
On the specification of multivariate association measures and their behaviour
with increasing dimension
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Abstract

In this paper the interest is to elaborate on the generalization of bivariate association measures, namely Spearman’s
rho, Kendall’s tau, Blomqvist’s beta and Gini’s gamma, for a general dimension d ≥ 2. Desirable properties and
axioms for such generalizations are discussed, where special attention is given to the impact of the addition of: (i) an
independent random variable to a random vector; (ii) a conical combination of all components; (iii) a set of arbitrary
random components. Existing generalizations are evaluated with respect to the axiom set. For a d-variate Gini’s
gamma, a simplified formula is developed, making its analytical computation easier. Further, for Archimedean and
meta-elliptical copulas the asymptotic behaviour when the dimension d increases is studied. Nonparametric estimation
of the considered generalizations of multivariate association measures is reviewed and a nonparametric estimator of
the multivariate Gini’s gamma is introduced. The practical use of multivariate association measures is illustrated on a
real data example.
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1. Introduction

We have a d-variate random vector X = (X1, . . . , Xd)> and we want to study the association between its compo-
nents. More specifically, we are interested in the tendency of the components to simultaneously take large or small
values. Originally, association measures were only explored for pairs of random variables. Bivariate association
measures were introduced by [3, 9, 12, 30], among others. Later on, attempts to measure dependence within random
vectors of general length d ≥ 2 arose. Some early references include [11] who expanded Spearman’s, Blomqvist’s
and Kendall’s bivariate association measures. With increasing popularity of copula theory, the latter became the main
tool to study dependence and thus further multivariate association measures were introduced as functionals of a cop-
ula. These generalizations are to be found in works of [2, 16, 31], among others. The latter paper, as well as [27]
also discussed properties to be expected from a reasonable multivariate association measure. The behaviour of some
multivariate association measures in dimension growing to infinity was studied in an Archimedean copula setting by
[36].

In this paper, we first elaborate further on the set of desirable properties, axioms, for multivariate association mea-
sures and comment on whether these hold for selected multivariate generalizations of bivariate association measures.
Special attention is given to a situation when an independent random variable is added to the random vector. One
would expect that this would lead to a decrease of an overall association of the starting d-dimensional random vector.
We show that not all the generalizations behave as expected despite their analogous way of derivation. For one of the
generalizations of Gini’s gamma, we provide a simplified formula which avoids d-dimensional integration and makes
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this measure thus more computationally feasible. Further when duplicating one component of X (or more generally
adding a conical combination of all components) one would expect the extended random vector to show an increas-
ing association. We establish for which multivariate association measures such a property holds. Finally, we extend
Wysocki’s results on asymptotic properties in terms of growing dimension (see [36]) to other measures. In addition
we obtain some partial results in this matter for meta-elliptical copulas.

The organization of this paper is as follows. In Section 2, a discussion about a set of axioms to be fulfilled by
multivariate association measures is provided. In Section 3 several examples of multivariate association measures are
briefly reviewed together with the investigation of the validity of the axioms. Section 4 looks into further properties
of the multivariate association measures, including the evolvement for increasing dimension. In Section 5, the limit-
ing behaviour when the dimension tends to infinity is investigated for Archimedean and meta-elliptical copulas. The
results for Archimedean copulas complement those of [36]. Section 7 is devoted to estimation of multivariate asso-
ciation measures. An illustrative example is in Section 6, whereas a real data application in Section 8 demonstrates
the practical use of the association measures. Section 9 provides an overview of our findings. A study on the multi-
variate Blomqvists’s beta, further illustrative examples and explanations on how to obtain standard errors, as well as
additional material on the real data application and the overview are provided in the Supplementary Material.

2. Multivariate copulas and axioms for multivariate association measures

We first introduce necessary tools from copula theory, and next get to a list of axioms for multivariate association
measures. In Section 3 we then focus on the discussion of several multivariate measures, in view of the axioms.

2.1. Multivariate copulas
Suppose we have a d-variate random vector X = (X1, . . . , Xd)> where F is the joint distribution function of X and

Fi, i ∈ {1, . . . , d}, are the continuous marginal distribution functions of Xi, i ∈ {1, . . . , d}. Applying Sklar’s theorem
[29] in higher dimensions, there exists a unique copula function Cd : [0, 1]d → [0, 1] such that

F(x1, . . . , xd) = Cd(F1(x1), . . . , Fd(xd)), (x1, . . . , xd)> ∈ Rd.

We denote the set of all d-variate copulas as Cop(d). Copula Cd is the joint distribution function of the random vector
U = (U1, . . .Ud)> = (F1(X1), . . . , Fd(Xd))>, that is, with u = (u1, . . . , ud)> ∈ [0, 1]d, Cd(u) = Pr(U ≤ u) where
inequalities of vectors are understood component-wise. Further, we define the survival function K associated to a
measurable function K : [0, 1]d → [0, 1] as

K(u) = 1 +

d∑
k=1

(−1)k
∑

1≤i1<···<ik≤d

Ki1,...,ik (ui1 , . . . , uik ) (1)

where Ki1,...,ik denotes the corresponding k-dimensional margin. The way to calculate K in (1) will be further referred
to as the inclusion-exclusion principle. Since Cd is a distribution function, then Cd(u) = Pr(U > u). For the bivariate
case (d = 2) the survival function of C2 is C2(u1, u2) = Pr(U1 > u1,U2 > u2) = 1 −C2(u1, 1) −C2(1, u2) + C2(u1, u2),
for (u1, u2)> ∈ [0, 1]2. The survival copula CS

d is defined as the copula of 1 − U, that is

CS
d (u) = Pr(1 − U ≤ u) = Pr(U > 1 − u) = Cd(1 − u).

If Cd and CS
d coincide, we call Cd radially symmetric. In such case, it follows from the previous equation that

Cd(u) = Cd(1 − u).

We say that copula Cd has a density cd : [0, 1]d → R+
0 defined as

cd(u) =
∂dCd(u)
∂u1 . . . ∂ud

,

if it exists.
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The range of values a multivariate copula can take, is restricted by the so-called Fréchet’s bounds, namely

Wd(u) ≤ Cd(u) ≤ Md(u), ∀u ∈ [0, 1]d,

where Wd(u) = max(
∑d

i=1 ui − d + 1, 0) is the lower Fréchet’s bound and copula Md(u) = min(ui; i ∈ {1, . . . , d})
is the upper Fréchet’s bound. For d > 2, however, Wd fails to be a copula, unlike Md. The copula Md is called
the comonotonicity copula, since it is the copula of a vector (X1, g2(X1), . . . , gd(X1))> where g2, . . . , gd are strictly
increasing functions on the support of X1. For d = 2, the lower Fréchet’s bound W2 is a copula and is known as the
countermonotonicity copula since it is the copula of a vector (X1, X2)> = (X1, g1(X1))> where g1 is a strictly decreasing
function on the support of X1. Among the properties of multivariate copulas, is that they are invariant with respect to
strictly increasing transformations of the components of X. The independence copula Πd(u) =

∏d
i=1 ui corresponds to

mutually independent X1, . . . , Xd. Both Md and Πd are radially symmetric copulas.
In the multivariate setting, one defines two types of ordering for copulas Ad, Bd ∈ Cop(d):

Ad � Bd ⇔ ∀u ∈ [0, 1]d : Ad(u) ≤ Bd(u),

Ad �C Bd ⇔ ∀u ∈ [0, 1]d : Ad(u) ≤ Bd(u) and Ad(u) ≤ Bd(u),

being called order and concordance order, respectively. Note that in the bivariate case, the concordance ordering
always follows from the ordering itself, since for any copula C2 ∈ Cop(2) it holds that C2(u) = 1 − u1 − u2 + C2(u),
since C2(u1, 1) = u1 and C2(1, u2) = u2. Hence for any A2, B2 ∈ Cop(2) it holds that A2 � B2 implies A2 � B2.

Taylor [31] introduced a concept of reflections of the d-dimensional unit cube [0, 1]d which happens to be very
useful for notation in this context. We say that a mapping ξ : [0, 1]d → [0, 1]d is a reflection if ξ(u) = v where for
i ∈ {1, . . . , d} we have vi = ui or vi = 1 − ui. The set of all d-dimensional reflections is denoted as Rd. An important
example of reflection, for i ∈ {1, . . . , d}, is an elementary reflection σi defined as σi(u) = v with vi = 1−ui and v j = u j

for j , i. Reflection with respect to all components will be denoted as σ, that is σ(u) = 1 − u. Reflections can be
used to produce new copulas, as shown by [31]. To every copula Cd we can associate the probability measure µCd

satisfying

Cd(u1, . . . , ud) = µCd ([0, u1] × · · · × [0, ud]) = Pr(U1 ≤ u1, . . . ,Ud ≤ ud).

Then for ξ ∈ Rd we can define a new copula Cξ
d via its probability measure given as

µCξ
d
(S ) = µCd (ξ(S ))

for S a Borel set of [0, 1]d where reflection applied to a set is understood, for example, as in

σ1([0, u1] × · · · × [0, ud]) = [1 − u1, 1] × [0, u2] × · · · × [0, ud].

Analogously, we can consider permutations that correspond to changing the order of the components within a random
vector.

Taylor [31] further shows that if Cd is the copula of X, then Cσ
d is the copula of −X, thus also of its (component-

wise) strictly increasing transformations 1−X and 1−U. This also means that Cσ
d = CS

d , the survival copula associated
to Cd.

The copula of any subvector of X of length between 1 and d is called a marginal copula of Cd. Note that by
allowing for subvectors of length d, a copula is also a marginal copula of itself. Marginal copulas can be easily
expressed from the original copula by setting arguments corresponding to unselected components to 1. Suppose for
simplicity that the interest is in the marginal copula C(−i)

d−1 of (X1, . . . , Xi−1, Xi+1, . . . Xd)> for i ∈ {1, . . . , d}. Then

C(−i)
d−1(u1, . . . , ui−1, ui+1, . . . ud) = Cd(u1, . . . , ui−1, 1, ui+1, . . . ud),

where Cd is the copula of (X1, . . . , Xi−1, Xi, Xi+1, . . . Xd)>. For lower-dimensional marginal copulas, one could simply
iterate this procedure.
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Throughout this paper, we often focus on consequences of increasing dimension d. When talking about a sequence
of copulas {Cd}

∞
d=2 we understand that these copulas are linked together in the following way. Suppose that X1, X2, . . .

are random variables. Then let Cd be the copula of the random vector (X1, . . . , Xd)>. This construction ensures that
Cd1 is always a marginal copula of Cd2 for d1 < d2 and also that

Cd1 (u1, . . . , ud1 ) = Cd2 (u1, . . . , ud1 , 1, . . . , 1).

One important class of copulas is the class of multivariate Archimedean copulas, thoroughly discussed for example
by [14], and for which the definition is recalled in Section S1 of the Supplementary Material. For Archimedean
copulas, a sequence {Cd}

∞
d=2 is understood as a sequence of Archimedean copulas sharing a common generator ψ but

differing in dimension. That means that if we know that Cd is an Archimedean copula, we can extract its generator and
use it to construct Cd+1 in a unique way. [14] shows that so-called d-monotonicity of ψ is a necessary and sufficient
condition for an Archimedean generator to generate some Archimedean copula. See Section S1 for the definition of
d-monotonicity.

2.2. Axioms for multivariate association measures

For the bivariate case, Rényi [21] introduced a set of axioms for a dependence measure. Later on Scarsini [23]
reformulated a set of axioms for what he called a measure of concordance. These axioms can be translated in terms of
copulas. Since we do not solely think of associations in terms of concordance or discordance of pairs, we will use the
more general term of association measures. Suppose that C2 is the copula of (X1, X2)> and denote the copulas of the
vectors (−X1, X2)>, (X1,−X2)> and (X2, X1)> by Cσ1

2 ,Cσ2
2 and Cπ

2 , respectively. Further suppose that C2,m ∈ Cop(2)
for m = 1, 2, . . . constitute a sequence of copulas. For a bivariate association measure κ2 : Cop(2) → R, one expects
the following axioms to hold.

(S 1) (Normalization) κ2(M2) = 1, κ2(Π2) = 0.

(S 2) (Continuity) If limm→∞C2,m(u1, u2) = C2(u1, u2),∀(u1, u2)> ∈ [0, 1]2, then limm→∞ κ2(C2,m) = κ2(C2).

(S 3) (Permutation invariance) κ2(Cπ
2) = κ2(C2).

(S 4) (Ordering) If C2,1(u1, u2) ≤ C2,2(u1, u2),∀(u1, u2)> ∈ [0, 1]2, then κ2(C2,1) ≤ κ2(C2,2).

(S 5) (Reflection principle) κ2(Cσ1
2 ) = κ2(Cσ2

2 ) = −κ2(C2).

Although one can find different sets of axioms for bivariate association measures, Scarsini’s axioms appear fre-
quently in the literature and hence we use them as a starting point for discussing possible extensions of association
measures into general d ≥ 2 dimension. We focus on generalizations of bivariate association measures that all can be
expressed as functionals of the underlying copula.

We comment on how and why to select a set of axioms for a multivariate association measure κd such that these
axioms also guarantee fulfilment of Scarsini’s axioms (S 1) − (S 5) when restricting to dimension d = 2.

Looking back at axioms (S 1)− (S 5), the three required properties (S 1)− (S 3) (normalization, continuity, permuta-
tion invariance) are obvious to generalize, only the dimension is changed. For ordering, concordance order becomes
necessary. Recall that the condition (S 4) alone in the bivariate setting would lead to having ∀u ∈ [0, 1]d : PrA(U ≤
u) = CA(u) ≤ CB(u) = PrB(U ≤ u) where the subscript of Pr relates to the copula of U. Thus one can imagine that for
copula B, its probability mass is more concentrated close to (0, . . . , 0)> than for copula A. So for B values more tend
to be all simultaneously smaller. However, we equally focus on detecting simultaneously large values and thus we
additionally require ∀u ∈ [0, 1]d : PrA(U > u) = CA(u) ≤ CB(u) = PrB(U > u). In short, the order of copulas A and
B in (S 4) is replaced by concordance order for an ordering axiom in general dimension. Recall that for the bivariate
case order and concordance order coincide.

For a generalization of the reflection principle (S 5), [31] proposes two conditions, namely∑
ξ∈Rd

κd(Cξ
d) = 0 and κd(Cd) = κd(Cσ

d ),

4



recalling that Rd are all d-dimensional reflections. For arguments for this generalization, we refer to Section 3 in [31].
In the multivariate setting [31] adds another axiom to the generalization of the set (S 1) − (S 5) stating that the sum of
association measures for vectors (X1, X2, . . . , Xd)> and (−X1, X2, . . . , Xd)> does not depend on X1 and can be extracted
from the association measure of (X2, . . . , Xd)>.

We can now summarize these axioms while also adding one axiom not mentioned above. We say that κd :
Cop(d) → R is a multivariate association measure in the sense of axioms (A1) − (A8) if it satisfies the following
conditions for any d-variate copulas Cd and Cd,m, m ∈ {1, 2, . . . }.

Multivariate axioms

(A1) (Normalization) κd(Md) = 1, κd(Πd) = 0.

(A2) (Continuity) If limm→∞Cd,m(u) = Cd(u),∀u ∈ [0, 1]d, then limm→∞ κd(Cd,m) = κd(Cd).

(A3) (Permutation invariance) κd(Cπ
d) = κd(Cd) for every permutation π.

(A4) (Ordering) If Cd,1 �C Cd,2, then κd(Cd,1) ≤ κd(Cd,2).

(A5) (Duality) κd(Cσ
d ) = κd(Cd).

(A6) (Reflection principle)
∑
ξ∈Rd

κd(Cξ
d) = 0.

(A7) (Transition property) There exists a constant rd−1 such that

κd(Cd) + κd(Cσ1
d ) = rd−1κd−1(C(−1)

d−1 ).

(A8) (Independent component addition) For Xd+1 independent of (X1, . . . , Xd)>

κd(Cd) > κd+1(Cd+1) > 0, or κd(Cd) < κd+1(Cd+1) < 0, or κd(Cd) = κd+1(Cd+1) = 0.

The reasoning behind axiom (A8) is that addition of an independent component must be reflected by an association
measure moving towards zero, if still possible. A similar axiom is mentioned by [27], however we adjust it to ensure
its meaning also for negative values of an association measure.

Note that axioms (A1) − (A8) do not explicitly state any limitations for values of such a measure of association.
However, an upper bound can be deduced using other axioms since we know that Cd ≤ Md and also Cσ

d ≤ Md = Mσ
d

and thus Cd �C Md which means that combining (A1) and (A4), we get κd(Cd) ≤ 1. However, there is no limitation in
terms of a lower bound for d ≥ 3. [31] suggests that there is no obvious proof for −1 ≤ κd(Cd).

