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Abstract

We construct two practical algorithms for twisted conjugacy classes of polycyclic-by-

finite groups. The first algorithm determines whether two elements of a group are twis-

ted conjugate for two given endomorphisms, under the condition that the Reidemeister

coincidence number of these endomorphisms is finite. The second algorithm determ-

ines representatives of the Reidemeister coincidence classes of two endomorphisms if

their Reidemeister coincidence number is finite, or returns “fail” if the Reidemeister

coincidence number is infinite.

1 Introduction

Let G and H be groups and let ϕ, ψ : H → G be group homomorphisms. The coincidence
group Coin(ϕ, ψ) of the pair (ϕ, ψ) is the subgroup of H defined by

Coin(ϕ, ψ) = {h ∈ H | ϕ(h) = ψ(h)}.

Define an equivalence relation ∼ϕ,ψ on G by

∀g1, g2 ∈ G : g1 ∼ϕ,ψ g2 ⇐⇒ ∃h ∈ H : g1 = ψ(h)g2ϕ(h)
−1.

The equivalence classes [g]ϕ,ψ are called the Reidemeister (coincidence) classes of the pair
(ϕ, ψ) or the (ϕ, ψ)-twisted conjugacy classes. The set of Reidemeister classes is denoted by
R(ϕ, ψ). The Reidemeister (coincidence) number R(ϕ, ψ) is the cardinality of R(ϕ, ψ) and
is therefore always a positive integer or infinity.

This equivalence relation originates in topological coincidence theory, see [9] for a survey.
One of the aims of coincidence theory is, given two continuous maps f , g : X → Y between
topological spaces X , Y , to calculate the number

MC(f, g) := min
f ′≃f,g′≃g

#{x ∈ X | f ′(x) = g′(x)},

i.e. the least number of coincidence points among any pair of maps (f ′, g′), with f ′ in the
homotopy class of f and g′ in the homotopy class of g. The Nielsen coincidence number
N(f, g), defined as the number of essential coincidence classes of the pair (f, g), is a lower
bound for MC(f, g). The Reidemeister coincidence number R(f, g), defined as the number
of coincidence classes (essential or otherwise) of the pair (f, g), is an upper bound for the
Nielsen coincidence number. While the Nielsen number will always be finite and can be zero,
the Reidemeister number is either positive or infinite. In general, Nielsen numbers are quite
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difficult to compute, whereas Reidemeister numbers are much easier to calculate. The Re-
idemeister coincidence number R(f, g) of continuous maps f and g equals the Reidemeister
coincidence number R(f∗, g∗) of the induced group homomorphisms f∗, g∗ : π1(X) → π1(Y )
between the fundamental groups of X and Y .

If f , g : M → M are continuous self-maps of an orientable infra-nilmanifold or an
infra-solvmanifold M of type (R), or if g = idM and f is a continuous self-map of any
infra-solvmanifoldM , then the Nielsen coincidence number N(f, g) equals the Reidemeister
coincidence number R(f, g) if the latter is finite, see [4, 5, 7]. The fundamental group of an
infra-solvmanifold is a (torsion-free) polycyclic-by-finite group, and conversely, every torsion-
free polycyclic-by-finite group is the fundamental group of some infra-solvmanifold [1].

In [13], an authentication scheme is proposed that relies on the “apparent hardness of
the twisted conjugacy problem”, i.e. given g1 ∼ϕ,ψ g2, it it assumed to be difficult to
calculate some h such that g1 = ψ(h)g2ϕ(h)

−1. Polycyclic groups have been suggested as
the platform groups for various cryptosystems, including this authentication scheme [11].

The main goal of this paper is to construct two practical algorithms for endomorphisms
of polycyclic-by-finite groups. The first algorithm, which we will call RepTwistConj

(short for Representative for Twisted Conjugation), takes as input two endomorphisms ϕ,
ψ : G→ G with finite Reidemeister number R(ϕ, ψ) and two elements g1, g2 of a polycyclic-
by-finite group G, and returns the following output:

• if g1 ∼ϕ,ψ g2: an element h ∈ G such that g1 = ψ(h)g2ϕ(h)
−1,

• if g1 6∼ϕ,ψ g2: “fail”.

