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ABSTRACT 

The behavior of a laterally loaded pile with fixed-tip boundary condition (i.e., displacement and 

rotation, are perfectly restrained) is evaluated using a recently proposed, improved Tajimi-type model. 

The model performance in both, static and dynamic regime is first validated against rigorous finite 

element solutions and subsequently compared with Winkler model results for a selected range of pile-

soil system parameters. In addition, pile impedances for fixed-tip piles are compared with previously 

proposed impedance expressions for hinged-tip piles. Results indicate that pile tip fixity has moderate 

impact on the pile stiffness in rotation but show stronger influence for pile stiffness in swaying and 

cross-swaying. The effect of tip fixity on pile impedances diminishes when piles are longer than 

approximately ten pile diameters. The proposed expressions for damping were evaluated across a 

wide range of frequencies, and damping was found to be most pronounced in rotation across the entire 

spectrum of pile-soil stiffness ratios examined. Winkler based formulations from literature almost 

exclusively over-predict damping for fixed tip piles. 
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1. Introduction 

The consideration of dynamic soil-structure-interaction (SSI) is crucial to correctly assess the seismic 

vulnerability of a structure. The traditional assumption of a fixed-base condition at the foundation level is 

known to misrepresent the effects of SSI on the structural response by altering the period and damping of 

the system. Contrarily, the implementation of soil-foundation compliance leads to correct understanding 

of structural stiffness and damping; however, the significant increase of computational time and costs 

associated with complex SSI analyses poses considerable disadvantages. Therefore, simpler 

computational tools that provide the engineer with the capability to assess potential SSI effects on the 

structural response are beneficial. 

For structures resting on pile foundations, approximate three-dimensional Tajimi-type formulations can 

be implemented to evaluate analytically soil-structure interaction resulting from lateral loading via closed 

form expressions. These formulations can yield results for pile impedances [dynamic pile head stiffness in 

swaying, rotation and cross swaying-rotation (𝐾ℎℎ, 𝐾𝑟𝑟, 𝐾ℎ𝑟) and corresponding damping ratios (𝜁ℎℎ, 𝜁𝑟𝑟, 

𝜁ℎ𝑟)] to be readily implemented in subsequent superstructure analyses. Pile impedances depend on the 

pile boundary conditions and therefore the consideration of pile tip fixity may be of importance, 

especially for “short” piles. While elastodynamic models published in the literature provide rigorous 

solutions for piles embedded in a half-space, these models do not account for the structural fixity 

condition at the pile tip (e.g. [1], [2]). 

Several researchers have proposed simple expressions for pile impedance functions for a variety of pile 

boundary conditions. Static pile impedances (pile head stiffnesses 𝐾) have been presented by Gazetas [3] 

and Syngros [4] through curve fitting of finite element (FE) results of piles embedded in a homogeneous 

half space. Specifically, Gazetas and Syngros proposed relationships for static swaying (𝐾ℎℎ), rotation 

(𝐾𝑟𝑟), and cross swaying-rotation (𝐾ℎ𝑟) as a function of the pile-soil stiffness ratio. Yet, similarly to 

rigorous elastic solutions described earlier, these expressions ( [3], [4]) fall short in their ability to 

accurately capture the dynamic response and are limited in their applications to “long piles” (i.e., no 

effect of tip fixity is considered). The performance of the Syngros and Gazetas expressions has been 

tested in Anoyatis and Lemnitzer [5] where an extensive parametric analysis for static pile impedances 

was conducted for the case of hinged-tip piles. 

In dynamic regime, simple frequency-dependent expressions, have been introduced by Dobry et al. [6] 

and Roesset and Angelides [7] based on results from FE analyses. Dobry et al. presented expressions for 

frequency-dependent pile stiffness in swaying and corresponding frequency-dependent pile damping. 

Roesset and Angelides proposed frequency-dependent expressions for dynamic pile stiffnesses 𝐾ℎℎ, 𝐾𝑟𝑟, 

𝐾ℎ𝑟 (yet not for pile damping). In both research efforts, expressions for stiffnesses are a function of the 
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Winkler modulus. This indicates that their performance strongly depends on the selection of a proper 

value for the modulus. Using frequency independent (“static”) expressions for the Winkler springs (e.g. 

[8]), pile stiffnesses will not be able to account for resonant effects (significant “drop” in 𝐾ℎℎ, 𝐾𝑟𝑟,  𝐾ℎ𝑟 at 

resonance) and will exhibit a monotonic variation with excitation frequency. Note that the expression for 

pile damping in swaying presented by Dobry et al. [6] accounts for resonant effects through a two-part 

equation (i.e., manually), by separating the expression into a “before” resonance and “after” resonance 

term which accounts for the “jump” in damping by including a Winkler dashpot. 

Closed-form expression for dynamic pile impedances are available in the literature through a simple 

Winkler model (e.g. [9]). The accuracy of these expressions, along with the expressions from Dobry et al. 

[6] and Roesset and Angelides [7] previously discussed, strongly depends on the selections of proper 

values/expressions for the Winkler moduli [dynamic stiffness 𝑘 and dashpots 𝑐 (or damping ratio 𝛽)]. 

Note that a thorough discussion on the effect of existing Winkler moduli [dynamic stiffness 𝑘 and 

dashpots 𝑐 (or damping ratio 𝛽)] on dynamic pile impedances is presented in Anoyatis & Lemnitzer [5], 

where new expressions for 𝑘 and 𝛽 were presented. The majority of moduli available in the literature 

were either frequency- or resonance- independent and fell short in yielding realistic results for dynamic 

pile impedances, especially at frequencies close to the first resonance of the soil-pile system. 

