
Automatic Implementation of Control Flow Error Detection
Techniques

Jens Vankeirsbilck
∗

, Hans Hallez and Jeroen Boydens
Dept. of Computer Science
KU Leuven Bruges Campus

Spoorwegstraat 12, 8200 Brugge, Belgium
jens.vankeirsbilck@kuleuven.be

ABSTRACT
Modern embedded systems are prone to erroneous bit-flips
introduced in its hardware by external disturbances such as
alpha particles, electromagnetic interference or intentional
external attackers. In order to protect embedded systems
against these disturbances, a wide variety of software-imple-
mented detection techniques have been proposed, a.o. by
the authors of this paper. Implementing those techniques,
however, can be arduous and error-prone since they have to
be implemented in low-level code, e.g. assembly. To over-
come this problem we propose a compiler extension, in the
form of a plugin, that can automatically add any supported
technique to the low-level code of the target program. We
discuss the internal working of our compiler extension and
conclude with a demonstration using an example program
and validate the effectiveness of the introduced countermea-
sures by running a fault injection campaign.

CCS Concepts
•General and reference → Reliability; •Computer
systems organization→Reliability; Embedded software;
Redundancy; •Software and its engineering→Compil-
ers;

Keywords
Automatic Implementation, Compiler Extension, GCC Plu-
gin, Control Flow Error, Software-Implemented Error De-
tection

1. INTRODUCTION
The reliability of embedded systems in ever harsher work-

ing environments is becoming ever more important, espe-

∗This work is supported by a research grant from the Baeke-
land program of the Flemish Agency for Innovation and En-
trepreneurship (VLAIO) in cooperation with Televic Health-
care NV, under grant agreement IWT 150696.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICWNES ’19 July 26–28, 2019, Rome, Italy
c© 2019 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

cially in safety-critical domains such as medical, automo-
tive, avionics, etc. These systems are, however, vulnerable
to external disturbances ranging from high energy particles
striking the hardware to electromagnetic interference and
intentional attackers [19, 7, 14, 8]. These external distur-
bances create extra charges into the struck hardware com-
ponent, causing a bit-flip. In turn, such a bit-flip can corrupt
data, cause a jump through the executing program or even
wrongly control an actuator [12, 15].

A jump through the target program is better known as
a control flow error (CFE). A CFE is a violation against
the control flow graph (CFG) of the program. The CFG
is the representation of a program’s execution order using
basic blocks and edges. A basic block is a list of branch-
free instructions following each other. This means that a
basic block has exactly one entry and one exit point. An
edge represents a valid path between two basic blocks. A
CFE can be one of two types: either an inter-block CFE or
an intra-block CFE. An inter-block CFE is an invalid jump
between two different basic blocks, while an intra-block CFE
is an invalid jump within the same basic block. Both types of
CFE can lead to hazardous situations by causing the affected
program or system to halt, to crash or to provide erroneous
output.

To increase the reliability of embedded systems, several
software-implemented CFE detection techniques have been
proposed [18, 10, 1, 16, 5, 6, 17, 21, 22]. Such techniques
add extra control variables at compile time. At run time,
these control variables are calculated and compared to the
expected compile-time value. A mismatch between both of
these values indicates that an error has occurred. Depending
on which type of CFE the technique was designed to detect,
intra-block and/or inter-block CFEs, the introduced control
variables are more frequently or less frequently updated.

Implementing a CFE detection technique can prove to be
difficult, because they only achieve their reported error de-
tection ratio when implemented in low-level code, e.g. as-
sembly. As we describe further, this is mainly due to the op-
timisation of the compiler when translating high-level code,
e.g. C++, to low-level code. To solve this problem, we
propose a compiler extension which allows to automatically
add the instructions of a CFE detection technique to the
low-level code. The advantages of our compiler extension
are not only that it can use all internal states created by
the compiler, such as the CFG, but moreover it reduces the
implementation time and effort.

The remainder of this paper is structured as follows. Sec-
tion 2 provides more background about the need for a com-

Jens Vkb
This is the pre-print version and can be used for personal use only! The published version can be found using
DOI 10.1145/3386164.3389106 or
URL https://dl.acm.org/doi/10.1145/3386164.3389106

Figure 1: The problem with high-level protection
and the solution provided by our compiler extension.

piler extension and Section 3 explains the internal working
of the selected compiler, i.e. GCC. Our implementation of
the compiler extension, i.e. a GCC plugin, is discussed in
Section 4. Next, Section 5 shows how to use our plugin with
an example algorithm. Following, Section 6 presents the
performed experiments. Finally, future work is presented in
Section 7 and conclusions are drawn in Section 8.

2. BACKGROUND
Literature describing software-implemented CFE detec-

tion techniques use high-level language instructions to ex-
plain the working of their technique and only provide a high-
level implementation example. This could lead an embedded
systems engineer to believe such techniques have to be im-
plemented in high-level code, e.g. C++. When doing this
however, and taking the appropriate measures to assure the
compiler does not optimize away the added instructions, ex-
periments have shown that the CFE detection techniques de-
tect around 65 % of the occurring CFEs. In contrast, litera-
ture describes an error detection ratio of 75 % and higher [18,
10, 1, 16, 5, 6, 17, 21, 22]. This mismatch in error detection
ratios is caused by the fact that human-readable high-level
code is not mapped one-to-one to machine-readable low-level
code. A high-level instruction is often mapped to multiple
low-level instructions and the many compiler optimizations
often generate a completely different CFG for the low level
code than the CFG constructed for high-level source code.
Fig. 1 visualizes how the compiler produces unprotected low-
level code from the protected high-level code.