The second algorithm, which we will call RepsReidClasses (short for Representatives of
Reidemeister Classes), takes as input two endomorphisms ϕ, ψ : G→ G of a polycyclic-by-
finite group G and returns the following output:

• if R(ϕ, ψ) <∞: a finite subset {g1, . . . , gn} ⊆ G for which gi 6∼ϕ,ψ gj when i 6= j and
R(ϕ, ψ) = {[g1]ϕ,ψ, . . . , [gn]ϕ,ψ},

• if R(ϕ, ψ) = ∞: “fail”.

Together, these algorithms completely determine the Reidemeister coincidence classes when
the Reidemeister coincidence number is finite. In particular, this allows us to calculate
Reidemeister coincidence numbers of polycyclic-by-finite groups, and thus Reidemeister co-
incidence numbers of infra-solvmanifolds as well. Moreover, these algorithms demonstrate
that if a polycyclic group is used as platform group for the authentication scheme from [13],
then the endomorphisms should be picked such that they have infinite Reidemeister coin-
cidence number.

2 Preliminaries

Throughout this paper, we will use the notation ιx to describe the inner automorphism
G→ G : g 7→ xgx−1.

Lemma 2.1. Let G be a group, ϕ, ψ ∈ End(G) and g1, g2 ∈ G. For any x ∈ G, we have
that

g1 ∼ϕ,ψ g2 ⇐⇒ g1x
−1 ∼ιxϕ,ψ g2x

−1,

and moreover {h ∈ G | g1 = ψ(h)g2ϕ(h)
−1} = {h ∈ G | g1x

−1 = ψ(h)g2x
−1(ιxϕ)(h)

−1}.

Proof. For any h ∈ G, we have that

g1 = ψ(h)g2ϕ(h)
−1 ⇐⇒ g1x

−1 = ψ(h)g2x
−1xϕ(h)−1x−1

⇐⇒ g1x
−1 = ψ(h)g2x

−1(ιxϕ)(h)
−1.

2



By taking x = g2 in the above lemma, we obtain the following corollary.

Corollary 2.2. Let g1, g2 ∈ G and ϕ, ψ ∈ End(G). Then g1 ∼ϕ,ψ g2 if and only if
g1g

−1
2 ∼ιg2ϕ,ψ 1.

Thus, it suffices to solve the twisted conjugacy problem in the case where one of the
elements is the identity. This does, however, involve composing one of the homomorphisms
with an inner automorphism. The following corollary shows that this does not impact the
finiteness of the Reidemeister coincidence number of the endomorphisms.

Corollary 2.3. Let g ∈ G and let ϕ, ψ ∈ End(G). Then the map µg : R(ιgϕ, ψ) → R(ϕ, ψ) :
[x]ιgϕ,ψ 7→ [xg]ϕ,ψ is a bijection, and therefore R(ϕ, ψ) = R(ιgϕ, ψ).

Therefore, should we have an algorithm RepTwistConjToId(ϕ, ψ, g) that takes as
input two endomorphisms ϕ, ψ with finite Reidemeister number R(ϕ, ψ) and an element g,
and returns the following output:

• if g ∼ϕ,ψ 1: an element h ∈ G such that g = ψ(h)ϕ(h)−1,

• if g 6∼ϕ,ψ 1: “fail”.

then we may construct the algorithm RepTwistConj as in algorithm 1.

Algorithm 1 Determining h such that g1 = ψ(h)g2ϕ(h)
−1

1: function RepTwistConj(ϕ, ψ, g1 , g2)
2: return RepTwistConjToId(ιg2ϕ, ψ, g1g

−1
2 )

3: end function

The following theorem will be crucial in constructing both RepTwistConjToId and
RepsReidClasses for polycyclic and polycyclic-by-finite groups.

Theorem 2.4 (see [12, §2]). Let G be group, let N be a normal subgroup of G and let
ϕ, ψ ∈ End(G) such that ϕ(N) ⊆ N and ψ(N) ⊆ N . We denote the restrictions of ϕ and ψ
to N by ϕ|N and ψ|N , and the induced endomorphisms on G/N by ϕ̄ and ψ̄. We then get
the following commutative diagram with exact rows:

1 N G G/N 1

1 N G G/N 1

i

ϕ|Nψ|N

p

ϕψ ϕ̄ψ̄

i p

This diagram induces the following exact sequence of pointed sets:

1 Coin(ϕ|N , ψ|N ) Coin(ϕ, ψ) Coin(ϕ̄, ψ̄)

R(ϕ|N , ψ|N ) R(ϕ, ψ) R(ϕ̄, ψ̄) 1

i p

δ

ı̂ p̂

where all maps are evident except δ, which is defined as δ(ḡ) = [ψ(g)ϕ(g)−1]ϕ|N ,ψ|N .

