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Abstract 

There is broad consensus on the assumption that adults solve single-digit multiplication 

problems almost exclusively by fact retrieval from memory. In contrast, there has been a 

long-standing debate on the cognitive processes involved in solving single-digit addition 

problems. This debate has evolved around two theoretical accounts. Proponents of a fact-

retrieval account postulate that these are also solved through fact retrieval, whereas 

proponents of a compacted-counting account propose that solving very small additions (with 

operands between 1 and 4) involves highly automatized and unconscious compacted counting. 

In the present electroencephalography (EEG) study, we put these two accounts to the test by 

comparing neurophysiological correlates of solving very small additions and multiplications. 

Forty adults worked on an arithmetic production task involving all (non-tie) single-digit 

additions and multiplications. Afterwards, participants completed trial-by-trial strategy self-

reports. In our EEG analyses, we focused on induced activity (event-related 

synchronization/desynchronization, ERS/ERD) in three frequency bands (theta, lower alpha, 

upper alpha). Across all frequency bands, we found higher evidential strength for similar 

rather than different neurophysiological processes accompanying the solution of very small 

addition and multiplication problems. In the alpha bands, evidence for similarity was even 

stronger when operand-1-problems were excluded. In two additional analyses, we showed that 

ERS/ERD can differentiate between self-reported problem-solving strategies (retrieval vs. 

procedure) and between very small n × 1 and n + 1 problems, demonstrating its high 

sensitivity to cognitive processes in arithmetic. The present findings support a fact-retrieval 

account, suggesting that both very small additions and multiplications are solved through fact 

retrieval.  

Keywords: arithmetic; problem-solving strategies; induced EEG; ERS/ERD; fact 

retrieval; compacted procedures  
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Fact retrieval or compacted counting in arithmetic  a neurophysiological investigation 

of two hypotheses 

After more than three decades of research on cognitive processes in arithmetic, there is 

broad consensus that fact retrieval (i.e., direct retrieval of the solution from an arithmetic fact 

network in long-term memory) is the dominant process for solving multiplication problems 

involving operands 2 to 9 (e.g., 2 × 3) in adults (Ashcraft, 1992; Campbell & Epp, 2005). This 

assumption is in line with the observation that the multiplication table is often instructed via 

verbal rote learning in school and with results from several behavioral and neurophysiological 

studies. For instance, adults solve single-digit multiplication problems quickly (e.g., Groen & 

Parkman, 1972), usually indicate the use of fact retrieval in strategy reports (e.g., Campbell & 

Xue, 2001), and display brain activation patterns related to language processing, which is 

taken as evidence that these multiplications are retrieved as (verbal) facts from semantic 

memory (e.g., Prado et al., 2011). In contrast, there has been a long-standing debate on the 

cognitive processes involved in solving single-digit addition problems (e.g., 2 + 3) (Baroody, 

2018; Campbell & Xue, 2001). In recent years, this debate has evolved around two major 

theoretical accounts: a fact-retrieval account and a compacted-counting account (Baroody, 

2018; Chen & Campbell, 2018; Uittenhove, Thevenot, & Barrouillet, 2016). In the current 

electroencephalography (EEG) study, we used neurophysiological measures to pit these two 

accounts against each other and to shed new light on this long-standing debate.  

Proponents of a fact-retrieval account, on the one hand, postulate that educated adults 

solve single-digit addition and multiplication problems through a similar cognitive process, 

i.e., fact retrieval from long-term memory (e.g., Ashcraft & Guillaume, 2009; Campbell & 

Thompson, 2012; Lefevre, Bisanz, & Mrkonjic, 1988). Even though additions are usually not 

instructed via rote learning as is often the case in multiplications, it is assumed that after 

enough practice in solving these problems they are eventually stored as arithmetic facts in 



FACTS OR PROCEDURES IN ARITHMETIC 4

 
 

long-term memory. Therefore, the solutions to single-digit additions can also be rapidly 

retrieved.  

Proponents of a compacted-counting account, on the other hand, argue that some single-

digit additions, in particular very small ones, are solved through a rapid and unconscious 

arithmetic (counting) procedure, also the result of years of practice (e.g., Barrouillet & 

Thevenot, 2013; Uittenhove et al., 2016). This procedure is assumed to be highly automatic 

(compacted) such that it is equally fast as fact retrieval and does not reach consciousness. 

Given the rapid problem-solving process, individuals would have the feeling of having 

retrieved a fact from memory and therefore would report this strategy.  

The assumption of compacted or automatic reproductive processes in solving single-digit 

additions is based on the compacted-procedure account that goes back to Baroody (1983). In 

this seminal paper, Baroody argued that the typical developmental performance increase in 

arithmetic problem solving may not only be due to a change in strategies (from slow 

procedural strategies to fast fact retrieval) but also to a stronger reliance on automatic 

relational (rule- or reasoning-based) knowledge. Thus, in educated adults, the fast (and 

accurate) solving of simple arithmetic problems may also reflect the application of principled 

procedures. The abovementioned compacting-counting account in addition can be regarded as 

a specific instance of the compacted-procedure account (Baroody, 1983). This view does not 

only challenge widely accepted theories about arithmetic development and the solution 

processes in educated adults (e.g., Ashcraft, 1982; Ashcraft & Guillaume, 2009; Siegler, 

Adolph, & Lemaire, 1996), but it also questions the common inference of fact retrieval use 

from short response times and procedural strategy use from longer ones (e.g., De Smedt, 

Grabner, & Studer, 2009; Groen & Parkman, 1972; LeFevre, Sadesky, & Bisanz, 1996).  

idea on automatic procedural knowledge has seen a revival in the past 

years due to behavioral findings observed in small additions that seem to be incompatible 

with the fact-retrieval account (e.g., Barrouillet & Thevenot, 2013; Uittenhove et al., 2016). 
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These findings mainly come from detailed analyses of the problem-size effect in single-digit 

additions (Barrouillet & Thevenot, 2013; Uittenhove et al., 2016) and operator priming effects 

in multiplications and additions (Fayol & Thevenot, 2012; Roussel, Fayol, & Barrouillet, 

2002).  

