

The Zambezi River Basin (ZRB), covering approximately
1,600,000 km2, is located between 8–20� S latitude and
17–36� E longitude in southern Africa (Figure 1). The soil
data was obtained from the Africa Soil Profiles Database
(Batjes et al., 2019; Leenaars et al., 2014). For the ZRB,
this database contains data of 1,481 georeferenced legacy
soil profiles encompassing 5,184 soil horizons or layers
for which measured elementary soil characteristics are
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available: soil textural composition (sand, silt and clay
fractions), soil organic carbon content (OC %), pH in 1:5
H2O, bulk density (BD, g/cm3), depth of the upper and
lower boundaries of the horizon or layer (Dep, cm). Also,
topographic elevation (ELE, m) of the profile site is avail-
able. Among these 1,481 profiles, there are only 55 pro-
files associated with 329 soil horizons or layers for which
water contents at two matric potentials, pF2.0 and pF4.2,
are recorded.

In the smaller 2,426 km2 Upper Mulungushi sub-
basin (UMB) of the ZRB (Figure 1), we collected 302 bulk
samples from 119 soil profiles at depth layers of
30, 60 and 100 cm. These were analysed for soil textural
composition (sand, silt and clay fractions), stoniness
(STON %), soil organic carbon content (SOC %), nitrogen
content (N %), pH in 1:5 H2O and electrical conductivity

(EC). From the same profiles and at the same depth
layers, we also took undisturbed core samples with
Kopecky rings (100 cm3) for measuring saturated soil
hydraulic conductivity (Ksat), and the water contents at
six matric potentials: pF0.0 (saturation), pF1.0, pF2.0
(field capacity), pF2.8, pF3.4 and pF4.2 (wilting point).
The Ksat was measured in the laboratory by placing the
Kopecky rings with undisturbed soil samples in a con-
stant head permeameter apparatus. Table 1 shows the
summary statistics of all the soil data in the UMB and
ZRB used in this study, with the last column indicating
that the PTFs for water content at pF2.0 and 4.2 are
based on the 631 measurements from the African Soil
Profile (AfSP), whereas the PTFs for the five other vari-
ables of interest are based on 302 measurements from
the UMB.

FIGURE 1 Distribution of the soil profiles (a) from the African soil profile database and (b) own sampling in the upper-Mulungushi

subbasin in central Zambia [Color figure can be viewed at wileyonlinelibrary.com]
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2.2 | Variable selection and PTF
development

Data preprocessing, variable selection, model training
and testing were carried out by means of R software ver-
sion 3.5.0 (R Core Team, 2018). Table 1 shows that we
had 12 explanatory variables, namely: textural composi-
tion (sand, silt and clay fractions), stoniness (STON %),
organic matter content (OM %), nitrogen content (N %),
pH in 1:5 H2O, electrical conductivity (EC), bulk density
(BD, g/cm3), porosity (Por, %), depth of upper and lower
boundary (Dep, cm) and topographic elevation (ELE, m),
whereas there were seven response or dependent vari-
ables, including the saturated hydraulic conductivity
(Ksat), and water contents at six matric potentials: pF0.0,
pF1.0, pF2.0, pF2.8, pF3.4 and pF4.2. For each response
variable, potential predictors were selected from the
12 available candidates by iteratively incorporating them
into 12 possible models until the Akaike information cri-
terion (AIC) stopped decreasing while using the

backward-stepwise (removes) selection AIC R package
(Kuhn & Johnson, 2013). We therefore selected models
with potential explanatory variables that had the lowest
AIC number for each particular response variable.

After the potential variables were selected, the overall
datasets were randomly split into a training (70%) and a
test dataset (30%). For the machine learning PTFs, we
first normalized both the explanatory and response vari-
ables before randomly splitting the datasets into training
sets (70%) and test sets (30%). With these datasets and for
each response variable, PTFs of the multiple linear
regression (MLR), artificial neural network (ANN), ran-
dom forest (RF) and support vector machine (SVM) types
were trained and tested using the respective R packages.
To guarantee a fair comparison with the Saxton and
MLR PTFs and avoid over-fitting the machine learning
PTFs, the default meta-parameters of the ML models
were used, such that no model tuning was done.

