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ABSTRACT 29 

Sex steroids are critical for skeletal development and maturation during puberty as well as skeletal 30 
maintenance during adult life. However, the exact time during puberty when sex steroids have the 31 
highest impact as well as the ability of bone to recover from transient sex steroid deficiency is 32 
unclear. Surgical castration is a common technique to study sex steroid effects in rodents, but it is 33 
irreversible, invasive, and associated with metabolic and behavioral alterations. Here, we used a low 34 
dose (LD) or a high dose (HD) of gonadotropin-releasing hormone antagonist to either temporarily or 35 
persistently suppress sex steroid action in male mice, respectively. The LD group, a model for delayed 36 
puberty, did not show changes in linear growth or body composition, but displayed reduced 37 
trabecular bone volume during puberty, which fully caught up at adult age. In contrast, the HD group, 38 
representing complete pubertal suppression, showed a phenotype reminiscent of that observed in 39 
surgically castrated rodents. Indeed, HD animals exhibited severely impaired cortical and trabecular 40 
bone acquisition, decreased body weight and lean mass, and increased fat mass. In conclusion, we 41 
developed a rodent model of chemical castration, which can be used as an alternative to surgical 42 
castration. Moreover, the transient nature of the intervention enables to study the effects of delayed 43 
puberty and reversibility of sex steroid deficiency. 44 

Key words: delayed puberty, bone, body composition, hypogonadotropic hypogonadism 45 
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NEW & NOTEWORTHY 47 

We developed a rodent model of chemical castration, which can be used as an alternative to surgical 48 
castration. Moreover, the transient nature of the intervention enables to study the effects of delayed 49 
puberty and reversibility of sex steroid deficiency. 50 
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INTRODUCTION 52 

Puberty is a critical period not only for the maturation of the reproductive system, but also for 53 
skeletal development and maturation35. Rodent studies have confirmed the pivotal role of sex 54 
steroids for bone mass acquisition and growth during puberty, as illustrated by the severely reduced 55 
cortical as well as trabecular bone mass in adult male mice as a result of surgical castration in early 56 
puberty7. However, it is not clear to what extent the decrease in bone mass due to pubertal sex 57 
steroid deprivation is reversible. The plasticity of bone as well as the timing of sex steroid action 58 
during puberty are important open questions in bone physiology, in particular, in the context of a 59 
delayed pubertal onset. 60 

Delayed puberty is defined as a lack of development of sexual characteristics by an age equaling two 61 
standard deviations beyond the population mean. It is a common condition, particularly in boys, with 62 
a prevalence of 1 in 50 individuals18. The impact of a delayed pubertal onset on bone health remains 63 
controversial. Indeed, according to some studies, boys suffering from delayed puberty fail to achieve 64 
optimal peak bone mass acquisition9,14,15,27, while other studies suggest that these individuals 65 
eventually catch up and obtain their full genetic height potential as well as volumetric bone mineral 66 
density (BMD) in spite of the delay of their growth spurt8,24,26,36. This controversy may partly be 67 
explained by a latency between the diagnosis of this condition and the study of its impact on bone 68 
health later in life since bone mass acquisition in humans is only optimal at the end of the second 69 
decade of life2,3,5. This illustrates the need for a suitable animal model of reversible sex steroid 70 
deficiency early in puberty. 71 

Surgical castration is a common technique to study the effect of sex steroid deficiency in rodent 72 
models. However, this approach is not only invasive, but also irreversible which does not allow to 73 
explore the timing of sex steroid action, especially during puberty. Moreover, it has no equivalent in 74 
clinical practice, where chemical castration using gonadotropin-releasing hormone (GnRH) analogues 75 
is applied in certain conditions, for example for gonadal steroid suppression in adolescents 76 
presenting precocious puberty or for androgen deprivation in prostate cancer patients31,36. These 77 
compounds block (GnRH antagonists) or desensitize (GnRH agonists) the GnRH receptors in the 78 
pituitary gland, thereby suppressing luteinizing hormone (LH) secretion and eventually reducing 79 
production and secretion of testosterone (T). However, the effects of chemical castration on bone, 80 
growth and body composition have not been clearly characterized in rodents. 81 