The problem-size effect is a robust and well-established behavioral finding in arithmetic 

(for a review, cf. Zbrodoff & Logan, 2005), which is reflected in longer reaction times and 

lower accuracies when solving problems with larger operands (e.g., additions with sums > 10) 

compared to those with smaller operands (e.g.,  10). Barrouillet and 

Thevenot (2013) conducted a detailed investigation of the problem-size effect in single-digit 

additions. They presented addition problems with operands from 1 to 4 to adult students 

(n = 92) and found a clear problem-size effect in the non-tie problems (i.e., 12 problems with 

different operands): Reaction times were highly correlated with the . The 

authors argued that a problem-size effect in these very small problems does not fit well with 

the fact-retrieval account, because retrieval times should not vary significantly between these 

overlearned problems, nor should they agnitudes. 

Rather, these findings would be more in line with the hypothesis of 

 (p. 44) that scrolls 

 35). This scrolling would resemble a counting strategy, 

moving first to the position of the first operand and then counting on by the second operand to 

the correct sum.  

Uittenhove et al. (2016) extended the study by Barrouillet and Thevenot (2013) by 

including the full set of single-digit addition problems and individual strategy reports. 

Specifically, 90 adults worked on all possible 81 single-digit addition problems (ties and non-

ties) in two sessions. In the first session, all problems were presented six times. In a second 

separate session, after solving them again (once), participants reported the applied strategy for 

each problem. The self-reported frequency of fact retrieval was the best predictor of the 
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reaction times in the entire set of non-tie problems. In the small non-  10), 

however, reaction times displayed the highest correlations with the minimum and 

product. A plot of the sum-related reaction time increase (Uittenhove et al., 2016, Fig. 1) 

suggested that a problem-size effect emerged only for the smallest problems (sums between 3 

and 7), whereas in the other small problems (sums between 7 and 10) no reaction time 

increase was observed. This pattern of findings led Uittenhove et al. to suggest that fact 

retrieval could not have been used for the smallest problems (i.e., with operands between 1 

and 4). In an additional analysis, which is most relevant to the present study, they focused on 

a sub-sample of 51 participants who reported fact retrieval in all of the problems with 

operands between 1 and 4. Within these 12 very small problems, reaction time was highly 

correlated wit  sum, as was also observed by Barrouillet and Thevenot (2013). 

In the medium small problems (sums from 7 to 10, without n + 1 problems; six problems), in 

contrast, no problem size effect was found. A similar finding emerged when the n + 1 

problems were analyzed separately from the other problems. In the very small problems, both 

the six n + 1 and six n + m problems showed a significant problem size effect, which was 

stronger than that for the two problem categories in the medium small additions. Together, the 

findings in the very small problems were interpreted to be incompatible with the fact-retrieval 

account. Instead, the authors argued that the solutions to these addition problems are 

, 

 (p. 298). The medium small 

problems were assumed to be solved through a mixture of fact retrieval (in the n + m 

problems) or the application of a one-greater rule (in the n + 1 problems).  

Further behavioral evidence for the compacted-counting account comes from priming 

studies, in which multiplications and additions were compared. Roussel, Fayol, and 

Barrouillet (2002) as well as Fayol and Thevenot (2012) administered an operator priming 



FACTS OR PROCEDURES IN ARITHMETIC 7

 
 

task, in which the operation sign (i.e  ms) before 

both arithmetic operands. This priming resulted in faster responses for additions and 

subtractions but not for multiplications. Interestingly, the priming effect in addition was 

independe  5) as well as large problems 

 5). The operation-dependent facilitation effect was attributed to a pre-activation 

of an arithmetic procedure which is later used to solve the problem. Because this pre-

activation did not emerge for multiplications, it was again concluded that in single-digit 

additions, even in small problems, procedural processes take place.  

The conclusion of compacted procedures in single-digit additions based on behavioral 

findings from these and other studies (Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016; 

Thevenot, Barrouillet, Castel, & Uittenhove, 2016; Thevenot, Fanget, & Fayol, 2007), 

however, has not been met without criticism. Chen and Campbell (2018) recently reviewed 

the current evidence and concluded that the idea of compacted procedures 

and does not justify significant revision of the long-standing assumption in cognitive science 

that direct memory retrieval is ultimately the most efficient process of simple addition

(p. 751; but see also Baroody, 2018). Based on re-analyses of data, 

Chen and Campbell argued that there is no discontinuity in the problem-size effect between 

the very small addition problems (operands 1 to 4, assumed to be solved through automatic 

counting procedures) and other (medium) small problems (in which fact retrieval should 

occur). In addition, they reported evidence from other studies using the operator priming task 

demonstrating facilitation effects in both additions and multiplications (Chen & Campbell, 

2015a) and even in zero- and one-problems (e.g., n + 0, n × 1; Chen & Campbell, 2015b). 

Chen and Campbell also emphasized that the assumption of automatic counting procedures in 

very small additions is incompatible with the lack of generalization of practice effects. If a 

procedure was used, then practicing this procedure using a subset of problems should result in 

a speed-up in performance of similar unpracticed problems. Such a generalization effect, 
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however, was only found for n + 0 problems (indicating the application of a procedure) but 

neither for n + m nor for n + 1 problems (e.g., Campbell & Beech, 2014; Campbell, Dufour, & 

Chen, 2015; Chen & Campbell, 2014; but see also Baroody, 2018, for an alternative 

interpretation). Finally, they argued that the assumption that adults have automatized the 

inefficient sum-counting strategy (i.e., count all operands) seems unlikely given that children 

typically abandon this strategy rather early in their development and replace it with a more 

efficient min-counting strategy (i.e., start counting from the larger operand; see also Chen, 

Loehr, & Campbell, 2019).  

Because a compacted-counting account assumes that the (counting-like) procedure is 

unconscious and very fast, it cannot be distinguished from fact retrieval with behavioral 

measures, in particular with reaction times and strategy self-reports. Adding the 

neurophysiological level of analysis may provide crucial insights into these arithmetic 

problem-solving processes in order to advance the debate (De Smedt & Grabner, 2015). In 

particular, EEG correlates may help to answer the critical question of whether similar or 

distinct cognitive processes occur while solving very small single-digit additions and 

multiplications. Due to its high temporal resolution, the individual problem-solving process in 

each trial (from problem onset to response) can be captured with high accuracy. In addition, 

EEG measures turned out to be highly sensitive to cognitive processes in arithmetic problem 

solving so that subtle differences between operations can be detected (e.g., Grabner & De 

Smedt, 2011, 2012; Tschentscher & Hauk, 2016).  

