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Abstract 

 

Robustness evaluation of proton therapy treatment plans is essential for ensuring safe 

treatment delivery. However, available evaluation procedures feature a limited exploration of the 

actual robustness of the plan and generally do not provide confidence levels. This study compared 

established and more sophisticated robustness evaluation procedures, with quantified confidence 

levels.  

We have evaluated several robustness evaluation methods for 5 bilateral head-and-neck 

patients optimized considering spot scanning delivery and with a conventional CTV-to-PTV margin of 

4 mm. Method 1) good practice scenario selection (GPSS) (e.g +/- 4 mm setup error 3% range 

uncertainty); 2) statistically sound scenario selection (SSSS) either only on or both on and inside 

isoprobability hypersurface encompassing 90% of the possible errors; 3) statistically sound dosimetric 

selection (SSDS). In the last method, the 90% best plans were selected according to either target 

coverage quantified by D95 (SSDS_D95) or to an approximation of the final objective function (OF) used 

during treatment optimization (SSDS_OF).  For all methods, we have considered systematic setup and 

systematic range errors. A mix of systematic and random setup errors were also simulated for SSDS, 

but keeping the same conventional margin of 4 mm.  

All robustness evaluations have been performed using the fast Monte Carlo dose engine 

MCsquare. Both SSSS strategies yielded on average very similar results. SSSS and GPSS yield 

comparable values for target coverage (within 0.4 Gy). The most noticeable differences were found for 
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the CTV between GPSS, on the one hand, and SSDS_D95 and SSDS_OF, on the other hand (average 

worst-case D98 were 2.5 and 1.6 Gy larger than for GPSS, respectively).  Simulating explicitly random 

errors in SSDS improved almost all DVH metrics.  

We have observed that the width of DVH-bands and the confidence levels depend on the 

method chosen to sample the scenarios. Statistically sound estimation of the robustness of the plan in 

the dosimetric space may provide an improved insight on the actual robustness of the plan for a given 

confidence level. 

 

 

I. Introduction 

 

External beam radiotherapy aims at delivering sufficient dose to tumor tissue while preserving 

surrounding organs. In order to achieve this goal, sophisticated irradiation techniques, such as the use 

of protons, have been developed in order to conform doses to target volumes. However, radiotherapy 

treatment delivery can be affected by many sources of uncertainties: patient positioning, inter- and 

intra-fraction movements, and imperfect conversion of imaging data into physical quantities. In order 

to secure target coverage and avoid accidental organ-at-risk irradiation, robust planning methods have 

been developed to ensure that delivered doses keep meeting the objectives and constraints despite 

uncertainties. In conventional X-ray radiotherapy, this objective is typically achieved by safety margins 

with the concept of planning target volume (PTV) and planning risk volume (PRV). In proton therapy, 

the typical margin strategies suffer from notorious shortcomings, because of the sensitivity of proton 

therapy dose distributions to the uncertainties of the position of the Bragg peak and failure of the 

static-dose cloud approximation, which assumes that patient shifts do not change the dose 

distributions 1, 2. 

As a result, many methods of robust planning and robustness evaluation have been proposed 

in the literature for proton therapy 1–8. In the case of the most advanced intensity modulated proton 

therapy (IMPT) techniques, robust planning typically consists of a minimax problem that is solved by 

optimizing the worst-case scenario among a set of predefined possible scenarios 2. Generally, this set 

of scenarios includes (systematic) positioning errors, image conversion errors, and in some cases the 

movement of organs represented by additional image sets which are included as additional scenarios 
9–12. Irrespective of the considered robust planning method, it remains necessary to evaluate the actual 

robustness of the plan. The evaluation can be done more thoroughly than during robust optimization. 

Robustness evaluation often includes, for example, random errors, organ deformations, interplay 

effects, etc. This is because robustness evaluation is computationally less demanding than robust 

optimization (for instance, no need to store influence matrices). However, the methods typically 
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reported for robustness evaluation are also based on a relatively simple sampling of error scenarios, 

for example some (systematic) positioning errors combined with image conversion errors. Other 

authors have also incorporated random errors 2, 3.  

Most robustness evaluation methods reported in the literature and used in some commercial 

planning systems may feature several biases because of pragmatic choices imposed by limited 

computing resources and due to a lack of consensus in the involved concepts. A first bias lies in the 

direct combination of pre-sampled uncertainties, leading to the selection of very unlikely scenarios, 

for example setup errors of +/- 5 mm combined with density errors of +/- 3%, i.e., the simultaneous 

selection of two extremes in the probability distributions. This amounts to combining extremes of 

marginal probability distributions, while the joint probability distribution should be sampled instead. 

Korevaar et al have already pointed that issue and have performed robustness evaluation using a 

statistically consistent but limited set of scenarios13. A second bias is the lack of consistently calculated 

confidence levels, in order to clearly define what is meant by a "worst-case". Indeed, the worst-case 

scenario is the least favorable scenario among a pre-defined selection set (otherwise, the most 

extreme case can always be envisaged).  In the best-known margin calculation recipe, the value of the 

final margin depends on a choice of the number of patients for which one wishes to ensure target 

coverage (typically 90%)14. This confidence level is not always reported in the literature when it comes 

to robustness assessments. In addition, a lack of clarity remains on how to calculate this confidence 

level. Specifically, should it be calculated in the error space, i.e., as the percentage of possible scenarios 

covered by a given robustness test? Or should it be calculated in the dose space, that is, as the 

percentage of dose distributions meeting a given clinical endpoint?  

In this publication, we compare several robustness evaluation methods, with explicitly 

calculated confidence levels in either the error space or the dose distribution space.  

 

 

II. Materials and methods 

II.A. Definitions and notations  

 

We define the robustness of a treatment plan as the capability of this plan to continue 

satisfying clinical objectives and/or constraints despite uncertainties, for a certain confidence level. As 

in van Herk et al 14, treatment errors can be classified in treatment preparation errors (e.g., systematic 

errors) and treatment execution errors (e.g., random errors). Like van Herk’s formalisation, we 

suppose knowledge of the probability density functions (pdf) of these errors. In general, these are 
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assumed to be normal (Gaussian) with standard deviations Σ and 𝜎 for systematic and random errors, 

respectively.  For the remaining of this manuscript, we will limit ourselves to the following errors: 

 

1. Setup errors (se; (𝑥!", 𝑦!", 𝑧!")) characterized by 3D Gaussian pdfs for both systematic and 

random errors, with vector standard deviations 𝚺!"	and 𝝈!", respectively 

2. Range uncertainties (RU;  due for instance to improper image conversion), characterized 

by a 1D Gaussian pdf with Σ#$ as standard deviation. 

 

However, these considerations can be generalized to an arbitrary number of types of 

uncertainties. When appropriate, the generalization of the developed methods will be addressed.  