Alternatively, simple Winkler models can treat the problem of a pile embedded in a soil layer overlying 

rock and consider pile tip restraints. However, existing expressions for Winkler springs and dashpots are 

not calibrated for fixed tip conditions. Therefore, a need for closed-form expressions to accurately 

evaluate pile stiffness and damping for piles socketed in shallow rock, emerges. Previously, effects of tip 

fixity on pile impedances have been recognized by Novak and Nogami [10], however, pertinent 

expressions have not been published and are not available for users. 

In this paper, stiffness and damping of tip-restrained piles is investigated through an improved, analytical 

model, recently presented in detail by Anoyatis and Lemnitzer [5]. The improvement of the model lies in 

a better prediction of soil response which ultimately yields more accurate results for pile impedances. In 

the ensuing, closed–form solutions for static and dynamic pile impedances (pile head stiffness and 

damping ratios) are presented in terms of infinite Fourier series, and validated against rigorous FE 

solutions. The primary objective of this investigation is to study the influence of tip fixity on pile stiffness 

and damping ratios using selected pile-soil configurations, and compare results of fixed-tip piles against 

such for hinged-tip piles. Hereafter, the capability of existing Winkler formulations to predict damping is 

assessed through comparison with the results obtained from the proposed model. Note that the ability of 

the model to accurately predict damping is of particular importance when performing SSI analyses 

(Maravas et al. [11], Bilotta et al. [12]). Substantial benefits in terms of reduction of structural 
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accelerations may be achieved when the structural frequency is larger than the fundamental frequency of 

the soil as shown in ensuing graphs. 

The current study assumes an idealized configuration in which the pile tip is perfectly fixed at the 

elevation of the bedrock. The Authors acknowledge that in situ conditions encountered in engineering 

design practice may vary, as the level of tip fixity depends on the strength and condition of the rock, 

which is often approximated. The Authors further acknowledge that the degree of fixity intrinsically 

influences the ability of the pile to rotate within the embedment socket (e.g., if rock is weathered). With 

the assumption of a perfectly fixed tip and the solution provided in Anoyatis and Lemnitzer [5], who 

investigated the condition of the pile with a hinged tip, the pile response at both ends of the pile tip 

boundary spectrum is fully described. 

 

2. Pile-soil configuration 

The pile-soil configuration examined in this study is depicted in Fig. 1 (a): a cylindrical pile of diameter 𝑑 

and length 𝐿 is embedded in a homogenous soil layer of thickness 𝐻 (= 𝐿) and fixed in a medium with 

infinite stiffness. The pile is modelled as a vertical cylindrical beam in the framework of the strength-of-

materials solution ( [10], [5]) and is described by its Young’s Modulus 𝐸𝑝 and mass density 𝜌𝑝. The soil 

is characterized by a mass density 𝜌𝑠 and Poisson ratio 𝜈𝑠. The hysteretic damping 𝛽𝑠 is implemented in 

the analysis through a complex-valued shear modulus 𝐺𝑠
∗ = 𝐺𝑠(1 + 2𝑖𝛽𝑠). The pile is subjected to the 

following loading: (i) a harmonic horizontal load 𝑃 𝑒𝑖𝜔𝑡 applied at the pile head which generates 

horizontal harmonic oscillations of the form 𝑤(𝑧, 𝜔) 𝑒𝑖𝜔𝑡, as well as (ii) a static load 𝑃 which generates 

static displacements in the form of 𝑤(𝑧). In the aforementioned formulations, 𝑧 represents the space 

variable in vertical direction; 𝑡 represents time; 𝜔 describes the cyclic excitation frequency; and 𝑖 is the 

imaginary number. As a result of the applied loading, the soil surrounding the pile undergoes harmonic 

motion or static displacements which will be expressed through the radial and tangential displacement 

components, 𝑢𝑟(𝑟, 𝜃, 𝑧, 𝜔) and 𝑢𝜃(𝑟, 𝜃, 𝑧, 𝜔) , respectively. In an earlier publication, Anoyatis and 

Lemnitzer [5] examined the response of a pile with a hinged tip boundary condition using identical soil 

and pile system properties as described above (Fig. 1b). The current study is an extension thereof and 

examines the pile response when the pile tip is restrained against displacement and rotation relative to the 

base (Fig. 1c). Prior to assessing the static and dynamic pile response of the SSI system depicted in Fig. 1, 

the improved analytical formulation introduced by Anoyatis and Lemnitzer [5] will be summarized to 

provide insight and guidance for the ensuing studies. 
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3. Previous knowledge 

Equations (1) and (2) describe the general pile response in terms of pile displacement and rotation, 𝑤 and 

𝜑, respectively, and provide expressions for the internal moment 𝑀 and shear force 𝑄 along the pile for 

dynamic and static loading conditions. The derivation of Eqs. (1) and (2) is presented  in detail in the 

recent publication by Anoyatis and Lemnitzer [5] where the pile-soil interaction problem in lateral mode 

was tackled by treating the pile as a beam using traditional strength-of-materials assumptions. A suite of 

general expressions was obtained by solving the governing differential equations established from the 

equilibrium of lateral forces acting on a pile segment in the horizontal direction for static and dynamic 

loading. The constants 𝐴, 𝐵, 𝐶, 𝐷 are to be determined using the boundary conditions associated with the 

problem.  Anoyatis and Lemnitzer restricted this analysis to the case of a hinged-tip pile and presented 

(for the sake of brevity) only the expressions associated with the problem at hand; hence, the matrix 

columns associated with a fixed-tip pile were eliminated. In this manuscript, equations (1) and (2) are 

presented in their full length. Note that both, in the current study and in Anoyatis and Lemnitzer, the soil 

is modelled as a continuum using a modified Tajimi model, as presented in detail in Anoyatis et al. [13] 

where the horizontal reaction of the soil medium to a harmonically oscillating pile was analyzed.  