The corollary below is a straightforward generalisation of statements (1) and (2) in [10,
Lemma 1.1].
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Corollary 2.5. Consider the situation from theorem 2.4. We obtain the following proper-
ties:

(1) R(ϕ, ψ) ≥ R(ϕ̄, ψ̄),

(2) if #Coin(ϕ̄, ψ̄) <∞ and R(ϕ, ψ) <∞, then R(ϕ|N , ψ|N ) <∞.

3 Reduction to normal subgroup and quotient

It is possible to reduce the twisted conjugacy problem on a group to the twisted conjugacy
problem on a well-chosen normal subgroup and on the quotient by that subgroup.

Theorem 3.1. Consider the situation from theorem 2.4. Let g ∈ G. If ḡ ∼ϕ̄,ψ̄ 1̄, then there
exists an n ∈ N such that n ∼ϕ,ψ g and

g ∼ϕ,ψ 1 ⇐⇒ ∃h̄ ∈ Coin(ϕ̄, ψ̄) : ψ(h)−1nϕ(h) ∼ϕ|N ,ψ|N 1,

where h is any element of p−1(h̄).

Proof. If ḡ ∼ϕ̄,ψ̄ 1̄, then there exists some k̄ ∈ G/N such that

ḡ = ψ̄(k̄)ϕ̄(k̄)−1 ⇐⇒ ψ̄(k̄)−1ḡϕ̄(k̄) = 1̄.

Let k ∈ G be any preimage of k̄, then n := ψ(k)−1gϕ(k) is an element of N and clearly
n ∼ϕ,ψ g. Now, using the exact sequence from theorem 2.4, we find that

[g]ϕ,ψ = [1]ϕ,ψ ⇐⇒ [n]ϕ,ψ = [1]ϕ,ψ

⇐⇒ ı̂([n]ϕ|N ,ψ|N ) = [1]ϕ,ψ

⇐⇒ ∃h̄ ∈ Coin(ϕ̄, ψ̄) : [n]ϕ|N ,ψ|N = [ψ(h)ϕ(h)−1]ϕ|N ,ψ|N

⇐⇒ ∃h̄ ∈ Coin(ϕ̄, ψ̄) : [ψ(h)−1nϕ(h)]ϕ|N ,ψ|N = [1]ϕ|N ,ψ|N ,

where we used the normality of N to obtain the last equivalence.

Thus, we can construct algorithm 2, called RepTwistConjToIdByNormal, which
reduces the twisted conjugacy problem on G to the twisted conjugacy problem on a normal
subgroup N and on the quotient G/N . In order for this algorithm to work, we require 4
conditions on the endomorphisms ϕ, ψ and the normal subgroup N given as input:

(i) ϕ(N) ⊆ N and ψ(N) ⊆ N , such that ϕ̄, ψ̄, ϕ|N and ψ|N are well-defined,

(ii) #Coin(ϕ̄, ψ̄) <∞, because line 9 iterates over all elements of this group.

(iii) RepTwistConjToId is implemented for input ϕ̄, ψ̄, because line 3 calls this,

(iv) RepTwistConjToId is implemented for input ϕ|N , ψ|N , because line 11 calls this.

Note that we currently do not require that R(ϕ, ψ) <∞.
Making use of the exact sequence from theorem 2.4, we may describe the set of Re-

idemeister classes R(ϕ, ψ) in terms of Reidemeister classes of a well-chosen normal subgroup
and of the quotient by that subgroup.

Theorem 3.2. Consider the situation from theorem 2.4. The set of Reidemeister classes
of the pair (ϕ, ψ) is given by

R(ϕ, ψ) =
⊔

[ḡ]ϕ̄,ψ̄∈R(ϕ̄,ψ̄)

(µg ◦ ı̂g)(R(ιgϕ|N , ψ|N )),
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Algorithm 2 Determining h such that g = ψ(h)ϕ(h)−1

1: function RepTwistConjToIdByNormal(ϕ, ψ, g,N)
2: p := projection G→ G/N
3: k̄ := RepTwistConjToId(ϕ̄, ψ̄, p(g))
4: if k̄ = fail then

5: return fail

6: end if

7: k := any element in p−1(k̄)
8: n := ψ(k)−1gϕ(k)
9: for h̄ ∈ Coin(ϕ̄, ψ̄) do

10: h := any element in p−1(h̄)
11: l := RepTwistConjToId(ϕ|N , ψ|N , ψ(h)

−1nϕ(h))
12: if l 6= fail then

13: return khl
14: end if

15: end for

16: return fail

17: end function

where ı̂g is the map

ı̂g : R(ιgϕ|N , ψ|N ) → R(ιgϕ, ψ) : [x]ιgϕ|N ,ψ|N → [x]ιgϕ,ψ

and µg is the map from corollary 2.3.