 

II.B. Computation of confidence levels 

 

For a given pdf, confidence intervals define a range within which a population parameter 

resides for a given confidence level.  In van Herk’s margin recipe, a typical confidence level chosen is 

90% which leads to the 2.5 factor that multiplies the standard deviation in the well-known formula for 

3D-conformal dose distributions: 𝑀%&' = 2.5Σ + 0.7𝜎. This means that 90% of the possible systematic 

errors within the patient population will be covered by the margin recipe. However, such a margin 

recipe fails notoriously in proton therapy because it is based on the static-dose cloud approximation 
15–17. Moreover, the number of fractions is assumed infinite, which allows a simple model to 

approximate how random errors blur the dose distributions. This simplification leads to the term 0.7𝜎 

in the margin recipe, considering a typical 95% of the dose prescription as the minimum dosimetric 

coverage. A reduced number of fractions requires either a more complex model or the conversion of 

part of the random error into a systematic component, as acknowledged in van Herk et al 14. Such 

approach will also not hold in proton therapy because of the failure of the static dose cloud 

approximation.  

Thus, more complex models and formalisms are needed in proton therapy to assess the 

robustness in lieu of simplistic margin recipes. First, we need to distinguish occurrences of errors and 

the combined effect of these occurrences (the sum over each fraction) over the entire course of a 

treatment, referred here as treatment scenarios or, shorter, scenarios. In the simplified context 

mentioned here, a scenario will therefore be characterized by a systematic error sampled from a 

Gaussian distribution with a vector of standard deviations 𝚺𝐬𝐞, and a sequence of errors for each 

treatment fraction that are randomly sampled from a Gaussian distribution with a vector of standard 

deviations 𝝈𝒔𝒆. Second, it is very unlikely to provide closed-form analytical expressions to characterize 
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how uncertainties affect the dose distributions. Therefore, it is not feasible to derive simple margin 

recipes with satisfactory mathematical grounds.  

In general, a confidence interval for an estimator of interest consists in giving the narrowest 

range of values for that estimator, such that the pdf integrates to 0.9 (90%) over that range. In practice, 

the pdf can be sampled and sorted, after which the suitable bounds can be reported. 

 

II.B.1. Confidence levels in the dosimetric space 

 

A straightforward way to compute a confidence level for a dosimetric estimator is to generate 

dose distributions for many scenarios and compute the probability that a certain rule on this dosimetric 

estimator will be realized (for instance, D95 > xx Gy with a probability of yy (or confidence)). This will 

be referred as the computation of a confidence level in the dosimetric space. In such approach, we can 

provide the percentage of times, i.e., the confidence level, that each objective/constraint defined by 

the radiation oncologist will be satisfied. Another possibility would be to provide a bandwidth for a 

value of interest and an associated confidence level. For instance, we could provide the range of 𝐷,- 

for the CTV, corresponding to the 90% highest 𝐷,- values.  This is a relevant metric to estimate the 

probability of covering the target as desired. However, this might cause to focus too much on target 

coverage. In order to provide a fair balance between target coverage and organs-at-risk exposure, 

another possibility would be to select the best 90% objective function (OF) values. The value of the 

objective function of the accepted plan, with the penalties (/ objective function weights) for each organ 

included in the objective function, provides a good estimate of the clinical compromise accepted by 

the physicist and the physician at the end of the optimization process. Thus, it provides a quantification 

of the clinical quality of the plan. Therefore, the classification of the best simulated dose distributions 

according to the value of their associated objective functions seems ideal from a clinical point of view.  

Because the confidence levels are estimated from random sampling of the errors, they will be 

subject to statistical noise. Therefore, enough scenarios must be simulated for estimating confidence 

levels with sufficient accuracy.  The number of scenarios needed to achieve a given statistical accuracy 

on the confidence level can be determined using the method developed in Souris et al, where the 

statistical uncertainty on the estimated confidence level considered is computed dynamically during 

the robustness evaluation process18.   

Working in the dosimetric space requires the generation of many dose distributions that must 

be computed in a practical fashion.  The key difficulty resides in the generation of the dose distributions 

that must be done in a practical fashion. Fast Monte Carlo dose engines associated with clever 

statistical stopping criteria18 or other methods like polynomial chaos expansion19 can help for this task.  
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II.B.2. Confidence levels in the error space 

 

In current practice, robustness evaluation tools are limited to the generation of some 

occurrences of systematic setup and range errors according to parameters defined by the user. 

Random errors are typically not simulated. Van Der Voort et al. have suggested to consider random 

errors using empirical relations that can convert a combination of systematic and random errors into 

pure systematic errors 20. Another method has been suggested by the group of PSI, using a relatively 

small subset of possible errors, a priori limited by an 85% confidence interval line 1, 3. For the reminder 

of the argument, we will assume that random errors are either neglected or converted to systematic 

errors as in Van Der Voort et al20. 

If dose distributions are unknown, computing confidence levels in proton therapy is not as 

straightforward as in photon therapy. The main reason is that one cannot easily approximate the effect 

an error may have on the dose distributions. Consequently, each type of error needs to be considered 

separately. In the context of independent setup errors and range uncertainties, this leads to the 

sampling of errors in a 4D space with reduced axis (𝑥. = /!"
0!"#$%,'

, 𝑦. = 1!"
0!"#$%,(

, 𝑧. = 2!"
0!"#$%,)

, RU. =

#$
0*+

), where  Σ is the standard deviation. In this space, equiprobable errors will be located on the 

surface of a hypersphere with equation 𝑥′3 + 𝑦′3 + 𝑧′3 + RU′3 = 𝛼453. The parameter 𝛼46 denotes 

the (reduced) radius of the hypersphere. The left side of the last equation represents a chi-square 

distribution with 4 degrees of freedom. The behavior of the cumulative chi-square distribution is 

illustrated in Figure 1 (a) for different numbers of degrees of freedom.  

A confidence level in the error space can now be approximately computed. To ensure 

robustness against 90% of all possible scenarios, we need to select all possible configurations within a 

hypersphere with radius of approximately 2.8 as seen from Figure 1. If we hypothesize that the worst-

case scenarios are located on the surface of the hyper-sphere, then one can assume that this 

confidence level of 90% will be achieved by only simulating the points distributed over the hyper-

sphere. However, this hypothesis is not necessarily true and will be tested in one of the robustness 

evaluation strategies introduced in section II.D 

If range uncertainties are removed, we come back to the 3D case and 𝛼75 equals the well-

known 2.5 value. Figure 1 (b) displays how 𝛼85varies depending on the number of dimensions. It is a 

direct translation of the value of the L2 norm in Figure 1 (a) at 90% cumulative probability.  