Axioms (A1) − (A8) are considered as a minimum set of requirements that a reasonable multivariate association
measure should satisfy. One can wonder about other (desirable) properties that one would expect for a multivariate
association measure to hold. One of the properties sometimes discussed in the literature is that of irreducibility,
which says: For every dimension d and every copula Cd the measure κd(Cd) cannot be written as a function of lower
dimensional measures {κ j(C j); C j marginal copula, j ∈ {2, . . . , d − 1} }. This issue was discussed in Schmid et al. [27,
page 215], who also highlighted that there are exceptions and that such a requirement not really has to apply for all
copulas. It might be more logical to say that there does not exist a universal function h such that κ(Cd) equals the
function h of lower dimensional measures {κ j(C j); C j marginal copula, j ∈ {2, . . . , d − 1} }, for each Cd ∈ Cop(d). In
other words the measure κd(Cd) is really d-dimensional. The property of irreducibility is obviously not satisfied for
multivariate association measures constructed via the pairwise approach of Section 3.1.

To simplify the notation, the subscript d of κd, denoting the dimension, will sometimes be omitted in the sequel of
the text, the dimension being clear from an argument of a functional κ.

In Sections 3 and S2 we investigate a variety of multivariate association measures in the light of axioms (A1)−(A8).
In Section 4 we further study two specific properties (P1) and (P2), formulated as follows. Denote Cd the copula of
X = (X1, . . . , Xd)>.
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(P1) Duplication of one component (or more generally adding a conical combination of all components). When
duplicating a component of X, say putting Xd+1 = X j, for some j ∈ {1, . . . , d}, and considering the extended
random vector (X>, Xd+1)> with copula Cd+1, one might expect that κ(Cd+1) ≥ κ(Cd), i.e. the association in the
extended random vector is not smaller than in X. The same can be remarked when adding a conical combination,
i.e. Xd+1 =

∑d
j=1 α jX j with α j ≥ 0 for all j.

(P2) Effect of adding d2 − d (with d2 > d) arbitrary components. For the copula Cd2 of (X>, Xd+1, . . . , Xd2 )> one
would like to provide a non-trivial lower and upper bound for κ(Cd2 ) involving κ(Cd) and/or the number of added
components d2 − d.

Property (P2) sheds light on how a multivariate association measure evolves when the dimension increases. In Section
5 we go one step further and investigate the limiting behaviour limd→∞ κ(Cd).

3. Multivariate association measures and verification of axioms

In this section we discuss two main methods of generalizing bivariate association measures to the case of general
dimension d ≥ 2. One approach uses resulting values of bivariate association measures, referred to as the pairwise
approach, whereas the other approach exploits their structure. This also means that the former can be formulated for
all bivariate measures at once, the latter requires a specific bivariate measure to start with.

3.1. Pairwise approach

Suppose we have a bivariate association measure κ2 and create a d-variate association measure as an average of
all pairwise measures, i.e.

κPW
d (Cd) =

1(
d
2

) ∑
1≤i< j≤d

κ2(Ci, j
2 ) (2)

where Ci, j
2 is the copula of (Xi, X j)>. Let us now check whether such measure fulfils our axioms.

Proposition 1. Let κ2 : Cop(2)→ R be a bivariate measure of association in the sense of axioms (S 1) − (S 5). Define
for d ∈ {2, 3, . . . }, the measure κPW

d : Cop(d) → R by (2) and set rd−1 = 2(d − 2)/d in axiom (A7). Then {(κPW
d , rd)}∞d=3

fulfils axioms (A1) to (A8).

Proof. Validity of axioms (A1) to (A7) was proven by [31], hence we only need to pay attention to axiom (A8).
Suppose that Xd+1 is independent of (X1, . . . , Xd)>. Then using (S 1)

κPW
d+1(Cd+1) =

1(
d+1

2

) d+1∑
i, j=1
i< j

κ2(Ci, j
2 ) =

1(
d+1

2

) d∑
i, j=1
i< j

κ2(Ci, j
2 ) +

1(
d+1

2

) d∑
i=1

κ2(Ci,d+1
2 ) =

(
d
2

)(
d+1

2

)κd(Cd) =
d − 1
d + 1

κd(Cd)

from which (A8) follows since (d − 1)/(d + 1) < 1.

Proposition 1 shows that the pairwise approach leads to a ‘reasonable’ multivariate association measure if the
initial bivariate measure is ‘reasonable’ as well. Yet there is a disadvantage resulting from the pairwise nature of
this construction. Pairwise-constructed measures will always assign value 0 to vectors having pairwise independent
components no matter if there is an association of higher order. Indeed, if all pairs of components of a vector are
independent, then all values of κ2(Ci, j

2 ) in (2) are zero and hence κPW
d (Cd) = 0.

3.2. Copula approach

We now move towards the generalization for a general dimension d ≥ 2 based on the intrinsic structure of bivariate
association measures, which we first recall for convenience of the reader.
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3.2.1. Multivariate Spearman’s rho
Bivariate Spearman’s rho is defined as [see e.g. 18, p. 167]

ρ(X1, X2) = 3
(
Pr{(X1 − Y1)(X2 − Z2) > 0} − Pr{(X1 − Y1)(X2 − Z2) < 0}

)
where (X1, X2)>, (Y1,Y2)> and (Z1,Z2)> are independent and identically distributed random vectors with copula C2.
An alternative expression for ρ(X1, X2) is

ρ(X1, X2) =
cov(F1(X1), F2(X2))

√
var(F1(X1))

√
var(F2(X2))

=
cov(U1,U2)

√
var(U1)

√
var(U2)

which can be further expressed using the underlying copula as

ρ(C2) =

∫
[0,1]2 u1u2 dC2(u1, u2) − (1/2)2

√
(1/12)

√
(1/12)

=

∫
[0,1]2 Π2(u) dC2(u) −

∫
[0,1]2 Π2(u) dΠ2(u)∫

[0,1]2 Π2(u) dM2(u) −
∫

[0,1]2 Π2(u) dΠ2(u)
, (3)

with u = (u1, u2)>, or equivalently using integration by parts as

ρ(C2) =

∫
[0,1]2 C2(u) dΠ2(u) −

∫
[0,1]2 Π2(u) dΠ2(u)∫

[0,1]2 M2(u) dΠ2(u) −
∫

[0,1]2 Π2(u) dΠ2(u)
, (4)

as shown in [25]. Spearman’s rho can thus be viewed either as Pearson’s correlation coefficient of the uniformly
distributed U1 and U2 or as the standardized average distance between C2 and Π2.

Spearman’s rho can be generalized in multiple ways for a general dimension d ≥ 2. Based on (4), a generalization
considered firstly by [35] can be defined as

ρ1(Cd) =

∫
[0,1]d Cd(u) du −

∫
[0,1]d Πd(u) du∫

[0,1]d Md(u) du −
∫

[0,1]d Πd(u) du
= hρ(d)

2d
∫

[0,1]d
Cd(u) du − 1

 (5)

with hρ(d) = (d + 1)/{2d − (d + 1)}, where we used that [see e.g. 18, p. 225]∫
[0,1]d

Md(u) du =
1

d + 1
,

∫
[0,1]d

Πd(u) du =
1
2d .

Similarly, starting from (3), we get to another generalization

ρ2(Cd) = hρ(d)

2d
∫

[0,1]d
Πd(u) dCd(u) − 1

 , (6)

introduced (without using the copula theory) by [11]. As a third version of a generalization, [17] considered their
average ρ3 = (ρ1 + ρ2)/2.

Both ρ1 and ρ2 satisfy all the axioms except for the duality axiom (A5) which is satisfied by ρ3. This is stated by
[27] for axioms (A1) − (A7). Axiom (A8) is satisfied for ρ1, ρ2 and ρ3 as is established in the following proposition.

Proposition 2. Axiom (A8) is fulfilled by ρ1, ρ2 and ρ3.

Proof. Let Cd be a d-variate copula of (X1, . . . , Xd)> and Cd+1 be a (d +1)-variate copula of (X1, . . . , Xd, Xd+1)> where
Xd+1 is independent of (X1, . . . , Xd)>, that is

Cd+1(u1, . . . , ud, ud+1) = Cd(u1, . . . , ud)ud+1.
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Spearman’s rho ρ1 can be written as

ρ1(Cd+1) =
d + 2

2d+1 − (d + 2)

2d+1
∫

[0,1]d+1

Cd+1(u1, . . . , ud, ud+1) d(u1 · . . . · ud · ud+1) − 1


=

d + 2
2d+1 − (d + 2)

2d
∫

[0,1]d

Cd(u1, . . . , ud) d(u1 · . . . · ud) − 1


and thus we have

ρ1(Cd+1) =

d+2
2d+1−(d+2)

d+1
2d−(d+1)

ρ1(Cd) =
d2d + 2d+1 − (d + 1)(d + 2)

d2d+1 + 2d+1 − (d + 1)(d + 2)
ρ1(Cd)

from which the statement for ρ1 follows since {d2d + 2d+1 − (d + 1)(d + 2)}/{d2d+1 + 2d+1 − (d + 1)(d + 2)} < 1 for
every d ≥ 2.

The proof for ρ2 mimics the preceding derivations since∫
[0,1]d

Πd(u) dCd(u) = Pr(U < V) = Pr(V > U) =

∫
[0,1]d

Cd(u) du,

where U and V are d-variate random vectors with standard uniform margins and with copulas Πd and Cd, respectively.
The proof for ρ3 follows immediately from the statement for ρ1 and ρ2.

Spearman’s rho is rather difficult to calculate analytically for many standard copulas, in some cases even in di-
mension d = 2. However, for a copula with a closed form, the bivariate Spearman’s rho can generally be calculated
via numerical integration techniques. For radially symmetric copulas, ρ1 and ρ2 coincide.

3.2.2. Multivariate Kendall’s tau
Bivariate Kendall’s tau is defined as the difference between the probability of concordance and the probability of

discordance [see e.g. 18, p. 158]

τ(X1, X2) = Pr{(X1 − Y1)(X2 − Y2) > 0} − Pr{(X1 − Y1)(X2 − Y2) < 0} (7)

where (X1, X2)> and (Y1,Y2)> are independent and identically distributed random vectors with copula C2. This can be
further expressed using the underlying copula as, with u = (u1, u2)> ∈ [0, 1]2, (see Nelsen [18, Theorem 5.1.3])

τ(C2) = 4
∫

[0,1]2
C2(u) dC2(u) − 1, . (8)

For general dimension d Kendall’s tau can be generalized based on (8) as

τ(Cd) =
1

2d−1 − 1

2d
∫

[0,1]d

Cd(u) dCd(u) − 1

 (9)

and was firstly proposed by [16].
Another class of generalizations was introduced by [11] which is based on the probabilities of concordance and

discordance as in (7). Suppose that X and Y are independent and identically distributed d-variate random vectors with
copula Cd. One can define D j = X j − Y j for j ∈ {1, . . . , d} and consider

τ2(Cd,wd) =

d∑
k=0

wd,k Pr((D1, . . . ,Dd)> ∈ Bk,d−k) (10)

where Bk,d−k, for k ∈ {0, . . . , d}, is a subset of Rd having k positive components and d − k negative components. Let us
use a convention that

(
n
m

)
= 0 if m > n. Conditions on the weights wd,k under which axioms (A1) − (A6) are fulfiled,

are proposed by [11], specifically
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(T1) wd,k = wd,d−k ,

(T2) wd,d ≥ wd,d−1 ≥ · · · ≥ wd,k′ , k′ = b d+1
2 c ,

(T3) wd,0 = wd,d = 1 ,

(T4)
d∑

k=0

(
d
k

)
wd,k = 0 ,

(T5) wd,k =
∑d
`=2 β`

{(
k
`

)
+

(
d−k
`

)
−

[(
d
`

)
−

(
k
`

)
−

(
d−k
`

)]
/
[
2`−1 − 1

]}
, β` ≥ 0, ` ∈ {2, . . . , d}, such that (T3) is fulfilled.

Note that while condition (T5) aims to achieve the ordering axiom (A4), it is not a necessary condition.
Taylor [31] rephrases the generalization in (10) in terms of copulas as

τ2(Cd,wd) =

d∑
k=0

wd,k

∑
ξ∈Rd
|S ξ |=k

∫
[0,1]d

Cξ
d(u) dCξ

d(u)

and adds another condition on the weights such that τ2 satisfies the transition property of axiom (A7), specifically that
for every d ≥ 2 there exists a constant rd such that

(T6) rdwd,k = wd+1,k+1 + wd+1,k, k ∈ {0, . . . , d}.

Up to this point, the only undiscussed axiom is thus axiom (A8) which is under a mild additional condition on the
weights shown in Proposition 3.

Proposition 3. Let the weights for τ2(·,wd) satisfy condition (T6) with rd < 2. Then axiom (A8) is fulfilled by τ2(·,wd).

Proof. Let Cd be a d-variate copula of (X1, . . . , Xd)> and Cd+1 be a (d +1)-variate copula of (X1, . . . , Xd, Xd+1)> where
Xd+1 is independent of (X1, . . . , Xd)>. Each ζ ∈ Rd+1 can be written in the form ζ(u1, . . . , ud+1) = (ξ(u1, . . . , ud), η(ud+1))
with ξ ∈ Rd, η ∈ R1. Thanks to the independence of the last component

Cζ
d+1(u1, . . . , ud+1) = Cξ

d(u1, . . . , ud)ud+1.

Denoting u = (u1, . . . , ud)>, Kendall’s tau τ2 can be written as

τ2(Cd+1,wd+1) =

d+1∑
k=0

wd+1,k

∑
ζ∈Rd+1
|S ζ |=k

∫
[0,1]d+1

Cζ
d+1(u, ud+1) dCζ

d+1(u, ud+1)

=

d∑
k=0

wd+1,k

∑
ξ∈Rd
|S ξ |=k

∫
[0,1]d+1

Cξ
d(u) ud+1 dCξ

d(u) dud+1 +

d+1∑
k=1

wd+1,k

∑
ξ∈Rd
|S ξ |=k−1

∫
[0,1]d+1

Cξ
d(u) ud+1 dCξ

d(u) dud+1

(11)

and by integrating with respect to the last, independent component together with substitution ` = k − 1 in (11), we get

τ2(Cd+1,wd+1) =

d∑
k=0

wd+1,k

2

∑
ξ∈Rd
|S ξ |=k

∫
[0,1]d

Cξ
d(u) dCξ

d(u) +

d∑
`=0

wd+1,`+1

2

∑
ξ∈Rd
|S ξ |=`

∫
[0,1]d

Cξ
d(u) dCξ

d(u)

=

d∑
k=0

wd+1,k + wd+1,k+1

2

∑
ξ∈Rd
|S ξ |=k

∫
[0,1]d

Cξ
d(u) dCξ

d(u) =

d∑
k=0

wd,k
rd

2

∑
ξ∈Rd
|S ξ |=k

∫
[0,1]d

Cξ
d(u) dCξ

d(u) =
rd

2
τ2(Cd,wd)

which finishes the proof since rd/2 < 1.
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The validity of axioms (A1) − (A7) for τ(Cd) is stated by [27] and the validity of (A8) is stated in Corollary 1.

Corollary 1. Axiom (A8) is fulfilled by τ, defined in (9).

Proof. Association measure τ(Cd) is a special case of τ2(Cd) as can be seen as follows. Denoting X and Y identically
distributed d-variate random vectors with joint distribution function Cd, we can write

τ(Cd) =
1

2d−1 − 1

2d
∫

[0,1]d

Cd(u) dCd(u) − 1

 =
1

2d−1 − 1

{
2d−1[Pr(X < Y) + Pr(X > Y)] − 1

}
=

1
2d−1 − 1

{
2d−1[Pr((D1, . . . ,Dd) ∈ B0,d) + Pr((D1, . . . ,Dd) ∈ Bd,0)] − 1

}
= Pr((D1, . . . ,Dd) ∈ B0,d) + Pr((D1, . . . ,Dd) ∈ Bd,0) −

1
2d−1 − 1

[1 − Pr((D1, . . . ,Dd) ∈ B0,d) − Pr((D1, . . . ,Dd) ∈ B0,d]

= Pr((D1, . . . ,Dd) ∈ B0,d) + Pr((D1, . . . ,Dd) ∈ Bd,0) −
1

2d−1 − 1

d−1∑
k=1

Pr((D1, . . . ,Dd) ∈ Bk,d−k)

 .
That is, for wd,k = 1 if k ∈ {0, d} and wd,k = −1/(2d−1 − 1) otherwise, we have τ(Cd) = τ2(Cd,wd). Taylor [31] stated
that for this selection of the weights, condition (T6) is satisfied with rd = (2d − 2)/(2d − 1) < 2. The assumptions of
Proposition 3 are thus satisfied which proves the statement of this corollary.

Kendall’s tau is often a preferred association measure for bivariate random vectors, either because of its interpre-
tation or robustness properties [see e.g. 4]. We can notice that the idea of concordance is incorporated also in the
general d-variate definition since

∫
[0,1]d Cd dCd = Pr(X ≤ Y) where X and Y are independent random vectors, both

having distribution Cd.