The aim of our study was therefore twofold: first, to establish a mouse model of temporary sex 82 
steroid deficiency during puberty and investigate the impact on bone, growth and body composition 83 
at adult age. Second, to study the impact of prolonged sex steroid deficiency induced by chemical 84 
castration on bone, growth and body composition in mice. To do so, we optimized the dosage of a 85 
GnRH analogue to obtain reversible short-term versus prolonged long-term chemical castration in a 86 
rodent model. We hypothesized that the use of a low dose of GnRH analogue administered at the 87 
start of puberty would be able to induce transient sex steroid deficiency, allowing to study the timing 88 
of sex steroid action as well as introducing a novel animal model of delayed puberty. In addition, a 89 
high dose of GnRH analogue would be suitable for complete and persistent suppression of pubertal 90 
sex steroid secretion33, allowing to assess the effects of chemical castration – as opposed to surgical 91 
castration – on bone and body composition. As a GnRH analogue, we decided to use a GnRH 92 
antagonist because this does not cause an initial flare-up response by means of a surge in LH levels as 93 
observed with GnRH agonists16,19.  94 
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MATERIALS AND METHODS 95 

Animal experiments 96 
In a pilot study, male wild type C57BL/6J mice (Charles River, MA, USA) were randomized into five 97 
groups, each consisting of 3 animals/group. Single injections of different doses of degarelix (DGX) 98 
(Ferring Pharmaceuticals, Saint-Prex, Switzerland), a gonadotropin-releasing hormone (GnRH) 99 
antagonist, were used to determine the optimal dose needed to obtain a delayed onset of puberty. 100 
Injections at 4 weeks of age of either sterile water as vehicle control or DGX (0.2, 0.5, 1, or 2 mg/kg) 101 
were given subcutaneously. Two and four weeks after DGX administration (i.e. at 6 and 8 weeks of 102 
age, respectively), animals were sacrificed and seminal vesicle weight was used as a readout for sex 103 
steroid activity. Based on the seminal vesicle weights at 6 weeks of age, we conducted a power 104 
analysis which indicated that to detect a difference between the vehicle control and the 2 mg/kg DGX 105 
groups (effect size 1.78) with a power of 90%, a sample size of at least 8 animals per group is 106 
required. Therefore, additional animals (n=5/group) were injected with vehicle control or 2 mg/kg 107 
DGX at 4 weeks of age. Two weeks after DGX administration (i.e. at 6 weeks of age), nose-to-tail 108 
length and body composition were determined and tissues were collected for bone and serum 109 
analysis. 110 

In a next experiment, male wild type C57BL/6J mice (Charles River, MA, USA) were randomly 111 
assigned to one of the three following groups; (1) control (C) (n=8), (2) a low dose of DGX (LD) to 112 
mimic delayed puberty (n=10), (3) a high dose of DGX (HD) to model complete suppression of 113 
puberty (n=11). At 4 weeks of age, mice were subcutaneously injected with vehicle (C), 2 mg/kg DGX 114 
(LD) or 25 mg/kg DGX (HD). Mice of the HD group were additionally injected with 25 mg/kg of DGX at 115 
8 and 12 weeks of age, while mice of the C and LD groups received vehicle at those time points. 116 
Anogenital distance and body weight were monitored weekly from 4 to 16 weeks. Animals were 117 
euthanized at 16 weeks (adult age) for assessment of growth, body composition, bone parameters, 118 
and sex steroid-sensitive tissue weights. Nose-to-tail length was measured before euthanasia in 119 
anesthetized animals using a ruler. In a separate experiment, the HD protocol was applied to female 120 
wild type C57BL/6J mice (KU Leuven animal facility, Belgium), which were injected with either vehicle 121 
control (n=6) or 25 mg/kg DGX (n=6) at 4, 8, and 12 weeks of age and euthanized at 16 weeks of age. 122 
At termination point, uterus weight was determined as a readout for circulating sex steroids. 123 