One thing important to note here is that the selection of the scenarios will strongly depend on 

the dimensionality of the problem. More extreme scenarios will have to be selected for a higher 

number of dimensions and a fixed confidence level (because of the corresponding increase of the 

radius 𝛼 of the hyper-sphere).  
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Figure 1 (a) Examples of cumulative probabilities for isotropic multi-dimensional independent normal (Gaussian) 

distributions with 1 mm standard deviation; (b) values of the reduced radius 𝜶𝑵𝐃 of the isoprobability hyper-sphere 

with respect to the number of dimensions for 85, 90, and 95% confidence levels (CL). For 3 dimensions and 90% 

confidence level (CL), 𝜶𝟑𝐃 equals the typical 2.5 value found in margin recipe of van Herk et al14.  

 

II.C. Patient test cases 

 

Five bilateral head-and-neck patients were considered for illustrating the notions described 

above. Some tumor characteristics are detailed in the appendix (Table S 1). The patients were treated 

by conventional radiotherapy. Hence, the proton treatment plans were optimized for the purpose of 

this study. The target was the PTV, obtained by expanding the CTV by a 4 mm isotropic margin. The 

treatment plans included two prescriptions, 70 Gy and 54 Gy on tumor and elective volumes, 

respectively. The proton treatment plan was composed of 4 scanned beam incidences 

((350,60);(350,120);(10,240):(10,300) in degrees for couch and gantry angles, respectively). Treatment 

plans were optimised to ensure adequate coverage of the PTV, without robustness parameters 

(treatment plans were not robustly optimized). The minimum requirements were D98 > 90% of 

prescription dose, D95 > 95% of prescription dose, D5 < 105% of prescription dose. However, when 

possible to respect OAR constraints, we tried to achieve at least 95% of prescribed dose for D98. 

Constraints to OARs were set according to the clinical rules of Cliniques Universitaires Saint-Luc used 

for conventional photon therapy. The OARs subject to sparing and their associated dose limits are 

listed in Table S 2 in the supplemental material. When possible, the dose to OARs were further 

diminished provided that it did not compromise PTV coverage. The treatment plans were optimised 

using RayStation (from RaySearch, research license 5.99). The achieved dose distributions and the used 

beam angles are illustrated in axial slices for each patient in Figure 2 

The spot positions and weights were exported to a local robustness evaluation tool developed 

by Souris et al18. This robustness evaluation tool is based on a validated Monte Carlo dose engine called 

Page 7 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-110423.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



8 
 

MCsquare21. For the purpose of the present study, systematic setup errors and image conversion 

errors were simulated by shifting the patient and applying a density scaling according to sampled 

values of setup errors and image conversion errors.  

The values chosen for the standard deviations were as follows. For the tests without random 

errors, Σ!"9:; = 1.6	𝑚𝑚, 𝜎!"9:; = 0	𝑚𝑚, and Σ#$ = 1.8%. The values were chosen in order to 

represent 4 mm and 3% errors at 90% confidence level in their respective spaces (3D for setup errors 

(𝛼75 = 2.5), 1D for range uncertainties  (𝛼45 = 1.67)). For the tests with random errors, the values 

chosen were Σ!"9:; = 1.3	𝑚𝑚, 𝜎!"9:; = 1.0	𝑚𝑚, and Σ#$ = 1.8%. Such combination of systematic 

and random setup errors leads to a margin of 4 mm using the simplified van Herk formula (2.5Σ +

0.7𝜎). It is also in line with the empirical relationships shown in Figure 3 of van der Voort et al20.  
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Figure 2 Axial slices of the 5 patients selected for this study with overlaid dose distributions 

 

 

 

II.D. Robustness evaluation strategies investigated 

 

We summarize here the robustness evaluation strategies investigated. A short overview is also 

given in Table 1. In all robustness evaluation strategies, the nominal scenario is kept in the simulated 

set of dose distributions.  

 

II.D.1. Strategy 1: Good practice scenario selection (GPSS) of flat systematic setup 

and range errors 

 

In many robust optimization/evaluation approaches, scenarios are selected pragmatically 

according to good practice rules. In general, the CTV to PTV margin is replaced with a systematic setup 

error of comparable magnitude and the range uncertainty parameter takes typically three values, +RU, 

0 and -RU where RU ranges from 2.5 to 3.5 % in most publications. Random errors are typically ignored 

or converted into systematic errors, for instance using the approach developed by Van der Voort et al 
20. For this strategy, the setup error and RU parameters equalled 4 mm and 3% (consistent with 

Σ<"9:; = 1.6	𝑚𝑚 and Σ#$ = 1.8%). In typical clinical practice, only a few scenarios are sampled in the 

directions x, y, and z, i.e. positive and negative extreme values along each axis (no diagonals). By 

combining with range errors, it amounts to 20 scenarios in total, excluding the nominal scenario. 

However, it is not possible with such strategy to estimate a confidence level with acceptable accuracy, 

as the errors in the spatial directions x, y, and z are sampled too coarsely. Therefore, we have simulated 
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more scenarios by including those on the diagonals between the x, y, and z axes. In such case, the 

setup errors are selected on the 3D-sphere, at 90% confidence level in 3D (using 𝛼75=2.5).  The total 

amount of scenarios then reaches 80 without the nominal scenario.  

In this configuration, a confidence level can be estimated by integrating the joint probability 

density function inside the 4D hyper-cylinder defined by the 3D setup errors (distributed over a sphere) 

and the range errors. This was approximated numerically by generating randomly setup and range 

errors and counting the ones that are inside the hyper-cylinder. This amounts to 81% of possible errors. 

It is important to mention here that this way of computing the confidence level assume continuity of 

the errors in the error space and also that the worst errors are located on the edges of the explored 

space.  

For the sake of completeness, we have also simulated the GPSS case with 20 scenarios only. 

The results are reported in supplementary materials.  

  

II.D.2. Strategy 2: Statistically sound scenario selection (SSSS) 

 

Two configurations were tested in this study. In the first configuration, scenarios were sampled 

uniformly on the hyper-surface of the 4D hyper-sphere delimited by the equation 𝑥′3 + 𝑦′3 + 𝑧′3 +

𝑅𝑈′3 = 𝛼463, where 𝛼46 = 2.8 to ensure a 90% confidence level in the error space (SSSS (ON) Figure 

3 (b)). In such case, one may assume that this confidence level is secured in the error space provided 

that robustness for scenarios inside the hyper-surface is also warranted. In the second configuration, 

scenarios were also uniformly sampled within the hyper-sphere, in order to better approximate a true 

90% confidence level 19 computed in the error space (Figure 3 (c)). In SSSS (IN), we also sample 

hypersurfaces within the 90% hyper-surface with a different radius. The number of scenarios per 

surface is 80 (34 minus the nominal case). In SSSS (IN), we sample 3 hypersurfaces (at (reduced) radii 

2.2 and 1.1) hence 240 scenarios.    One can note that errors and scenarios lead eventually here to the 

same meaning, because only systematic errors are sampled.  