3.2.3. Multivariate Gini’s gamma
Bivariate Gini’s gamma is defined as [see e.g. 18, p. 159 and p. 180]

γ(X1, X2) = Pr{(X1 − Y1)(X2 − Y2) > 0} − Pr{(X1 − Y1)(X2 − Y2) < 0}
+ Pr{(X1 − Z1)(X2 − Z2) > 0} − Pr{(X1 − Z1)(X2 − Z2) < 0}

where (X1, X2)>, (Y1,Y2)> and (Z1,Z2)> are independent random vectors with copulas C2, M2 and W2, respectively,
and common margins F1 (of X1,Y1 and Z1) and F2 (of X2,Y2 and Z2). This coefficient can be further expressed using
the underlying copula as [see 18, p. 181]

γ(C2) = 4
∫

[0,1]2
(M2(u) + W2(u)) dC2(u) − 2 (12)

and using integration by parts, as

γ(C2) = 8
∫

[0,1]2
C2(u) d

(
M2(u) + W2(u)

2

)
− 2. (13)

Gini’s gamma can thus be viewed as a distance between C2 and the maximal (positive and negative) dependence
copulas M2 and W2 measured in terms of concordance. For more insight on this interpretation, see Nelsen [18, e.g.
Theorem 5.1.13].

In the multivariate setting Gini’s gamma can be generalized in multiple ways into general dimension d ≥ 2.
Starting from (12) and using the inclusion-exclusion principle (see (1)), one obtains

M2(u1, u2) + W2(u1, u2) = 2 − 2u1 − 2u2 + M2(u1, u2) + W2(u1, u2)
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and thus ∫
[0,1]2

(M2(u1, u2) + W2(u1, u2)) dC2(u1, u2) =

∫
[0,1]2

(M2(u1, u2) + W2(u1, u2)) dC2(u1, u2).

Then γ(C2) in (12) can be rewritten as

γ(C2) = 2
∫

[0,1]2

(M2(u1, u2) + W2(u1, u2) + M2(u1, u2) + W2(u1, u2)) dC2(u1, u2) − 2

which lead [2] to propose a first generalization in the form

γ1(Cd) =
1

b(d) − a(d)


∫

[0,1]d

(Md(u) + Wd(u) + Md(u) + Wd(u)) dCd(u) − a(d)

 , (14)

where

a(d) =
2

d + 1
+

1
(d + 1)!

+

d∑
j=0

(−1) j
(
d
j

)
1

( j + 1)!
, b(d) = 2 −

d−1∑
j=1

1
2 j

are normalizing constants. If we notice that the probabilistic mass of (M2 + W2)/2 is uniformly distributed along the
diagonals of the unit square [0, 1]2, a generalization based on (13), proposed by [31] is

γ2(Cd) =
2d

2d−1 − 1


∫

[0,1]d
(Cd(u) + CS

d (u)) d

 1
2d

∑
ξ∈Rd

Mξ
d(u)

 − 1
2d−1

 . (15)

Calculating γ2 as originally defined by [31] involves 2d d-dimensional integrals. However, we can further simplify
this formula. By realizing that Mξ

d in the definition of γ2 is a function that is constant everywhere except on one of the
diagonals (depending on ξ) of the unit hypercube. This implies that the integration can be viewed as one-dimensional
over the corresponding diagonal. Recall that Md is the comonotonicity copula corresponding to the situation where
all Ui’s are equal, i.e., the copula of (U, . . . ,U)>. We know that a reflection ξ reflects some components of the vector
U. If we denote by S ξ the set of indices indicating which components were reflected by ξ, we can then write that Mξ

d
is the copula of V = (V1, . . . ,Vd)> where Vi = 1 − U if i ∈ S ξ and Vi = U otherwise. Since V depends only on U and
ξ, we have for arbitrary but fixed ξ ∈ Rd∫

[0,1]d
(Cd(u) + CS

d (u)) dMξ
d(u) =

∫ 1

0
Cd(ξ(u, . . . , u)) + CS

d (ξ(u, . . . , u)) du.

Then we can rewrite γ2 as

γ2(Cd) =
1

2d−1 − 1

∑
ξ∈Rd

∫ 1

0
(Cd(ξ(u, . . . , u)) + CS

d (ξ(u, . . . , u))) du − 2

 , (16)

or equivalently, since CS
d (u) = Cd(1 − u) and we sum over all reflections

γ2(Cd) =
1

2d−1 − 1

∑
ξ∈Rd

∫ 1

0
(Cd(ξ(u, . . . , u)) + Cd(ξ(u, . . . , u))) du − 2

 , (17)

which involves only calculation of one-dimensional integrals.
Let us now focus on the validity of the axioms for these two versions of Gini’s gamma. For γ1 in (14), axioms

(A1)−(A3) follow easily from its definition. However, two axioms, the duality axiom (A5) and the axiom (A8) regarding
the independent component addition, are violated as can be seen through the following example.
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Example 1. Let C3 be a trivariate Farlie-Gumbel-Morgenstern copula defined as

C3(u1, u2, u3) = u1u2u3 [1 + α(1 − u2)(1 − u3) + β(1 − u1)(1 − u3)
+ γ(1 − u1)(1 − u2) + δ(1 − u1)(1 − u2)(1 − u3)

]
where the four parameters α, β, γ, δ all belong to the interval [−1, 1] and satisfy the inequalities 1+ε1α+ε2β+ε3γ > |δ|
for εi = ±1 such that ε1ε2ε3 = 1. Then a few standard calculations lead to

γ1(C3) =
4
45

(α + β + γ).

In particular, γ1(C3) does not depend on δ and if α = β = γ = 0, that is, all the bivariate marginal copulas are
independence copulas, then γ1(C3) = 0 no matter what δ is.

We next show that γ1 does not satisfy axiom (A8). Define copula C4 by adding an independent fourth component

C4(u1, u2, u3, u4) = C3(u1, u2, u3)u4.

Then we can show that

γ1(C4) =
40α + 40β + 40γ + 3δ

1050
.

In particular γ1(C4) depends on δ and if α = β = γ = 0, that is, all the bivariate marginal copulas are independence
copulas, then γ1(C4) = 3δ/1050. This also means that for α = β = γ = 0 and δ , 0, we have |γ1(C4)| > γ1(C3) = 0.
The sign of γ1(C4) then depends on the sign of δ. In other words, we found an example in which adding an independent
component increases association measured by γ1 which thus fails to satisfy axiom (A8).

Finally, let CS
4 be a survival copula of C4. Then we can show that

γ1(CS
4 ) =

40α + 40β + 40γ − 3δ
1050

,

that is, unless δ = 0, we have γ1(C4) , γ1(CS
4 ) and thus duality axiom (A5) is also violated.

In conclusion, γ1 defined in (14) does not fulfil axioms (A5) and (A8). Regarding axiom (A5), this could be easily
fixed by considering in the integration d(Cd + CS

d ) /2 instead of dCd. However, since Wd is not a copula for d > 2, γ1
lacks a clear probabilistic interpretation.

For γ2 in (15), all axioms are fulfilled with (A1)− (A7) discussed by [31] and the validity of (A8) established in the
following proposition.

Proposition 4. Axiom (A8) is fulfilled by γ2, defined in (15).

Proof. Let Cd be a d-variate copula of (X1, . . . , Xd)> and Cd+1 be a (d +1)-variate copula of (X1, . . . , Xd, Xd+1)> where
Xd+1 is independent of (X1, . . . , Xd)>. Using equation (16) above, Taylor’s generalization of Gini’s gamma γ2 can be
written as

γ2(Cd+1) =
1

2d − 1

( ∑
ζ∈Rd+1

∫ 1

0
[Cd+1(ζ(u, . . . , u)) + CS

d+1(ζ(u, . . . , u))] du − 2
)

=
1

2d − 1

( ∑
ξ∈Rd

∫ 1

0
[Cd+1(ξ(u, . . . , u), u) + Cd+1(ξ(u, . . . , u), 1 − u)

+ CS
d+1(ξ(u, . . . , u), u) + CS

d+1(ξ(u, . . . , u), 1 − u)] du − 2
)
.
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Using independence of the last component, we get

γ2(Cd+1)

=
1

2d − 1

( ∑
ξ∈Rd

∫ 1

0
[Cd(ξ(u, . . . , u))u + Cd(ξ(u, . . . , u))(1 − u) + CS

d (ξ(u, . . . , u))u + CS
d (ξ(u, . . . , u))(1 − u)] du − 2

)

=
1

2d − 1

( ∑
ξ∈Rd

∫ 1

0
[Cd(ξ(u, . . . , u)) + CS

d (ξ(u, . . . , u)] du − 2
)

and thus we have

γ2(Cd+1) =
2d−1 − 1
2d − 1

γ2(Cd),

which proves the statement since (2d−1 − 1)/(2d − 1) < 1 for every d ≥ 2.

Thus, after evaluation by means of axioms, there is certainly a preference for γ2 over γ1. Moreover, via (16) we
have decreased considerably its computational complexity.

4. Further properties of multivariate association measures

We next investigate properties (P1) and (P2) for the discussed multivariate association measures. Herein we can
clearly distinguish between Kendall’s tau on the one hand and Spearman’s rho and Gini’s gamma on the other hand.
For Kendall’s tau we establish results for (P1) and (P2), whereas we provide counterexamples for the latter ones.

4.1. Multivariate Kendall’s tau

Proposition 5 states that property (P1) holds for multivariate Kendall’s tau.

Proposition 5. Let Cd be the copula of a random vector X = (X1, . . . , Xd)> and Cd+1 be the copula of (X>, Xd+1)>

where Xd+1 = X j, for some j ∈ {1, . . . , d}. Then

τ(Cd) ≤ τ(Cd+1). (18)

If τ(Cd) < 1, the concerned inequality in (18) is a strict inequality, whereas equality in (18) happens when τ(Cd) = 1.

Statement (18) continues to hold if we add a conical combination of the components of X instead of a duplicate.

Proof. Recall that
∫

[0,1]d Cd(u) dCd(u) = Pr(X < Y) where X and Y are independent and identically distributed random
vectors with copula Cd. Then∫

[0,1]d+1
Cd+1(u) dCd+1(u) = Pr(X < Y, Xd+1 < Yd+1) =

∫
[0,1]d

Cd(u) dCd(u),

and hence

τ(Cd+1) =
1

2d − 1

2d+1
∫

[0,1]d+1

Cd+1(u) dCd+1(u) − 1

 =
(2d − 2)τ(Cd) + 1

2d − 1
≥ τ(Cd),

from which statement (18) follows. Note that if and only if τ(Cd) = 1 there is an equality in the last line. From this
proof it is evident that statement (18) also holds when adding any conical combination of components of X.

For a general copula Cd, Kendall’s tau is bounded as follows

−1
2d−1 − 1

≤ τ(Cd) ≤ 1, (19)
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where the lower bound was introduced by [18], and was shown to be the best possible lower bound by Úbeda-Flores
[33, Theorem 5.1]. Note that the lower bound in (19) converges to zero as d tends to infinity. The minimal value of
τ is achieved when

∫
[0,1]d Cd(u) dCd(u) is equal to zero which happens for example for a random vector containing a

random variable X and also −X.
Proposition 6 states our findings concerning property (P2) for Kendall’s tau.

Proposition 6. Let Cd be the copula of X = (X1, . . . , Xd)> with corresponding Kendall’s tau value τ(Cd). Then for
d2 > d and any copula Cd2 of (X>, Xd+1, . . . , Xd2 )>

−1
2d2−1 − 1

≤ τ(Cd2 ) ≤
1

2d2−1 − 1

2d2−1
(
τ(Cd) +

1 − τ(Cd)
2d−1

)
− 1

 . (20)

Both the lower and the upper bounds are attainable.

Proof. Recall the definition of τ(Cd) in (9). First, we can express∫
[0,1]d

Cd(u) dCd(u) =
(2d−1 − 1)τ(Cd) + 1

2d .

Further it is easily seen that ∫
[0,1]d

Cd(u) dCd(u) ≥
∫

[0,1]d2

Cd2 (u) dCd2 (u)

for d < d2 and the equality is achieved, for example, if X j for j ∈ {d + 1, . . . , d2} is a conical combination of the
components of X (see also Proposition 5). That is, the maximal value τ(Cd2 ) can take is

1
2d2−1 − 1

2d2

 (2d−1 − 1)τ(Cd) + 1
2d

 − 1

 =
1

2d2−1 − 1

2d2−1
(
τ(Cd) +

1 − τ(Cd)
2d−1

)
− 1


and the minimal value for τ(Cd2 ) follows from (19) and the subsequent discussion.

Note that the upper bound in (20) is strictly increasing in d2, unless τ(Cd) = 1, and converges to τ(Cd) + (1 −
τ(Cd))/2d−1, as d2 tends to infinity. Also we see that unless τ(Cd) attains its minimal possible value −1/(2d−1 − 1),
τ(Cd2 ) can always become positive for d2 large enough.

4.2. Multivariate Spearman’s rho
If a component of a random vector X is duplicated, Spearman’s rho can both increase or decrease and thus property

(P1) does not hold. This follows from Example S3 in Section 6 of the Supplementary Material. Additionally, one can
observe that in case of Spearman’s rho, for example ρ1, it is not possible to express ρ1(Cd+1) using ρ1(Cd). The key
element in ρ1 is the integral ∫

[0,1]d+1
Cd+1(u) du = Pr(U1 < V1, . . .Ud+1 < Vd+1)

with U having a copula Cd+1 and V having a copula Πd+1. If one considers that Cd+1 is the copula of (X>, Xd)>, then∫
[0,1]d+1

Cd+1(u) du = Pr(U1 < V1, . . .Ud < min(Vd,Vd+1)).

There is no way to simplify this expression or to express it in terms of ρ1(Cd). A similar remark holds for ρ2(Cd)
and ρ3(Cd). In other words knowing the value of ρ`(Cd) (for ` ∈ {1, 2, 3}) where Cd is the copula of X does not
determine the value of ρ`(Cd+1) where Cd+1 corresponds to a vector (X>, Xd+1)> with Xd+1 being a duplicate of one of
the components from X. So the finding here is non-conclusive, and in contrast to the conclusive findings for Kendall’s
tau. The above finding is further illustrated with an example.
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Example 2. Let (X1, X2, X3)> have a trivariate Farlie-Gumbel-Morgenstern copula C3 defined in Example 1. Further,
let C4 be the copula of (X1, X2, X3, X3)>. Then∫

[0,1]3
C3(u) du =

27 + 3α + 3β + 3γ + δ

216
,

∫
[0,1]4

C4(u) du =
18 + 3α + 3β + 2γ + δ

216

and thus knowing the values of the dimension, in this case d = 3, and Spearman’s rho ρ1(C3), which is a function
of the left integral above, is not sufficient to know how ρ1(C4) relates to ρ1(C3) (larger or smaller). Different sets of
parameters leading to the same value for ρ1(C3) can give different values of ρ1(C4). Knowing the copula C3 itself is
thus necessary. The same conclusions follow for ρ2, ρ3 using the same copulas C3 and C4.

It thus remains an open question which random variable Xd+1 would lead to the largest (or smallest) possible
ρ`(Cd+1) given X and what the largest (or smallest) possible ρ`(Cd+1) is.

For a general copula Cd, Spearman’s rho ρ`, ` ∈ {1, 2, 3}, is bounded, in particular

2d − (d + 1)!
d!(2d − (d + 1))

≤ ρ`(Cd) ≤ 1

where the lower bound was introduced in [16], and is not the best possible lower bound for d ≥ 3. Note that the lower
bound converges to zero as d tends to infinity.

4.3. Multivariate Gini’s gamma
We now look into property (P1) for Gini’s gamma γ2. Here the situation appears to be quite similar as for Spear-

man’s rho. Indeed, recalling (16) we look into the following integrals separately. Note that∑
ξ∈Rd+1

∫ 1

0
Cd+1(ξ(u, . . . , u)) du =

∑
ξ∈Rd

∫ 1

0
Cd(ξ(u, . . . , u)) du + 2

∑
ξ∈Rd−1

∫ 1

0
Cd(ξ(u, . . . , u),min(u, 1 − u)) du

and similarly∑
ξ∈Rd+1

∫ 1

0
CS

d+1(ξ(u, . . . , u)) du =
∑
ξ∈Rd

∫ 1

0
CS

d (ξ(u, . . . , u)) du + 2
∑
ξ∈Rd−1

∫ 1

0
CS

d (ξ(u, . . . , u),min(u, 1 − u)) du.