Mice were group-housed (3-5 animals/cage) in conventional facilities at 20 °C with 12-hour light/dark 124 
cycle and ad libitum access to water and standard chow, according to our institutional guidelines. All 125 
animals were euthanized by sodium pentobarbital overdose (Dolethal, Vétoquinol Ltd, Buckingham, 126 
UK) (intraperitoneal injection of 74 mg/kg) followed by cardiac puncture. All animal experiments 127 
were approved by the KU Leuven ethical committee (P192/2016). 128 

Micro-computed tomography 129 
Both axial and appendicular bones were scanned using Skyscan 1172 (Bruker, Kontich, Belgium) with 130 
5 µm pixel size, 0.5 mm Al filter, 50 kV, 200 µA, 180° angular rotation at 0.4° steps, and 590 ms 131 
integration time. All images were reconstructed using the NRecon program and analyzed by CTAn 132 
software as previously described28. For cortical bone, a 0.5 mm region of interest in the distal femur 133 
was selected starting at 4.5 mm from the distal edge of the growth plate. For femoral trabecular 134 
bone, a 2 mm segment starting 0.25 mm from distal growth plates was analyzed. For trabecular bone 135 
of vertebrae, the whole vertebral body of lumbar 5 (L5) was analyzed. Parameters included 136 
trabecular bone volume fraction (BV/TV, %), trabecular number (Tb.N, 1/mm), trabecular thickness 137 
(Tb.Th, µm), trabecular separation (Tb.Sp, µm), total cross-sectional tissue area (Tt.Ar, mm2), cortical 138 
bone area (Ct.Ar, mm2), medullary area (Ma.Ar, mm2), cortical thickness (Ct.Th, mm), periosteal 139 
circumference (Ct.PC, mm), endosteal circumference (Ct.EC, mm), and polar moment of inertia (J, 140 
mm4). 141 

Body composition 142 
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Body composition was measured by quantitative magnetic resonance (EchoMRI -100H Analyzer; Echo 143 
Medical Systems, Houston, TX, USA). 144 

 145 

Serum analysis 146 
Serum levels of T were measured in a single run by a two-dimensional liquid chromatography system 147 
and an AB/Sciex QTrap 5500 tandem mass spectrometer in atmospheric pressure chemical ionization 148 
positive (APCI) mode21. Serum IGFBP-3 levels were measured using a commercial enzyme-linked 149 
immunosorbent assay kit (RAB0236, Sigma-Aldrich) according to the manufacturers’ instructions. 150 
Serum IGF-1 and osteocalcin levels were measured using an in-house radioimmunoassay (RIA) as 151 
previously described40. 152 

Statistics 153 
Statistical analysis was performed using GraphPad Prism v7.04 (GraphPad, La Jolla, CA, USA). 154 
Unpaired two-tailed student’s t-test and one-way ANOVA with Bonferroni post-hoc test were used to 155 
analyze differences between two or more groups, respectively. Two-way ANOVA with Bonferroni 156 
post-hoc test was used in experiments with more than one independent variable. Data are 157 
represented as mean ± SEM, and p<0.05 was considered as statistically significant. 158 

  159 
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RESULTS 160 

Dose-dependent and transient effect of GnRH antagonist administration on sex steroid suppression 161 