To date, there are only three studies that used EEG to study arithmetic and compare 

single-digit multiplications and additions (Wang, Gan, Zhang, & Wang, 2018; Zhou et al., 

2011, 2006). However, their results remain inconclusive regarding our question of 

investigation because of two major limitations. First, in all studies small and large single-digit 

problems were analyzed together. Therefore, it is unclear to what extent activation differences 

emerge in very small, medium small, and large problems. A direct test of the compacted-
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counting account would require a specific focus on the very small problems (with operands 

from 1 to 4). Second, all studies administered a (delayed) verification task, which hinders the 

comparison with the results from reaction time studies (Barrouillet & Thevenot, 2013; 

Uittenhove et al., 2016), in which participants had to actively produce the answer.  

Most recently, Wang et al. (2018) used a modified operator priming paradigm (operator 

presented 150 ms before the operands, verification 1500 ms after the operands) to test whether 

single-digit additions show a greater recruitment of an executive function network than 

multiplications. They focused on induced (oscillatory) EEG activity and observed larger theta 

power increase in additions over midline and right hemisphere areas as well as larger lower 

alpha phase locking in anterior and central areas. In both cases, however, the effects emerged 

during priming (when the operation sign was shown) and extended only to 200 400 ms after 

the . Therefore, these findings were interpreted 

difference between the two arithmetic operations rather than calculation-

(p. 87) and to be of the hypothesis that procedural strategies are implicated in 

single-  91).  

The present study directly examined the central question of whether very small single-

digit additions and multiplications are solved through similar (in line with a fact-retrieval 

account) or different (in line with a compacted-counting account) cognitive processes using 

neurophysiological data from a group of adults. Our experimental design and material was 

based on the study by Uittenhove et al. (2016). During EEG recording, we administered an 

arithmetic production task with all (non-tie) single-digit addition and multiplication problems. 

After the EEG session -solving strategies.  

We analyzed induced EEG activity, which is related to task-related coupling and 

uncoupling of functional networks in the brain (Bastiaansen & Hagoort, 2003; Klimesch, 

Schack, & Sauseng, 2005). Induced activity in the theta (around 4 7 Hz) and two alpha bands 

(lower: 8 10 Hz, upper: 10 12 Hz) has turned out to be particularly sensitive to (a) the 
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cognitive processes in arithmetic problem solving (e.g., Grabner & De Smedt, 2011, 2012; 

Tschentscher & Hauk, 2016), in particular fact retrieval and procedural strategies, (b) 

operation differences between single-digit additions and multiplications (Wang et al., 2018), 

and (c) the arithmetic problem-size effect (De Smedt et al., 2009; Rütsche, Hauser, Jäncke, & 

Grabner, 2015). It has been shown that small (as compared to large) problems and problems 

self-reported to be solved through fact retrieval (as compared to procedures) elicit larger 

power increases (event-related synchronization; ERS) in the theta band, particularly in the left 

hemisphere. This higher theta band ERS has been interpreted to reflect the retrieval of 

semantic information (in this case arithmetic facts) from long-term memory, as theta activity 

has been assumed to link lexical-semantic representations over the cortex and between the 

cortex and the hippocampus (e.g., Bastiaansen, Hagoort, Neuper, & Klimesch, 2006; Marko, 

. Large problems and problems 

associated with procedural strategy self-reports, in contrast, were associated with larger 

bilateral power decrease (event-related desynchronization; ERD) in the (lower and upper) 

alpha bands (De Smedt et al., 2009; Grabner & De Smedt, 2011, 2012; Rütsche et al., 2015). 

Because alpha ERD has been found to increase with task difficulty and to be associated with 

attentional processes (Klimesch, 2012; Ku, Hong, Gao, & Gao, 2010; Pfurtscheller & Lopes 

da Silva, 2005), this pattern was assumed to indicate the application of effortful and attention-

demanding procedures in solving these problems.  

In the first EEG analysis, we examined whether we can replicate the association of 

induced EEG activity with different problem-solving strategies (fact retrieval vs. procedural 

strategies) in the set of single-digit addition and multiplication problems. Based on previous 

findings (Grabner & De Smedt, 2011, 2012; Tschentscher & Hauk, 2016), we expected higher 

theta ERS and smaller alpha ERD (in the lower and upper alpha band) for problems that were 

reported to be solved through fact retrieval compared to those reported to be solved through 

procedural strategies.  



FACTS OR PROCEDURES IN ARITHMETIC 11

 
 

In the main analysis, we used Bayesian statistical methods to compare the strength of 

evidence for the fact-retrieval and the compacted-counting accounts in the very small 

problems (operands between 1 and 4), as defined by Uittenhove et al. (2016). According to a 

compacted-counting account, different cognitive processes take place during the solution of 

addition (i.e. counting procedure) compared to multiplication problems (i.e. retrieval). As a 

result, there should be stronger evidence for differences than for similarity in induced theta 

and alpha EEG activity. According to a fact-retrieval account, very small problems in both 

addition and multiplication are expected to be solved via memory retrieval and, therefore, the 

evidence should be stronger for similarity rather than for differences. Similar to Uittenhove et 

al. (2016), we focused on self-reported retrieved problems and conducted the analysis for all 

12 very small problems, and separately, for the six very small problems without the n + 1 and 

n × 1 problems.  

In a final step, we compared EEG activity between very small n + 1 and n × 1 problems. 

As reviewed by Chen and Campbell (2018), there is evidence from studies on effects of 

generalization practice (e.g., Campbell & Beech, 2014; Campbell et al., 2015; Chen & 

Campbell, 2014) that n × 1 problems are solved through a different cognitive process than n + 

1 problems. Chen and Campbell argued that the first would involve the application of an 

algebraic procedure (identity rule; in n × 1 problems n is the solution), whereas the latter 

would be solved by an item-specific process that may resemble fact retrieval. Baroody (2018) 

added that the lack of generalization practice in n + 1 problems can also be explained by a 

different type of procedure. Specifically, he argued that in n + 1 problems the solution can be 

deduced from known information (the solution to n + 1 is always the number after n in the 

counting sequence), thus reflecting a reasoning-based procedure. Even though different types 

of cognitive processes are involved in solving n + 1 and n × 1, the solution of both types of 

problems is typically very fast and accompanied by self-reports of fact retrieval. If the EEG 

measures are sensitive to both conscious self-reported strategies and subtle differences in very 
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fast cognitive processes, then the activity pattern for n + 1 and n × 1 problems should be 

different.   
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Method 

Sample 

The sample consisted of 40 right-handed adults (20 female, 20 male) without known 

calculation difficulties, vision problems or psychiatric disorders. Participants were between 18 

and 29 years old (M = 21.9 years, SD = 3.0). In total, 27 participants were psychology 

students, and the remaining 13 participants had at least a high school diploma. The study was 

approved by the local ethics committee. All participants gave written informed consent, and 

psychology students received course credit for their participation. After the end of the study, 

two randomly selected participants received a gift card worth  10 each. 