Proof. From the surjectivity of p̂, we have that

R(ϕ, ψ) =
⊔

[ḡ]ϕ̄,ψ̄∈R(ϕ̄,ψ̄)

p̂−1([ḡ]ϕ̄,ψ̄). (1)

Let p̂g be the map

p̂g : R(ιgϕ, ψ) → R(ιḡϕ̄, ψ̄) : [x]ιgϕ,ψ → [x̄]ιḡϕ̄,ψ̄,

then by corollary 2.3 and the exact sequence from theorem 2.4 we obtain that

p̂−1([ḡ]ϕ̄,ψ̄) = µg(p̂
−1
g ([1̄]ιḡϕ̄,ψ̄)) = (µg ◦ ı̂g)(R(ιgϕ|N , ψ|N )). (2)

The result now follows by combining (1) and (2).

Similar to the previous algorithm, we can construct algorithm 3. This time, we require 5
conditions on the endomorphisms ϕ, ψ and the normal subgroup N given as input in order
for this algorithm to work as intended:

(i) ϕ(N) ⊆ N and ψ(N) ⊆ N , such that ϕ̄, ψ̄, ϕ|N and ψ|N are well-defined,

(ii) RepsReidClasses is implemented for input ϕ̄, ψ̄, because line 3 calls this,

(iii) RepsReidClasses is implemented for input ιgϕ|N , ψ|N , because line 10 calls this,

(iv) If R(ϕ̄, ψ̄) < ∞ and R(ιgϕ|N , ψ|N ) = ∞ for some g ∈ G, then R(ϕ, ψ) = ∞, because
line 12 makes this assumption,

(v) RepTwistConj is implemented for input ιgϕ, ψ, because line 16 calls this.

5



Algorithm 3 Determining representatives of R(ϕ, ψ)

1: function RepsReidClassesByNormal(ϕ, ψ,N)
2: p := projection G→ G/N
3: R(ϕ̄, ψ̄) := RepsReidClasses(ϕ̄, ψ̄)
4: if R(ϕ̄, ψ̄) = fail then

5: return fail

6: end if

7: R(ϕ, ψ) := ∅

8: for ḡ ∈ R(ϕ̄, ψ̄) do
9: g := any element in p−1(ḡ)

10: R(ιgϕ|N , ψ|N ) := RepsReidClasses(ιgϕ|N , ψ|N )
11: if R(ιgϕ|N , ψ|N ) = fail then

12: return fail

13: end if

14: ı̂g(R(ιgϕ|N , ψ|N )) := ∅

15: for h ∈ R(ιgϕ|N , ψ|N ) do
16: if ∀k ∈ ı̂g(R(ιgϕ|N , ψ|N )) : RepTwistConj(ιgϕ, ψ, h, k) = fail then

17: ı̂g(R(ιgϕ|N , ψ|N )) := ı̂g(R(ιgϕ|N , ψ|N )) ∪ {h}
18: end if

19: end for

20: R(ϕ, ψ) := R(ϕ, ψ) ∪ µg (̂ıg(R(ιgϕ|N , ψ|N )))
21: end for

22: return R(ϕ, ψ)
23: end function

4 Abelian Groups

If the group G is abelian, the set of Reidemeister classes can actually be interpreted as a
quotient group of G.

Theorem 4.1. Let G be an abelian group and ϕ, ψ ∈ End(G). Then R(ϕ, ψ) = coker(ψ−ϕ).

Proof. Let g1, g2 ∈ G. Then

g1 ∼ϕ,ψ g2 ⇐⇒ ∃h ∈ G : g1 = ψ(h) + g2 − ϕ(h)

⇐⇒ ∃h ∈ G : g1 − g2 = (ψ − ϕ)(h)

⇐⇒ g1 + im(ψ − ϕ) = g2 + im(ψ − ϕ).