We therefore obtain that

γ2(Cd+1) =
1

2d − 1

∑
ξ∈Rd

∫ 1

0
Cd(ξ(u, . . . , u)) du + 2

∑
ξ∈Rd−1

∫ 1

0
Cd(ξ(u, . . . , u),min(u, 1 − u)) du

+
∑
ξ∈Rd

∫ 1

0
CS

d (ξ(u, . . . , u)) du + 2
∑
ξ∈Rd−1

∫ 1

0
CS

d (ξ(u, . . . , u),min(u, 1 − u)) du − 2


which can be also expressed as

γ2(Cd+1) = γ2(Cd)
2d−1 − 1
2d − 1

+ 2

∑
ξ∈Rd−1

∫ 1
0 [Cd(ξ(u, . . . , u),min(u, 1 − u)) + CS

d (ξ(u, . . . , u),min(u, 1 − u))] du

2d − 1
.

From this expression one cannot deduce any general conclusion about whether γ2(Cd+1) is larger or smaller than
γ2(Cd). This is again in contrast with the findings for Kendall’s tau, but in line with the finding for Spearman’s rho.
That a property as in (18) cannot hold for Gini’s gamma is illustrated by the next counterexample.

Example 3. Consider U and V independent random variables with uniform margins. Let C4 be the copula of the
random vector (U,U,U,V)>. Direct calculation, starting from, for example (16), then leads to γ2(C4) = 3

7 = 0.43.
Now let C5 be the copula of the random vector (U,U,U,V,V)>. Then calculations show that γ2(C5) = 6

15 = 0.4. In
this example we thus have γ2(C5) < γ2(C4).
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The multivariate association measure γ2 is bounded, as stated in the following proposition.

Proposition 7. Let Cd be a d-dimensional copula. Then

2(1 − d)
d(2d−1 − 1)

≤ γ2(Cd) ≤ 1. (21)

Proof. Recall the definition of γ2 in (16). Using the Fréchet’s lower bound Wd, we know that∑
ξ∈Rd

∫ 1

0
(Cd(ξ(u, . . . , u)) + CS

d (ξ(u, . . . , u))) du ≥ 2
∑
ξ∈Rd

∫ 1

0
Wd(ξ(u, . . . , u)) du. (22)

Straightforward calculations give

∑
ξ∈Rd

∫ 1

0
Wd(ξ(u, . . . , u)) du =

d∑
j=0

(
d
j

) ∫ 1

0
max( j(1 − u) + (d − j)u − d + 1, 0) du

=

∫ 1

d−1
d

(du − d + 1) du +

∫ 1
d

0
(1 − du) du =

1
d
,

(23)

where we use that Wd is symmetric in its arguments and that function max( j(1 − u) + (d − j)u − d + 1, 0) is different
from zero function on (0, 1) only if j = 0 or j = d. Together with the upper bound given from the axioms (A1) and
(A4), the combination of (22) and (23) gives (21).

Note that the lower bound in (21) is negative for every d ≥ 2 and converges to 0 as d tends to infinity. This bound
is not necessarily the best possible for d ≥ 3, since Wd is then even not a copula.

Suppose again that Cd is the copula of X and Cd+1 is the copula of (X>, Xd+1)>. Similarly as for ρ`, ` ∈ {1, 2, 3},
it is unknown which random variable Xd+1 would lead to the largest (or smallest) possible γ2(Cd+1) given X and what
the largest (or smallest) possible γ2(Cd+1) is. Using the same copulas as in Example 2 it can be shown that knowledge
of γ2(Cd) is not sufficient to determine γ2(Cd+1).

4.4. Multivariate association measures based on the pairwise approach

For pairwise type of association measures, property (P1) also does not hold. To see this consider the following
example. Under the assumptions of Proposition 1 and denoting by C4 the copula of (X, X, X,−X)>, and by C5 be the
copula of (X, X, X,−X,−X)>, it is straightforward to show that

κPW
4 (C4) = 0 >

−1
5

= κPW
5 (C5).

Example S3 in Section 6 of the Supplementary Material contains a situation in which κPW
d (Cd) < κPW

d+1(Cd+1) for every
d = 2, . . . . Hence for a pairwise type of association measure, κPW

d (Cd+1) can be larger or smaller than κPW
d (Cd).

5. Multivariate association measures in increasing dimensions

Of interest is to study how the multivariate association measures evolve when the dimension increases towards
infinity. Studying this in full generality is a difficult task since some structure is needed to be able to quantify and
interpret the effect of the increasing dimension. So far we are able to study (partially) this effect under two settings:
(i) Archimedean copulas; and (ii) meta-elliptical copulas.
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5.1. Archimedean copulas and multivariate association measures in increasing dimensions

5.1.1. Spearman’s rho in increasing dimension
Different ways of calculating the multivariate Spearman’s rhos ρ1 and ρ2 for Archimedean copulas are proposed by
[36] who further studied the asymptotic behaviour when the dimension increases to infinity. An infinite dimensional
Archimedean copula C∞ is defined either as

C∞(u) = lim
d→∞

ψ
[
ψ−1(u1) + · · · + ψ−1(ud)

]
, ∀u ∈ [0, 1]N

or, equivalently, as a measure µ∞(
∏∞

i=1[0, ui]) on an infinite dimensional Hilbert cube [0, 1]N. [36] also showed that

lim
d→∞

ρ1(Cd) = c1 ∈ [0, 1] ⇐⇒ lim
d→∞

(d + 1)
∫

[0,1]d
Cd(u) du = c1,

lim
d→∞

ρ2(Cd) = c2 ∈ [0, 1] ⇐⇒ lim
d→∞

(d + 1)
∫

[0,1]d
Πd(u) dCd(u) = c2.

This result can obviously be extended to ρ3. The existence of the limits is however not discussed and moreover, due to
the difficulties with calculating Spearman’s rho it remains unknown whether strict positive c1 and c2 can be achieved.

5.1.2. Kendall’s tau in increasing dimension
[8] studied a way how to calculate τ for Archimedean copulas using that an Archimedean copula Cd is the survival
copula of a simplex random vector X = RV, where R is a positive random variable, independent of the d-variate
random vector V which is uniformly distributed on the unit simplex ∆d−1 ⊂ Rd, as shown by [14]. It then follows that
if U is distributed as Cd, then Cd(U) has the same distribution as ψ(R) and thus, from (9)

τ(Cd) =
1

2d−1 − 1

{
−1 + E

[
ψ(R)

]}
.

Furthermore, Cd has a density if and only if R does. In the latter case,

E
[
ψ(R)

]
=

(−1)d

(d − 1)!

ψ−1(0)∫
0

rd−1ψ(r)ψ(d)(r) dr.

where ψ(d) denotes the d-th derivative of ψ, which exists almost everywhere. This formula allows to calculate Kendall’s
tau for some specific examples.

Different ways of calculating Kendall’s tau for Archimedean copulas are proposed by [36]. He further showed
that limd→∞ τ(Cd) = 0. In other words, Kendall’s tau cannot capture any association of Archimedean copulas when
dimension tends to infinity or, from another point of view, Archimedean copulas are not able to carry any association
in very high dimensions.

5.1.3. Gini’s gamma in increasing dimension
When talking about Gini’s gamma, we will only focus on γ2 (see (15), (16) or (17)) because of its theoretical properties
discussed in Section 3. We can express γ2 for Archimedean copulas using their generator. Let {Cd} be a sequence
of d-dimensional Archimedean copulas with (the same) generator ψ. Then using formula (17), Definition S1 and the
inclusion-exclusion principle we get the following result

Lemma 1. The multivariate Gini’s gamma γ2 for Archimedean copula Cd with generator ψ can be rewritten as

γ2(Cd) =
1

2d−1 − 1

 d∑
j=0

(
d
j

) ∫ 1

0

[
J1 j(u) + J2 j(u)

]
du − 2


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where

J1 j(u) = ψ( jψ−1(u) + (d − j)ψ−1(1 − u)),

J2 j(u) = 1 +

d∑
k=1

(−1)k
min( j,k)∑

`=max(0, j+k−d)

(
j
`

)(
d − j
k − `

)
ψ(`ψ−1(u) + (k − `)ψ−1(1 − u)).

Proof. First realize that since Archimedean copulas are exchangeable (invariant with respect to the order of its argu-
ments), we can write

∑
ξ∈Rd

∫ 1

0
(Cd(ξ(u, . . . , u)) + Cd(ξ(u, . . . , u))) du =

d∑
j=0

(
d
j

) ∫ 1

0
[Cd(u, . . . , u︸  ︷︷  ︸

j

, 1 − u, . . . , 1 − u︸             ︷︷             ︸
d− j

)

+ Cd(u, . . . , u︸  ︷︷  ︸
j

, 1 − u, . . . , 1 − u︸             ︷︷             ︸
d− j

)] du.

We thus do not need to sum over all the reflections from Rd, but it suffices to group them by the number of arguments
j that are not reflected. We next treat the copula and the survival copula parts separately. By the definition of
Archimedean copulas

Cd(u, . . . , u︸  ︷︷  ︸
j

, 1 − u, . . . , 1 − u︸             ︷︷             ︸
d− j

) = ψ( jψ−1(u) + (d − j)ψ−1(1 − u)).

For the survival function part, the calculation is a bit more complex. When using the inclusion-exclusion principle, we
in fact need to go through all possible subsets of the arguments. However, using again that Archimedean copulas are
exchangeable, we only need to know how many times the argument is u and how many times the argument is 1 − u.
Thus for fixed j ∈ {0, . . . , d}

Cd(u, . . . , u︸  ︷︷  ︸
j

, 1 − u, . . . , 1 − u︸             ︷︷             ︸
d− j

) = 1 +

d∑
k=1

(−1)k
min( j,k)∑

`=max(0, j+k−d)

(
j
`

)(
d − j
k − `

)
ψ(`ψ−1(u) + (k − `)ψ−1(1 − u))

where the summation over k goes through all the dimensions when using the inclusion-exclusion principle as in (1).
Then ` denotes the amount of times u is selected to the arguments subset of size k. The limits for ` can be seen as
following

• ` cannot be greater than the subset size, i.e. ` ≤ k

• u cannot be used more than j times, i.e. ` ≤ j

• ` must be at least 0, i.e. ` ≥ 0

• if u is selected ` times, the remaining k − ` arguments will be filled with 1 − u. Thus, we also need to ‘have’ a
sufficient amount of 1 − u arguments available. i.e. k − ` ≤ d − j and thus ` ≥ j + k − d.

For ` fixed, we only need to select ` times u from all j of them and then k − ` times 1− u from all d − j of them which
explains the binomial coefficients. No matter what j is, Vandermonde’s identity [see e.g. 22, (3) on p. 8] gives us that
the total number of summands is

1 +

d∑
k=1

min( j,k)∑
`=max(0, j+k−d)

(
j
`

)(
d − j
k − `

)
= 2d

which is exactly the number of all subsets of arguments of Cd.

The limiting behaviour of γ2 is established in the following proposition.
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Proposition 8. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ. Then

lim
d→∞

γ2(Cd) = 0.

Proof. Using (16) we rewrite

γ2(Cd) =
2d

2d−1 − 1

 1
2d

∑
ξ∈Rd

∫ 1

0
(Cd(ξ(u, . . . , u)) + CS

d (ξ(u, . . . , u))) du − 21−d

 ,
and first focus on the term

1
2d

∑
ξ∈Rd

∫ 1

0
Cd(ξ(u, . . . , u)) du.

We choose an arbitrary element ξ from Rd. Since a copula is a distribution function and thus non-decreasing in its
arguments, we can write

Cd(ξ(u, . . . , u)) ≤ Cd(max(u, 1 − u), . . . ,max(u, 1 − u)) = ψ(d · ψ−1(max(u, 1 − u))), (24)

no matter what ξ ∈ Rd is. For simplification, denote uM = max(u, 1 − u). Since we also know that ψ−1(t) = 0 if and
only if t = 1, then

lim
d→∞

ψ(d · ψ−1(uM)) =

1, if u = 0 or u = 1,
0 otherwise.

(25)

By the Lebesgue dominated convergence theorem and using (24) and (25), we get

lim
d→∞

1
2d

∑
ξ∈Rd

∫ 1

0
Cd(ξ(u, . . . , u)) du ≤ lim

d→∞

1
2d |Rd |

∫ 1

0
ψ(d · ψ−1(uM)) du =

∫ 1

0
lim
d→∞

ψ(d · ψ−1(uM)) du = 0.

Now we focus on calculating

1
2d

∑
ξ∈Rd

∫ 1

0
CS

d (ξ(u, . . . , u)) du.

Choose again an arbitrary element ξ from Rd and write

CS
d (ξ(u, . . . , u)) ≤ CS

d (max(u, 1 − u), . . . ,max(u, 1 − u)) = Cd(1 −max(u, 1 − u), . . . , 1 −max(u, 1 − u))

= Cd(min(u, 1 − u), . . . ,min(u, 1 − u))

no matter what ξ ∈ Rd is. Now using Lemma S1 and mimicking the proof of Proposition S2 leads to

lim
d→∞

1
2d

∑
ξ∈Rd

∫ 1

0
CS

d (ξ(u, . . . , u)) du ≤ lim
d→∞

1
2d |Rd |

∫ 1

0
Cd(um, . . . , um) du =

∫ 1

0
lim
d→∞

Cd(um, . . . , um) du,= 0,

where we denoted um = min(u, 1 − u). This completes the proof.
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5.2. Meta-elliptical copulas and multivariate association measures in increasing dimensions
Meta-elliptical copulas are copulas with elliptical contours. See for example [1, 6]. For meta-elliptical copulas

some partial results on the behaviour of Kendall’s tau and Spearman’s rho for increasing dimension can be obtained.
For Kendall’s tau τ for meta-elliptical copulas was studied by Genest et al. [8, Section 2.1]. They show that all
meta-elliptical copulas that have the same correlation matrix also share the same Kendall’s tau value. In other words,
Kendalls’tau only depends on the correlation matrix. Let Cd be the copula of U = (U1, . . .Ud)>, with Cd a meta-
elliptical copula with correlation matrix R = (%i, j), with %i, j ∈ [−1, 1]. Then it was shown in [8] that

τ(Cd) =
1

2d−1 − 1
{−1 + 2d Pr(Z ≥ 0)} (26)

where Z is d-variate normal distributed random vector with zero mean and correlation matrix R = (%i, j).
We next study what happens with (26) when d increases to infinity. This requires that we can evaluate the orthant

probability Pr(Z ≥ 0). It is impossible to say something in general about this probability, i.e. for a meta-elliptical
copula with a general correlation structure R. However, results can be established for some specific correlation
structures. A first structure is when the correlation matrix R takes the form

%i, j = λiλ j, i , j, λ j ∈ [−1, 1]. (27)

Note that this correlation structure covers, among others, an equicorrelated correlation matrix for which %i, j = %
for all i , j, with % ∈

(
−1/(d − 1), 1

)
. A second structure is when the correlation matrix is of a banded type and

(m + 2)-diagonal (with m ∈ Z>0), and takes the form

%i, j =


1, if i = j
ci, j if |i − j| ∈ {1, · · · ,m}
0, if |i − j| > m,

(28)

where ci, j = c j,i ∈ [−1, 1] are constants, not all zero, and such that R is a correlation matrix. For m = 1 for
example, one obtain a so-called tridiagonal matrix, with only non-zero values on the main diagonal and the two
adjacent diagonals, i.e. the diagonals just above and below the main diagonal. Proposition 9 establishes that under
both particular correlation structures, Kendall’s tau tends to zero when d increases to infinity.

Proposition 9. Let {Cd} be a sequence of d-dimensional meta-elliptical copulas with a correlation matrix R = (%i, j)

(i) as in (27) where the λ j satisfy the assumption that there exists λ0 < 1 such that λ j ≤ λ0 for all j ∈ Z>0;

or

(ii) as in (28).

In both cases, it holds that limd→∞ τ(Cd) = 0.

Proof. Under each of the correlation structures we evaluate the orthant probability Pr(Z ≥ 0) in (26). Note first of all
that for a centered Gaussian random vector Z, Pr(Z ≥ 0) = Pr(Z ≤ 0).

(i) Under a correlation structure (27) the probability Pr(Z ≤ 0) equals

Pr(Z ≤ 0) =

∫ ∞

−∞

ϕ(t)
d∏

j=1

Φ

 −λ jt√
1 − λ2

j

 dt, (29)

where ϕ and Φ are respectively the density and cumulative distribution function of the univariate standard
normal distribution. This follows from Dunnet and Sobel [5, Expression (5), page 259] or Gupta [10, Expression
(34), page 800]. If the parameters λ j are such that λ j ≤ λ0 < 1 for all j ∈ Z>0, then

Φ
(
−λ jt√
1−λ2

j

)
≤ Φ

(
|t|√
1−λ2

0

)
, ∀t ∈ R, ∀ j ∈ Z>0,
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and hence 0 ≤ Pr(Z ≤ 0) ≤
∫ ∞

−∞

ϕ(t)
(
Φ
(

|t|√
1−λ2

0

))d

dt.

An application of the Lebesgue dominated convergence theorem gives that the right-hand side converges to zero
as d → ∞. From (26) the statement of the proposition holds.