 

II.D.3. Strategy 3: Statistically sound dosimetric selection (SSDS) 

 

We consider here a Monte Carlo robustness evaluation tool, i.e. errors are randomly sampled 

according to their pdfs. It is worth mentioning that the dose engine associated with this tool can be 

anything, either Monte Carlo or analytical. A random error sampling approach would be an excellent 

candidate for performing robustness evaluation because 1) errors can be sampled without any 

statistical bias from their actual pdfs; 2) random errors can be simulated naturally; and 3) it enables an 
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evaluation of the confidence level in the dosimetric space. A weakness of this approach is that the 

number of treatment scenarios to simulate may be substantial. To ensure its practical viability, dose 

computation must be performed at a low computational cost. Fast Monte Carlo dose engines may be 

used for this task, but, in such case, the number of errors and scenarios to simulate must be limited to 

what is necessary. Therefore, this requires the introduction of a convergence criteria and variance 

reduction techniques, as described in Souris et al18. For the purpose of this study, we have tried to 

minimize the statistical noise as much as reasonably achievable. In Souris et al18, it was shown that 300 

scenarios were sufficient to ensure convergence of the DVH error bands. In the present study, we have 

therefore simulated 1000 scenarios for ensuring low noise levels on the reported values (for instance, 

the lowest D95 value at 90% confidence level). The number of particles per scenario was about 108 to 

ensure a statistical uncertainty in the target below 2% (one standard deviation). Simulations were 

performed on a 2x Intel(R) Xeon(R) Gold 6248 CPU. 

The SSDS method allows flexibility in the way the scenarios are selected. We implemented two 

scenario selection methods. In the D95 method, the 90% best scenarios according to target coverage 

for the high dose CTV (quantified here by the D95) were selected for reporting. In the OF method, the 

90% best scenarios according to the value of the objective function were selected for reporting. The 

value of the objective function was computed as a weighted sum of all clinical objectives used in the 

TPS for the treatment plan optimization. Four objective types, namely minimum dose, maximum dose, 

mean dose, and DVH objectives, were implemented in the objective function using quadratic terms as 

described in Oelfke et al22 (see Table S 2 in the supplementary material). 

For each scenario selection method in the dosimetric space, two tests were performed. In the 

SSDS (S) strategy, only systematic errors were considered. In the SSDS (R) strategy, both systematic 

and random errors were considered. The standard-deviations selected for both examples are provided 

in section II.C. 

 

Robustness 

evaluation 

strategy 

Description Σ!"9:;  

(mm) 

𝜎!"9:;  

(mm) 

Σ#$  

(%) 

GPSS Good practice scenario selection in the error space: selection of setup 

errors onto 90% 3D sphere, and a positive and a negative range value 

1.6 0.0 3.0* 

SSSS (ON) Statistically sound selection in the error space onto 90% isoprobability line 

of the 4D hypersphere  

1.6 0.0 1.8 

SSSS (IN) Statistically sound selection in the error space onto and inside 90% 

isoprobability surface of the 4D hypersphere 

1.6 0.0 1.8 

SSDS_D95 (S) Statistically sound selection in the dosimetric space for the 90% best CTV 

D95  

1.6 0.0 1.8 
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SSDS_OF (S) Statistically sound selection in the dosimetric space for the 90% best 

objective function values 

1.6 0.0 1.8 

SSDS_D95 (R) Statistically sound selection in the dosimetric space for the 90% best CTV 

D95 

1.3 1.0 1.8 

SSDS_OF (R) Statistically sound selection in the dosimetric space for the 90% best 

objective function values 

1.3 1.0 1.8 

Table 1. Summary of the robustness evaluation strategies studied and their associated robustness parameters 

*For GPSS, only extreme values of the distributions are considered for range errors, not the standard deviations. 

 

 

 
Figure 3 Illustration of the scenario selection methods in a 2D slice (a,b,c), or in a projection (d), of the 4D 

iso-probability hypersphere. Each dot represents a simulated scenario. The hypersphere contains 90% of all 

possible scenarios. Figure (a) corresponds to good practice scenario selection (GPSS). Figure (b) corresponds 

to statistically sound selection of the scenarios (SSSS) at the surface of the isoprobability hyper-sphere 

including 90% of possible scenarios (SSSS (ON)). Figure (c) corresponds to SSSS at the surface and within the 

isoprobability hyper-sphere including 90% of possible scenarios (SSSS (IN)). Figure (d) corresponds to 

statistically sound dosimetric sampling with selection on best 90% D95 (SSDS_D95) with a projection of all 

xse/ setup

RU/ RU

a) Good practice scenario selection
 

2.82.5-2.8 -2.5

2.8

1.64

-2.8

-1.64

xse/ setup

RU/ RU

b) Statistically sound scenarios selection
over hyper-surface

2.8-2.8

2.8

-2.8

xse/ setup

RU/ RU

c) Statistically sound scenarios selection
over hyper-surface and within hyper-volume

2.8-2.8

2.8

-2.8

xse/ setup

RU/ RU

d) Statistically sound dosimetric sampling
 

2.8-2.8

2.8

-2.8
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scenarios onto the plane defined by the x and range dimensions. Red dots correspond to selected dose 

distributions; black dots to discarded dose distributions.  

 

III. Results 

III.A. Results for the nominal plans 

 

The results obtained for PTV coverage, quantified by the metrics D98, D95 and D5, in the 

nominal plan using MCsquare are provided in Table 2. This computation was necessary to ensure that 

the dose distributions in the nominal configuration computed by MCsquare met target coverage 

criteria.  

 

 

PTV metric  

(Gy) 

Patient results for high dose PTV 70Gy 

 

 P1 P2 P3 P4 P5 

D98 67.6 64.9 67.2 67.9 66.7 

D95 68.2 67.0 67.9 68.4 67.5 

D5 71.6 73.4 71.7 72.2 71.6 

Table 2 Metric assessing PTV dose coverage for the nominal plan used in this study. The dose was computed with 

MCsquare in the nominal case. Target coverage objectives were at least D95 > 95 % and D98 > 90 % of prescribed 

dose (70 Gy), thus 66.5 Gy and 63 Gy, respectively. Overdosage were limited by the constraint D95 < 105 % (thus 

73.5 Gy). When possible, we tried to achieve D98 > 95 % of prescribed dose.  

 

III.B. Comparison of the robustness evaluation methods 

 

Robustness evaluation has been performed for the strategies described in Table 1. Table 3 

provides the differences between worst-case and the nominal DVH metrics averaged over all patients, 

for each robustness evaluation strategy. Table 4 displays the same data as Table 3, this time with 

respect to the results yielded by the GPSS method (instead of the nominal plans in Table 3). Individual 

DVH metrics are illustrated for patient 3 in Figure 4, and detailed for the same patient in Table 5. The 

same results for the other patients are available in appendix (Tables S 3-6 and Figures S 1-4).  