To reiterate, the constants 𝐴, 𝐵, 𝐶 and 𝐷 in Eqs. (1) and (2) are functions of pile and soil parameters as 

well as the geometry of the soil-pile system (i.e., 𝐿 𝑑⁄ , 𝐸𝑝 𝐸𝑠⁄ , 𝜈𝑠) for the case of static loading, and 

additionally function of “dynamic” parameters (i.e., 𝜔𝑑 𝑉𝑠⁄ , 𝑝𝑝 𝑝𝑠⁄ , 𝛽𝑠) for the case of dynamic loading. 

They depend solely on the boundary conditions at the pile head (i.e., fixed, free) and pile tip (i.e., fixed, 

hinged). 
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3.1. Dynamic conditions 

For piles subject to dynamic loading, the response can be obtained through the following general matrix formulation: 
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3.2. Static conditions 

In static conditions, the solutions for the pile response parameters takes the following form: 
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In Eqs. (1) and (2), �̃� and �̃� stand for the ratio of the pile moment 𝑀 and shear force 𝑄, respectively, 

over the pile flexural stiffness (i.e., 𝑀 𝐸𝑝 𝐼𝑝⁄  and 𝑄 𝐸𝑝 𝐼𝑝⁄ ). The mth soil eigenmode 𝛷𝑚(𝑧), can be 

obtained as follows: 𝛷𝑚(𝑧) = sin 𝑎𝑚𝑧. The first derivative Φ𝑚
′ (𝑧) to the eigenmodes, 𝑌𝑚(𝑧),  can be 

determined as 𝑌𝑚(𝑧) = cos 𝑎𝑚𝑧, where 𝑎𝑚 = 𝜋(2𝑚 − 1)/2𝐻 and 𝑚 = 1, 2, 3, … . 

Expressions for the parameters 𝑓1𝑚, 𝑓2𝑚, 𝑓3𝑚, 𝑓4𝑚 in the above equations can be found in Appendices A 

and B in Anoyatis and Lemnitzer [5] for dynamic and static loading conditions, respectively. 

 

4. Pile Impedances 

The stiffness matrix at the pile head is written as 

* *

*

* *

hh hr

rh rr

K K
K

K K

 
  
 

  (3) 

where 𝐾ℎℎ, 𝐾𝑟𝑟 and 𝐾ℎ𝑟 (= 𝐾𝑟ℎ) represent the stiffness in swaying, rocking and cross swaying-rocking 

mode. (*) indicates that the stiffness term is complex-valued, which in its general form can be expressed 

as 𝐾∗ = 𝐾(1 + 2𝑖𝜁) (complex valued pile impedances). Hereby, 𝐾 = 𝑅𝑒(𝐾∗) represents the dynamic pile 

stiffness and 𝜁 = 𝐼𝑚(𝐾∗) 2 𝑅𝑒(𝐾∗)⁄  the pile damping (both 𝐾 and 𝜁 being frequency-dependent). Note 

that ζ is different from the hysteretic (frequency-independent) material damping 𝛽𝑠, which is strictly a soil 

property. 

By applying a strictly horizontal unit displacement at pile head (i.e., 𝑤 = 1 and 𝜑 = 0 at 𝑧 = 𝐻) the 

stiffness terms 𝐾ℎℎ and 𝐾𝑟ℎ can be obtained as follows (Fig. 1) 

   and    hh rhK Q H K M H     (4a, b) 

Similarly, by imposing a unit rotation at pile head with zero horizontal displacement (i.e., 𝑤(𝐻) = 0 and 

𝜑(𝐻) = 1)  the stiffness terms 𝐾𝑟𝑟 and 𝐾ℎ𝑟 (Fig. 1) can be expressed as: 

   and    rr hrK M H K Q H      (5a, b) 

In Eqs. (4) and (5), 𝑄(𝐻) and 𝑀(𝐻) are the shear force and moment at the level of pile head (𝑧 = 𝐻), 

obtained from Eqs. (1) for dynamic conditions and Eqs. (2) for static conditions. The constants 𝐴, 𝐵, 𝐶 

and 𝐷 depend on the type of loading (static or dynamic) and the stiffness to be determined (i.e., 𝐾ℎℎ, 𝐾𝑟𝑟, 

𝐾ℎ𝑟) and are provided in closed-form expressions in the Appendices A to D. 
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The fixed tip condition allows neither displacement [𝑤(0) = 0] nor rotation [𝜑(0) = 0] to develop. 

Therefore Eq. (1) simplifies to the following formulation for the case of a dynamically loaded fixed-tip 

pile:  
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For the case of static loading, the bottom fixity conditions can be expressed through Eqs. (2) as 
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4.1. Dynamic pile impedances 

The stiffness expressions for swaying and cross-swaying under dynamic loading can be summarized as: 
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Expressions for constants 𝐴, 𝐵 and 𝐷 Eqs. (10) and (11a) are presented in Appendix A. 
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Expressions for constants 𝐴, 𝐵 and 𝐷 in Eqs. (11b) and (12) are presented in Appendix B. 