The performance of all these models and of the pre-
existing Saxton and Rawls (2006) PTFs was first

TABLE 1 Summary statistics of all the 631 soil samples, 329 of which are from the African soil profile (AfSP) and spread throughout

the Zambezi River basin (Batjes et al., 2019; Leenaars et al., 2014), and 302 are own data samples from the upper-Mulungushi River basin

(UMB), a sub-basin of the Zambezi River basin

Explanatory variables

Min 1 st Q Median Mean 3 rd Q Max Source and number of samples

Dep (cm) 6 30 60 75 100 217 AfSP 631

ELE (m) 81 1,146 1,173 1,179 1,222 1924 AfSP 631

SAND (%) 3.20 33.10 49.60 50.80 67.40 97.30 AfSP 631

CLAY (%) 1.50 13.30 24.60 27.30 39.50 84.30 AfSP 631

SILT (%) 4.70 11.00 19.30 21.90 30.40 78.60 AfSP 631

OM (%) 0.039 0.041 0.170 0.337 0.421 6.854 AfSP 631

N (%) 0.000 0.025 0.034 0.040 0.046 0.366 UMB 302

EC (ds/m) 0.001 0.008 0.012 0.016 0.018 0.090 UMB 302

pH 4.98 5.60 6.06 5.97 6.43 8.50 AfSP 631

STON (%) 0.00 0.00 0.00 6.20 0.00 85.00 UMB 302

BD (g/cm3) 0.83 1.46 1.52 1.53 1.59 2.04 AfSP 631

Por (%) 23.00 40.10 42.30 42.10 45.00 68.60 AfSP 631

Response variables

Ksat (mm/hr) 0.10 22.40 59.20 107.60 130.80 509.40 UMB 302

pF0.0 (Vol %) 21.20 34.40 38.70 38.50 42.20 66.10 UMB 302

pF1.0 (Vol %) 19.00 32.00 36.40 36.10 39.60 63.70 UMB 302

pF2.0 (Vol %) 3.60 14.40 20.70 20.40 25.70 54.30 AfSP 631

pF2.8 (Vol %) 2.60 10.20 15.40 15.60 18.90 50.70 UMB 302

pF3.4 (Vol %) 1.00 7.90 13.10 13.20 16.20 49.50 UMB 302

pF4.2 (Vol %) 0.80 4.60 10.50 11.00 15.40 48.50 AfSP 631

Note: Minimum (Min), interquartile range (IQR) = 1st Q, 3rd Q, and maximum (Max). BD, bulk density; Dep, depth; EC, electrical conductivity; ELE,
elevation; N, nitrogen content; OM, organic matter; Por, porosity; STON, stoniness.
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evaluated by comparing estimated and measured values
using the coefficient of determination (R2), the mean
absolute error (MAE) and the root mean squared error
(RMSE). Well-performing models had high R2, low MAE
and low RMSE. Furthermore, the predictors that were
selected for each PTF during training and testing were
ranked according to their order of importance relative to
a particular response variable using the relative impor-
tance function of the random forest R package.

2.3 | Functional evaluation of the PTFs
using the FAO AquaCrop crop model

After training and testing each PTF, we further evaluated
their performance by evaluating and inter-comparing the
outputs (dry season irrigation water requirements) of the
AquaCrop model operated with either the field reference
data (measured soil hydraulic properties) or the PTF out-
puts (estimated soil hydraulic properties) as input in the
AquaCrop. The AquaCrop model uses a small number of
explicit parameters and largely intuitive input variables,
either widely used or requiring simple methods for their
determination (Raes et al., 2009). The input consists of
weather data time series, crop variables, soil properties

and field management practices that define the environ-
ment in which a crop develops (Figure 2). In our func-
tional evaluations, except for soil characteristics such as
rootable depth, water contents at three matric potentials,
pF0.0 (saturation), pF2.0 (field capacity) and pF4.2
(wilting point), and the Ksat values, all the data inputs
such as weather and crop variables were kept constant
for each profile site for which simulations were made by
means of AquaCrop.

2.4 | Climate

We used the weather data from the Global Yield Gap and
Water Productivity Atlas (GYGA) (Van Wart et al., 2015,
2013) for the Kabwe climate station at 14� S latitude and
28� E longitude in Zambia. Kabwe is a town in the Upper
Mulungushi Basin. The data consisted of daily records for
1998–2012 of rainfall, minimum and maximum tempera-
ture, mean relative humidity, mean wind speed and solar
radiation. The time series of daily reference evapotranspi-
ration (ETo) that AquaCrop also requires was calculated
from minimum and maximum temperature, mean rela-
tive humidity, mean wind speed and solar radiation using
the ETo calculator (Raes et al., 2009).