Materials 

EEG session 

EEG trials consisted of addition and multiplication problems with all 72 operand 

combinations between 1 and 9 without tie problems. We separated the addition problems into 

three different problem sizes based on Uittenhove et al. (2016): 

 Very small problems (12 problems; operands 1 to 4, sum  7) 

 Medium small problems (28 problems; remaining small problems with sum  10) 

 Large problems (32 problems; operands 2 to 9, sum > 10) 

To facilitate comparability of addition and multiplication problems, we used the same 

operand combinations in the multiplications to define the problem sizes. Consequently, the 

operands were the same but the results differed between operations.  

Because the focus of the study lies on potential cognitive differences between addition 

and multiplication in the very small problems, each very small problem was presented nine 

times. The medium small and large problems were presented twice (except for the 1 + 5 and 

2 + 5 problems, which were also presented nine times). This resulted in 256 trials per 

operation and a total of 512 trials. 
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Figure 1 illustrates the timing of an EEG trial. Each trial started with the presentation of a 

fixation point for 2 seconds, after which the problem appeared. Participants were instructed to 

solve the problem as accurately and quickly as possible and to speak the solution out loud. A 

microphone recorded the responses, from which we computed reaction times (RT) from 

stimulus presentation to speech onset. Oral responses were noted by the experimenter and 

cross-checked using the audio recordings, which we used to categorize trials into correct or 

incorrect. After the response, an inter-trial interval (ITI) of 1 second followed. If the 

participants did not answer, there was a timeout after 5 seconds. Prior to the actual EEG 

paradigm, participants solved 10 practice problems to familiarize themselves with the 

experimental task (the practice problems consisted of single-digit tie problems, which were 

not part of the problems in the study). 

Solution strategy session 

Similar to Uittenhove et al. (2016), data collection for self-reported solution strategies 

took place after the EEG session in a separate session. First, participants read an information 

sheet with explanations and examples for possible solution strategies in simple arithmetic 

(following Campbell & Xue, 2001; LeFevre et al., 1996). In the subsequent computer-based 

paradigm, they solved each addition and multiplication problem from the EEG session again, 

but this time only once. Figure 2 shows a schematic illustration of a trial for the solution 

strategy session. Similar to the EEG trials, each trial started with the presentation of a fixation 

point (2 seconds), followed by the arithmetic problem. Participants were again instructed to 

solve the problems as accurately and quickly as possible, but this time participants gave their 

answer by typing in digits using a number pad. Again, there was a timeout of 5 seconds. 

Afterwards, a slide with solution strategies appeared on the screen, and participants reported 

their solution strategy by selecting either 1 (retrieval), 2 (counting), 3 (transformation) or 4 

(other strategy). The inter-trial interval (ITI) was 1 second. 

Data recording 
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We recorded the electroencephalogram (EEG) with a BioSemi ActiveTwo system 

(BioSemi, Amsterdam, Netherlands) using 64 electrodes placed according to the extended 10

20 system. Three additional electrodes recorded the electrooculogram (EOG) to detect 

horizontal and vertical eye movements. Two EOG electrodes were placed horizontally at the 

outer canthi of both eyes, and the third electrode was installed above the nasion. EEG and 

EOG signals were sampled at 512 Hz and lowpass-filtered at 128 Hz. 

In both sessions, we implemented and presented the paradigms using the open-source 

stimulus presentation toolbox PsychoPy (Peirce, 2009) (http://www.psychopy.org/). 

Procedure 

In the EEG session, participants completed 512 trials in four blocks of 128 trials. Each 

block consisted of only one arithmetic operation, yielding two addition and two multiplication 

blocks. Within each block, problems were presented in a fixed pseudorandomized order. The 

addition and multiplication blocks were presented in alternating sequence. Half of the 

participants started with an addition block, and the other half started with a multiplication 

block. There was a short break (maximum 2 minutes) between the blocks. After the end of the 

collected. In the subsequent paradigm assessing self-reported solution strategies, participants 

completed all addition and multiplication problems without repetition. Therefore, they solved 

the trials in two pseudo-randomized single-operation blocks of 72 trials each. Participants 

started with the same operation as in the EEG paradigm. The whole test session took about 2 

to 2.5 hours in total. 

Data analysis 

Performance data 

We extracted reaction times (RTs), which we defined as the time from problem onset 

until voice onset, by analyzing the individual recorded audio files. To this end, we used the 

default high frequency content onset detection algorithm (Masri, 1996) provided by the open-
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source aubio library (https://aubio.org/). In our RT analysis, we used only correctly solved 

problems, thereby discarding all trials that were either incorrectly solved or not solved at all 

(timeout), trials with reaction times less than or equal to 0.5 s (because these are likely false 

activations), and trials with technical or other problems. In total, we discarded 2.5% of all 

trials across participants. 

EEG data 

First, we filtered the recorded signals between 0.5 Hz and 45 Hz to eliminate slow-

frequency and power-line contamination. Next, we visually examined continuous activity as 

well as power spectral densities of all 64 EEG channels. We removed bad channels (i.e. 

disconnected channels or channels with excessive amount of noise) from further analyses. 

Subsequently, we re-referenced the remaining channels using a common average reference, 

and we manually marked segments containing motor activity or miscellaneous technical 

artifacts. Finally, we performed Extended Infomax independent component analysis (ICA) 

(Lee et al., 1999) to remove ocular activity from the EEG signals (Jung et al., 2000). We 

carried out all these preprocessing steps with custom Python scripts using the open-source 

toolbox MNE-Python (Gramfort et al., 2013; Gramfort et al., 2014) (https://mne.tools/). 

Using the clean data, we computed ERS/ERD in the theta (4 7 Hz), lower alpha (8

10 Hz), and upper alpha (10 12 Hz) frequency bands. For ERS/ERD computation, we used 

only artifact-free samples from correct trials. The baseline (or reference) interval (R) 

comprised EEG data from 250 ms to 1750 ms after trial onset (during the fixation phase). The 

activation interval (A) contained the time period from problem presentation (at 2000 ms) until 

125 ms before voice onset (to exclude any influence of motor and/or speech artifacts). 