For each strategy, the time needed to compute one scenario was about 150 seconds.   

 

III.B.1. Considering systematic errors only 
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As shown in Table 3 and in the individual results (Table 5, Figure 4, Tables S 3-6 and Figures S 

1-4), SSSS (ON) and SSSS (IN) provide very similar DVH metrics.  Therefore, they will not be 

distinguished anymore to present the results. For the high dose CTV, GPSS and SSSS yield similar 

results, with an average of worst-case D98, D95, and D5 within 0.5 Gy. Results for individual patients are 

also similar for the high dose CTV, with differences within 0.7 Gy (Table 5 and Tables S 3-6).  For the 

low dose CTV, GPSS and SSSS yield slightly divergent results, with average differences within 0.4 Gy 

and 0.3 Gy for D98 and D95, respectively. The maximum variability occurred for patient 5, with SSSS 

yielding a D98 and a D95  0.9 Gy larger (Table S 6).  

When comparing GPSS to the SSDS methods for target coverage (Table 4), differences are 

more substantial. Considering systematic errors only (S), and D98 of the high dose CTV, the worst-case 

scenario is on average 2.8 Gy and 2.0 Gy larger for SSDS_D95 and SSDS_OF compared to GPSS, 

respectively. For D95, it is 2.6 and 1.7 Gy, respectively. Comparing GPSS and SSDS_D95, the differences 

reported are maximum 5.0 Gy and 4.4 Gy higher for D98 and D95, respectively (patient 2, Table S 4). For 

the low dose CTV, maximum average differences within 0.4 Gy are observed between both SSDS 

evaluation methods and GPSS. SSSS and SSDS_OF yield on average very similar results for the low dose 

target (Table 4).  

These results are confirmed visually in Figure 4, where it can be noticed that DVH-bands for 

the high dose CTV (red) are broader for GPSS and SSSS, than for both SSDS strategies.  

For organs-at-risk, the average differences reported are within 1.6 Gy for all metrics between 

all methods (Table 3). It is difficult to distinguish clear trends looking at individual patient results (Table 

5 and Tables S 3-6). However, one can notice that GPSS often reports the lowest values for OARs. 

SSDS_OF yields in general similar or lower values than SSSS. Sometimes, SSDS_D95 (S) yields 

substantially larger values than other evaluation methods. For instance, for patient 2, Dmean of the left 

parotid is more than 1.5 Gy larger for SSDS_D95 than all other methods (Table S 4). 

 

III.B.2. Considering systematic and random errors 

 

Simulating explicitly random errors during robustness evaluation yields similar or improved 

DVH metrics with respect to their counterparts with systematic error only. One can notice in Table 3 

an average improved coverage of the low dose CTV up to 0.7 Gy for D98 (SSDS_OF). For OARs, similar 

observations can be made, with an improvement of all OAR DVH metrics when random errors are 

simulated explicitly (i.e. not translated to their approximatively equivalent systematic errors). For 

instance, the mean to the left and right parotids improved on average in a range from 0.5 Gy to 0.9 Gy.   
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Strategy # of 

scen 

CL 

(%) 

D98 

CTV 

70Gy  

(Gy) 

D95  

CTV 

70Gy   

(Gy) 

D5 

CTV 

70Gy  

(Gy) 

D98 

CTV 

54Gy  

(Gy) 

D95 

CTV 

54Gy  

(Gy) 

Dmean 

left 

prtd 

(Gy) 

Dmean 

right 

prtd 

(Gy) 

Dmean 

oral 

cavity 

(Gy) 

D2 

spinal 

cord 

(Gy) 

D2 

brain 

stem 

(Gy) 

GPSS 80 81 -4.9 -3.9 2.0 -3.9 -2.9 6.4 5.8 3.8 6.7 5.3 

SSSS (ON) 80 90 -4.4 -3.6 1.8 -3.5 -2.6 6.1 5.7 3.5 7.0 5.6 

SSSS (IN) 240 90 -4.4 -3.6 1.8 -3.5 -2.6 6.1 5.7 3.5 7.0 5.6 

SSDS_D95 (S) 1000 90 -2.1 -1.3 1.9 -3.9 -3.1 6.7 6.2 4.1 7.0 5.5 

SSDS_OF (S) 1000 90 -2.9 -2.2 1.6 -3.5 -2.6 5.3 5.6 3.3 7.0 5.5 

SSDS_D95 (R) 1000 90 -2.0 -1.1 1.9 -3.4 -2.6 6.1 5.6 3.6 5.8 4.7 

SSDS_OF (R) 1000 90 -2.4 -1.8 1.3 -2.8 -2.2 4.8 4.7 2.8 6.2 4.9 

Table 3  Dose differences between the worst-case and the nominal DVH metrics for the target and organs-at-risk, 

averaged over the 5 patients  (# of scen = number of scenarios; CL = confidence level).  The meaning of each robustness 

evaluation strategy is detailed in Table 1. The abbreviation “prtd” stands for “parotid”. 

Strategy # of 

scen 

CL 

(%) 

D98 

CTV 

70Gy  

(Gy) 

D95  

CTV 

70Gy   

(Gy) 

D5 

CTV 

70Gy  

(Gy) 

D98 

CTV 

54Gy  

(Gy) 

D95 

CTV 

54Gy  

(Gy) 

Dmean 

left 

prtd 

(Gy) 

Dmean 

right 

prtd 

(Gy) 

Dmean 

oral 

cavity 

(Gy) 

D2 

spinal 

cord 

(Gy) 

D2 

brain 

stem 

(Gy) 

SSSS (ON) 80 90 0.5 0.3 -0.2 0.4 0.3 -0.3 -0.1 -0.3 0.3 0.3 

SSSS (IN) 240 90 0.5 0.3 -0.2 0.4 0.3 -0.3 -0.1 -0.3 0.3 0.3 

SSDS_D95 (S) 1000 90 2.8 2.6 -0.1 0.0 -0.2 0.3 0.4 0.3 0.3 0.2 

SSDS_OF (S) 1000 90 2.0 1.7 -0.4 0.4 0.3 -1.1 -0.2 -0.5 0.3 0.2 

SSDS_D95 (R) 1000 90 2.9 2.8 -0.1 0.5 0.3 -0.3 -0.2 -0.2 -0.9 -0.6 

SSDS_OF (R) 1000 90 2.5 2.1 -0.7 1.1 0.7 -1.6 -1.1 -1.0 -0.5 -0.4 

Table 4 Average absolute differences of the DVH metrics for the 5 patients with respect to GPSS taken as a reference (‘# 

of scen’ = number of scenarios; ‘CL’ = confidence level).  The meaning of each robustness evaluation strategy is detailed 

in Table 1.  The abbreviation “prtd” stands for “parotid”. 
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Robustness 

evaluation 

strategy 

# of 

scen 

CL 

(%) 