FIGURE 2 Input data for

AquaCrop defining the

simulation environment (Raes

et al., 2009) [Color figure can be

viewed at

wileyonlinelibrary.com]
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2.5 | Crop

We choose maize (Zea mays L.) for simulating the water-
crop productivity as it is the most common crop grown
by both smallholders and large commercial farmers
throughout the ZRB. In AquaCrop, crops are character-
ized by a set of parameters that can easily be calibrated
by the modeller to meet specific local growing conditions
(Raes et al., 2009). For this study, we used the default
crop parameters, such as the length of a growing period,
planting density, the canopy crop development and root
depth for maize. The planting date was set as April
15 for the dry season simulations because this is when
farmers plant maize under irrigation after the rainy sea-
son has ended. The actual simulations started on
January 1 prior to the planting date. At that time the ini-
tial soil water content was assumed to be at field capacity
just for the first year of simulations throughout the soil
profile.

2.6 | Soil

Based on the morphologic and chemical characteristics,
the 119 soil profiles in the Upper Mulungushi Basin
(UMB) were classified in Reference Soil Groups (RSGs)
according to the third edition of the World Reference
Base for soil resources (IUSS Working Group WRB,
2015). There were eight RSGs identified: Acrisols,
Arenosols, Gleysols, Lixisols, Phaeozems, Plinthosols,
Regosols and Vertisols. From the 119 soil profiles, we
randomly selected one agricultural site for each of the
eight RSGs for simulating the irrigation requirements for
maize. The soil textural classes of each RSG selected were
as presented in Table 2.

3 | RESULTS

The outputs of all the PTFs for the water contents at the
six matrix potentials are expressed in fractions or percent-
ages, whereas the Ksat values are expressed in
mm/hr. The predictors sand, clay and silt content are also
expressed as fractions for input in the PTFs.

3.1 | Selected potential explanatory
variables

The results in Table 3 present the water content at pF0.0
and pF1.0 with eight potential explanatory variables
selected from the possible 12 (Table 1) that were available
for selection. The bulk density, sand fraction, nitrogen

content, silt fraction and the pH were the five most
important predictors out of the eight. The eight potential
predictors were then used to train and test the MLR and
machine learning PTFs for water content at pF0.0 and
pF1.0. For estimating the water content at pF2.0, pF2.8
and pF3.4, 10 potential predictors were selected from the
possible 12 variables, with clay and sand fractions, nitro-
gen content, silt fraction, bulk density and organic matter
content as the most important predictors. The MLR and
machine learning PTFs were then trained and tested
using these 10 potential variables.

Nine potential variables were selected from the avail-
able 12 variables for the water content at pF4.2. At this
point, clay and sand fractions, nitrogen content, organic
matter content and silt fraction were the five most impor-
tant predictors out of the nine potential ones. Only four
variables were selected from the possible 12 candidate

TABLE 2 The eight Reference Soil Groups (RSGs) with their

textural classes representing the simulation sites used in AquaCrop

simulations

RSG
Depth
layers (cm)

FAO
textural
class

Acrisol (simulation site 1) 30 Sandy loam

60 Clay loam

100 Clay

Arenosol (simulation site 2) 30 Loamy sand

60 Loamy sand

100 Loamy sand

Gleysol (simulation site 3) 30 Silty clay

60 Clay loam

100 Loam

Lixisol (simulation site 4) 30 Clay loam

60 Clay loam

100 Clay loam

Phaeozem (simulation site 5) 30 Loam

60 Loam

100 Loam

Plinthosol (simulation site 6) 30 Sandy loam

60 Sandy loam

100 -

Regosol (simulation site 7) 30 Sandy loam
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TABLE 4 Intercepts and coefficients for the multiple linear regression (MLR) pedotransfer functions (PTFs)

Response variables

Predictors pF0.0 pF1.0 pF2.0 pF2.8 pF3.4 pF4.2 Ksat

Dep 3.06 × e−4 4.17 × e−4 5.31 × e−4 3.81 × e−4

ELE −1.17 × e−4 −4.83 × e−5 −2.21 × e−4 −2.43 × e−4 −2.30 × e−4 −1.79 × e−4

SAND −0.073 −0.101 −1.781 −2.401 −2.347 −1.811 1.70 × e2

CLAY −1.487 −2.026 −1.957 −1.430

SILT −0.052 −0.098 −1.712 −2.320 −2.282 −1.761

STON −0.024 −0.034 −0.022 −0.022 −0.023 −0.023 4.83 × e2

OM 0.014 0.016 0.015

N 0.181 0.350 0.900 0.887 0.787 0.623 −4.26 × e2

EC −0.360 −0.340 0.317 0.595 0.703 0.754

pH −0.003 −0.005 −0.010

BD −0.319 −0.273 −0.056 0.029 0.027 −2.37 × e2

Intercept 1.090 0.948 2.276 2.610 2.522 1.972 3.86 × e2

BD, bulk density; Dep, depth; EC, electrical conductivity; ELE, elevation; N, nitrogen content; OM, organic matter; STON, stoniness.
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FIGURE 3 Coefficients of determination (R2) for the pedotransfer functions (PTFs) applied to the training sets (black) and test datasets

(grey). ANN, artificial neural network; MLR, multiple linear regression; RF, random forest; SVM, support vector machine
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variables for Ksat, with stoniness and sand fraction as the
two most important predictors.