Therefore, the activation interval contained the entire time period of arithmetic problem 

solving (for a similar procedure, see e.g., De Smedt et al., 2009; Grabner & De Smedt, 2011). 

In contrast to fixed activation intervals, which may only capture parts of the individual 
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problem-solving process or may include task-unrelated processes, these variable activation 

intervals allowed us to control for differences between individuals, task conditions, and trials. 

Computing ERS/ERD values started with band power values for R and A intervals, 

respectively. First, we computed the medians over the respective time intervals for each trial 

(horizontal averaging). After that, we calculated the medians across trials belonging to the 

groups of interest (e.g. the three different problem sizes; vertical averaging). This resulted in 

one R value and one A value per channel for each of the three frequency bands. Using these 

values, the amount of ERS/ERD is then equal to [(A  R) / R] · 100%. Positive values indicate 

ERS (increase in band power relative to reference interval) and negative values indicate ERD 

(decrease in band power relative to reference interval). Similar to previous studies (e.g., De 

Smedt et al., 2009; Grabner & De Smedt, 2011, 2012), for statistical analyses, we aggregated 

ERS/ERD values (using the arithmetic mean) for eight regions of interest (ROIs) per 

hemisphere: anterio-frontal (left: FP1, AF7, AF3; right: FP2, AF4, AF8), frontal (left: F7, F5, 

F3, F1; right: F2, F4, F6, F8), fronto-central (left: FC5, FC3, FC1; right: FC2, FC4, FC6), 

central (left: C5, C3, C1; right: C2, C4, C6), centro-parietal (left: CP5, CP3, CP1; right: CP2, 

CP4, CP6), parietal (left: P7, P5, P3, P1; right: P2, P4, P6, P8), parieto-occipital (left: PO7, 

PO3, O1; right: PO4, PO8, O2), and temporal (left: FT7, T7, TP7; right: FT8, T8, TP8). 

Statistical analysis 

Operation differences in the performance data (error rates and RTs) were analyzed 

through traditional t- d separately for each 

problem size. Results of the self-reported solution strategies are presented descriptively for 

the two operations and three problem sizes.  

In the EEG data analysis (ERS/ERD in three frequency bands), we performed Bayesian 

model comparisons using an ANOVA-like design with the factor-of-interest (strategy, 

operation, or problem category), hemisphere (left vs. right) and ROI (eight regions as 

described in the previous section). In addition, all models included the random factor 
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participant (id) to account for repeated measures. We fitted all possible models to our 

ERS/ERD data, sorted the models with respect to their Bayes factors (BF), and compared the 

best model with a model that differs only in the inclusion/exclusion of the factor-of-interest. 

To quantify how much one model is preferred over the other, we computed the BF of the best 

model compared to the other model by dividing the BFs of the two models. The rationale 

behind this approach is as follows. If the model that best explains the data contains the factor-

of-interest, and if comparing this model with the corresponding model without the factor-of-

interest results in a large BF, the evidence is stronger for differences than for similarities. 

However, if we find that the model that best explains the data does not contain the factor-of-

interest and if comparing this model with the corresponding model with this factor included 

results in a large BF, the evidence is stronger for similarity than for differences.  

In the first analysis, we tested whether the induced EEG activity is sensitive to retrieval 

and procedural strategies as has been shown in previous studies using different item sets 

(Grabner & De Smedt, 2011, 2012; Tschentscher & Hauk, 2016). To this end, we compared 

theta and alpha ERS/ERD between all (addition and multiplication) problems that were 

reported as fact retrieval with those reported to be solved through procedural strategies (i.e., 

counting and transformation) using the ANOVA factors strategy (retrieval vs. procedural), 

hemisphere, and ROI. 

For the main EEG analysis comparing the fact-retrieval with the compacted-counting 

account, a similar approach with the ANOVA factors operation (addition vs. multiplication), 

hemisphere, and ROI was pursued. This was done separately for all 12 very small problems 

and for the six very small problems without the n + 1 problems. Finally, we computed a 

similar analysis for comparing n + 1 and n × 1 problems. 

We used the BayesFactor package (https://CRAN.R-project.org/package=BayesFactor) 

for the R statistical computing environment (https://www.R-project.org/) to perform these 
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model comparisons. Models, priors, and methods of computation used by this function are 

described in Rouder, Morey, Speckman, and Province (2012).  
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Results 

Task performance 

Performance data for addition and multiplication problems across all three problem sizes 

are presented in Table 1 (error rates) and Table 2 (reaction times).  

Error rates for very small additions and multiplications were both extremely low and 

practically identical, and the difference between operations was not significant (t(39) = 0.01, 

p = .99, d = -0.003). Error rates for medium small additions and multiplications were also both 

very low and did not differ from each other (t(39) = -0.10, p = .92, d = -0.02). Large additions, 

however, were solved significantly more accurately than large multiplications, with a medium 

effect size (t(39) = 4.99, p < .001, d = 0.75). 

In all three problem sizes, additions were solved faster than multiplications. In the very 

small problems, the effect was small (t(39) = -2.22, p = .033, d = -0.16). In the medium small 

and large problems, the effects were of medium and large size (medium small: t(39) = -7.65, 

p < .001, d = -0.72; large: t(39) = -9.00, p < .001, d = -1.32). Reaction times for all problems 

are presented in the appendix (Table A1).  

Solution strategies 

The relative frequency of self-reported solution strategies is depicted in Figure 3. As 

expected, retrieval was the most frequently reported strategy in very small (82.1% and 97.0% 

for addition and multiplication, respectively) and medium small problems (82.5% and 92.6%, 

respectively), whereas procedural strategies (counting and transformation) were reported more 

frequently in large problems (51.3% and 36.8%, for additions and multiplications, 

respectively). Other strategies were reported in only very few trials (0% in very small problems; 

0.7% and 1.0% in medium small, and 2.7% and 5.4% in large additions and multiplications, 

respectively).  

In order to test the sensitivity of the EEG data to self-reported solution strategies and to 

replicate earlier ERS/ERD studies (Grabner & De Smedt, 2011, 2012; Tschentscher & Hauk, 
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2016), we compared the ERS/ERD patterns between self-reported retrieval and procedural 

(counting and transformation) strategies. In the theta band, the best model (strategy + roi + hemi 

+ id) contained the factor strategy and was 3 · 1018 times more likely than the model without 

this factor (roi + hemi + id). Figure 4 illustrates this finding and reveals higher theta ERS in 

several ROIs for problems reported to be solved via retrieval (retrieval problems) as compared 

to problems reported to be solved via procedures (procedural problems). 