In order to determine the optimal dose of the GnRH antagonist degarelix (DGX) that induces 162 
transient sex steroid deficiency during puberty, we performed a pilot experiment in which a single 163 
administration of a variable dose of DGX was tested in prepubertal wild type male mice. At 4 weeks 164 
of age, mice were subcutaneously injected with either sterile water as vehicle control or DGX (0.2, 165 
0.5, 1, or 2 mg/kg). The weight of seminal vesicles (SV) is commonly used as a proxy for systemic sex 166 
steroid activity7. While body weight was not different between the various groups of DGX-treated 167 
mice compared to control (Fig. 1A), a dose-dependent reduction in SV weight was observed (Fig. 1B). 168 
Indeed, 2 weeks after single injection, both 1 and 2 mg/kg DGX groups showed significant reduction 169 
in SV weight compared to control, with strongest reduction in the 2 mg/kg group (-36.6%, -77.3%). 170 
Reduction in SV weight was still present in both groups 4 weeks after single DGX injection but to a 171 
lesser extent (-23.8%, -25.6%), indicating recovery from sex steroid suppression (Fig. 1B). Based on 172 
these findings, we chose 2 mg/kg as the low DGX dose (LD) to mimic a delay in puberty and 173 
compared this group with vehicle-treated control mice (C) as well as with mice receiving a 25 mg/kg 174 
high DGX dose (HD) to model complete and persistent suppression of puberty33. 175 

Effect of delayed puberty and complete pubertal suppression on body composition and sex steroid 176 
action 177 

We measured anogenital distance (AGD) as a biomarker to evaluate sex steroid action34. Consistent 178 
with a delay in puberty, the LD group showed a significant decrease in AGD at 5 and 6 weeks of age 179 
compared to the control group, while the difference in AGD between these two groups disappeared 180 
by the end of puberty (week 8), indicating full recovery of sex steroid action (Fig. 2A). On the other 181 
hand, the HD group displayed significant reduction in AGD at all time points compared to the control 182 
group, in line with puberty being completely suppressed (Fig. 2A). Body weight as well as body 183 
composition were comparable between control and LD groups during puberty and at adult age, 184 
except for a small but significant decrease in lean mass in LD animals at 6 weeks of age, which 185 
recovered at 16 weeks (Fig. 2B-D). However, the HD group showed reduced body weight compared 186 
to control during the entire time course of the experiment (Fig. 2B), in line with the effect of 187 
prepubertal surgical castration on body weight12. Moreover, HD animals displayed a shift in body 188 
composition at adult age, with fat mass being increased (+6.9%) along with a decrease in lean mass (-189 
9.0%) (Fig. 2D). Body weight gain (BWG) was highest during early puberty (before 6 weeks of age7) 190 
indicating a growth spurt in this period (Fig. 2E). However, there were no differences in BWG 191 
between the three groups in early puberty (Fig. 2E). In contrast, in late puberty (6 to 8 weeks of age7), 192 
the LD group showed a significant higher BWG (+2.3%) than the control group, while the HD group 193 
exhibited a lower BWG compared to the control (-1.7%) and LD (-4.0%) groups (Fig. 2E). Also in young 194 
adulthood (9 to 12 weeks of age), BWG was lower in HD compared to control (-1.7%) and LD (-2.5%) 195 
groups (Fig. 2E). At 16 weeks of age, there was no difference between control and LD groups in 196 
circulating T levels (Fig. 2F) or sex steroid-sensitive tissue weights, namely levator ani muscle, testes, 197 
and SV (Fig. 2G-I), consistent with a full recovery of sex steroid function. In contrast, the HD group 198 
showed robust reduction of these parameters (Fig. 2F-I), indicating strong and persistent sex steroid 199 
suppression. In particular, SV weight of the HD group was similar to that of surgically castrated mice 200 
(Fig. 2I, right panel). When applying the HD protocol to female mice, a drastic reduction in uterus 201 
weight was observed at 16 weeks of age (Supplemental Fig. S1; Supplemental material is available at 202 
https://figshare.com/s/1bf87d0ecb3dec33de6a). 203 

Effect of delayed puberty and complete pubertal suppression on bone mass acquisition and growth 204 