(ii) Assume correlation structure (28). Then the random variables Z j, j = k(m + 1) − m, k ∈
{
1, . . . ,

⌊
d

m+1

⌋}
, are

independent standard normal variables and thus

0 ≤ Pr(Z ≤ 0) ≤ Pr
Zk(m+1)−m ≤ 0; 1 ≤ k ≤

⌊
d

m + 1

⌋ ≤ (
1
2

)⌊ d
m+1

⌋
,

and the right-hand side tends to zero for d tending to infinity. Using (26) finishes the proof.

For meta-elliptical copulas it does not seem to be possible to derive analytical expressions for Spearman’s rho and
Gini’s gamma for general dimension d. This is even so for the simplest case of an equicorrelation matrix R. From
Monte-Carlo approximations provided in Schmid and Schmidt [24, p. 5, 7] one might conjecture that Spearman’s rho
decreases when d increases in the case of an equicorrelation matrix R. However, a formal proof for such a result is
lacking. Also for Gini’s gamma no results for meta-elliptical copulas for increasing dimension d can be given yet.

6. Illustrative example: a four-dimensional Gaussian copula

Let X be a 4-variate random vector with Gaussian copula C4,Σ depending on the correlation matrix Σ. We illustrate
the impact of the (structure of the) correlation matrix Σ on multivariate association measures, by considering several
correlation structures:

• AR structure: the correlation values decrease with the distance to the main diagonal;

• Clusters structure: the values of the correlation matrix are following two clusters of two variables each;

• Renegade structure: one variable is negatively correlated with the other three variables, which are strongly
correlated with each other.

The elements of the correlation matrices were selected such that the sum of the six elements above (or equivalently
below) the diagonal is the same (equals 2.2) in each structure, with the average of all pairwise Pearson’s correlation
coefficients equal to 0.37. The specific correlation matrices are:

ΣAR =


1.0 0.5 0.3 0.1
0.5 1.0 0.5 0.3
0.3 0.5 1.0 0.5
0.1 0.3 0.5 1.0

 , ΣCl =


1.0 0.8 0.1 0.0
0.8 1.0 0.2 0.3
0.1 0.2 1.0 0.8
0.0 0.3 0.8 1.0

 , ΣRe =


1.0 −0.2 −0.1 −0.2
−0.2 1.0 0.9 0.9
−0.1 0.9 1.0 0.9
−0.2 0.9 0.9 1.0

 .
To calculate the various copula-based multivariate association measures, we use numerical approximation of the

involved integrals, using the R package cubature. For the pairwise measures, closed form expressions using the
elements of the correlation matrix are known, see e.g. [15]. Table 1 summarizes the results of these calculations
for the different correlation structures. Recall first, from Sections 5.2 and S2, that Kendall’s tau τ and Blomqvist
beta β are equal for the Gaussian copula. Furthermore, in case of a copula C that is radially symmetric, which is
the case for a Gaussian copula C = C4,Σ, Spearman’s rho association measures ρ1(C) and ρ2(C) coincide, and hence
ρ1(C) = ρ2(C) = ρ3(C). From Table 1 one can see that for the clusters structure, the copula-based and pairwise
association measures convey the same messages. There is a slightly bigger difference between the copula-based
and pairwise association measures for the AR structure. The difference is most prevalent for the renegade structure,
since the dependence lies mainly in the pairs. Furthermore, the renegade structure shows the lowest copula-based
Spearman’s rho of the three groups but the largest pairwise Spearman’s rho. This indicates the importance of both
approaches to obtain a more detailed picture of all dependencies.

In Example S5 in Section S3 we provide some additional material in the context of this example.
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Table 1: Multivariate association measures for Gaussian copula with various correlation structure.

ρ1=ρ2=ρ3 τ = β γ2 ρPW τPW = βPW γPW

AR 0.34 0.22 0.25 0.35 0.24 0.28
Clusters 0.36 0.28 0.29 0.36 0.26 0.29

Renegade 0.32 0.25 0.26 0.37 0.30 0.32

7. Estimation of multivariate association measures

7.1. Estimation of multivariate association measures

This section studies nonparametric estimation of the multivariate association measures discussed in Section 3.
Let X1, . . . , Xn be a random sample of d-dimensional random vectors with copula Cd where Xi = (X1,i, . . . Xd,i)> for
i ∈ {1, . . . n}. Throughout this section, the dimension d of a copula Cd is arbitrary but fixed and thus for simplicity of
notation we omit the subscript d in Cd. The empirical marginal distribution function for the j-th component is defined
as

F̂ j,n(x) =
1

n + 1

n∑
i=1

1(X j,i ≤ x), (30)

the pseudo-observations Û j,i = F̂ j,n(X j,i), and the empirical copula

Ĉn(u) =
1
n

n∑
i=1

1(Û1,i ≤ u1, . . . , Ûd,i ≤ ud). (31)

Similarly, we define the empirical survival copula and the empirical survival function as, respectively,

ĈS
n (u) =

1
n

n∑
i=1

1(1 − Û1,i ≤ u1, . . . , 1 − Ûd,i ≤ ud), Ĉn(u) =
1
n

n∑
i=1

1(Û1,i > u1, . . . , Ûd,i > ud),

A fully nonparametric estimator of an association measure κ(C) is then mostly constructed as κ̂n = κ(Ĉn).
Denote by `∞([0, 1]d) the space of bounded functions from [0, 1]d to R equipped with the topology of uniform

convergence. The following proposition combines results of [25, 28, 32], and also states the results in terms of i.i.d.
representations.

Proposition 10 (Empirical copula process convergence). Let ∂C
∂u j

be continuous in points {u ∈ [0, 1]d; 0 < u j < 1} for
j ∈ {1, . . . , d}. Then uniformly in u ∈ [0, 1]d

Cn(u) =
√

n
(
Ĉn(u) −C(u)

)
=

1
√

n

n∑
i=1

Zi(u) + oP(1), Cn(u) =
√

n
(
Ĉn(u) −C(u)

)
=

1
√

n

n∑
i=1

Zi(u) + oP(1),

where

Zi(u) = 1(Ui ≤ u)−C(u)−
d∑

j=1

∂C(u)
∂u j

[
1(U j,i ≤ u j)− u j

]
, Zi(u) = 1(Ui > u)−C(u)−

d∑
j=1

∂C(u)
∂u j

[
1(U j,i ≤ u j)− u j

]
.

From this one can further conclude that the processes Cn and Cn jointly converge in the weak sense to a centered
Gaussian processes GC(u) and GC(u), respectively, in `∞([0, 1]d) as n→ ∞. Moreover,

GC(u) = BC(u) −
d∑

j=1

∂C(u)
∂u j

BC(u( j)), GC(u) = BC(u) −
d∑

j=1

∂C(u)
∂u j

BC(u( j)),
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where u( j) is a vector with all components except of the j-th replaced by 1. Further, BC and BC are Brownian bridges
with covariance functions

E (BC(u)BC(v)) = C(u ∧ v) −C(u)C(v), E (BC(u)BC(v)) = C(u ∨ v) −C(u)C(v),

where minimum ∧ and maximum ∨ are understood component-wise.

Estimation of Spearman’s rho
The following estimators for Spearman’s rho were proposed by [25] as

ρ̂∗1n = hρ(d)

2d
∫

[0,1]d

Ĉn(u) du − 1

 = hρ(d)

2d

n

n∑
i=1

d∏
j=1

(1 − Û j,i) − 1

 ,

ρ̂∗2n = hρ(d)

2d
∫

[0,1]d

Π(u) dĈn(u) − 1

 = hρ(d)

2d

n

n∑
i=1

d∏
j=1

Û j,i − 1


ρ̂∗3n =

ρ̂∗1n + ρ̂∗2n

2
.

Note that [25] originally used division by n instead of n+1 in (30). However, as pointed out by [19], estimators ρ̂∗`n for
` ∈ {1, 2, 3} can take values out of the parameter space, for example, they can be greater than 1. [19] further suggest
to define ρ̂`n as the ratio ρ̂`n = ρ̂∗`n/md,n where md,n is the maximal possible value ρ̂∗`n can take. That is

md,n = hρ(d)

 2d

n(n + 1)d

n∑
j=1

jd − 1


which is achieved by evaluating ρ̂∗`n for a sample from the comonotonicity copula M, that is if Û1,i = · · · = Ûd,i for
every i ∈ {1, . . . , n} almost surely. Moreover, since md,n converges to 1 as n → ∞, the asymptotic theory is valid also
for ρ̂`n.

[25] state that under the assumptions and notation of Proposition 10, as n→ ∞,

√
n(̂ρ∗`n − ρ`(C))

D
−→ N(0, σ2

` ), for ` ∈ {1, 2},

where the asymptotic variances are given as

σ2
1 = 22dh2

ρ(d)
∫

[0,1]d

∫
[0,1]d

E {GC(u)GC(v)} du dv, σ2
2 = 22dh2

ρ(d)
∫

[0,1]d

∫
[0,1]d

E {GC(u)GC(v)} du dv. (32)

[25] further remark that asymptotic normality of ρ̂3n can be established in a similar way using joint convergence of
processes Cn(u) and Cn(u).

Estimation of Kendall’s tau
The estimator of τ is proposed by [8] as

τ̂n =
1

2d−1 − 1

 2d

n(n − 1)

∑
i, j

1

(
Xi ≤ X j

) − 1

 , (33)

since
∫

[0,1]d C(u) dC(u) = Pr(X ≤ Y), where X and Y are iid d-variate random vectors with copula C. [8] establish that

√
n(̂τn − τ(C))

D
−→ N(0, σ2

τ),
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as n→ ∞, where

σ2
τ =

 2d

2d−1 − 1

2

var(C(U) + C(U)). (34)

Note that for a sample from the comonotonicity copula, τ̂n = 1 since in that case Xi < X j or Xi > X j for every pair
(i, j) such that i , j and thus exactly one half of the n(n − 1) indicators in (33) is equal to 1.

Estimation of Gini’s gamma
[31] proposed the population version γ2 in (15), but did not discuss its estimation. A natural nonparametric estimator
of γ2(C) is γ̂∗2n = γ2(Ĉn). Recall that S ξ is the subset of indices {1, . . . , d} indicating which components were re-
flected ξ. As the pseudo-observations Û j,i take values between zero and one, then with a slight abuse of notations by
max j∈S ξ

(Û j,i) (respectively min j∈S ξ
(Û j,i)) we will understand 0 (respectively 1) if S ξ is an empty set.

Lemma 2. The nonparametric estimator γ̂∗2n of γ2(C) can be expressed as

γ̂∗2n =
1

2d−1 − 1

∑
ξ∈Rd

(I1(Ĉn, ξ) + I2(Ĉn, ξ)) − 2


where

I1(Ĉn, ξ) =
1
n

n∑
i=1

(1 −max
j∈S ξ

(Û j,i) −max
k<S ξ

(Ûk,i))+, I2(Ĉn, ξ) =
1
n

n∑
i=1

(min
j∈S ξ

(Û j,i) + min
k<S ξ

(Ûk,i) − 1)+.

Proof. Using (16), we can write

γ̂∗2n = γ2(Ĉn) =
1

2d−1 − 1

∑
ξ∈Rd

∫ 1

0
(Ĉn(ξ(u, . . . , u)) + ĈS

n (ξ(u, . . . , u))) du − 2

 .
First, we fix ξ ∈ Rd and treat the summands in the above integral separately. Then by plugging in the empirical copula
(31) and using the convention that a product over an empty index set is equal to 1, we get∫ 1

0
Ĉn(ξ(u, . . . , u)) du =

1
n

n∑
i=1

∫ 1

0

∏
j∈S ξ

1(Û j,i ≤ 1 − u)
∏
k<S ξ

1(Ûk,i ≤ u) du

=
1
n

n∑
i=1

∫ 1

0
1(max

k<S ξ

(Ûk,i) ≤ u ≤ min
j∈S ξ

(1 − Û j,i)) du

=
1
n

n∑
i=1

∫ 1

0
1(max

k<S ξ

(Ûk,i) ≤ u ≤ 1 −max
j∈S ξ

(Û j,i)) du = I1(Ĉn, ξ).

Similarly ∫ 1

0
ĈS

n (ξ(u, . . . , u)) du =
1
n

n∑
i=1

∫ 1

0

∏
j∈S ξ

1(1 − Û j,i ≤ 1 − u)
∏
k<S ξ

1(1 − Ûk,i ≤ u) du

=
1
n

n∑
i=1

∫ 1

0
1(1 −min

k<S ξ

(Ûk,i) ≤ u ≤ min
j∈S ξ

(Û j,i)) du = I2(Ĉn, ξ),

which completes the proof.

In this case, similarly as for estimators of Spearman’s rho, room for improvement is to be seen through the
following example.
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Example 4 (γ2 estimator for maximal dependence). Let X1, . . . , Xn be a random sample of d-dimensional random
vectors from the d-variate comonotonicity copula M. Then Û1,i = · · · = Ûd,i for every i ∈ {1, . . . , n} almost surely.
Then

I1(M̂n, ξ) =

 1
n
∑n

i=1(1 − Û1,i)+ = 1
n
∑n

i=1(1 − Û1,i) if S ξ = ∅ or S ξ = {1, . . . , d},
1
n
∑n

i=1(1 − 2Û1,i)+ otherwise

and similarly

I2(M̂n, ξ) =

 1
n
∑n

i=1(Û1,i)+ = 1
n
∑n

i=1 Û1,i if S ξ = ∅ or S ξ = {1, . . . , d},
1
n
∑n

i=1(2Û1,i − 1)+ otherwise.

By adding these terms together, we get

I1(M̂n, ξ) + I2(M̂n, ξ) =

1 if S ξ = ∅ or S ξ = {1, . . . , d},
1
n
∑n

i=1|1 − 2Û1,i| otherwise.

Recall that in total we have 2d reflections in Rd and thus

γ̂∗2n =
1

2d−1 − 1

2 · 1 + (2d − 2)
1
n

n∑
i=1

|1 − 2Û1,i| − 2

 =
2
n

n∑
i=1

|1 − 2Û1,1|.

Without loss of generality, assume that Û1,i = · · · = Ûd,i = i
n+1 for every i ∈ {1, . . . , n}. Then

γ̂∗2n =
2
n

n∑
i=1

∣∣∣∣∣∣1 − 2i
n + 1

∣∣∣∣∣∣ =

 n
n+1 if n even,
n−1

n if n odd.

The previous example shows that the range of values for γ̂∗2n is not wide enough and one could consider an
alternative and asymptotically equivalent estimator

γ̂2n =

 n+1
n γ̂∗2n if n even,
n

n−1 γ̂
∗
2n if n odd.

Asymptotic normality of γ̂2n is established in Proposition 11.

Proposition 11. Suppose that the assumptions of Proposition 10 are satisfied. Then

√
n
(̂
γ2n − γ2(C)

) D
−→ N

(
0, σ2

γ2

)
,

as n→ ∞, where

σ2
γ2

=
1

(2d−1 − 1)2

∑
ξ∈Rd

∑
ξ′∈Rd

∫ 1

0

∫ 1

0
E
{[
GC(ξ(u, . . . , u)) + GC(ξ(1 − u, . . . , 1 − u))

]
[
GC(ξ′(v, . . . , v)) + GC(ξ′(1 − v, . . . , 1 − v))

]}
du dv.

Proof. This proof is analogous to the proof of Theorem 3 for ρ̂1n in [25]. Rewrite

√
n
(̂
γ∗2n − γ2

)
=

1
2d−1 − 1

∑
ξ∈Rd

∫ 1

0
Cn(ξ(u, . . . , u)) + Cn(ξ(1 − u, . . . , 1 − u)) du.
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Note that the mapping on the set of bounded functions `∞([0, 1]d) given by

α 7→
1

2d−1 − 1

∑
ξ∈Rd

∫ 1

0
α(ξ(u, . . . , u)) + α(ξ(1 − u, . . . , 1 − u)) du

is continuous. Thus by the continuous mapping theorem [see e.g. Theorem 1.3.6 in 34] and the joint convergence of
the processes Cn and Cn given in Proposition 8 the quantity

√
n
(̂
γ∗2n − γ2(C)

)
converges in distribution to the random

variable

Z =
1

2d−1 − 1

∑
ξ∈Rd

∫ 1

0
GC(ξ(u, . . . , u)) + GC(ξ(1 − u, . . . , 1 − u)) du.

Now the normality of Z follows from the fact that GC and GC are Gaussian processes. Finally with the help of Fubini’s
theorem one can calculate the mean and variance of Z. The result for γ̂2n follows immediately.

7.2. Standard errors of the estimators

In real data settings we not only want the estimate the association measures but also are interested in the accuracy
of this estimation. One way to measure accuracy is by providing standard errors for the estimations.