In the lower and upper alpha band, we also found that the best models included the factor 

strategy (strategy + roi + id) and were superior to the models without the factor strategy by BFs 

of 6 · 109 and 7 · 1012, respectively. In both bands, we observed more alpha ERD (more 

negative values) in procedural than retrieval problems.  

Thus, in all three frequency bands, the EEG patterns strongly differed between self-

reported retrieval and procedural strategies, demonstrating a high sensitivity of induced EEG 

activity to self-reported solution strategies during arithmetic problem solving.  

Analyses of retrieved very small problems  

Operation differences in very small problems  

We first conducted the comparison between operations for all 12 very small problems in 

trials that were self-reported to be solved through fact retrieval in the solution strategy session. 

Error rates for both operations were extremely low with 0.49% and 0.46% for additions and 

multiplications, respectively. This difference was not significant (t(37) = 0.13, p = .90, 

d = 0.03). Reaction times were also similar with 0.96s for additions and 0.97s for 

multiplications (t(37) = 0.99, p = .33, d = 0.08).  

ERS/ERD values for the two operations in the three frequency bands are depicted in 

Figure 5. For the theta band, the Bayesian model comparison resulted in a model without the 

factor operation (op) that best described the available data (roi + id). This model was 12 times 

more likely than the same model including the factor operation (op + roi + id). The same was 

true for the two alpha bands. In the lower alpha band, the best model (roi + id) was 12 times 
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more likely than the same model including operation. In the upper alpha band, the BF was 6 

times in favor of the model without operation (roi + id). Thus, in all three frequency bands, 

there is much stronger evidence for similarity across operations rather than for differences, 

which is also reflected in the substantial overlap of the ERS/ERD values in the three frequency 

bands.  

Operation differences in very small problems without n + 1 and n × 1 problems 

To further corroborate our findings, again like Uittenhove et al. (2016), we conducted an 

additional analysis for the (retrieved) very small problems without the n + 1 and n × 1 problems, 

resulting in six additions and six multiplications.  

Also in this problem set, error rates were similar between operations (additions: 0.69%; 

multiplications: 0.53%; t(37) = 0.43, p = .67, d = 0.11), but additions were solved faster than 

multiplications (0.98 s vs. 1.03 s; t(37) = 3.28, p = .002, d = 0.31).  

Similar to the former EEG analysis, in all frequency bands, the best models only contained 

the ROI (roi + id) and were more likely than the corresponding model with the factor operation 

(op + roi + id). The resulting BF for the three frequency bands were 12 (theta), 16 (lower alpha), 

and 13 (upper alpha), respectively. These results provide further evidence for similarity across 

operations rather than for differences. 

Differences between very small n + 1 and n × 1 problems  

In a final analysis, we explored whether n + 1 and n × 1 problems within the very small 

problems (again only self-reported to be retrieved) differ in the accompanying EEG activity. 

Both types of problems did not differ in performance. They were solved with equal 

accuracy (error rates of n + 1 and n × 1 problems: 0.15% vs. 0.39%, t(37) = 1.22, p = .23, 

d = 0.29) and equally fast (reaction times: 0.91 s vs. 0.90 s, t(37) = 1.01, p = .32, d = .07).  

In the theta band, the best model only contained the ROI (roi + id) and was 13 times more 

likely than the corresponding model with the factor operation. In the two alpha bands, in 

contrast, the best models included the factor operation. In the lower alpha band, the highest BF 
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was found for the main effect of operation (op + id; BF of 2), reflecting a higher alpha ERD for 

n × 1 compared to n + 1 problems. In the upper alpha band, the best model included operation 

and ROI (op + roi + id) and was 15 times more likely than the same model without the factor 

operation. In both alpha bands, n × 1 problems were associated with higher ERD than n + 1 

problems (depicted in Figure 6 for the upper alpha band).  

Thus, while n + 1 and n × 1 problems did not differ in performance, they were associated 

with distinct activation patterns in the two alpha bands.  
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Discussion 

The cognitive processes underlying the solution of small single-digit additions in adults 

have been subject to debate in the literature on arithmetic (compare Baroody, 2018 and Chen 

& Campbell, 2018). Two main accounts have been put forward. Proponents of a fact-retrieval 

account, on the one hand, postulate that both single-digit additions and multiplications are 

solved through retrieval of arithmetic facts from memory (e.g., Ashcraft & Guillaume, 2009; 

Campbell & Thompson, 2012; Lefevre et al., 1988). Proponents of a compacted-counting 

account, on the other hand, hypothesize that some single-digit additions (i.e., very small 

problems) are solved through a rapid and unconscious arithmetic counting procedure, whereas 

single-digit multiplications are solved through fact retrieval (e.g., Barrouillet & Thevenot, 

2013; Uittenhove et al., 2016). Thus, one account includes similar and the other different 

cognitive processes in solving very small problems of both operations. In the present study, 

we contrasted EEG correlates of solving very small single-digit addition and multiplication 

problems to test both accounts using a Bayesian statistical approach that compared the 

evidential strength for one or the other hypothesis.  

The main finding of our study consists of higher evidential strength for similar rather than 

different EEG activity accompanying the solution of very small addition and multiplication 

problems that have been reported to be solved through fact retrieval. For the set of 12 very 

small non-tie problems with operands 1 to 4, the best statistical models describing the induced 

EEG changes (ERS/ERD) in all three frequency bands (theta, lower alpha, upper alpha) did 

not contain the factor operation (addition vs. multiplication) and were between 6 and 12 times 

more likely than the same models including the factor operation. When restricting the analysis 

to the six very small problems with operands 2 to 4, as was done in an additional analysis of 

RTs by Uittenhove et al. (2016), the evidence for similarity was comparable in the theta band 

(BF of 13) but even stronger in the two alpha bands (BFs of 16 and 13, respectively). The 

increase in evidential strength in the alpha bands is due to the finding of operation differences 
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between the n + 1 and n × 1 problems in these bands. Thus, these results demonstrate 

neurophysiological similarity between the operations and indicate that similar cognitive 

processes are engaged in very small problems (not including 1) of both operations. Based on 

the common assumption that (very small) multiplication problems are solved through fact 

retrieval (e.g., Ashcraft, 1992; Campbell & Epp, 2005), the evidence is consistent with a fact-

retrieval account.   