Thus, we can define RepTwistConjToId and RepsReidClasses for finitely gener-
ated, abelian groups as in algorithms 4 and 5.

Algorithm 4 Determining h such that g = ψ(h)ϕ(h)−1 if G is abelian

1: function RepTwistConjToId(ϕ, ψ, g)
2: if g ∈ im(ψ − ϕ) then
3: h := any element in (ψ − ϕ)−1(g)
4: return h
5: end if

6: return fail

7: end function

6



Algorithm 5 Determining representatives of R(ϕ, ψ) if G is abelian

1: function RepsReidClasses(ϕ, ψ)
2: if [G : im(ψ − ϕ)] = ∞ then

3: return fail

4: end if

5: R(ϕ, ψ) := ∅

6: p := projection G→ G/ im(ψ − ϕ)
7: for ḡ ∈ G/ im(ψ − ϕ) do
8: g := any element in p−1(ḡ)
9: R(ϕ, ψ) := R(ϕ, ψ) ∪ {g}

10: end for

11: return R(ϕ, ψ)
12: end function

The following proposition and corollary will be necessary when dealing with abelian
quotients of polycyclic groups.

Proposition 4.2. Let G be a finitely generated, abelian group and let ϕ ∈ End(G). Then
the Hirsch length of the kernel of ϕ equals the Hirsch length of the cokernel of ϕ.

Proof. It is well known that for any polycyclic group with normal subgroup N , h(G) =
h(N) + h(G/N). Since im(ϕ) ∼= G/ ker(ϕ) and coker(ϕ) = G/ im(ϕ), we obtain

h(ker(ϕ)) + h(im(ϕ)) = h(G) = h(im(ϕ)) + h(coker(ϕ)).

Subtracting h(im(ϕ)) from both sides gives us the desired result.

Corollary 4.3. Let G be a finitely generated, abelian group and let ϕ, ψ ∈ End(G). Then
R(ϕ, ψ) is finite if and only if Coin(ϕ, ψ) is finite.

Proof. Note thatR(ϕ, ψ) = coker(ψ−ϕ) (see theorem 4.1) and that Coin(ϕ, ψ) = ker(ψ−ϕ).
By proposition 4.2, if either of these groups has Hirsch length 0, then so does the other.

5 Polycyclic groups

One way to define a polycyclic group, is to state that all of its subgroups are finitely generated
and that its derived series terminates at the trivial subgroup. This derived series will be
exceptionally useful in the context of twisted conjugacy, as every group in this series is fully
invariant and the factors are finitely generated, abelian groups.

Proposition 5.1. Consider the situation from theorem 2.4, where G and N are chosen in
such way that G/N is a finitely generated, abelian group. If R(ϕ, ψ) is finite, then so are
#Coin(ϕ̄, ψ̄), R(ϕ̄, ψ̄) and R(ϕ|N , ψ|N ).

Proof. If R(ϕ, ψ) < ∞, then by corollary 2.5(1) R(ϕ̄, ψ̄) < ∞ and thus corollary 4.3 gives
us that #Coin(ϕ̄, ψ̄) <∞. Finally, by corollary 2.5(2) R(ϕ|N , ψ|N ) is finite as well.

Algorithm 6 provides an implementation of RepTwistConjToId for polycyclic groups
of derived length at least 2, under the restriction that the pair of endomorphisms given as
input has finite Reidemeister number.

Theorem 5.2. Let G be a polycyclic group of derived length at least 2 and let ϕ, ψ ∈
End(G) such that R(ϕ, ψ) <∞. Then ϕ, ψ and G′ satisfy the conditions necessary to apply
algorithm 2.

7



Proof. We prove this condition by condition.

(i) This condition is satisfied because the derived subgroup G′ is fully invariant.

(ii) Since R(ϕ, ψ) < ∞ and G/G′ is finitely generated and abelian, proposition 5.1 gives
us that this condition is satisfied.

(iii) Algorithm 4 provides an implementation for endomorphisms of G/G′.

(iv) We prove this by induction on the derived length n of G. If n = 2, then G′ is abelian,
hence algorithm 4 provides an implementation for endomorphisms of G′. Now assume
that G has derived length n and that this theorem holds if the derived length is at
most n−1. By proposition 5.1 and the induction hypothesis, ϕ|G′ , ψ|G′ and G′′ satisfy
conditions (i) - (iv), thus algorithm 6 provides an implementation.