To assess the effect of delayed puberty on bone in mid-puberty and at adult age, femoral cortical and 205 
trabecular bone were analyzed. At 6 weeks of age (mid-puberty), there were no differences in 206 
cortical bone parameters, including cortical bone thickness, in the LD group compared to control (Fig. 207 
3A-D). However, trabecular bone volume was significantly decreased (Fig. 3E). Reduced trabecular 208 
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bone volume was accompanied by increase in trabecular separation and decrease in trabecular 209 
number but not thickness (Fig. 3F-H). As a biochemical marker of bone turnover10, serum osteocalcin 210 
was measured. In line with the decrease in trabecular bone volume, serum osteocalcin tended to 211 
increase in LD group compared to control at 6 weeks of age (Fig. 3I). Since puberty is also a critical 212 
period for linear growth7, body and bone (appendicular and axial) length were measured as well at 6 213 
weeks. There were no differences in nose-to-tail, femur, and lumbar 5 (L5) column length between 214 
LD and control groups (Fig. 4A-C). Circulating serum insulin like growth factor-1 (IGF-1) and insulin 215 
like growth factor binding protein-3 (IGFBP-3) levels, as a proxy for growth hormone action, were 216 
also unaffected in LD animals at 6 weeks (Fig. 4D, E) 217 

At 16 weeks (adult age), the decrease in trabecular bone volume was no longer observed in the LD 218 
group (Fig. 5A-D and Table 1), indicating that the deleterious effects on bone observed during 219 
delayed puberty fully disappear at adult age. The HD group, on the other hand, exhibited both 220 
cortical and trabecular bone loss at 16 weeks (Fig. 5A-D and Table 1), consistent with strong and 221 
persistent sex steroid suppression38. In line with the bone loss, the HD group showed lower polar 222 
moment of inertia, which is a proxy for bone strength, and increased serum osteocalcin levels 223 
compared to the control group, while these parameters were unaffected in LD animals (Fig. 5E-F). 224 
Overall, LD had no major effects on body and bone length at 16 weeks, except for a significant but 225 
small increase in L5 column length (Fig. 6A-C). In the HD group, continuous strong sex steroid 226 
suppression resulted in increased nose-to-tail length at adult age, which was accompanied by a trend 227 
towards increased femur and column length (Fig. 6A-C) as well as significant increase in serum IGF-1 228 
and IGFBP-3 levels (Fig. 6D, E). 229 

  230 
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DISCUSSION 231 

Sex steroids are critical for development and maturation of several organs, including the 232 
reproductive and musculoskeletal system, in particular, during puberty. Surgical castration is a 233 
common technique to study the effects of sex steroid deprivation in rodent models. However, this 234 
approach is irreversible and hence does not allow to study timing of sex steroid action. In addition, 235 
abdominal surgery has been associated with changes in food and water consumption as well as 236 
behavioral alterations, which may confound the observations20. In the present study, summarized in 237 
Fig. 7, we used a low dose of GnRH antagonist to established an animal model for temporary sex 238 
steroid deficiency in male mice, enabling to study timing and reversibility of sex steroid action. In 239 
addition, a high dose of GnRH antagonist induced complete and persistent suppression of sex steroid 240 
action. Our chemical castration model can therefore be used as an alternative to surgical castration 241 
for the study of sex steroid effects in rodents, avoiding confounding effects from surgery. 242 

Induction of temporary sex steroid deficiency using single prepubertal injection of a low dose of 243 
GnRH antagonist did not affect growth or body composition at adult age (Fig.7, left panel). However, 244 
delayed pubertal onset was accompanied by reduced trabecular bone volume during puberty, which 245 
fully recovered at adult age. This finding has two major implications. First, it confirms the high 246 
sensitivity of trabecular bone to circulating sex steroids6 and illustrates the plasticity of bone, which is 247 
able to recover from transient sex steroid deprivation. Second, it sheds light onto the clinical 248 
controversy regarding the effect of delayed puberty on bone health at maturity17,43. In some studies, 249 
boys with delayed puberty had lower volumetric BMD and bone mass24,26. Other studies, however, 250 
reported that they showed normal volumetric BMD4,42 and serum bone turnover markers which were 251 
similar to healthy children25. Our work suggests that, even if delayed pubertal timing is associated 252 
with bone loss during puberty, this deleterious effect does not persist at adult age. Hence, these 253 
findings are in support of a watchful waiting approach in the clinical context of delayed puberty43. 254 