The present results were obtained by applying an experimental procedure that was highly 

similar to that of two previous behavioral studies, which provided the major line of evidence 

in favor of a compacted-counting account (Barrouillet & Thevenot, 2013; Uittenhove et al., 

2016). First, we administered an arithmetic production task, in which participants had to 

actively produce the answer. Second, we presented each of the very small problems 

repeatedly to increase reliability in our ERS/ERD estimates. In fact, we included nine 

repetitions of each very small problem instead of six repetitions in the aforementioned studies. 

Third, we exactly followed the definition of Barrouillet and Thevenot (2013) as well as 

Uittenhove et al. (2016) of very small problems (i.e., problems with operands between 1 and 

4). Fourth, similar to Uittenhove et al. (2016), we computed separate analyses for very small 

problems with and without n + 1 problems. Finally, we restricted our analyses to those 

problems that were self-reported to be solved through fact retrieval, as the main analysis in 

Uittenhove et al. (2016) was focused on those participants with 100% frequency of fact 

retrieval in the very small problems. In this vein, the present study has also overcome the 

limitations of previous EEG studies (Wang et al., 2018; Zhou et al., 2011, 2006), which could 

not answer the question of similar or different neurophysiological processes in very small 

problems, because they used a different experimental design as Barrouillet and Thevenot as 

well as Uittenhove et al.  

To assess the sensitivity of induced EEG activity in theta and alpha bands for different 

cognitive processes in arithmetic problem solving, we conducted two further analyses. In the 
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first analysis -reports to divide the EEG trials into retrieval trials 

(i.e., trials which participants reported to have solved via fact retrieval) and procedural trials 

(i.e., self-reported application of procedures) and tested whether the two problem-solving 

strategies could be differentiated in the ERS/ERD data. Evidence was substantially stronger 

for differences than for similarities, with BFs over 6 · 109. Self-reported retrieval problems 

were associated with higher theta ERS and smaller alpha ERD (in both alpha bands) than self-

reported procedural problems. This result replicates previous studies (De Smedt et al., 2009; 

Grabner & De Smedt, 2011, 2012) and shows that even within single-digit problems, there is 

a strong relationship between (self-reported) problem-solving strategies and ERS/ERD 

activity in these frequency bands.  

In a second analysis, we contrasted the EEG activity between n + 1 and n × 1 problems 

within the critical problem set (the very small additions) to explore whether ERS/ERD is not 

only sensitive to problem-solving strategies self-reported as different but also to those with 

subtle differences in cognitive processes self-reported as the same strategy (i.e., as fact 

retrieval). This analysis was based on evidence suggesting that n + 1 and n × 1 problems are 

solved through different cognitive processes (e.g., Campbell & Beech, 2014; Campbell et al., 

2015; Chen & Campbell, 2014). With n × 1 problems, an algebraic procedure (identity rule) is 

applied, whereas n + 1 problems have been assumed to be solved either by an item-specific 

fact-retrieval process (Chen & Campbell, 2018) or a reasoning-based procedure (Baroody, 

2018). A particular strength of this analysis is that two very fast (and highly automatic) 

problem-solving processes that participants perceive as fact retrieval are compared. In 

addition, there were no performance differences between n + 1 and n × 1 problems that could 

confound the ERS/ERD results.  

We observed stronger evidence for differences between n + 1 and n × 1 problems in both 

the lower and upper alpha band (BF of 2 and 15, respectively) and stronger evidence for 

similarities in the theta band (BF of 13). In the two alpha bands, solving n × 1 problems was 
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associated with higher ERD as compared to the n + 1 problems. This finding extends previous 

oscillatory EEG studies by revealing that even for very small operand 1 problems self-

reported as fact retrieval, operation differences in neurophysiological responses can be 

detected. Since the cognitive processes involved in n + 1 problems are less clear (item-

specific process or reasoning-based procedure) than those in the n × 1 problems (application 

of identity rule), no firm conclusion on the functional significance of this difference in the 

alpha bands can be drawn yet. When assuming that n + 1 problems are solved through an 

item-specific process resembling fact retrieval (Chen & Campbell, 2018), the higher alpha 

ERD in the n × 1 problems may reflect a stronger recruitment of procedural processes as only 

in these problems an algebraic procedure is applied. This interpretation would be in line with 

previous findings revealing that the alpha bands are particularly sensitive to arithmetic 

procedures (e.g., Grabner & De Smedt, 2011, 2012; Tschentscher & Hauk, 2016). 

Alternatively, if n + 1 problems are solved through a reasoning-based procedure (Baroody, 

2018), the differential alpha activity may represent the recruitment of different types of 

automatic procedures. The similarity of activation in the theta band, which is typically very 

sensitive to fact-retrieval processes, could reflect no difference in the reliance on fact retrieval 

and would, thus, be in line with the latter notion. However, to test these hypotheses, further 

studies scrutinizing EEG correlates of solving problems with operands 0, 1, n, two-digit 

operands, and including a large number of trials per category are necessary. Such research 

also needs to consider tie problems as a specific category, as they can be considered as a 

prototypic example of fact retrieval (Ashcraft, 1992). Taken the results for the self-reported 

strategies and the operand-1 problems together, the present study corroborates a remarkable 

sensitivity of induced EEG activity in theta and alpha bands to cognitive processes in 

arithmetic problem solving.  

The stronger neurophysiological evidence for a fact-retrieval compared to a compacted-

counting account adds a new level of data to the long-standing debate on the cognitive 



FACTS OR PROCEDURES IN ARITHMETIC 28

 
 

processes involved in solving (very small) single-digit additions. In fact, the evidence that has 

been put forward to support the compacted-counting account was behavioral and consisted of 

reaction time analyses (Barrouillet & Thevenot, 2013; Thevenot et al., 2016; Uittenhove et al., 

2016) and operator priming effects (Fayol & Thevenot, 2012; Roussel et al., 2002). A special 

case may be studies on spatial associations of arithmetic operations, which have demonstrated 

(rightward) shifts of attention in additions but not (or less strongly) in multiplications at both 

a behavioral (Mathieu et al., 2016) and a neurophysiological (Mathieu et al., 2018) level. In 

the latter study, using functional magnetic resonance imaging (fMRI), Mathieu et al. found 

in three brain regions supporting the orienting of spatial attention. Even though the findings of 

distinct spatial associations in addition and multiplication are compatible with a compacted-

counting account, the authors stated that this does not rule out the involvement of retrieval 

processes. For instance, Mathieu et al. referred to the notion by Marghetis et al. (2014) that 

spatial processes may complement memory-based strategies in terms of an intuitive check to 

limit errors. Chen and Campbell (2018) came to a similar conclusion and add that previously 

observed spatial attention shifts in behavior (Mathieu et al., 2016) were not limited to very 

small additions but emerged in both small and large problems. Notably, this is also the case in 

the operator priming studies (Fayol & Thevenot, 2012; Roussel et al., 2002).  