Algorithm 6 Determining h such that g = ψ(h)ϕ(h)−1 if G is polycyclic

1: function RepTwistConjToId(ϕ, ψ, g)
2: return RepTwistConjToIdByNormal(ϕ, ψ, g,G′)
3: end function

Proposition 5.3. Let G be a polycyclic group and ϕ, ψ ∈ End(G). Let ϕ̄, ψ̄ be the induced
endomorphisms on the abelianisation G/G′. Then R(ϕ, ψ) is finite if and only if R(ϕ̄, ψ̄) is
finite and R(ιgϕ|G′ , ψ|G′) is finite for every g ∈ G.

Proof. First assume that R(ϕ, ψ) <∞. By corollary 2.3, then R(ιgϕ, ψ) <∞ for all g ∈ G,
and by applying proposition 5.1 we indeed find that R(ϕ̄, ψ̄) <∞ and R(ιgϕ|G′ , ψ|G′) <∞
for every g ∈ G. Conversely, assume that R(ϕ̄, ψ̄) < ∞ and R(ιgϕ|G′ , ψ|G′) < ∞ for
every g ∈ G. By theorem 3.2, R(ϕ, ψ) is then a finite union of finite sets and hence
R(ϕ, ψ) <∞.

Algorithm 7 provides an implementation of RepsReidClasses for polycyclic groups of
derived length at least 2.

Theorem 5.4. Let G be a polycyclic group of derived length at least 2 and let ϕ, ψ ∈ End(G).
Then ϕ, ψ and G′ satisfy satisfy the conditions necessary to apply algorithm 3.

Proof. We prove this condition by condition.

(i) - (iii) This can be proven in the same way as theorem 5.2.

(iv) This follows from proposition 5.3.

(v) Algorithm 6 provides this implementation.

Algorithm 7 Determining representatives of R(ϕ, ψ) if G is polycyclic

1: function RepsReidClasses(ϕ, ψ)
2: return RepsReidClassesByNormal(ϕ, ψ,G′)
3: end function

8



6 Polycyclic-by-finite groups

For polycyclic-by-finite groups, we can implement the algorithms RepTwistConjToId

and RepsReidClasses as in algorithms 8 and 9, under the assumption that we have an
implementation of an algorithm that finds a fully invariant, finite index, polycyclic subgroup
N of a given polycyclic-by-finite group G.

Algorithm 8 Determining h such that g = ψ(h)ϕ(h)−1 if G is polycyclic-by-finite

1: function RepTwistConjToId(ϕ, ψ, g)
2: N := fully invariant, finite index, polycyclic subgroup of G
3: return RepTwistConjToIdByNormal(ϕ, ψ, g,N)
4: end function

Theorem 6.1. Let G be a polycyclic-by-finite group, let ϕ, ψ ∈ End(G) such that R(ϕ, ψ) <
∞ and let N be a fully invariant, finite index, polycyclic subgroup of G. Then ϕ, ψ and N
satisfy the conditions needed to apply algorithm 2.

Proof. We prove this condition by condition.

(i) This condition is satisfied because N is fully invariant.

(ii) Since Coin(ϕ̄, ψ̄) is a subgroup of G/N , it is finite.

(iii) Since G/N is finite, we can easily implement RepsTwistConjToId for ϕ̄, ψ̄, e.g. by
exhaustive search.

(iv) Algorithm 6 provides an implementation for endomorphisms of N .

Algorithm 9 Determining representatives of R(ϕ, ψ) if G is polycyclic-by-finite

1: function RepsReidClasses(ϕ, ψ)
2: N := fully invariant, finite index, polycyclic subgroup of G
3: return RepsReidClassesByNormal(ϕ, ψ,N)
4: end function

Theorem 6.2. Let G be a polycyclic-by-finite group, let ϕ, ψ ∈ End(G) such that R(ϕ, ψ) <
∞ and let N be a fully invariant, finite index, polycyclic subgroup of G. Then ϕ, ψ and N
satisfy the conditions needed to apply algorithm 3.

Proof. We prove this condition by condition.

(i) - (iii) This can be proven in the same way as theorem 6.1.

(iv) This follows from corollary 2.5(2).

(v) Algorithm 8 provides this implementation.

A (theoretical) algorithm to find the required subgroup N exists, as proven in the fol-
lowing proposition.