In contrast to the reversible effects of transient sex steroid deficiency on bone, male mice with 255 
persistent sex steroid deficiency due to complete pubertal suppression showed reduction of both 256 
cortical and trabecular bone mass at adult age (Fig. 7, right panel). Also, these mice exhibited a 257 
decrease in body weight accompanied by increased and decreased fat and lean body mass, 258 
respectively. These findings are in line with observations in surgically castrated animals. Indeed, 259 
prepubertal orchidectomy of male mice resulted in decreased body weight at adult age12,39, while 260 
limiting cortical radial bone development and leading to a reduction of cortical as well as trabecular 261 
bone acquistion7,39. The shift in body composition towards increased fat mass and decreased lean 262 
mass is also in line with reports in surgically castrated rodents22,23,37, although in some studies 263 
orchidectomy needed to be combined with high fat diet to observe this shift12. In contrast to surgical 264 
castration which has no effect on body or bone length41, we observed an increased linear growth 265 
(body and appendicular bone length) as well as elevated circulating IGF-1 levels in our model of 266 
persistent sex steroid deficiency induced by chemical castration. Given the complexity of the 267 
crosstalk between sex steroids and the growth hormone/IGF-1 axis1, further investigation is however 268 
required to determine whether the elevated IGF-1 is causal for the increased linear growth of the HD 269 
animals. Interestingly, the finding of increased linear growth is reminiscent of the clinical observation 270 
in patients with hypogonadotropic hypogonadism. Indeed, in these patients, growth continues until 271 
the third decade leading to increased final height32. Also, in line with our mouse model, these 272 
patients show low cortical bone mass due to absence of sex steroid action on bone during 273 
puberty13,30 as well as increased adiposity11. 274 

In summary, our study demonstrates that a high dose of GnRH antagonist induces complete and 275 
prolonged sex steroid suppression in mice, providing an alternative method to surgical castration in 276 
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animal studies. In addition, using a low dose of GnRH antagonist, we developed the first animal 277 
model that enables to explore timing and reversibility of sex steroid action. The main limitation of 278 
our study is that the effects of transient and persistent sex steroid deficiency were mainly 279 
investigated in male mice. Although the drastic reduction in uterus weight suggests that our protocol 280 
might also be suitable to induce sex steroid deprivation in female mice, additional investigation is 281 
needed to fully characterize the effects on female growth, body composition and bone. In addition, 282 
there are differences in sex steroid physiology between humans and mice29 which might limit the 283 
clinical translation of our findings. Nevertheless, our model provides future opportunities to study 284 
the timing and reversibility of sex steroid action on different aspects of physiology, such as sexual 285 
function, physical activity, cognition, behavior, and ageing. 286 

  287 
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FIGURE LENGENDS 407 

Figure 1. Optimization of the delayed puberty model. (A) Body weight evolution during puberty in 408 
male WT mice treated with the indicated DGX dose by a single subcutaneous injection at 4 weeks of 409 
age (n=3/group at each time point). (B) Seminal vesicle wet weight at 6 and 8 weeks of age 410 
(n=3/group at each time point). Data in A were analyzed with two-way ANOVA and those in B with 411 
one-way ANOVA, both with Bonferroni post-hoc test. *p<0.05, ***p<0.001, ****p<0.0001 vs. Control 412 
mice. BW = body weight; DGX = degarelix; SV = seminal vesicle. In all figures, data obtained during 413 
puberty are depicted against a green background, while a white background is used for data 414 
obtained at adult age. 415 