The present EEG study is the first in which a comparison between multiplications and 

additions was used to test both theoretical accounts. This was done against the background of 

the consensus assumption that small single-digit multiplication problems are solved through 

fact retrieval. A different approach to investigate both accounts was applied in an EEG study 

by Tejero and Macizo (2020) who compared event-related potentials (ERPs) during the 

solution of very small vs. medium small addition problems. They focused on two ERP 

components, one related to the difficulty in semantic processing (N400) and the other 

associated with difficulty in arithmetic fact retrieval (late positivity, LP), and hypothesized 
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that in the case of compacted procedures there should be a larger N400 in very small 

problems and in the case of fact retrieval a larger LP in medium small problems should be 

found. In a sample of 30 adults, the results revealed a larger LP in medium (compared to very 

small) problems but no difference in N400. This finding was 

and suggests 

additions by retrieving the result from memory, according to the well stablished [sic!] and 

Our findings, which compare different operations, align 

with these ERP data. 

In conclusion, by investigating the EEG correlates of solving single-digit additions and 

multiplications, the present study has revealed stronger neurophysiological evidence for a 

fact-retrieval compared to a compacted-counting account. This finding suggests that very 

small single-digit additions not involving 0 or 1 are solved through similar cognitive 

processes as corresponding multiplications, most likely through fact retrieval. In addition, we 

replicated (for self-reported problem-solving strategies) and extended (for operand-1 

problems) the evidence on the strong sensitivity of induced EEG activity in theta and alpha 

frequency bands to different cognitive processes in arithmetic problem-solving. These results 

add the neurophysiological level of analysis to the long-standing controversy regarding the 

cognitive pro -digit 

addition problems.  
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Table 1  

Error rates of addition and multiplication problems for all three problem sizes. 

 Very small Medium small Large 

Addition 0.42% 0.98% 3.68% 

Multiplication 0.42% 1.01% 9.67% 
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Table 2 

Reaction times in addition and multiplication problems for all three problem sizes.  

 Very small Medium small Large 

Addition 0.95 s 0.99 s 1.34 s 

Multiplication 0.97 s 1.13 s 1.86 s 
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Figure 1 

Schematic illustration of an EEG trial 

 

Note. RT indicates the reaction time from problem onset to oral response. 
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Figure 2 

Schematic illustration of a trial in the solution strategy session. 
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Figure 3 

Relative frequency of self-reported strategies 

 

Note. 

Blue corresponds to retrieval, dark red and light red correspond to counting and transformation 

procedures, and gray corresponds to other strategies.  
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Figure 4 

ERS/ERD in the three frequency bands for problems self-reported to be solved with 

procedures vs. fact retrieval 
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Note. 

Theta: upper row; lower alpha: lower row left; upper alpha: lower row right. The ribbons 

indicate the standard error of the mean. ROIs are indicated on the x-axis: AF (anterio-frontal), 

F (frontal), FC (fronto-central), C (central), CP (centro-parietal), P (parietal), PO (parieto-

occipital), T (temporal).  
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Figure 5 

ERS/ERD in the three frequency bands for very small retrieved addition vs. multiplication 

problems 
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Note. 

Theta: upper panel; lower alpha: lower left panel; upper alpha: lower right panel. The ribbons 

indicate the standard error of the mean. ROIs are indicated on the x-axis: AF (anterio-frontal), 

F (frontal), FC (fronto-central), C (central), CP (centro-parietal), P (parietal), PO (parieto-

occipital), T (temporal).  
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Figure 6 

ERS/ERD in the upper alpha frequency band for very small retrieved n + 1 vs. n × 1 

problems 

 

Note. 

The ribbons indicate the standard error of the mean. ROIs are indicated on the x-axis: AF 

(anterio-frontal), F (frontal), FC (fronto-central), C (central), CP (centro-parietal), P (parietal), 

PO (parieto-occipital), T (temporal). 
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Appendix 

Table A1 

Mean reaction times (in seconds) for each addition (a) and multiplication (b) problem.  

(a) Additions 

 Second operand 

First operand 1 2 3 4 5 6 7 8 9 

1 - 0.886 0.946 0.916 0.927 1.000 0.932 0.888 0.987 

2 0.874 - 0.968 0.987 0.968 1.038 1.100 1.006 1.126 

3 0.932 0.949 - 1.032 1.080 0.984 1.046 1.460 1.246 

4 0.913 0.975 0.995 - 1.020 0.995 1.269 1.155 1.315 

5 0.914 0.949 1.053 1.041 - 1.175 1.354 1.529 1.344 

6 0.920 0.973 1.067 1.102 1.178 - 1.582 1.493 1.318 

7 0.888 1.065 1.050 1.355 1.366 1.511 - 1.495 1.529 

8 0.895 1.026 1.226 1.136 1.372 1.486 1.664 - 1.482 

9 0.916 1.074 1.254 1.252 1.192 1.307 1.403 1.360 - 
 

(b) Multiplications 

 Second operand 

First operand 1 2 3 4 5 6 7 8 9 

1 - 0.868 0.870 0.939 0.905 0.877 0.899 0.846 0.834 

2 0.884 - 1.083 0.973 0.944 1.057 1.130 1.239 1.139 

3 0.888 1.053 - 1.056 1.114 1.470 1.289 1.493 1.726 

4 0.964 0.978 1.060 - 1.220 1.796 2.196 2.348 1.884 

5 0.912 0.981 1.130 1.164 - 1.542 1.843 1.561 1.734 

6 0.855 1.065 1.484 1.997 1.225 - 1.874 2.241 2.427 

7 0.916 1.172 1.493 1.721 1.356 2.419 - 2.000 2.055 

8 0.863 1.284 1.942 2.015 1.607 1.913 1.982 - 2.170 

9 0.863 1.132 1.770 1.980 1.626 2.653 2.242 1.840 - 

Note. 

Please note that to 5 were presented 9 times 

each, whereas the other problems were presented only twice.  

 