Proposition 6.3. There is an algorithm which finds a fully invariant, finite index, polycyclic
subgroup N of a polycyclic-by-finite group G.

9



Proof. There exists an algorithm to find a finite index, polycyclic, normal subgroup P of
G (see [2, Proposition 2.8]). Let m be the exponent of the finite quotient G/P , i.e. the
smallest positive integer such that ḡm = 1̄ for any ḡ ∈ G/P . Then N := 〈gm | g ∈ G〉 is
a fully invariant, finite index, polycyclic subgroup of G. There exists an algorithm to find
such a subgroup of a polycyclic-by-finite group (see [2, Proposition 2.10]).

Unfortunately, to the best of our knowledge, no implementation of a practical algorithm
to determine such a fully invariant, finite index, polycyclic subgroup N is as of yet available.
This also means that algorithms 8 and 9 currently cannot be implemented. However, if one
has extra information on the input, one may be able to pick a suitable subgroup N for
that specific input. For example, in [3] Reidemeister numbers of the form R(ϕ, id) with
ϕ ∈ Aut(G) were calculated for crystallographic groups G. Algorithm 9 reduces to [3,
Algorithm 3] if G is crystallographic, ϕ ∈ Aut(G), ψ = id and N = Fitt(G), the Fitting
subgroup of G.

7 Implementation in GAP

Algorithms 1 to 7 have been implemented in the computer algebra system GAP [8], as part
of a package called TwistedConjugacy [14]. Below, we give a short demonstration of how
to access our algorithms using this package. By way of example, let G be the group given
by the following presentation:

G :=

〈

g1, g2, g3, g4

∣

∣

∣

∣

∣

[g1, g2] = g22 [g1, g4] = 1
[g1, g3] = g23 [g2, g4] = 1
[g2, g3] = g−2

4 [g3, g4] = 1
g21 = g4

〉

.

This is a polycyclic group of derived length 3, and can be accessed in GAP through the
command ExamplesOfSomePcpGroups provided by the polycyclic package [6]. Let ϕ and
ψ be the endomorphisms of G given by

ϕ(g1) = g1g
−1
4 , ψ(g1) = g1,

ϕ(g2) = g3, ψ(g2) = g22g3g
2
4,

ϕ(g3) = g2g
3
3g

3
4 , ψ(g3) = g2g3g4,

ϕ(g4) = g−1
4 , ψ(g4) = g4.

One may load the TwistedConjugacy package and construct G, ϕ and ψ as follows.

gap> LoadPackage("TwistedConjugacy");;

gap> G := ExamplesOfSomePcpGroups( 5 );;

gap> gens := GeneratorsOfGroup( G );;

gap> imgs1 := [ G.1*G.4^-1, G.3, G.2*G.3^3*G.4^3, G.4^-1 ];;

gap> phi := GroupHomomorphismByImages( G, G, gens, imgs1 );

[ g1, g2, g3, g4 ] -> [ g1*g4^-1, g3, g2*g3^3*g4^3, g4^-1 ]

gap> imgs2 := [ G.1, G.2^2*G.3*G.4^2, G.2*G.3*G.4, G.4 ];;

gap> psi := GroupHomomorphismByImages( G, G, gens, imgs2 );

[ g1, g2, g3, g4 ] -> [ g1, g2^2*g3*g4^2, g2*g3*g4, g4 ]

The command RepresentativeTwistedConjugation provides an implementation of the
RepTwistConj algorithm. We can use it to show that g1 and g21 are not (ϕ, ψ)-twisted
conjugate and that g1 and g31 are.

10



gap> RepresentativeTwistedConjugation( phi, psi, G.1, G.1^2 );

fail

gap> RepresentativeTwistedConjugation( phi, psi, G.1, G.1^3 );

g1*g4^-1

The command ReidemeisterClassesprovides an implementation of theRepsReidClasses

algorithm. We use it to show that R(id, ψ) = ∞ and to calculate representatives of the Re-
idemeister classes of (ϕ, ψ):

gap> ReidemeisterClasses( IdentityMapping( G ), psi );

fail

gap> ReidemeisterClasses( phi, psi );

[ id^G, g1*g2*g3^G, g1*g2^G, g1*g3^G, g1^G, g2*g3^G, g2^G, g3^G ]

Note that the “^G” in the output above indicates that these elements are representatives of
the orbits of a group action. For more information on the TwistedConjugacy package for
GAP, we refer to the package manual.
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