Figure 2. Effects of delayed onset or complete suppression of puberty on growth and androgen-416 
sensitive tissues. (A-B) Anogenital distance (A) and body weight (B) from 4 to 16 weeks of age of 417 
male WT mice from the indicated groups (number of animals: C = 8, LD = 10, HD = 11). See text for 418 
details about DGX administration. (C-D) Body fat and lean mass measured at 6 (C) and 16 (B) weeks 419 
of age (number of animals at 6 weeks: C = 7, LD = 8; at 16 weeks: C = 8, LD = 10, HD = 11). (E) Body 420 
weight gain expressed as the percentage increase per week from 4 to 16 weeks of age of male WT 421 
mice from the indicated groups (number of animals: C = 8, LD = 10, HD = 11). (F) Serum T levels of the 422 
mice at 16 weeks of age (number of animals: C = 8, LD = 10, HD = 11). (G-I) Weight of levator ani 423 
muscle (G), testes (H), and seminal vesicles (I left panel) of the mice at 16 weeks of age (number of 424 
animals: C = 8, LD = 10, HD = 11). In I right panel, the seminal vesicle weight of 12-week-old male WT 425 
mice which were sham-operated (SHAM) or surgically castrated (ORX) at 3 weeks of age is indicated 426 
for comparison (n=7/group). Data in A, B, and E were analyzed with two-way ANOVA and data in D, F, 427 
G, H and I left panel with one-way ANOVA, all with Bonferroni post-hoc test. C and I right panel were 428 
analyzed using unpaired two-tailed t-test. *p<0.05, ***p<0.001, ****p<0.0001 comparison between low 429 
dose (LD) and Control (C) or high dose (HD), as indicated. ap<0.0001, bp<0.001, cp<0.01 comparison 430 
between high dose (HD) and Control (C). AGD = anogenital distance; BW = body weight; BWG = body 431 
weight gain; C = control; HD = high dose; LA = levator ani; LD = low dose; ORX = orchidectomized; SV 432 
= seminal vesicles. 433 

Figure 3. Effects of delayed puberty on bone during puberty. Cortical (A-D) and trabecular (E-H) 434 
bone parameters at 6 weeks of age of male WT mice from the indicated groups (number of animals: 435 
C = 7, LD = 8). See text for details about DGX administration. (I) Serum osteocalcin at 6 weeks of age 436 
(number of animals: C = 6, LD = 8). Data were analyzed with unpaired two-tailed t-test. **p<0.01, 437 
***p<0.001 vs. Control (C). Ct. Ar = cortical area; C = control; BV/TV = bone volume fraction; Cort. Th 438 
= cortical thickness; LD = low dose; Ma. Ar = medullary area; OC = osteocalcin; Tb. N = trabecular 439 
number; Tb. Sp = trabecular separation; Tb. Th = trabecular thickness; Tt. Ar = total cross-sectional 440 
tissue area. 441 

Figure 4. Effect of delayed puberty on linear growth during puberty. (A-C) Nose-to-tail (A), femur (B), 442 
and vertebral L5 column (C) length of 6-week-old male WT mice from the indicated groups (number 443 
of animals: C = 5-7, LD = 5-8). See text for details about DGX administration. (D-E) Serum levels of 444 
IGF-1 (D) and IGFBP-3 (E) in 6-week-old mice (number of animals: C = 6, LD = 8). Data were analyzed 445 
with unpaired two-tailed t-test. C = control; IGF-1 = insulin like growth factor-1; IGFBP-3 = insulin like 446 
growth factor binding protein-3; L5 = lumbar 5, LD = low dose. 447 