D98 

CTV 

70Gy  

(Gy) 

D95  

CTV 

70Gy   

(Gy) 

D5 

CTV 

70Gy  

(Gy) 

D98 

CTV 

54Gy  

(Gy) 

D95 

CTV 

54Gy  

(Gy) 

Dmean 

left 

prtd 

(Gy) 

Dmean 

right 

prtd 

(Gy) 

Dmean 

oral 

cavity 

(Gy) 

D2 

spinal 

cord 

(Gy) 

D2 

brain 

stem 

(Gy) 

Worst-case             

GPSS  80 81 62.7 64.8 72.4 50.9 52.7 32.4 30.1 19.1 45.0 32.6 

SSSS (ON) 80 90 63.1 65.2 72.6 51.1 52.8 32.4 29.8 19.7 45.3 33.1 

SSSS (IN) 240 90 63.1 65.2 72.6 51.1 52.8 32.4 29.8 19.7 45.3 33.1 

SSDS_D95 (S) 1000 90 66.8 68.1 72.6 51.2 52.7 32.9 30.1 20.1 45.4 33.4 

SSDS_OF (S) 1000 90 66.3 67.7 72.6 51.2 52.7 32.4 29.9 19.5 45.4 33.4 

SSDS_D95 (R) 1000 90 67.0 68.3 72.6 51.0 52.7 33.5 30.7 20.4 44.3 32.4 

SSDS_OF (R) 1000 90 66.9 68.0 72.4 51.9 53.1 32.1 29.5 19.2 44.9 32.4 

             

Nominal             

 1 NA 68.7 69 71.9 53.8 54.4 26.2 24.9 17 40.2 27.6 

Table 5 Results of the robustness evaluation for patient 3 (‘# of scen’ = number of scenarios; ‘CL’ = confidence level). 

The worst-case are shown for each robustness evaluation strategy. For comparison purposes, the nominal values are 

also displayed. The meaning of each robustness evaluation strategy is detailed in Table 1. The abbreviation “prtd” 

stands for “parotid”. 
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Figure 4 Results of the robustness evaluation for patient 3. The meaning of each robustness evaluation strategy 

(mentioned in the title of every graph) is detailed in Table 1. 

 

 

IV. Discussion 

 

The results show that for the patients investigated, SSSS yields the same results whether 

scenarios are simulated inside the isoprobability sphere or only on the surface. This is in line with 

previous findings 4, 5. It is, however, impossible to strictly exclude that a few scenarios inside the 

hypersphere could lead to unexpected loss of target coverage or unexpected OAR exposure. For 

instance, range errors induced by setup errors and explicitly simulated range errors could compensate 
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for some particular points on the surface of the hypersphere but not inside, leading to eventually less 

perturbed dose distributions for some extreme errors. But checking the interior of the hypersphere 

will inevitably lead to an important increase of the scenarios to simulate (from 80 to 240 in our 

examples). Therefore, one may consider for practical purposes to explore only the surface of the 

hypersphere (i.e., the most extreme errors).  

A striking result is that GPSS leads to larger error bands for target coverage, smaller worst-

cases doses overall to OARs, and a smaller confidence level of 81%. In practice, this may lead to the 

decision of replanning because of a lack of target coverage, with the inevitable downside of increasing 

the dose to OARs, with some that are already slightly underestimated (e.g. 0.3 Gy average difference 

for D2 brainstem between GPSS and SSSS). Those results are intuitively expected. Because the GPSS 

strategy only explores 81% of the possible scenarios (assuming robustness against intermediate errors) 

AND arbitrarily select extreme scenarios with a very low probability (i.e. outside the 90% hypersphere, 

thus inconsistent with generally accepted confidence levels (90%)), this leads to an over-conservative 

approach for the target (because of the extreme cases considered) and a possible under-estimation of 

the OARs (because of a larger number of unexplored scenarios). An additional source of inconsistency 

is the arbitrary selection of scenarios with different probabilities (for instance (𝑥!", 𝑦!", 𝑧!", 𝑅𝑈) may 

equal  (4 mm, 0, 0, 0) or (4 mm, 0, 0, 3%) as shown in Figure 3 (a); the first scenario is more likely to 

occur). In clinical practice, GPSS is often implemented differently, with a coarser selection of the 

scenarios in the directions x, y, and z. In such case, the computation of a reliable confidence level 

becomes very problematic. However, we observe similar results for GPSS either with 20 or 80 

scenarios, as it can be seen by comparing Table 3 and Table S 7, which report average results within 

0.3 Gy for the targets and 0.8 Gy for the OARs.  

The SSSS method will lead overall to the most conservative approach, as shown in Table 3 and 

Table 4. Because of the effect of dimensionality (Figure 1), SSSS forces the exploration of scenarios that 

are typically not considered in clinical practice (for photons and protons), for instance an error up to 

2.8Σ!"9:;, which is larger than the more familiar 2.5Σ!"9:;. The effect of the dimensionality has already 

been addressed by Korevaar et al 13.  If more errors are included, for instance baseline shifts and/or 

rotations, the errors to explore would be more extreme as shown by Figure 4.  This is a key weakness 

of the SSSS method. Because we are blind to the effect of the uncertainties on the dose distributions, 

the selection can only be performed on or within isoprobability hypersurfaces in order to ensure 

statistical consistency. As a consequence, the space to explore will increase with the types of errors to 

explore. In practical cases, the dimensionality of the error space is typically 4D, which leads to a mild 

increase of the errors to explore (from 2.5 to 2.8Σ!"9:;). But if a robustness evaluation system aims at 

improved generalizability of the evaluation, it may need to explore more dimensions (inter-fractional 
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anatomical change, breathing variability, etc), which will inevitably lead to an explosion of the 

magnitude of the errors and to extremely conservative treatment plans. In the context of the PTV 

margin recipe, this blindness is overcome by assuming a simple hypothesis related to the dose 

distributions: the static-dose cloud approximation. This allows a simple sum of the associated random 

variables – i.e. quadratic sum of variances in margin recipe – so that the problem remains a 3D 

problem. This hypothesis is rightly forbidden in proton therapy, hence the dimensionality problem that 

appears here.  