In the Saxton & Rawls PTF, the sand fraction and
estimated water content at pF2.0 are used as predictors
for estimating water content at pF0.0. Furthermore, sand
and clay fractions and organic matter content (OM), as
well as their interactions (e.g., SAND * OM), are also
used as predictors for water contents at pF2.0 and pF4.2.
The saturated hydraulic conductivity, Ksat, is estimated
using an equation also found in Saxton and Rawls (2006),
with the water content at pF0.0 as the most important
predictor. The intercepts and coefficients of the selected
predictors for the MLR PTFs are presented in Table 4.

3.2 | Performance evaluation
of the PTFs

Figures 3 to 5 present the results of the performance eval-
uation of the PTFs in terms of the statistical indices R2,
MAE and RMSE for both the training and test datasets.

The lowest RMSE and MAE and the highest R2 were
observed for the MLR and machine learning PTFs. In
Figure 3, for the water content at pF0.0, pF2.0 and pF4.2
and Ksat values, the R2 ranged from 0.55 to 0.85. At
pF1.0, pF2.8 and pF3.4, the R2 ranged from 0.60 to 0.85
in training and test sets for the MLR and machine learn-
ing PTFs. Meanwhile, for the Saxton & Rawls PTF, the
R2 ranged from 0.10 to 0.50 for the water content at
pF0.0, pF2.0, pF4.2 and Ksat values.

In Figure 4, the RMSE ranged from 0.02 to 0.06 (Vol
%) and 50 to 85 (mm/hr) in training and test sets for the
water content at pF0.0, pF2.0 and pF4.2 and Ksat values
for the MLR and machine learning PTFs. However, for
the Saxton & Rawls PTF, the RMSE ranged from 0.06 to
0.08 (Vol %) and 100 to 150.61 (mm/hr) for the water
content at pF0.0, pF2.0 and pF4.2 and Ksat values,
whereas for the water content at pF1.0, pF2.8 and pF3.4,
the RMSE ranged from 0.02 to 0.06 (Vol %) in training
and test sets for the MLR and machine learning PTFs.

Similar to the RMSE, from Figure 5, the MAE of the
Saxton & Rawls PTF is much higher than the MAE of
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FIGURE 4 Root mean squared error (RMSE) for the PTFs applied to the training sets (black) and test datasets (grey). ANN, artificial
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MLR and machine learning PTFs. The differences in
MAE and RMSE (Figure 4) between the MLR and
machine learning PTFs were rather marginal.

3.3 | Functional evaluation of the PTFs
using AquaCrop model outputs

Figure 6 displays the results as outputs of the AquaCrop
model: the irrigation water requirements in the dry season
for a maize crop in the simulation period (1998–2012).

In the dry season irrigation water requirements of
Figure 6, we observe that on all the soil profiles except
for a Gleysol soil profile with Clayic and Loamic soil tex-
tures (Table 2), the ANN followed by the MLR PTFs pro-
duced estimations of hydraulic soil properties that, when
used as input in the AquaCrop model, translated into
outputs of irrigation water requirements most compara-
ble to those when measured hydraulic soil properties are
used as input in the AquaCrop model.