A first approach to get approximate standard errors is by using standard nonparametric bootstrap procedures. See
for example [25] or [26] for such an approach. An alternative to resampling methods is to rely on the asymptotic nor-
mality results for the estimators in Section 7.1, and to work towards an estimator for the square root of the asymptotic
variance. In doing so one could rely on Proposition 10, which allows to obtain asymptotic representations of estima-
tors of multivariate association measures. One then focuses on finding the standard errors of the main terms in these
approximations. Finally one replaces the unknown Ui and ∂C(u)

∂u j
with appropriate estimates. We discuss here for the

estimator of Kendall’s tau the approach of using the asymptotic distributional result. For similar results for estimators
of other multivariate association measures, we refer the reader to Section S4 in the Supplementary Material.

Recall the asymptotic variance of the estimator of Kendall’s tau in (34). The variance var(C(U) + C(U)) can be
estimated, using ideas from U-statistics, by the sample variance of W1, . . . ,Wn, i.e.

σ̂2
n =

1
n − 1

n∑
i=1

(Wi −Wn)2, where Wn =
1
n

n∑
i=1

Wi, (35)

with

Wi =
1

n − 1

n∑
j=1, j,i

1(X j ≤ Xi) +
1

n − 1

n∑
j=1, j,i

1(X j ≥ Xi).

Consequently, the standard error of τ̂n is estimated by 2d

2d−1−1
σ̂n√

n .

8. Real data application

We now shortly demonstrate the use of the studied association measures in a real data example. The data discussed
in this section are publicly available data on so called Environmental Quality Index (EQI) and can be downloaded
from the website of United States Environmental Protection Agency https://edg.epa.gov/data/Public/ORD/

NHEERL/EQI. EQI is being produced based on variables from five domains – air, water, land, built and sociodemo-
graphic. The dataset consists of 3141 observations, representing different locations across the United States, and 219
variables. For further information about the variables and a discussion about the data sources, we refer to [13].

For purpose of this real data application, we chose four groups of variables, three using variables from the same
domain (air, water and land) and one combining variables from these three domains. Levels of chemical substances
measured in the domains were considered. Since we assume that all the variables are continuous, we restricted to
variables with a high percentage of unique values in the dataset. In the air domain, all variables considered have no
ties in their observations. In the water and land domains, all variables included in our analysis have more than 90%
unique values among the observations. The considered variables are listed in Table 2. To gain some insight in the data
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we provide in Figure S3 a heatmap of the empirical pairwise Spearman’s rho values. A first observation is that all
nine variables in the air domain are positively associated. This is also mostly the case, for three of the four variables,
in the land domain. In this domain herbicides are less associated with the metal elements. The nine variables in the
water domain are either positively or negatively related with the other variables in that domain. Note also that none
of the 22 variables have a negative (nor positive) association with all other 21 variables. For some of the variables,
one can notice that there is an association between the variable and all variables from another domain. Examples here
are the variables Nitrate, Sodium and Mercury of the water domain that all seem to be negatively associated with all
variables of the air domain.

Table 2: List of selected variables. Units do not affect the analysis and are thus omitted.

Domain Dimension Variables

Air 9 Acrolein, Acrylonitrile, Carbon disulfide, Chlorobenzene, Gly-
col ethers, Methanol, Methyl isobutyl ketone, Polycyclic organic
matter/polycyclic aromatic hydrocarbons, Selenium compounds

Water 9 Ammonium, Calcium, Chloride, Magnesium, Nitrate, Potas-
sium, Sodium, Sulfate (all in precipitation), Mercury (deposited)

Land 4 Lead, Zinc, Copper, Herbicides
Combined 22 All the above variables

The following estimators of multivariate association measure are considered for the EQI dataset: ρ̂PW
n , τ̂PW

n , β̂PW
n ,

γ̂PW
n , ρ̂3n, τ̂n, β̂n and γ̂2n. For the estimator β̂n of Blomqvist’s beta we refer the reader to Section S2 of the Supple-

mentary Material. All the calculations for the estimators were done in the statistical software R [20]. For each of
the estimated association measures we also calculate the estimated standard errors, using a standard nonparametric
bootstrap procedure. We also calculated the standard errors using the estimators discussed in Sections 7.2 and S4,
which were very similar (and hence are not included in the table).

Table 3: Estimated multivariate association measures for the EQI dataset and their corresponding bootstrap standard errors between brackets.

Domain d ρ̂PW
n τ̂PW

n β̂PW
n γ̂PW

n ρ̂3n τ̂n β̂n γ̂2n

Air 9 0.60 (0.007) 0.44 (0.006) 0.44 (0.008) 0.49 (0.006) 0.44 (0.008) 0.29 (0.007) 0.29 (0.008) 0.29 (0.006)
Water 9 0.05 (0.005) 0.04 (0.004) −0.01 (0.003) 0.03 (0.004) 0.04 (0.004) 0.03 (0.002) 0.01 (0.002) 0.02 (0.002)
Land 4 0.33 (0.011) 0.24 (0.008) 0.23 (0.010) 0.27 (0.009) 0.30 (0.011) 0.21 (0.008) 0.20 (0.011) 0.23 (0.009)
Combined 22 0.11 (0.003) 0.09 (0.002) 0.08 (0.003) 0.09 (0.002) 0.00 (0.000) 0.00 (0.000) −0.00 (0.000) 0.00 (0.000)

AirPlus 12 0.50 (0.007) 0.36 (0.005) 0.36 (0.007) 0.40 (0.006) 0.23 (0.008) 0.15 (0.005) 0.15 (0.007) 0.14 (0.006)
WaterClus5 5 0.45 (0.008) 0.33 (0.006) 0.34 (0.010) 0.37 (0.007) 0.41 (0.007) 0.30 (0.006) 0.30 (0.009) 0.31 (0.007)
WaterClus6 6 0.30 (0.007) 0.22 (0.005) 0.21 (0.009) 0.24 (0.006) 0.22 (0.006) 0.15 (0.005) 0.12 (0.008) 0.15 (0.006)

Table 3 presents the estimated multivariate association measures, with within brackets the estimated standard
errors. We first look into the domains listed in Table 2. See the first block of rows in Table 3. For variables in the
air domain, one can see moderately strong association among the variables, covered by both types of the association
measure (pairwise-based and copula-based). Pairwise-based association measures, however, show that the strongest
association lies in the pairwise structure of these variables and higher-order association is lower. The variables in the
water domain, that is the concentration of the considered chemical substances in water, on the other hand, possess,
very low levels of association, measured by all 8 multivariate association measures. In addition, the value of β̂PW

n
for this domain is even negative, unlike all the remaining association measures. The variables in the land domain,
similarly to the air domain, are moderately associated, with the estimated association measures ranging from 0.20
to 0.33. Nevertheless, in this case pairwise-based and copula-based association measures are very alike, suggesting
that the higher-order association is of a similar level as the pairwise associations. Finally, the estimated association
measures for the set of variables from various domains are low, showing that these pollutants from 3 domains are
almost not associated. Also note that for the considered domains, Spearman’s rho is the largest among the association
measures within each of the two approaches.
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So far we focused on estimated bivariate association measures (in Figure S3) and estimated multivariate associ-
ation measures for a whole set of variables in one domain, or in the combined set of variables of all domains. To
gain further insights of the associations in the data, one can investigate various subsets of the variables. The selection
of such subsets might come either from background knowledge on the topic of the study, the pairwise correlation
structure or might emerge from an automatized procedure looking for such subsets. The latter is studied in [7] in the
context of cluster analysis.

In this application we looked at the following clusters of variables. A first cluster consists of five variables within
the water domain, namely Nitrate, Ammonium, Magnesium, Potassium and Calcium, and is referred to as WaterClus5.
A second cluster, the WaterClus6 group, is this group extended with the variable Sulfate. A third cluster, AirPlus,
consists of all variables of the air domain together with the variables, Sulfate, Mercury and Chloride from the water
domain. See Section S5 in the Supplementary Material for some motivation for looking into these clusters. Estimated
multivariate association measures for these three subgroups are presented in the last three rows of Table 3. Note that
the addition of the variable Sulfate to WaterClus5 results in a considerable drop in the estimated association measure.
From this one could decide for further analysis to focus on the cluster WaterClus5 instead of on the cluster WaterClus6.
Furthermore, it is noted that the estimated multivariate association measures for the WaterClus5 cluster are very close
to these for the set of all nine air variables. The overall association in the cluster AirPlus is very comparable to that of
the cluster WaterClus6.

Another aspect of estimating multivariate association measures is the computational cost. In general, estimation of
the copula-based β is the fastest one, followed by estimation of ρ3. Both these estimators are also not largely affected
by the dimension of the data. The estimators of the pairwise-based association measures are also fast to compute. On
the other hand, estimation time of γ2 dramatically increases with dimension, corresponding to the need of calculating
all the 2d reflections of the data. Also calculation of τ̂n is rather computationally intensive for large sample sizes since
it is based on pairwise comparison of the observations, see (33).

9. Multivariate association measures: overview and recommendation

From all investigations, it is clear that a complete comparison of the different association measures is complex
since there are various aspects to be considered and taken into account. These include: (i) the interpretation that can
be given to the measures; (ii) the level of complexity of the dependence structure that the measure can potentially
capture; (iii) do the measures satisfy axioms (A1) – (A8)?; (iv) do the measures increase (or stay the same) when a
duplicated component or, more generally, a conical combination of all components is added?; (v) do we know the
behaviour when a number of arbitrary components is added?; (vi) how much do we know about the behaviour when
the number of components tends to infinity?; (vii) how easy to calculate is the measure for a given copula Cd?; (viii)
what about the computational cost to calculate the empirical versions of the association measures?

On some of these aspects certain association measures score well, whereas they score to a lesser extend on other
aspects. In Table S2 we recall in the first row where to find the definition of the association measure, and indicate in
the subsequent rows whether an association measure performs well (+), neutral (+/−) or not so good (−) with respect
to the mentioned aspects. Some caution is needed when consulting such a table: (1) it only summarizes our findings;
(2) indications are rough and might be subjective.

In terms of analytical calculation, it is easiest to calculate Blomqvist’s beta since it can be calculated for any copula.
For all other measures, the ability to calculate a measure analytically depends on the fact whether the corresponding
integral containing the copula can be calculated. For ρ`, ` ∈ {1, 2, 3}, a d-dimensional integral is to be calculated.
This might be difficult already in dimension d = 2 and not all well-known copulas have an analytical expression
of Spearman’s rho in such case. For Kendall’s tau, a d-dimensional integral also needs to be calculated, yet can be
simplified for some copulas For Gini’s gamma γ2 measure, one needs to calculate 2d, fortunately one-dimensional,
integrals.

In terms of interpretability, property (P1) and knowledge about behaviour in increasing dimension Kendall’s tau
and Blomqvist’s beta perform better, whereas for these aspects Spearman’s rho and Gini’s gamma score less well. It is
to be noted though that Blomqvist’s beta might be a too simple association measure. In terms of computational cost,
and keeping in mind axioms (A1) − (A8), Spearman’s rho association measure ρ3 and Blomqvist’s beta are preferable
above Kendall’s tau and Gini’s gamma γ2.
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In multivariate data analysis, it is recommendable to start with a summary of bivariate association measures
followed by calculation of multivariate association measures, possibly in various dimensions. This practical approach
allows to gain insights in the overall dependencies in the data.
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[19] A. Pérez, M. Prieto-Alaiz, A note on nonparametric estimation of copula-based multivariate extensions of Spearmans rho, Statistics &

Probability Letters 112 (2016) 41–50.
[20] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018.
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Czech Republic

This Supplementary Material contains the following items.

• Section S1 recalls the definition of an Archimedean copula, and a brief statement on Pearson’s correlation
coefficient.

• Section S2 studies multivariate Blomqvist’s beta, and thus complements the study of the multivariate association
measures presented in the paper.

• In Section S3 multivariate association measures are calculated (mainly analytically) in a set of examples.

• Section S4 discusses further how to obtain standard errors for the estimators of the multivariate association
measures presented in Section 7. This section complements Section 7.2 of the paper.

• In Section S5 we provide some additional material regarding the real data application in Section 8.

• Section S6 provides a table with overview of the overall findings regarding the various association measures.

S1. Preliminaries

S1.1. Class of Archimedian copulas

Definition S1 (Archimedean copula).

A nonincreasing and continuous function ψ : [0,∞)→ [0, 1] which satisfies the conditions ψ(0) = 1, limx→∞ ψ(x) = 0
and is strictly decreasing on [0, inf{x : ψ(x) = 0}) is called an Archimedean generator. A d-dimensional copula Cd is
called Archimedean if it for any u ∈ [0, 1]d permits the representation

Cd(u) = ψ
[
ψ−1(u1) + · · · + ψ−1(ud)

]
for some Archimedean generator ψ and its inverse ψ−1 : (0, 1] → [0,∞) where, by convention, ψ(∞) = 0 and
ψ−1(0) = inf

{
u : ψ(u) = 0

}
.

In paper [4] it was shown that the d-monotonicity property of ψ characterizes it as a generator for an Archimedean
copula. The meaning of the d-monotonicity property is formally stated in Definition S2.
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Definition S2 (d-monotonicity).

A real function f is d-monotone on the interval [0,∞), where d ≥ 2, if it is continuous on [0,∞) and differentiable on
(0,∞) up to the order d − 2 and the derivatives satisfy

(−1)k f (k)(x) ≥ 0, for k = 0, 1, . . . d − 2

for any x ∈ (0,∞) and further if (−1)d−2 f (d−2) is non-increasing and convex in (0,∞). If f has derivatives of all orders
in (0,∞) and if (−1)k f (k)(x) ≥ 0 for any x ∈ (0,∞) and any k = 0, 1, . . . , then f is called completely monotone.

When studying the behaviour for increasing dimension, we consider a sequence of Archimedean copulas Cd with
the same generator ψ. Since ψ needs to generate an Archimedean copula in any dimension d, the function ψ then
needs to be completely monotone.

S1.2. Pearson correlation coefficient

A well-known bivariate dependence measure is Pearson’s correlation coefficient ρP defined as

ρP(X1, X2) =
cov(X1, X2)

√
var(X1)

√
var(X2)

provided that 0 < var(X1), var(X2) < ∞. Herein we omitted writing the subscript 2 for the dimension. It is well-known
that this coefficient measures only linear dependence between random variables, is very sensitive to outliers and is
not invariant with respect to all strictly increasing transformations of X1 and X2 and thus cannot be expressed as a
functional of a copula. We therefore do not consider it in this paper. See [1] for more details on drawbacks of ρP.

S2. Multivariate Blomqvist’s beta

S2.1. Verification of axioms

In the bivariate case, let C2 be the copula of (X1, X2)> with X1, X2 having medians med(X1) and med(X2), respec-
tively. Blomqvist’s beta is then defined as [see e.g. 5, p. 182]

β(X1, X2) = Pr{(X1 −med(X1))(X2 −med(X2)) > 0} − Pr{(X1 −med(X1))(X2 −med(X2)) < 0}.

Using copula notation, we have

β(C2) = 4C2(1/2, 1/2) − 1 =
C2(1/2, 1/2) − Π2(1/2, 1/2) + C2(1/2, 1/2) − Π2(1/2, 1/2)

M2(1/2, 1/2) − Π2(1/2, 1/2) + M2(1/2, 1/2) − Π2(1/2, 1/2)
, (S.1)

as shown by [7]. Blomqvist’s beta can be viewed as the normalized difference between C2 and Π2 at the point
(1/2, 1/2)>.

For general dimension d, Blomqvist’s beta can be generalized based on (S.1) as

β(Cd) =
Cd(1/2) − Πd(1/2) + Cd(1/2) − Πd(1/2)

Md(1/2) − Πd(1/2) + Md(1/2) − Πd(1/2)
=

2d−1

2d−1 − 1

{
Cd(1/2) + Cd(1/2) − 21−d

}
, (S.2)

where 1/2 = (1/2, . . . , 1/2)>. This generalization was considered by [9].
Similarly as for Kendall’s tau, [3] introduced a broad class of generalizations for Blomqvist’s beta. The validity

of axioms (A1) − (A7) for β is stated by [8] and the validity of (A8) for β is established below.

Proposition S1. Axiom (A8) is fulfilled by β, defined in (S.2).
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The proof of Proposition S1 is according to the following lines. Let Cd be a d-variate copula of (X1, . . . , Xd)> and
Cd+1 be a (d + 1)-variate copula of (X1, . . . , Xd, Xd+1)> where Xd+1 is independent of (X1, . . . , Xd)>. Blomqvist’s beta
β can be written as

β(Cd+1) =
2d

2d − 1

{
Cd+1(1/2) + Cd+1(1/2) − 2−d

}
=

2d−1

2d − 1

{
Cd(1/2) + Cd(1/2) − 21−d

}
and thus we have

β(Cd+1) =

2d−1

2d−1
2d−1

2d−1−1

β(Cd) =
2d−1 − 1
2d − 1

β(Cd)

Since for every d ≥ 2 we have (2d−1 − 1)/(2d − 1) < 1, it is clear that Axiom (A8) holds for Blomqvist’s beta.