4.2. Static pile impedances 

The stiffness expressions for swaying and cross-swaying under static loading can be summarized as: 

6 phh pEK I A    (13) 
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Expressions for constants 𝐴, 𝐵 and 𝐶 Eqs. (13) and (14a) are presented in Appendix C. 
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Expressions for constants 𝐴, 𝐵 and 𝐶 Eqs. (14b) and (15) are presented in Appendix D. 

 

5. Model Verification 

Prior to conducting parametric evaluations of the pile response, the fundamental ability of the proposed 

model to predict dynamic pile impedances is assessed by comparing its results against such obtained from 

the finite element solutions using the commercial software ANSYS ( [14]). The numerical model was 

originally developed by Di Laora and Rovithis [15] to investigate the behavior of kinematically-stressed 
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piles, and was later used to provide reference results for stiffness and damping in the work of Anoyatis 

and Lemnitzer [5], where the companion problem of a hinged-tip pile was investigated. Hereby, the 

original three-dimensional soil-pile system is appropriately reduced to a two-dimensional system, by 

taking advantage of the axisymmetric geometry and the anti-symmetric load (see Wilson [16]). Via 

sensitivity analyses, the optimum model configuration was iterated and led to the selection of four-node 

axisymmetric 2D elements with vertical dimensions equal to 𝑑/4 and horizontal dimensions varying from 

𝑑/6 at pile-soil interface to 1.5 𝑑 at the lateral boundaries. Vertical displacements were restrained at the 

axis of symmetry and at the lateral boundary of the model, which was placed 200 𝑑 away from pile axis 

to permit attenuation of travelling waves. Perfect bonding between pile and soil is considered. The base 

nodes were restrained against both radial and vertical motion to model a rigid bedrock. 

Comparisons of the proposed dynamic pile stiffnesses and damping ratios with results obtained from FE 

analyses ( [14]) are shown in Figs. 2 – 7. Various pile-soil systems with slenderness ratios 𝐿 𝑑 ′𝑠⁄  equal to 

5, 10, 20 and different pile-soil stiffness ratios 𝐸𝑝 𝐸𝑠⁄  equal to 100, 1000, 5000 were selected to 

demonstrate the model performance across a wide range of frequencies (from 0 to approximately five 

times the fundamental frequency of the soil). The analysis considers soil hysteretic damping  𝛽𝑠 = 0.05, a 

poisson ratio of 𝜈𝑠 = 0.4 and a pile-soil density ratio 𝜌𝑝 𝜌𝑠⁄  of 1.25. Figures 2 – 7 show that the proposed 

model is in very good agreement with the FE results and the dynamic effects in proximity of resonance 

are captured accurately. A clear “dip” in stiffness, and a clear “jump” in damping curves at first resonance 

is visible. Additionally, resonance effects associated with higher eigenmodes are captured well for piles 

with larger slenderness ratios. An error analysis was conducted to assess the discrepancy between the 

model and FE results. Figure 8 presents the error as discrepancy between the model and FE datapoints as 

percentage and indicates the majority of all error data points to be significantly less than 10 % among all 

parameters evaluated in Fig. 8. The “average error” shown as solid line across the entire frequency range 

was found to be around 5 % or less. This capability makes it suitable for implementation in structural 

analyses by taking into account the benefits stemming from energy radiation in the soil. 

 

6. Numerical results 

Closed-form expressions shown in Eqs. (10) – (15) are used to obtain results for pile head stiffness and 

damping using a suite of pile slenderness ratios across a wide range of frequencies. The model 

performance in the static and dynamic regime is discussed separately below: 
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Static pile head stiffness 

The variation of static pile stiffness in swaying, rotation and cross-swaying is shown for pile-soil stiffness 

ratios of 𝐸𝑝 𝐸𝑠 = 100, 300, 1000, 5000⁄ , and across a range of pile slenderness ratios for which tip 

boundary condition may affect the pile head response, i.e., 5 ≤ 𝐿 𝑑 ≤ 20⁄ . 

Figure 9 demonstrates that the lower is the ‘mechanical slenderness’ (Anoyatis et al. [13]) of the pile, the 

more pronounced is the effect of the tip restraint. In example, short piles with slenderness ratios of 

𝐿 𝑑⁄  ~ 5  show the strongest sensitivity to the fixed tip boundary condition with the effect being most 

pronounced when stiff piles are placed in very soft soils (e.g., 𝐸𝑝 𝐸𝑠 > 1000 ⁄ ). For 𝐿 𝑑⁄  ratios higher 

than 10, the stiffnesses are independent of the geometrical slenderness ratio 𝐿 𝑑⁄ , and the pile can be 

treated as long, i.e., tip fixity conditions can be ignored.  

Figure 10 depicts the ratio of static pile stiffness for fixed-tip piles to hinged-tip piles across a variety of 

pile slenderness ratios. The effect of pile tip fixity is most pronounced in the swaying stiffness 𝐾ℎℎ with 

stiffness ratios exceeding 2.0 for piles in very soft soils (e.g., 𝐸𝑝 𝐸𝑠 = 5000⁄ ), followed by the cross-

swaying stiffness 𝐾ℎ𝑟. The rotational stiffness 𝐾𝑟𝑟 is least influenced by the pile tip boundary conditions, 

as the pile head rotation is primarily influenced by the soil pile system characteristics within zero to four 

pile diameters below the soil surface.  