The SSDS methods aim precisely at overcoming the downsides of GPSS (inconsistency and 

arbitrariness) and SSSS (over-conservativeness) discussed above. Because the problem under 

consideration is eventually a 3D problem (dose distributions are 3D objects), it is more powerful to 

explore the scenarios in the dosimetric space. In such case, all the potential redundancies in the error 

space will be captured. Moreover, extreme errors that may have a low impact on the dose distribution 

(for instance, a motion parallel to a highly contributing treatment field), can be included in the DVH 

bands naturally. This can be observed in Figure 5, where substantial errors, outside the isoprobability 

hypersphere, could lead to an acceptable dose distribution. Because what is important in the end is 

the confidence level (i.e., the probability of meeting a criterion or not), statistically unlikely errors can 

be included safely provided that the final probability (or confidence level) is correctly computed. This 

leads to a more optimistic estimation of target coverage (2.3 and 1.5 Gy higher on average for D98 of 

the high dose CTV, for SSDS_D95 (S) and SSDS_OF (S) compared to SSSS, respectively). And a mild 

increase (for SSDS_D95 or decrease (for SSDS_OF) of DVH metrics of OARs within 0.8 Gy (on average 

over the 5 patients) compared to SSSS. It is interesting also to mention that such considerations were 

already addressed for establishing confidence levels for PTV margin recipes. In van Herk et al 200014, 

it is written that ‘the margin for treatment preparation (systematic) errors is chosen as a confidence 

interval that is spherically symmetric. However, an infinite number of 90% confidence intervals may 

be chosen that are not spherically symmetric. This observation leaves some room for optimization.’ In 

a follow-up paper, Witte 23 (2017) showed by Monte Carlo simulations how the margin can be 

optimized to reduce OAR dose while maintaining minimum CTV dose. 

However, a new problem that arises is the adequate selection of the scenarios in the 

dosimetric space. In other words, what is the worst dose distribution? How do we define “worst”? 

Table 3 and Table 4 show that the reported worst-case will differ significantly depending on the 

scenario selection method. If we focus on target coverage and select the 90% best D95 (SSDS_D95), we 

obtain the most optimistic result for high dose target coverage, at the expense of generally higher DVH 

metrics for OARs. Such approach would be ideal in cases with no compromise with respect to OARs. 

We would then achieve the best estimate of target coverage, for a confidence level of 90%. However, 

if there are compromises to be made with OARs, then the worst-case dose to OAR will be on the 
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pessimistic side, which may lead to exceed clinical constraints causing the reoptimization of a plan and 

eventually a deterioration of target coverage.  

A solution to the issue of scenario selection based on target coverage only would be to capture 

the clinical compromise made at the planning level and display the 90% best dose distributions, with 

respect to both target coverage and OAR sparing. We propose here to achieve this by computing for 

each scenario the objective function as accepted by the radiation oncologist and the medical physicist 

before robustness evaluation. The objective function provides a quantitative assessment of the quality 

of the plan from a clinical point-of-view, since it integrates clinical objectives and constraints, as well 

as objective function weights used for optimization that are implicitly approved by the radiation 

oncologist. Such approach could also naturally be translated to a model-based dose distribution 

assessment, for instance using tumor control and normal tissue complication probabilities.  

The SSDS_OF method yields less optimistic numbers for high dose target coverage than 

SSDS_D95, but those are still significantly larger than GPSS and SSSS (2.0 and 1.5 Gy larger for D98 on 

average, respectively). However, the results obtained for OARs are on average comparable to both 

GPSS and SSSS. Interestingly, SSDS_OF also yields results for the low dose target comparable to SSSS. 

Therefore, SSDS_OF seems to better capture the plans that will lead to the best clinical compromises.  

One potential issue of the SSDS_OF method is that objective functions vary by nature from one 

patient to another depending on the tuning of objective/constraint weights in order to achieve a 

clinically acceptable compromise between target coverage and OAR sparing. This may lead to 

undesired variability in robustness reporting. However, such feature could also be seen as an 

advantage. Two identical robustness evaluation results may lead to different appreciations by a 

radiation oncologist depending on individual patient characteristics. For instance, more attention can 

be given to a particular organ-at-risk in a given patient. Such patient-specific characteristics are at least 

partially entailed implicitly in the objective function. As a consequence, selecting the best dose 

distributions according to the value of the objective function will tend to be more faithful to the clinical 

compromises made at the treatment optimization level, and therefore reduce variability in patient 

reporting from a clinical perspective.  Such approach also motivates the radiation oncologist to better 

formalize the clinical goals he/she aims to achieve before the robust optimization phase starts. This is  

in line with an improved standardization of the treatment planning workflow, which is essential for its 

automation.  

It is important to note that the computation of confidence levels in the dosimetric space has 

already been illustrated by Perko et al 19 with the polynomial chaos expansion. Perko et al have also 

identified the potential of working in the dosimetric space to estimate the magnitude of the errors to 

be included in the robustness evaluation to achieve given statistical criteria, e.g. coverage of the CTV 

in a given fraction of the patients.  The only requirement to work in the dosimetric space is to have a 
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fast dose engine available in order to generate enough dose distributions to compute statistical 

quantities. This is exactly the purpose of the polynomial chaos expansion method that proposes a novel 

approach to generate a virtually infinite number of dose distributions after taking the time to generate 

a comprehensive dose calculation model (based on about 100 pre-computed scenarios).  In our work, 

we use a fast Monte Carlo dose engine associated with statistically defined stopping criteria to 

generate the required scenarios. Another difference with the study by Perko et al, is that the authors 

evaluate the robustness for each volume of interest separately, while we attempt to evaluate methods 

to select scenarios globally. The approach of Perko et al could be trivially adapted to our methodology. 

An advantage of a global approach is that it naturally takes into account correlations between the DVH 

metrics since a set of dose distributions is selected.  

The explicit simulation of random errors leads to results that are on average more optimistic 

than their counterparts with systematic errors only. We remind here that we have always used sets of 

(Σ, 𝜎) that lead to a consistent CTV-to-PTV margin of 4 mm using the simplified formula of van Herk et 

al (2.5Σ + 0.7𝜎). This indicates that this formula might be overconservative for the patients 

investigated in this study. More aggressive plans could therefore be achieved using a statistically sound 

robustness evaluation method that includes random errors. For instance, SSDS_OF (R) yields a worst-

case D98 for low dose target that is on average 0.5 Gy higher than SSDS_OF (S). For the right parotid, 

the worst-case Dmean is 0.9 Gy lower for SSDS_OF (R) than SSDS_OF (S). It is interesting to compare 

SSDS_OF (R) with GPSS by analyzing the last line of Table 4. SSDS_OF (R) estimates a better target 

coverage, overall more optimistic organ-at-risk sparing, and all this for a higher confidence level (90% 

versus 81%). 