Blomqvist’s beta differs from other association measures mentioned in the paper by its simplicity which is an
advantage in terms of computational complexity but a severe disadvantage in terms of information captured.

S2.2. Further properties
Statement (18) also holds for Blomqvist’s beta. This can be seen as follows. First note that Cd(1/2) + Cd(1/2) =

Pr(X1 < med(X1), . . . , Xd < med(Xd)) + Pr(X1 > med(X1), . . . , Xd > med(Xd)). Hence one obtains

Cd+1(1/2) + Cd+1(1/2) = Pr(X1 < med(X1), . . . , Xd+1 < med(Xd+1)) + Pr(X1 > med(X1), . . . , Xd+1 > med(Xd+1))

= Cd(1/2) + Cd(1/2)

and recalling (S.2), the statement follows. Furthermore, remarks about the strict inequality and the equality in (18),
similar to these formulated in Proposition 5 for Kendall’s tau, can be made for Blomqvist’s beta.

Regarding property (P2) we mention that the statement in Proposition 6 also holds for Blomqvist’s beta. The proof
of this is along the same lines as the proof of the statement for Kendall’s tau. Also for Blomqvist’s beta the lower and
the upper bounds are attainable. Similar remarks regarding the upper bound in (20), as made for Kendall’s tau, are
valid for β(Cd).

S2.3. Multivariate Blomqvist’s beta in increasing dimension
S2.3.1. Archimedean copulas and multivariate Blomqvist’s beta in increasing dimensions
Blomqvist’s beta for Archimedean copulas can be easily expressed using their generator. Let {Cd} be a sequence of d-
dimensional Archimedean copulas with (the same) generator ψ. Then using Definition S1 and the inclusion-exclusion
principle (see (1)) we get

β(Cd) =
2d−1

2d−1 − 1

{
Cd(1/2) + Cd(1/2) − 21−d

}
=

2d−1

2d−1 − 1

ψ
d · ψ−1

(
1
2

) +

d∑
j=0

(−1) j
(
d
j

)
ψ

 j · ψ−1
(

1
2

) − 21−d

 .
Blomqvist’s beta β for Archimedean copulas tends to zero when the dimension d increases, as is established in Propo-
sition S2. The proof of this proposition relies on the following lemma.

Lemma S1. Let {Yk}
∞
k=1 be a sequence of iid random variables from a standard exponential distribution with rate

parameter 1 and W be a non-negative random variable such that {Yk}
∞
k=1 and W are independent. Also suppose that

{xk}
∞
k=1 is a sequence of non-negative numbers such that x = supk∈N xk < ∞. Then

lim
d→∞

Pr(Y1/W ≤ x1, . . . ,Yd/W ≤ xd) = 0.
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The proof of the lemma is as follows. Using that the x j’s are bounded by x, we get

Pr(Y1/W ≤ x1, . . . ,Yd/W ≤ xd) = Pr(Y1 ≤ Wx1, . . . ,Yd ≤ Wxd) = E

 d∏
j=1

(
1 − e−x jW

) ≤ E
((

1 − e−xW
)d

)
.

Since 1 − e−xW can only take values in the interval [0, 1), by the Lebesgue dominated convergence theorem

lim
d→∞

Pr(Y1/W ≤ x1, . . . ,Yd/W ≤ xd) ≤ E
(

lim
d→∞

(
1 − e−xW

)d
)

= 0.

Proposition S2 states that for a sequence of Archimedian copulas, Blomqvist’s beta tends to zero when the dimension
increases to infinity.

Proposition S2. Let {Cd} be a sequence of d-dimensional Archimedean copulas with (the same) generator ψ. Then

lim
d→∞

β(Cd) = 0.

That this results holds can be seen as follows. Recall the definition of β in (S.2). Since obviously limd→∞ 2d−1/(2d−1−

1) = 1 and limd→∞ 21−d = 0, we only need to show

lim
d→∞

Cd(1/2) = 0, (S.3)

lim
d→∞

Cd(1/2) = 0. (S.4)

Let ψ be the generator of Cd and also recall Definition S1. Then we can express

Cd(1/2) = ψ

d · ψ−1
(

1
2

) ,
where we know that ψ−1 (1/2) > 0 since ψ−1 is strictly decreasing and ψ−1(1) = 0. Also limx→∞ ψ(x) = 0. Combining
these two, we get (S.3)

lim
d→∞

Cd(1/2) = lim
d→∞

ψ

d · ψ−1
(

1
2

) = 0.

For calculating the limit of the survival function, another concept is needed. Following the relation stated by [4],
a survival function of an Archimedean copula is the joint distribution function of a random vector (Y1/W, . . . ,Yd/W)>

where Y1, . . . ,Yd are iid random variables from Exp(1) independent of W which is a non-negative random variable.
Thus we can apply Lemma S1 (see the Appendix) with x j = med(Y1/W) for every j ∈ {1, 2, . . . } and obtain that

lim
d→∞

Cd(1/2) = lim
d→∞

Pr(Y1/W ≤ med(Y1/W), . . . ,Yd/W ≤ med(Y1/W)) = 0,

which leads to (S.4).

S2.3.2. Meta-elliptical copulas and multivariate Blomqvist’s beta in increasing dimensions
From Schmid and Schmidt [7, Proposition 8 + proof] we know that Blomqvist’s beta for the meta-elliptical copula

Cd also equals the expression in (26). Consequently for a meta-elliptical copula Cd it holds that τ(Cd) = β(Cd). Hence
the results for Kendall’s tau discussed in Section 5.2 also hold for Blomqvist’s beta.
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S2.4. Estimation of Blomqvist’s beta
The estimator of β is proposed by [7] as

β̂n = β(Ĉn) =
2d−1

2d−1 − 1

{
Ĉn(1/2) + Ĉn(1/2) − 21−d

}
If the partial derivatives ∂C

∂ui
and ∂C

∂ui
are continuous at 1/2, it follows that

√
n(̂βn − β(C))

D
−→ N(0, σ2

β),

as n → ∞ where σ2
β = (2d−1/(2d−1 − 1))2 E {GC(1/2) + GC̄(1/2)}2, as shown by [7]. Note again that [7] originally

used division by n instead of n + 1 in (30). This, however, does not affect validity of the asymptotic result.
Note that for a sample from the comonotonicity copula, β̂n = 1 since Û1,i = · · · = Ûd,i for every i ∈ {1, . . . , n} and thus

Ĉn(1/2) + Ĉn(1/2) = 1 .

S3. Illustrative examples

In this section, we provide examples to illustrate the calculations needed to obtain population versions of the
covered multivariate association measures.

Example S1 (Farlie-Gumbel-Morgenstein copula). Let Cd be a d-dimensional Farlie-Gumbel-Morgenstern copula
defined as

Cd(u) = u1u2 . . . ud

1 +

d∑
j=2

∑
1≤k1<···<k j≤d

αk1,...,k j

(
1 − uk1

)
. . .

(
1 − uk j

) (S.5)

where parameters satisfy the following 2d conditions

1 +

d∑
j=2

∑
1≤k1<···<k j≤d

αk1,...,k jεk1 · · · εk j ≥ 0, ∀ε1, . . . , εd ∈ {−1, 1}.

In case d = 3, these conditions can be alternatively rewritten as in Example 1. To derive the formulas for association
measures assume for a moment that for every j in (S.5), there is only one non-zero parameter α j and thus the copula
Cd(u) reduces to the copula of the form

C∗d(u) = u1u2 . . . ud

1 +

d∑
j=2

α j

j∏
k=1

(1 − uk)

 .
This copula has a density

c∗d(u) = 1 +

d∑
j=2

α j

j∏
k=1

(1 − 2uk)

and we can calculate ∫
[0,1]d

C∗d(u) du = 2−d + 2−d
d∑

j=2

α j3− j,

∫
[0,1]d

Πd(u)c∗d(u) du = 2−d + 2−d
d∑

j=2

α j(−1) j3− j.
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From these, the expressions for ρ1(C∗d) and ρ2(C∗d) follow. Returning to the general case, note first that all αk1,··· ,k j play
similar roles to α j, and hence

ρ1(Cd) =
d + 1

2d − (d + 1)

 d∑
j=2

3− j
∑

1≤k1<···<k j≤d

αk1,...,k j

 ,
ρ2(Cd) =

d + 1
2d − (d + 1)

 d∑
j=2

(−1) j3− j
∑

1≤k1<···<k j≤d

αk1,...,k j


and thus

ρ3(Cd) =
d + 1

2d − (d + 1)


d∑

j=2
j even

3− j
∑

1≤k1<···<k j≤d

αk1,...,k j

 .
Kendall’s tau is based on the integral∫

[0,1]d
C∗d(u)c∗d(u) du =

∫
[0,1]d

Πd(u) du +

∫
[0,1]d

d∑
j=2

α jΠd(u)
j∏

`=1

(1 − u`) du

+

∫
[0,1]d

d∑
k=2

αkΠd(u)
k∏

m=1

(1 − 2um) du

+

∫
[0,1]d

Πd(u)

 d∑
j=2

α j

j∏
`=1

(1 − u`)


 d∑

k=2

αk

k∏
m=1

(1 − 2um)

 du.

The last integral always contains at least one factor of the form
∫ 1

0 u(1 − u)(1 − 2u) du = 0 and thus one obtains

2d
∫

[0,1]d
C∗d(u)c∗d(u) du = 1 + 2

d∑
j=2

j even

α j3− j

which, returning to the general case, leads to

τ(Cd) =
2

2d−1 − 1


d∑

j=2
j even

3− j
∑

1≤k1<···<k j≤d

αk1,...,k j

 .
In what follows we show that

γ2(Cd) =
2

2d−1 − 1

d∑
j=2

j even

2 j ( j!)2

(2 j + 1)!

∑
1≤k1<···<k j≤d

αk1,...,k j ,

β(Cd) =
1

2d−1 − 1

d∑
j=2

j even

2− j
∑

1≤k1<···<k j≤d

αk1,...,k j .

The detailed derivation of these expressions goes as follows. Consider further simplification of Cd in a form

C∗d, j(u) = u1u2 . . . ud

1 + α j

j∏
k=1

(1 − uk)

 = Πd(u) + α jΠd(u)
j∏

k=1

(1 − uk) .
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Such a simplification could also be used while calculating ρ1, ρ2 and ρ3 since these do not contain expressions α jαk

for j , k which are however involved in the calculation of τ. Denote

C̃d, j(u) = Πd(u)
j∏

k=1

(1 − uk) =

j∏
k=1

p(uk)
d∏

`= j+1

u`

with p(u) = u(1 − u) = p(1 − u). Now calculate

K(d, j) =
∑
ξ∈Rd

∫ 1

0
C̃d, j(ξ(u, . . . , u)) du = 2 j

∑
ξ∈Rd− j

∫ 1

0
C̃d, j(u, . . . , u︸  ︷︷  ︸

j

, ξ(u, . . . , u︸  ︷︷  ︸
d− j

)) du

= 2 j
d− j∑
m=0

(
d − j

m

) ∫ 1

0
[p(u)] jum(1 − u)d− j−m du

= 2 j
d− j∑
m=0

(d − j)!
m!(d − j − m)!

(d − m)!( j + m)!
(d + j + 1)!

= 2 j ( j!)2

(2 j + 1)!
1(

d+ j+1
d− j

) d− j∑
m=0

(
j + m

m

)(
d − m

d − j − m

)

= 2 j ( j!)2

(2 j + 1)!

where the index m denotes the number of components not reflected by ξ and where Vandermonde’s identity [see e.g.

6, (3c) on p. 9] is used. Denote by C̃d, j the contribution of C̃d, j to the survival function C
∗

d, j(u) of C∗d, j(u). Then

C̃d, j(u) =

d∑
k= j

(−1)k
∑

j<i j+1<···<ik≤d

C̃k, j(u1, . . . , u j, ui j+1 , . . . , uik ) =

d∑
k= j

(−1)k
∑

j<i j+1<···<ik≤d

p(u1) · . . . · p(u j)ui j+1 · . . . · uik

and thus

K(d, j) =
∑
ξ∈Rd

∫ 1

0
C̃d, j(ξ(u, . . . , u)) du = 2 j

∑
ξ∈Rd− j

∫ 1

0
C̃d, j(u, . . . , u︸  ︷︷  ︸

j

, ξ(u, . . . , u︸  ︷︷  ︸
d− j

)) du

= 2 j
d∑

k= j

(−1)k
∑

j<i j+1<···<ik≤d

∑
ξ∈Rd− j

2d−k
∫ 1

0
[p(u)] jξi j+1 (u) . . . ξik (u) du

= 2 j
d∑

k= j

(−1)k
∑

j<i j+1<···<ik≤d

K(k, j)2d−k = 2 j ( j!)2

(2 j + 1)!

d∑
k= j

(−1)k
(
d − j
k − j

)
2d−k

= 2 j ( j!)2

(2 j + 1)!
(−1) j.

In the last equality we used the binomial theorem

d∑
k= j

(−1)k
(
d − j
k − j

)
2d−k `=k− j

= (−1) j
d− j∑
`=0

(−1)`
(
d − j
`

)
2d− j−` = (−1) j.

Plugging K(d, j) and K(d, j) into (17) and moving back from C̃d, j to Cd, we obtain

γ2(Cd) =
2

2d−1 − 1

d∑
j=2

j even

2 j ( j!)2

(2 j + 1)!

∑
1≤k1<···<k j≤d

αk1,...,k j .
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Finally, C̃d, j(1/2) = 2−d− j and

C̃d, j(1/2) =

d∑
k= j

(−1)k
∑

j<i j+1<···<ik≤d

2− j−k = 2−d− j
d∑

k= j

(−1)k
(
d − j
k − j

)
2d−k = 2−d− j(−1) j

which, while moving back from C̃d, j to Cd, leads to

β(Cd) =
1

2d−1 − 1

d∑
j=2

j even

2− j
∑

1≤k1<···<k j≤d

αk1,...,k j .

Example S2 (Block independence copula). Let Cd be a copula characterized by a density cd(u) = 2d−1 in the two
cubes [0, 1/2]d and [1/2, 1]d and 0 elsewhere. Recall that the density of the independence copula Πd is constant on
[0, 1]d. Copula Cd can thus be seen as a ‘block independence’ copula. By integrating over the density, the copula
itself has a form

Cd(u) =


1
2 + 2d−1 ∏d

j=1(u j −
1
2 ), if u1 >

1
2 , . . . , ud >

1
2 ,

1
2

d∏
j=1

u j<1/2

2u j, otherwise.

Calculating Spearman’s rho ρ2 is based on the integral∫
[0,1]d

Πd(u)cd(u) du = 2d−1

∫
[0, 1

2 ]d
Πd(u) du +

∫
[ 1

2 ,1]d
Πd(u) du

 = 2−2d−1(1 + 3d)

and thus

ρ1(Cd) = ρ2(Cd) = ρ3(Cd) =
d + 1

2d − (d + 1)

[
2−2d−1(1 + 3d) − 1

]
where the result for ρ1, and consequently for ρ3 comes from obvious radial symmetry of Cd. Similarly, Kendall’s tau
τ is based on the integral

∫
[0,1]d

Cd(u)cd(u) du = 22d−2
∫

[0, 1
2 ]d

Πd(u) du +

∫
[ 1

2 ,1]d

2d−2 + 22d−2
d∏

j=1

(
u j −

1
2

) du = 2−d−1 + 2−2

and thus
τ(Cd) =

1
2
.

Gini’s gamma γ2 is based on
∑
ξ∈Rd

∫ 1
0 (Cd(ξ(u, . . . , u)) + CS

d (ξ(u, . . . , u))) du which can be, using radial symmetry and
exchangeability of Cd rewritten as

2
d∑

j=0

(
d
j

) ∫ 1

0
Cd(u, . . . , u︸  ︷︷  ︸

j

, 1 − u, . . . , 1 − u︸             ︷︷             ︸
d− j

) du =
1
2

d−1∑
j=1

(
d
j

)
d + 2

( j + 1)(d − j + 1)
+ 1 +

2
d + 1

.

Further using that

d−1∑
j=1

(
d
j

)
d + 2

( j + 1)(d − j + 1)
=

1
d + 1

d−1∑
j=1

(
d + 2
j + 1

)
=

1
d + 1

[
2d+2 − 2 − 2(d + 2)

]
,
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one gets to the final expression

γ2(Cd) =
2(2d − d − 1)

(2d−1 − 1)(d + 1)

and finally Blomqvist’s beta is obvious to evaluate as

β(Cd) = 1.

Further notice that whereas ρ1, ρ2, ρ3 and γ2 converge to 0 when d → ∞, τ and β remain constant for every d ≥ 2.

Example S3. Let Cd be the copula of (X, . . . , X,−X)>, that is

Cd(u) = max
(

min
1,...,d−1

(u j) + ud − 1, 0
)
.