Dynamic pile head stiffness 

Figures 11 through 13 provide a comparison of proposed results for the fixed tip against the hinged tip 

pile for all three stiffness and damping components. For pile-soil ratios 𝐸𝑝 𝐸𝑠⁄  up to 1000, pile stiffness 

𝐾ℎℎ, 𝐾𝑟𝑟 and 𝐾ℎ𝑟 show almost identical behavior across the entire frequency range examined. For very 

soft soil conditions, a noticeable difference in pile stiffness can be observed, the largest difference being 

approximately 36 % for 𝐾ℎ𝑟 at resonance. When normalized with their static counterpart as plotted in part 

(b) of Figs. 11 – 13, differences between fixed and hinged tip piles become more evident. Only model 

results for stiffer soils, e.g., 𝐸𝑝 𝐸𝑠 = 100⁄  are aligned with each other; pile stiffness in softer soils are 

shown to diverge with the largest differences observable in the normalized swaying stiffness 𝐾ℎℎ. 

The damping in all three modes can be considered constant prior to resonance. While damping for 

swaying and cross-swaying indicates almost no influence of 𝐸𝑝 𝐸𝑠⁄  below 𝜔 𝜔1⁄  (i.e., all lines collapse 

into one line), only damping in rotation, 𝜁𝑟𝑟, is influenced by the stiffness of the pile-soil system as 

demonstrated by the small spacing among all damping curves prior to approaching resonance frequency. 

At resonance, all damping modes experience a sudden increase, followed by an approximate linearly 

trending increase with increasing frequencies. In stiff soil conditions (𝐸𝑝 𝐸𝑠 = 100,⁄ ), damping 𝜁ℎℎ and 
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𝜁ℎ𝑟 align well with each other throughout the entire frequency range. Differences between fixed and 

hinged tip piles are obvious near resonance for 𝜁𝑟𝑟 in stiff soils. Beyond 𝜔 𝜔1⁄  = 1, differences between 

fixed tip and hinged tip pile damping become more pronounced. While damping ratios 𝜁ℎℎ and 𝜁ℎ𝑟 for 

medium stiff soils follow each other closely, larger differences are noticeable for 𝜁𝑟𝑟. Results obtained for 

soft soil conditions show a strong divergence across all damping modes. 

 

7. Comparison with Winkler model  

The proposed model is compared against stiffness and damping formulations obtained from literature. 

Springs and dashpots proposed by Baranov-Novak ( [17], [18]), Dobry et al. [6], Gazetas and Dobry [19], 

Makris and Gazetas [8], and Mylonakis [20] as summarized by Anoyatis and Lemnitzer [5] are 

implemented in a Winkler model and compared with results from Eqs. 10 – 15 in Figs. 14 and 15. 

Note that the stiffness matrix from the Winkler model ( [9]) can be expressed as: 

𝐾∗ = [
4𝐸𝑝𝐼𝑝𝜆3 𝑠𝑖𝑛(2𝜆𝐻)+𝑠𝑖𝑛ℎ(2𝜆𝐻)

2+𝑐𝑜𝑠(2𝜆𝐻)+𝑐𝑜𝑠ℎ(2𝜆𝐻)
2𝐸𝑝𝐼𝑝𝜆2 −𝑐𝑜𝑠(2𝜆𝐻)+𝑐𝑜𝑠ℎ(2𝜆𝐻)

2+𝑐𝑜𝑠(2𝜆𝐻)+𝑐𝑜𝑠ℎ(2𝜆𝐻)

2𝐸𝑝𝐼𝑝𝜆2 −𝑐𝑜𝑠(2𝜆𝐻)+𝑐𝑜𝑠ℎ(2𝜆𝐻)

2+𝑐𝑜𝑠(2𝜆𝐻)+𝑐𝑜𝑠ℎ(2𝜆𝐻)
2𝐸𝑝𝐼𝑝𝜆

−𝑠𝑖𝑛(2𝜆𝐻)+𝑠𝑖𝑛ℎ(2𝜆𝐻)

2+𝑐𝑜𝑠(2𝜆𝐻)+𝑐𝑜𝑠ℎ(2𝜆𝐻)

]    (16) 

where 

𝜆 = [
𝑘(1+2𝑖𝛽)−𝜔2 �̃�𝑝

4𝐸𝑝𝐼𝑝
]

1/4

         (17) 

and  �̃�𝑝 = 𝜌𝑝 𝐴𝑝, where 𝐴𝑝 is the pile cross sectional area. 

Figure 14 compares the dynamic stiffness of the proposed model with results from Winkler based 

formulations. The expressions suggested by Dobry et al. [6] fail to represent the pile stiffness across the 

entire frequency range. As expected, the plane strain spring and dashpot by Baranov-Novak cannot 

capture the dynamic effects associated with resonance but can be used to estimate pile stiffness at 

frequency ratios of 𝜔 𝜔1⁄  > 3. While Makris and Gazetas [8] does not perform well for 𝐾ℎℎ, better 

performance is achieved for 𝐾𝑟𝑟  beyond resonance and 𝐾ℎ𝑟  at high frequencies. Solutions obtained using 

Gazetas and Dobry [19], provide a good estimation for 𝐾𝑟𝑟  beyond resonance and for 𝐾ℎℎ and 𝐾ℎ𝑟 

beyond 𝜔 𝜔1⁄  > 3. Even though Mylonakis [20] underestimates the resonance stiffness in swaying and 

rotation, the expression renders the Winkler model capable of predicting the dynamic stiffness in 

swaying-rotation over the whole frequency range. 