It is not the purpose of this paper to suggest a procedure for robustness evaluation. First of all, 

such procedures will strongly depend on the tumor site considered, the advancement of computing 

technology, the number of effects we want to consider, and clinical practice. For instance, the group 

at PSI has suggested a robustness evaluation procedure built up across many publications that is well 

suited for locations with small systematic errors5. The computation of confidence levels was also 

included for the effect of fractionation3. Other groups have suggested to include variable 

radiobiological models in their evaluation24. However, most robustness evaluation strategies reported 

in the literature select separately setup errors and range errors according to good practice rules, 

without considering the computation of confidence levels, neither in the error space nor in the 

dosimetric space8, 16, 25. As mentioned before, Perko et al do compute appropriately confidence levels 

in the dosimetric space using the polynomial chaos expansion method19. Finally, we have reported 

here worst-case DVH metrics for both target volumes and OARs. One could argue that for parallel-like 

OAR, like lungs, DVH metrics averaged over the entire set of dose distributions could be more 

meaningful. In such case, the problem is made trivial for our SSDS methods since we can simply average 
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all DVH metrics over all simulated scenarios. SSSS (IN) should also work. However, adaptations will be 

required for GPSS and SSSS (ON) since those sample only extreme scenarios, whilst the accurate 

computation of average DVH metrics would require also intermediate values.  

The choice of a robustness evaluation procedure entails also pragmatic considerations such as 

the time needed to execute the procedure. The SSDS methods are time consuming because enough 

scenarios need to be simulated in order to minimize the impact of the statistical noise on the reported 

values. In Souris et al18, about 300 scenarios seemed adequate to ensure convergence of the results. 

An intrinsic advantage of Monte Carlo simulations is that the computation time does not scale 

necessarily with complexity. For instance, random errors can be simulated comprehensively with 

minimal impact on computation time. Yet, we report here 153 s computation time per scenario, which 

leads to a total computation time of 13 h for 300 scenarios, which is the maximum limit one may 

consider in clinical practice (this would correspond to calculations performed overnight).  However, 

such computation time would only be acceptable for a final check, but not for an iterative approach 

where treatment plans are re-optimized several times according to the results of the robustness 

evaluation. Therefore, significant improvements are needed to warrant dosimetric selection of 

scenarios in the clinical practice. This may be achieved by improving the speed of the Monte Carlo dose 

engine, or the introduction of variance reduction techniques for enabling more efficient sampling of 

the scenarios, as suggested in Souris et al18. The polynomial chaos expansion method can also be used 

to reduce somewhat the number of dose computations needed, and hence speed-up the overall 

process19.  

The distinction between the error space and the dosimetric space has been made in the 

current study for protons only. In general, such distinction is not made in photon therapy because of 

the usual hypothesis of shift invariance of the dose distributions. If the hypothesis is true, the issue of 

robustness for target coverage can be formulated as a geometric problem, which leads to safety 

margin recipes. However, such hypothesis is not necessarily true (for instance, misplaced shoulders in 

head-and-neck tumors that cause undesired attenuation). Therefore, photon-based treatment plans 

could also benefit from comprehensive robustness evaluation strategies, which would also help for 

defining common dose metrics to evaluate proton and photon plans. One can also note that photon-

based plans may still benefit from a comprehensive robustness evaluation in the dosimetric space 

under the hypothesis of shift-invariance of the dose distributions, for instance to reveal robustness 

improvements due to non-perfect conformity to the target, or to generate DVH-bands using advanced 

metrics like the value of the OF. 

Finally, it is important to mention that the results presented here were achieved using PTV-

based treatment plans, that is, non-robustly optimized. Many papers have shown that robust 

optimization is more suitable to ensure adequate plan robustness10. Qualitatively, our conclusions 
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should remain valid if we apply our robustness evaluation methods to robust optimized plans, although 

this must be confirmed in further studies. Quantitatively, robust optimization is expected to mitigate 

the differences observed during the present study between the various robustness strategies.  

However, complex treatment plans with adjacent target volumes and OARs might lead to 

challenging clinical trade-offs, even in the context of robust optimization. In such case, having at one’s 

disposal a statistically fair and comprehensive evaluation strategy will help to provide the patients with 

the best treatment plans, with improved safety. Another limitation of our study resides in the 

computation of the objective function in the evaluation phase. We have tried to reproduce the best 

we could the objective function used in the RayStation. However, hidden terms or unforeseen 

mathematical expressions could be used in the RayStation’s objective function and would not be 

captured by our computation. It would be interesting to compare our results for SSDS_OF to those that 

would be obtained using the objective function used within the RayStation. Another option would be 

to design objective functions exclusively for evaluation.  
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Figure 5 Representation of the scenarios selected by the robustness evaluation SSDS_D95. Each scenario is represented 

with respect to the simulated range uncertainty and the norm of the sampled setup error (se) "𝒙′𝟐 + 𝒚′𝟐 + 𝒛′𝟐 where 

𝒙0 = 𝒙𝐬𝐞
𝚺𝐬𝐞𝐭𝐮𝐩

, 𝒚0 = 𝒚𝐬𝐞
𝚺𝐬𝐞𝐭𝐮𝐩

, 𝒛0 = 𝒛𝐬𝐞
𝚺𝐬𝐞𝐭𝐮𝐩

 . Black dots are excluded from the DVH-band while red dots are included in the DVH 

band. The red dots represent the best 90% values of the D95. The large black circle represents all equiprobable 

configurations in the (4D) error space (90% confidence level in the error space). Diagram not to scale. 

 

V. Conclusions 

Robustness evaluation is a critical step in proton therapy treatment planning. Typically, we aim 

at evaluating worst-case scenarios within a reasonable set of possible treatment errors.  Depending on 

the outcome of the robustness evaluation, treatment plan optimization may be resumed for enhancing 

the quality of the plan in terms of target coverage and/or organs-at-risk dose. Therefore, the 

information delivered by the chosen robustness evaluation strategy must be as accurate and as 

comprehensive as possible. 

We have provided several ways to evaluate statistically the robustness of the plan. An 

approach based on good practice rules, typically used in current clinical practice, is overall pessimistic 

for target coverage and optimistic for organs-at-risk sparing, with a relatively low confidence level 

(81%). Exploring the possible scenarios in the error space in a statistically consistent fashion enables a 

larger and more familiar confidence level (90%), but at the cost of conservative evaluations of worst-

case DVH metrics.  

Another approach would be to select scenarios in the dosimetric space, i.e. to select the best 

dose distributions according to a priori defined clinical criteria. Focusing on target coverage provides 

considerably more optimistic target coverage metrics (and mildly pessimistic OAR sparing). This would 

probably be a good approach when OAR sparing is easily achievable, and one wants to deliver the most 

conformal dose possible to achieve target coverage for a given confidence level. A more balanced 

approach would be to classify the best dose distributions according to the value of the objective 

function accepted by the radiation oncologist. In such case, a good balance is obtained between the 

reported worst-case target coverage and OAR sparing. Such approach could be easily implemented in 

existing commercial solutions.   
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