4 | DISCUSSION

Soil hydraulic properties are key inputs for hydrological
models in general and in crop-water models in particular.
Traditionally, many studies have developed PTFs to esti-
mate hydraulic soil properties from basic soil properties
(e.g., bulk density, % clay, % sand and % silt) (Li et al.,
2007; Schaap, Leij, & van Genuchten, 1998, 2001). Our
study affirms the importance of these basic soil properties
as predictors for soil water retention and saturated
hydraulic conductivity (Ksat), complemented by the %
stoniness (Table 3), which is highly ranked when it comes
to estimating Ksat. Schaap et al. (2001) developed multiple
linear regression (MLR)-based PTFs for Ksat using soil
texture (% clay, % sand and % silt) among the inputs, and
found an R2 up to 0.54, whereas the R2 of the ANN-based
PTF in Schaap et al. (1998) was up to 0.57. The R2 for the
PTF in Li et al. (2007) for Ksat also went up to 0.66. We
observed that the R2 (0.55 to 0.85) in our study for the
MLR and machine learning PTFs was slightly better than
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in the other previous studies. For the Saxton & Rawls
PTF, R2 obtained in this study is lower than the values
reported in previous studies, with a range of about 0.10 to
0.50. For Ksat, R2 is even lower, with a range of about 0.1
to 0.12 in both the training and test processes. This rather
low performance of the Saxton & Rawls PTF illustrated by
the statistical indices in this study when compared to the
MLR and machine learning PTFs could be attributed to
the different methods that Saxton & Rawls used to mea-
sure the hydraulic soil properties, the differences in clay
mineralogy of the soils that were studied, differences in
land-management practices, and most probably differ-
ences between the climate of Zambia and that of the
North American region from where the samples on which
the Saxton & Rawls PTFs are based originate.

Through the functional evaluation of the PTFs, we
observed that the performance in terms of R2, RMSE and
MAE of the Saxton & Rawls PTF was lower than that of
the MLR and machine learning PTFs. In the dry season

irrigation water requirements, the ANN followed by MLR
PTFs performed better than the other PTFs on all the soil
profiles except for a Gleysol soil profile with Clayic and
Loamic soil textures, where the Saxton & Rawls PTF and
the RF PTFs were slightly better. However, dry season
irrigation requirements for maize as computed by
AquaCrop with measured versus estimated soil hydraulic
properties revealed that ANN-PTFs provide AquaCrop
outputs that come closest to AquaCrop outputs (dry sea-
son irrigation requirements) generated with measured
soil hydraulic properties. The AquaCrop model, when
operated with measured soil hydraulic properties, indi-
cates on average an irrigation water requirement of
around 600 mm/growing season, which is in line with
what farmers told us they need for growing maize in the
dry season in the Kabwe (Zambia) area. This is also in
line with the FAO irrigation guidelines, which suggest
that for better production, a medium-matured maize crop
requires between 500 to 800 mm of water depending on
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FIGURE 6 Irrigation water requirements in the dry season simulated for a maize crop for the years 1998–2012 on eight reference soil

groups. The simulations are performed with AquaCrop, whereby next to the measured hydraulic properties (white), the Saxton (red), the

MLR (grey) and three machine learning PTFs (orange) are used for estimating the soil hydraulic properties [Color figure can be viewed at

wileyonlinelibrary.com]
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the environment (FAO, 2012). This gives us confidence
that we work with sufficiently realistic reference values,
to which we then compare the irrigation requirements
modelled using the estimated soil hydraulic characteris-
tics. In this comparison, we used the same values of
rooting depth, crop variety (physiological length of grow-
ing season) and the rainfall distribution from actual
weather data for 1998–2012. We acknowledge that
rooting depth, length of growing season and rainfall dis-
tribution vary through the examined sites and will affect
the modelling results, but by excluding this variation
from the modelling, we attempt to functionally evaluate
the PTFs regardless of the other variations.

Overall this study confirms that PTFs that deliver
more accurate estimates of the soil hydraulic properties
return the more consistent simulation results from a crop
model. Hence, this study shows the importance of per-
forming functional evaluation of pedotransfer functions
before their widespread application.

5 | CONCLUSION

This paper presented the development, assessment and
functional evaluation of pedotransfer functions for esti-
mating soil hydraulic properties in the Zambezi River
Basin, from basic soil properties using MLR, ANN, RF
and SVM methods. Also, the widely used pre-existing
Saxton & Rawls PTFs were assessed and evaluated. Over-
all the Saxton & Rawls PTFs had lower R2 and higher
RMSE and MAE values than the MLR and machine
learning PTFs. On the other hand, there were marginal
differences in the statistical indices, R2, RMSE and MAE,
between the MLR and machine learning PTFs.

There were systematic underestimations of dry season
irrigation requirements for maize as computed by AquaCrop
with measured versus estimated soil hydraulic properties
from all the PTFs except for the ANN PTF. On a Gleysol,
the Saxton and RF PTFs performed slightly better but with
some slight overestimations in the dry season irrigation
water requirements. However, because the ANN PTF per-
formed as well as the MLR and the other machine learning
PTFs, with higher R2 and lower RMSE and MAE than the
Saxton & Rawls PTF, and the fact that it also performed bet-
ter during functional evaluation of the dry season irrigation
water requirements compared with AquaCrop model out-
puts, we recommend estimating the soil hydraulic properties
from the available basic soil data using the ANN PTF in the
Zambezi River Basin.
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