Figure 15 compares pile damping ratios for all three modes. With the exception of Baranov-Novak, the 

Winkler model using the simple expressions is capable of capturing damping below resonance. At 
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resonance, all Winkler curves exhibit a sudden increase which accounts for the emergence of radiation 

damping. For frequencies higher than 𝜔 𝜔1 = 1⁄ , all Winkler expressions overestimate damping ratios 

𝜁ℎℎ and 𝜁𝑟𝑟 , in some cases over 20 %. Damping in cross-swaying –rotation, can be reasonably estimated 

by Gazetas and Dobry, and Makris and Gazetas. For frequency ratios higher than 𝜔 𝜔1⁄  = 0.4, Baranov-

Novak can also be used. However, simplified springs and dashpots are unable to capture the effects 

associated with resonance in higher modes.  

 

8. Conclusions 

Tip restraint is frequently encountered in pile engineering (rock-socketed pile); therefore, this work aims 

at providing closed-form expressions to assess the influence of tip fixity on pile impedances (stiffness and 

damping). 

In this study, the soil-pile interaction model presented in Anoyatis & Lemnitzer [5] is extended to predict 

static and harmonic steady state pile impedances (frequency-dependent stiffness and damping) of a single 

pile embedded in a homogeneous soil layer overlying rock. The pile is assumed to be fully restraint 

against rotation and displacement at the pile tip. The proposed model is based on the improved 

elastodynamic continuum model of the Tajimi type, for the soil medium, as presented in Anoyatis et al. 

[13]. Proposed results were found to be in excellent agreement with those obtained from rigorous finite 

element analyses (discrepancies averaged to 5 % and less). It was demonstrated that pile tip fixity has 

moderate impact on the pile stiffness in rotation but has a stronger influence on stiffness in swaying and 

cross-swaying. Damping was found to be most pronounced in rotation across the entire spectrum of pile-

soil stiffness ratios examined. Results indicate that a “relaxation” of the idealized perfect tip fixity would 

result in a reduction of pile stiffness and increase in damping.  

A comparison with the Winkler model using springs and dashpots from the literature revealed that most 

Winkler moduli can be successfully implemented to predict pile stiffness in the high frequency range but 

lack to capture the behavior at resonance. Winkler results obtained from moduli considered in this study 

over-predict damping in swaying, rotation and cross-swaying-rotation. Note that the ability of the model 

to accurately predict damping is of particular importance when performing Soil-Structure-Interaction 

(SSI) analyses, as precise estimation of damping beyond resonance will enable a reduction of structural 

accelerations. For common soil-pile configurations encountered in practice, (i.e. piles embedded in 

shallow rock with 𝐿/𝑑 <  10), dimensionless graphs presented in this paper provide an effective tool for 

quick, preliminary assessment of the importance of SSI effects on the seismic behavior of the 

superstructure. The authors acknowledge the opportunity to expand this analytical study to treat the 
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kinematic soil-pile interaction problem (vertically propagating harmonic SH waves in the soil medium), 

for which research has been performed in the past (e.g., [21], [22], [23]). 
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APPENDIX Α 

Taking into account Eqs. (7) and 𝑤(𝐻, 𝜔) = 1 and 𝜑(𝐻, 𝜔) = 0 through the following matrix form 

equation

1 2 3 4

1 1 1 1

cos ( ) sin ( ) cosh ( ) sinh ( )

sin cos sinh cosh

1

0

m m m m

m m m m

m m m m

A

B

A

D

H f H H f H H f H H f H

H H H H

   

       

   

   



       




 
   

   
        

 
  

   

 (A.1) 

constants 𝐴, 𝐵, and 𝐷 for 𝐾ℎℎ
∗  and 𝐾𝑟ℎ

∗  are determined as: 

2 4

1 1

cosh cosh cos
N N

m m m m

m

H H a f a f H

A
X

 

    
 

    
      

     

 
 (A.2a) 

 1 3 4

1 1 1

cosh cosh sin sinh
N N N

m m m m m m

m

H H a f a f a f H H

B
X

  

    
  

    
       

     

  
    (A.2b) 

 1 3 2

1 1 1

cos sin sinh
N N N

m m m m m m

m m m

m

H a f a f a f H H

D
Z

   
  

    
       

    

  
 (A.2c) 

where 

 

4 2

1 1

1 3 4

1 1 1

2 4

1 1

cos sin sinh sin sin cosh

cosh sin sinh

cosh cos

m m m m

m m m m m m

m m m m

m H f a H H f a H H H

H a f a f a f H H

H

X

a f a f H

 

  

 

   

   

   

 

 

  

  

 

 

   
     

   

   
      

   



 
  
  

 
 
  







  
     

   

 

  

 

 

1 3

1 1

4

1

cosh cos cosh sin sin

sin sinh sin sinh

m m m m

m m

H H H f a H f a H

f a H H H H

 



  

  

 

 





 
    

 

 
    

 


 



 





 



 (A.3a) 
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and 

2 2

2 4

1 1

1 3 4 1 3 4

1 1 1 1 1 1

2

1

( ) ( ) ( ) s

cosh cos ...

cos

cosh co

n

s 2

i h

N N

m m m m

N N N N N N

m m m m m m m m m m m m

m

m

m

a f a f

f H f H a f a f a f f H H

a

Z H H

H

H H f

 

     



 



 



 





 

     



   
     

   