Copula Cd is radially symmetric which can be seen through the following

CS (u) = Pr(1 − U ≤ u1, . . . , 1 − U ≤ ud−1,U ≤ ud)
= Pr( max

1,...,d−1
(1 − u j) ≤ U ≤ ud) = max(0, ud − max

1,...,d−1
(1 − u j)) = Cd(u).

Because of the radial symmetry, to calculate γ2 one only needs the expression
∑
ξ∈Rd

∫ 1
0 Cd(ξ(u, . . . , u)) du. Since Cd

is the copula of (U, . . . ,U, 1 − U)>, it is straightforward to see that

Cd(ξ(u, . . . , u)) =


max(2u − 1, 0), if |S ξ | = 0,
max(1 − 2u, 0), if |S ξ | = d,
0, otherwise.

Moreover,
∫

[0,1]d Cd(u) dCd(u) = Pr(X < Y, . . . , X < Y,−X < −Y) = 0, with Y being an independent copy of X and also

Cd(1/2) = Cd(1/2) = 0 and thus

γ2(Cd) = β(Cd) = τ(Cd) = −
1

2d−1 − 1
. (S.6)

Further notice that u1, . . . , ud−1 are playing a symmetric role in Cd and we can divide [0, 1]d into d−1 parts depending
on which argument from u1, . . . , ud−1 is minimal, that is into the parts S j = {u ∈ [0, 1]d; u j = min(u1, . . . , ud−1)}, for
j ∈ {1, . . . , d − 1}. Then for j = 1∫

S 1

C(u) du =

∫
S 1

max(u1 + ud − 1, 0) du =

∫ 1

0

∫ 1

1−u1

∫ 1

u1

· · ·

∫ 1

u1

(u1 + ud − 1) du2 . . . dud−1 dud du1

=
1

(d − 1)d(d + 1)
.

From exchangeability within the first d − 1 components of the random vector it follows that
∫

S 1
C(u) du = · · · =∫

S d−1
C(u) du and thus

∫
[0,1]d C(u) du = 1/[d(d + 1)] which further implies, together with the radial symmetry, that

ρ1(Cd) = ρ2(Cd) = ρ3(Cd) =
2d − d2 − d

d2d − d2 − d
. (S.7)

Note that while both functions in (S.6) and (S.7) tend to 0 as d → ∞, the function in (S.6) is negative for any d ≥ 2
whereas the function in (S.7) is negative for d ∈ {2, 3, 4} and positive for d ∈ {5, 6, . . . }. In case of γ2, β and τ,
the negative sign of these association measures for d large could be considered counter-intuitive since except for one
component, one is dealing with the comonotonicity copula. On the other hand, ρ` for ` ∈ {1, 2, 3} is decreasing as a
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function of d from d = 9 which could be considered counter-intuitive as well since one keeps adding the same random
variable X. Any of the pairwise association measures, based on a bivariate association measure satisfying at least (S 1)
and (S 5), will be equal to (d − 4)/d in this example and is thus positive for d ≥ 5 and converges to 1 as d → ∞.
This example thus clearly illustrates the important different behaviour of multivariate association measures obtained
via the two approaches: all pairwise association measures tend to 1 as d tends to infinity, whereas all multivariate
generalizations based on the copula approach tend to 0 for d tending to infinity.

Example S4 (Clayton copula). Let Cd be a d-variate Clayton family copula defined as

Cd(u) =

 d∑
j=1

u−θj − d + 1


−1/θ

for θ > 0.
Kendall’s tau can be calculated as

τ(Cd) =
1

2d−1 − 1

−1 + 2d
d−1∏
j=0

1 + jθ
2 + jθ

 ,
as can be seen in Example 1 in [2]. Realising that all factors in the above product are positive and using 1−x ≤ exp(−x)
for x ≥ 0, we can focus on the asymptotic behaviour for increasing dimension. For any θ > 0

lim
d→∞

d−1∏
j=0

1 + jθ
2 + jθ

= lim
d→∞

d−1∏
j=0

(
1 −

1
2 + jθ

)
≤ lim

d→∞

d−1∏
j=0

exp
(
−1

2 + jθ

)

= lim
d→∞

exp

− d−1∑
j=0

1
2 + jθ

 = exp

− ∞∑
j=0

1
2 + jθ

 = 0.

This means that with increasing dimension, τ of Clayton copula tends to 0 which is in agreement with results of
Wysocki [10, Theorem 7]. For Blomqvist’s beta we have

β(Cd) =
2d−1

2d−1 − 1

(d2θ − d + 1)−1/θ +

d∑
j=0

(−1) j
(
d
j

)
( j2θ − j + 1)−1/θ − 21−d

 .
In Fig. S1, Kendall’s tau and Blomqvist’s beta are plotted as a function of dimension. Moreover, an approximation of
Spearman’s rho ρ1 via Monte Carlo integration is added. It appears as if limd→∞ ρ1(Cd) = c1 ∈ (0, 1), which gives a
hint that strictly positive constants c1 and c2 in Section 5.1.1 can indeed be achieved. For Kendall’s τ, limd→∞ τ(Cd) =

0 follows the theoretical result. The convergence of β(Cd) to zero seems to be slower, as evidenced by Fig. S1.

Example S5 (Four-dimensional Gaussian copula (continued)). Recall the setting of a four-dimensional Gaussian
copula presented in Section 6. We further consider a correlation structure

ΣCl =


1.00 % 0.05 0.00

% 1.00 0.05 −0.05
0.05 0.05 1.00 %
0.00 −0.05 % 1.00

 ,
with varying parameter % describing the correlation within the two clusters. Results from a numerical approximation
of the association measure, as a function of ρ for all positive values of ρ, are depicted in Figure S2. Note that all
association measures increase with increasing value of ρ. For Spearman’s who the increase is almost linear while for
Kendall, tau, Blomqvist beta and Gini’s gamma the increase has a slightly quadratic appearance.
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Fig. S1: Kendall’s tau (full line), Blomqvist’s beta (dashed line) and an approximation of Spearman’s rho ρ1 (dot-dashed line) for Clayton copula
with parameters 2 (black line) and 5 (grey line) as a function of the dimension of the copula.

S4. Standard errors of the estimators: additional material

We present here methods for calculating standard errors of estimators of other multivariate association measures,
in line with the material provided in Section 7.2.

S4.1. Standard error of estimator of Blomqvist’s beta
The asymptotic variance for the estimator of Blomqvist’s beta is

σ2
β =

 2d−1

2d−1 − 1

2

E {GC(1/2) + GC̄(1/2)}2.

Herein the expectation E {GC(1/2) + GC̄(1/2)}2 can be estimated by (35). But now Wi is given by

Wi = Zi + Z̃i,

where

Zi = 1(Ûi ≤ 1/2) −
d∑

j=1

Ĉ jn (1/2)1(Û j,i ≤ 1/2),

Z̃i = 1(Ûi > 1/2) −
d∑

j=1

Ĉ jn(1/2)1(Û j,i ≤ 1/2).

and Ĉ jn (u), Ĉ jn(u) are the estimates of ∂C(u)
∂u j

, ∂C(u)
∂u j

respectively given by

Ĉ jn (u) =
Ĉn

(
u + 1

√
n e j

)
− Ĉn

(
u − 1

√
n e j

)
2
√

n

, Ĉ jn (u) =
Ĉn

(
u + 1

√
n e j

)
− Ĉn

(
u − 1

√
n e j

)
2
√

n

with e j being the j-th canonical vector, i.e. vector of zeroes with the j-th component equal to one.
Finally the standard error of β̂n is estimated by 2d

2d−1−1
σ̂n√

n .
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Fig. S2: Association measures varying with correlation within clusters.

S4.2. Standard error of estimators of Spearman’s rho measures

The expressions for the asymptotic variances of the estimators ρ̂1n and ρ̂2n are in (32). The asymptotic variance
for the average estimator ρ̂3n is then

σ2
3 = 22dh2

ρ(d)
∫

[0,1]d

∫
[0,1]d

1
4

E
[
{GC(u) + GC(u)} {GC(v) + GC(v)}

]
du dv.

Now the integral in the expression for σ2
1, the asymptotic variance of ρ̂1n can be estimated by (35) with Wi replaced

by W (1)
i given by

W (1)
i =

d∏
j=1

(1 − Û j,i) −
d∑

j=1

A(1)
j (Û j,i),

where

A(1)
j (u) =

1
n − 1

n∑
i′=1

1(Û j,i′ > u)
d∏

k=1,k, j

(1 − Ûk,i′ ).

Similarly the integral in the expression for σ2
2 can be estimated by (35) with Wi replaced by W (2)

i given by

W (2)
i =

d∏
j=1

Û j,i −

d∑
j=1

A(2)
j (Û j,i),

where

A(2)
j (u) =

−1
n − 1

n∑
i′=1

1(Û j,i′ > u)
d∏

k=1,k, j

Ûk,i′ .

Finally the integral in the expression for σ2
3 can be estimated by (35) with Wi =

W (1)
i +W (2)

i
2 .
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S4.3. Standard error of estimators of Gini’s gamma measures

The estimator of the standard error of γ̂2n is given by 1
2d−1−1

σ̂n√
n , where σ̂2

n is given by (35) with Wi = W̃ (1)
i + W̃ (2)

i

and W̃ (1)
i , W̃ (2)

i are defined in the following way

W̃ (1)
i =

∑
ξ∈Rd

(
1 −max

k∈S ξ

(Ûk,i) −max
k<S ξ

(Ûk,i)
)
+
−

d∑
j=1

A(1)
j (Û j,i),

W̃ (2)
i =

∑
ξ∈Rd

(
min
k∈S ξ

(Ûk,i) + min
k<S ξ

(Ûk,i) − 1
)
+
−

d∑
j=1

A(2)
j (Û j,i).

The definition of A(1)
j and A(2)

j is rather tricky. Denote

Û j+
i = (Û j+

1,i , . . . , Û
j+
d,i)
> = Ûi + 1

√
n e j and Û j−

i = (Û j−
1,i , . . . , Û

j−
d,i)
> = Ûi −

1
√

n e j.

Then, we define

A(1)
j (u) =

1
2
√

n

n∑
i′=1

∑
ξ∈Rd , j∈S ξ

(
1 −max

{
max
k∈S ξ

(Û j−
k,i′ ), u

}
−max

k<S ξ

(Û j−
k,i′ )

)
+
−

(
1 −max

{
max
k∈S ξ

(Û j+
k,i′ ), u

}
−max

k<S ξ

(Û j+
k,i′ )

)
+

+
1

2
√

n

n∑
i′=1

∑
ξ∈Rd , j<S ξ

(
1 −max

k∈S ξ

(Û j−
k,i′ ) −max

{
max
k<S ξ

(Û j−
k,i′ ), u

})
+
−

(
1 −max

k∈S ξ

(Û j+
k,i′ ) −max

{
max
k<S ξ

(Û j+
k,i′ ), u

})
+

A(2)
j (u) =

1
2
√

n

n∑
i′=1

∑
ξ∈Rd , j∈S ξ

(
min

{
min
k∈S ξ

(Û j+
k,i′ ), u

}
+ min

k<S ξ

(Û j+
k,i′ } − 1

)
+
−

(
min

{
min
k∈S ξ

(Û j−
k,i′ ), u

}
+ min

k<S ξ

(Û j−
k,i′ } − 1

)
+

+
1

2
√

n

n∑
i′=1

∑
ξ∈Rd , j<S ξ

(
min
k∈S ξ

(Û j+
k,i′ } + min

{
min
k<S ξ

(Û j+
k,i′ ), u

}
− 1

)
+
−

(
min
k∈S ξ

(Û j−
k,i′ } + min

{
min
k<S ξ

(Û j−
k,i′ ), u

}
− 1

)
+
.

As can be seen this approach to obtain standard errors becomes rather involved in the case of this association
measure. For Gini’s gamma it is more convenient, from computational point of view, to approximate the standard
error of γ̂2n using standard nonparametric bootstrap.

The expressions for the estimated standard errors in case of Kendall’s tau, Blomqvist beta, and Spearman’s rho
(see Sections 7.2, S4.1 and S4.2) on the other hand are advantageous from computational point of view.

S4.4. Standard errors of pairwise-based association measures

We next discuss how to obtain estimates of standard errors for estimators of multivariate association measures
based on the pairwise approach discussed in Section 3.1. Let the indices j, k ∈ {1, . . . , d} be fixed for a moment
and κ̂n(C j,k

2 ) be the estimator of κ(C j,k
2 ). As described above one can construct the corresponding variables W ( j,k)

i that
would be used to estimate the standard deviation of κ̂n(C j,k

2 ). Then the standard error of κ̂PW
n = 1

(d
2)

∑
1≤i< j≤d κ̂n(C j,k

2 )

is estimated by ad
σ̂n√

n , where σ̂2
n is given by (35) with Wi = 1

(d
2)

∑
1≤i< j≤d W ( j,k)

i and ad is an appropriate constant

depending only on the dimension d (e.g. ad = 2d/{2d−1 − 1} for Kendall’s tau and Blomqvist beta).

S5. Real data application: additional material

A heatmap of the empirical pairwise Spearman’s rho values is provided in Figure S3.
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Fig. S3: Spearman’s rho heatmap for all the variables used in the data example.

Table S1: Estimated multivariate association measures for triplets within WaterClus6 variables, sorted by value of ρ̂3n.

Variable 1 Variable 2 Variable 3 ρ̂3n τ̂n β̂n γ̂2n

Nitrate Ammonium Calcium 0.71 0.52 0.60 0.60
Magnesium Potassium Calcium 0.64 0.46 0.46 0.52
Ammonium Magnesium Calcium 0.56 0.41 0.47 0.47
Nitrate Ammonium Sulfate 0.52 0.39 0.37 0.41
Ammonium Potassium Calcium 0.52 0.37 0.38 0.42
Ammonium Magnesium Potassium 0.46 0.34 0.31 0.37
Nitrate Magnesium Calcium 0.39 0.27 0.32 0.32
Nitrate Ammonium Magnesium 0.38 0.28 0.32 0.32
Nitrate Sulfate Calcium 0.36 0.26 0.22 0.27
Nitrate Potassium Calcium 0.31 0.21 0.21 0.25
Ammonium Sulfate Calcium 0.31 0.24 0.23 0.25
Nitrate Ammonium Potassium 0.30 0.22 0.21 0.25
Nitrate Magnesium Potassium 0.23 0.18 0.17 0.20
Nitrate Sulfate Magnesium 0.09 0.07 0.05 0.06
Sulfate Magnesium Calcium 0.07 0.06 0.03 0.05
Ammonium Sulfate Magnesium 0.05 0.05 0.03 0.04
Sulfate Potassium Calcium 0.02 0.02 -0.05 -0.01
Sulfate Magnesium Potassium 0.02 0.04 -0.01 0.02
Ammonium Sulfate Potassium 0.00 0.01 -0.05 -0.02
Nitrate Sulfate Potassium 0.00 0.02 -0.05 -0.01
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We investigate further the association within the water domain. We in particular look into the six variables Nitrate,
Ammonium, Magnesium, Potassium, Calcium, and Sulfate. In Table S1 we present the association measures when
considering groups of 3 variables from this set, ordered by descending values according to the estimate ρ̂3n. There are(

6
3

)
= 20 such subsets (triplets). It appears that the highest associations in the triplets occur when the variables Nitrate,

Ammonium, Magnesium, Potassium and Calcium are involved, whereas the lower trivariate associations all involve
sulfate. This led to consider the two subgroups: the group WaterClus5 of the five variables, Nitrate, Ammonium,
Magnesium, Potassium and Calcium, within the water domain; and this group extended with the variable Sulfate
leading to the WaterClus6 group. Similar investigations (not detailed here) led us to consider as a cluster all variables
of the air domain together with the variables, Sulfate, Mercury and Chloride from the water domain. We call this
cluster of 12 variables, the AirPlus cluster.

S6. Multivariate association measures: table with overview

Table S2 contains an overview of how the different multivariate association measures score on the various aspects
mentioned in Section 9. Some caution is needed when reading this table.

Table S2: Summary on multivariate association measures and properties.

Aspect Pairwise Spearman’s rho Kendall’s Blomqvist’s Gini’s gamma
association ρ1(Cd) ρ2(Cd) ρ3(Cd) tau τ(Cd) beta β(Cd) γ1(Cd) γ2(Cd)

measure = (ρ1 + ρ2)/2
defined in (2) (5) (6) (9) (S.2) (14) (15)/(16)
clarity of + − − − + + − −

interpretation
complexity − + + + + − + +

axioms provided not not all all all not all
(A1) − (A8) κ2 does (A5) (A5) (A5) & (A8)
Property (P1) no no no no yes yes no no
Property (P2) no no no no yes yes no no
behaviour not +/− +/− +/− + + +/− +/−
d → ∞ studied
analytical +/− − − − +/− + − +/−
computation
computational + + + + +/− + not −

cost studied
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