Figure 5. Effects of delayed onset or complete suppression of puberty on bone at adult age. (A-B) 448 
3D micro-computed tomography images of the femoral cortical (A) and trabecular (B) bone at 16 449 
weeks of age of male WT mice from the indicated groups (number of animals: C = 8, LD = 10, HD = 450 
11). See text for details about DGX administration. (C-E) Cortical thickness (C), trabecular bone 451 
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volume (D) and polar moment of inertia (E) of 16-week-old male WT mice (number of animals: C = 8, 452 
LD = 10, HD = 11). (F) Serum osteocalcin at 16 weeks of age (number of animals: C = 8, LD = 9, HD = 453 
11). One-way ANOVA with Bonferroni post-hoc test was used. *p<0.05, **p<0.01, ***p<0.001, 454 
****p<0.0001. BV/TV = bone volume fraction; C = control; Cort. Th = cortical thickness; HD = high 455 
dose; J = polar moment of inertia; LD = low dose; OC = osteocalcin. 456 

Figure 6. Effects of delayed onset or complete suppression of puberty on body and bone length at 457 
adult age. (A-C) Nose-to-tail (A), femur (B), and vertebral L5 column (C) length of 16-week-old male 458 
WT mice from the indicated groups (number of animals: C = 8, LD = 9-10, HD = 11). See text for 459 
details about DGX administration. (D-E) Serum levels of IGF-1 (D) and IGFBP-3 (E) in 16-week-old 460 
mice (number of animals: C = 8, LD = 9, HD = 11). One-way ANOVA with Bonferroni post-hoc test was 461 
used. *p<0.05, **p<0.01, ****p<0.0001. C = control; HD = high dose; IGF-1 = insulin like growth factor-1; 462 
IGFBP-3 = insulin like growth factor binding protein-3; L5 = lumbar 5, LD = low dose. 463 

Figure 7. Proposed model for the effects of transient versus persistent sex steroid deficiency 464 
induced by chemical castration with GnRH antagonist in male mice. 465 
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Table 1. Cortical and trabecular bone parameters of femur at adult age. Data were obtained in 16-
week-old male WT mice and were analyzed with one-way ANOVA with Bonferroni post-hoc test. 
Ct.Ar = cortical area; Ma.Ar = medullary area; Ct EC = endosteal circumference; Ct.PC = periosteal 
circumference; Tt.Ar = total cross-sectional tissue area; Tb.N = trabecular number;.Tb.Sp = trabecular 
separation; Tb.Th = trabecular thickness. 

 C 
(n=8) 

LD 
(n=10) 

HD 
(n=11) 

Cortical bone T. Ar (mm2) 2.20 ± 0.11 2.17 ± 0.08 1.67 ± 0.02***, #### 
Ct. Ar (mm2) 0.90 ± 0.04 0.95 ± 0.03 0.71 ± 0.01****, #### 
Ma. Ar (mm2) 1.26 ± 0.08 1.22 ± 0.06 0.96 ± 0.02**, ## 
Ct. PC (mm) 5.81 ± 0.16 5.81 ± 0.11 5.07 ± 0.04****, ####

Ct. EC (mm) 5.68 ± 0.32 5.50 ± 0.18 4.35 ± 0.05***, ###

Trabecular bone Tb. Th (µm) 40.53 ± 0.87 44.33 ± 1.27a 33.84 ± 0.76## 
Tb. Sp (µm) 199.1 ± 6.37 179.2 ± 5.61 381.8 ± 18.33****, ####

Tb. N (1/mm) 3.10 ± 0.28 3.81 ± 0.24 0.97 ± 0.08****, #### 
ap<0.05, comparison C vs. LD. **p<0.01, ***p<0.001, ****p<0.0001, comparison C vs HD. ##p<0.01, 
###p<0.001, ####p<0.0001 comparison LD vs. HD. 
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Novel model to study the physiological effects of temporary or 

prolonged sex steroid deficiency in male mice 

METHODS 

CONCLUSION  

OUTCOME 

• We developed a rodent model of chemical castration, which can be used as an alternative 

to surgical castration.  

• The transient nature of the intervention enables to study the effects of delayed puberty and 
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