      
       

     

 

     
  

 





 

     

 

4 2 1 3

1 1 1 1

1 3 2

1 1 1

4 2 2

1 1 1

( ) ( )

( ) sin

sin sinh

s

.

n

. .

i

N N N N N

m m m m m m m m

N N N

m m m m m m

N N N

m m m m m m

a f a f f H f H

a f a f f H H

H H

a f f a H a f

   

  

  



 


   

  

  

     
        

     

  
   



  


 

 

   
   

 

  



    

  

   4 2

1 1

4 2 4

1 1 1

sin sinh

sin sin sin sin sinh

N N

m m m m

N N N

m m m m m m

f a H a f H

a f H f a H H f a H H

 

  





  

 

  

    
      

     

   
      

  




 

  

            (A.3b) 
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APPENDIX B 

Taking into account Eqs. (7) and 𝑤(𝐻, 𝜔) = 0 and 𝜑(𝐻, 𝜔) = 1 through the following matrix form 

equation

1 2 3 4

1 1 1 1

cos ( ) sin ( ) cosh ( ) sinh ( )

sin cos sinh cosh

0

1

m m m m

m m m m

m m m m

A

B

A

D

H f H H f H H f H H f H

H H H H

   

       

   

   



       




 
   

   
        

 
  

   

 (B.1) 

constants 𝐴, 𝐵, and 𝐷 for 𝐾𝑟𝑟
∗  and 𝐾ℎ𝑟

∗  are determined as: 

   2 4 4 2

1 1 1 1

sinh sin
m m m m m m m m m

m m m m

a f H f a f H f HA H   
   

   

      
      
      
      

    X (B.2a) 

4 1 3

1 1 1

1 3 4

1 1 1

( ) (cos cosh

i h

)

( )s n

m m m m m m

m m m

m m m m m m m

m m m

a f H f H H f H

a f a f H

B

f H

  



  

  

  

  

  
        

  






  
     

  

  

   X

 (Β.2b) 

2 1 3

1 1 1

1 3 2

1 1 1

cos cosh

si

( ) ( )

)n (

m m m m m m

m m m

m m m m m m m

m m m

D a f H f H H f H

a f a f H f H

  



  

  

  

  

  
         

  

  
      
  

  

   X

 (B.2c) 

where 
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2 2

2 4

1 1

2

4 1 3

1 1 1

1 3 4

1 1 1

2

1

cosh cos

cos ( ) ( )

sinh ( )

cosh cos 2

m m m m m

m m

m m m m m m

m m m

m m m m m m

m m m

m m

m

H a f H a f

mH a f f f

a f a f H f

H H a f

   





  

 

 

  

  

  

  



    
       

   

   
          

  

  
       
  

 





 

  

  

X

 

4

1

2 1 3

1 1 1

1 3 2

1 1 1

4 2

1 1

2

1

( ) ( )

sin ( )

sin sinh ( )

m m

m

m m m m m m

m m m

m m m m m m

m m m

m m m m

m m

m m

m

a f

a f f f

a f a f H f

H H a f f

a f





 

 



  

  

  

  

 

 





  
   

 

  
        
  

  
       
  

   
       

  

 
  
 

 

  

  

 

 4

1

2 4

1 1

4

1

sinh ( )

sin ( ) sinh ( )

sin

m m

m

m m m m

m m

m m

m

H f

H f H f

a f H



  







 

 





 
   

 

 
        

 

  
  
  



 



 

  



19 

 

Appendix C 

Taking into account Eqs. (9) and 𝑤(𝐻) = 1 and 𝜑(𝐻) = 0 through the following matrix form equation 

3 2
1 2 3

1 1 1

2

( ) ( ) ( )

1

1

0
23

m m m m m m
m m m

H f H f H f

HH

A
H H H

B

C

  

  

 
 
 


 
        

   
 

 





  
 (C.1) 

constants 𝐴, 𝐵and 𝐶 for determining static stiffnesses 𝐾ℎℎ and 𝐾𝑟ℎ 

2 3

1 1

2 1m m m m m

m m

A a f H a f X
 

 

  
    

  
    (C.2a) 

2

1 3

1 1

3 1m m m m m

m m

B a f H a f X
 

 

  
     

  
    (C.2b) 

2

1 2

1 1

2 3m m m m m

m m

C H a f H a f X
 

 

 
  
 

    (C.2c) 

where 

4 3

3 1 2 1

1 1 1 1

1 2

2

3

1 1 1

1 2 3

1 1

1 2 sin sin 2

sin 2 sin

3 sin 1

m m m m m m m m m

m m m m

m m m m m m

m m m

m m m m m

m m

X a f H f a H H a f f a H H

a f f a H H f a H

a f f a H aH f

   



   

  



 







       
        




    
       

    
      
    

 
   

 

   

  

  2 3

1 1 1

sinm m m m m

m m m

a f f a H


  

       
      

     
  

(C.3) 
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Appendix D 

Taking into account Eqs. (9) and 𝑤(𝐻) = 0 and 𝜑(𝐻) = 1 through the following matrix form equation 

3 2
1 2 3

1 1 1

2

( ) ( ) ( )

1

0

1
23

m m m m m m
m m m

H f H f H f

HH

A
H H H

B

C

  

  

 
 
 


 
        

   
 

 





  
 (D.1) 

constants 𝐴, 𝐵and 𝐶 for determining static stiffnesses 𝐾𝑟𝑟 and 𝐾ℎ𝑟 

2
2 3 2 3

1 1 1 1

sin 1 sinm m m m mm m m m
m m m m

A f a H H a f a f f a H H X
   

        
     
     

         (D.2a) 

3

3 1 1 3

1 1 1 1

1 sin sinm m m m m m m m m

m m m m

B a f f a H H a f f a H H X
   

   

     
          

     
     (D.2b) 

2 3

1 2 2 1

1 1 1 1

sin sinm m m m m m m m m

m m m m

C a f f a H H a f f a H H X
   

   

     
        
     
     (D.2c) 

where 

3 4

2 1 3 1

1 1 1 1

1 2 3

1 1 1

2

1 2 3 2

1 1 1

sin 2 1 2 sin

sin 2 sin

3 sin 1

m m m m m m m m m

m m m m

m m m m m m

m m m

m m m m m m m

m m m

X a f f a H H a f H f a H H

a f f a H H f a H

H a f f a H a f a f

   

   

  

  

  

  

     
          

     

  
   
  

   
      

 

   

  

   2

1 1

sinm m m

m m

f a H
 

 

  
  

  
 

 (D.3) 
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FIGURES 

 

 

Fig. 1. Problem considered: (a) pile-soil system, and (b), (c) deformed pile shape and pile impedances 

based on different fixity conditions at the tip 

 

 

 

 

Fig. 2. Dynamic pile stiffnesses (𝐾ℎℎ, 𝛫𝑟𝑟, 𝐾ℎ𝑟) for 𝐿/𝑑 = 5 and different 𝐸𝑝𝐸𝑠⁄ ratios. Comparison of 

the proposed results against results from finite element analyses (𝛽𝑠 = 0.05, 𝜈𝑠 = 0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 
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Fig. 3. Dynamic pile stiffnesses (𝐾ℎℎ, 𝛫𝑟𝑟, 𝐾ℎ𝑟) for 𝐿/𝑑 = 10 and different 𝐸𝑝𝐸𝑠⁄ ratios. Comparison of 

the proposed results against results from finite element analyses (𝛽𝑠 = 0.05, 𝜈𝑠 = 0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 

 

 

 

 

 

Fig. 4. Dynamic pile stiffnesses (𝐾ℎℎ, 𝛫𝑟𝑟, 𝐾ℎ𝑟) for 𝐿/𝑑 = 20 and different 𝐸𝑝𝐸𝑠⁄ ratios. Comparison of 

the proposed results against results from finite element analyses (𝛽𝑠 = 0.05, 𝜈𝑠 = 0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 
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Fig. 5. Pile damping ratios (𝜁ℎℎ, 𝜁𝑟𝑟, 𝜁ℎ𝑟) for 𝐿/𝑑 = 5 and different 𝐸𝑝/𝐸𝑠 ratios. Comparison of the 

proposed results against results from finite element analyses (𝛽𝑠 = 0.05, 𝜈𝑠 = 0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 

 

 

 

 

 

Fig. 6. Pile damping ratios (𝜁ℎℎ, 𝜁𝑟𝑟, 𝜁ℎ𝑟) for 𝐿/𝑑 = 10 and different 𝐸𝑝/𝐸𝑠 ratios. Comparison of the 

proposed results against results from finite element analyses (𝛽𝑠 = 0.05, 𝜈𝑠 = 0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 
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Fig. 7. Pile damping ratios (𝜁ℎℎ, 𝜁𝑟𝑟, 𝜁ℎ𝑟) for 𝐿/𝑑 = 20 and different 𝐸𝑝/𝐸𝑠 ratios. Comparison of the 

proposed results against results from finite element analyses (𝛽𝑠 = 0.05, 𝜈𝑠 = 0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 
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Fig. 8. Error assessment between the proposed analytical model and FE results 
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Fig. 9. Variation of static stiffnesses in swaying, rotation and cross swaying-rotation with 𝐿/𝑑 for 

selected values of 𝐸𝑝/𝐸𝑠 ratios 

 

 

 

 

 

Fig. 10. Comparison of static stiffnesses as shown in Fig. 9 with stiffnesses obtained from Anoyatis & 

Lemnitzer [5] for hinged-tip piles 
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Fig. 11. Dynamic stiffness and damping in swaying (𝐾ℎℎ, 𝜁ℎℎ); Comparison between fixed-tip (black 

curves) and hinged-tip [5] (grey curves) 

 

 

 

Fig. 12. Dynamic stiffness and damping in rotation (𝐾𝑟𝑟, 𝜁𝑟𝑟); Comparison between fixed-tip (black 

curves) and hinged-tip [5] (grey curves) 
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Fig. 13. Dynamic stiffness and damping in cross swaying-rotation (𝐾ℎ𝑟, 𝜁ℎ𝑟); Comparison between fixed-

tip (black curves) and hinged-tip [5] (grey curves) 

 

Fig. 14. Dynamic pile stiffness for 𝐿/𝑑 = 10 and 𝐸𝑝/𝐸𝑠 = 1000. Comparison of the proposed results 

against results from the Winkler model using springs and dashpots from the literature (𝛽𝑠 = 0.05, 𝜈𝑠 =

0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 
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Fig. 15. Pile damping ratios for 𝐿/𝑑 = 10 and 𝐸𝑝/𝐸𝑠 = 1000. Comparison of the proposed results 

against results from the Winkler model using springs and dashpots from the literature (𝛽𝑠 = 0.05, 𝜈𝑠 =

0.4, 𝑝𝑝/𝑝𝑠 = 1.25) 