The solution to this problem is implementing the CFE de-
tection techniques in low-level code. Performing this man-
ually, however, is arduous and error-prone. Therefore, we
propose a compiler extension that can automatically imple-
ment a variety of software-implemented CFE detection tech-
niques in the low-level code of the program. We support
both pre-existing techniques [18, 10, 1, 16, 5, 6, 17] and our
in-house developed techniques [21, 22]. As Fig. 1 shows, the
compiler extension allows to create protected low-level code
from unprotected high-level code. We selected the GCC
toolchain for bare-metal ARM development arm-none-eabi-
gcc as compiler and as an extension, we developed a plu-
gin. To the best of the author’s knowledge, this is the first
paper proposing a GCC plugin that enables the automatic
implementation of a variety of CFE detection techniques in
low-level code.

Before discussing the structure of our plugin, the inter-
nal working of GCC and the plugin execution point are de-
scribed.

Figure 2: The different intermediate languages of
GCC and the plugin execution point.

3. GCC INTERNAL WORKING
GCC compiles high-level source code to low-level code

through several intermediate representations, as depicted
in Fig. 2 [20]. First high-level language is translated into
generic, then into gimple, followed by a translation into
Register Transfer Language (rtl) to finally end in ma-
chine code. This process is done via several passes. A
pass is a set of instructions that perform a specific part of
the compilation process, e.g. dead code removal, building
the CFG or loop optimization. As shown, GCC does not
generate assembly code, but gradually transforms the high-
level code to machine-level code using several intermediate
representations. Therefore, our plugin will interact with one
of those intermediate representations to implement the CFE
detection techniques.

Our plugin executes after pass free cfg, which is an rtl
pass and is only executed once per compiled function of the
program. This pass indicates that the CFG will not change
anymore during the further compilation process, making it
the ideal point for the plugin to insert extra instructions.
As shown in Fig. 2, this pass is at the end of the compila-
tion process which forces us to work with hardware registers
instead of rtl pseudo-registers. Since each supported CFE
detection technique needs one or more registers to be im-
plemented, these must be reserved during compilation using
the GCC option -ffixed-r<number> .

4. OUR GCC PLUGIN
The abstract execution flow of our plugin is as follows.

The first time our plugin is executed, it registers itself as a
compilation pass. Once registered, it will be executed for
each program function GCC compiles. For each function,
the plugin determines if it needs to execute or not, depend-
ing on the provided information. Which function to protect
and which function to leave unprotected is up to the user of
the plugin, as this is very application dependent. For some
applications it might be necessary to protect all defined func-
tions, while for others it might be sufficient to only protect a
critical section of the program. If this analysis finds that the
current function must be protected, the selected technique
is implemented.

4.1 Implementation
The implementation of our plugin is shown in more de-

tail in Fig. 3. The shown UML class diagram depicts the
classes and methods to implement a CFE detection tech-
nique. Our plugin supports the following CFE detection
techniques: CFCSS [18], YACCA (2 versions) [10], ECCA [1],
RSCFC [16], SEDSR [5], SCFC [6], SIED [17], RASM [21]
and RACFED [22]. However, to keep the diagram in Fig. 3
as clear as possible, only two of all the supported techniques
are shown. The Plugin class contains two methods that are
used by GCC to execute our plugin and all other classes
contain the methods to effectively implement the selected

Figure 3: UML class diagram showing the implementation of our plugin is pseudo-code.

Algorithm 1 Pseudo-code describing the high-level execu-
tion flow of the GCC plugin.

1: registerPass()
2: for all functions do
3: if gate() is True then
4: intraBlock← readArgument(techniqueType)
5: technique← readArgument(technique)
6: cfedCreator← newCFEDcreator()
7: cfedCreator.implTech(intraBlock, technique)

technique for the current function.
Once the plugin has registered itself as a compilation pass,

the gate method of the Plugin class is called for each func-
tion. This method checks whether or not the current func-
tion needs to be protected with a CFE detection technique.
This is determined by reading the function plugin argument
and verifying if the function attribute noProtection is set.
If the function argument specifies one function, then only
that function is protected. When the function argument is
empty, all functions are protected unless the user has set the
noProtection function attribute. The gate method returns
either True or False indicating whether or not the function
needs to be protected.

When the gate method returns True, the execute method
is called. This method contains the actual compilation pass
and will implement the selected CFE detection technique, as
shown in Algorithm 1. It determines whether or not intra-
block CFE detection should be implemented by reading the
techniqueType plugin argument and it determines which of
the supported techniques should be implemented by reading
the technique plugin argument. Finally, it uses those two
arguments to call the implTech method of the CFEDcreator

class.
The CFEDcreator is a class that knows which CFE detec-

tion techniques are supported and how to build them. As Al-
gorithm 2 shows, first the instruction set architecture (ISA)
of the target processor is determined. With this informa-
tion, the correct registers to be used can be provided to the
technique that must be implemented. At the moment, two
ARM ISAs are supported: ARMv6-M and ARMv7-M [2, 4].
These are the most used ISAs in the envisioned embedded

Algorithm 2 Pseudo-code describing the flow to implement
a technique in the CFEDcreator class.

1: function CFEDcreator::implTech(intraBlock,
technique)

2: isa← getIsaTarget()
3: GeneralCFED genCFED
4: switch technique do
5: case “CFCSS” :
6: genCFED← newCFCSS(isa)

7: case “RACFED” :
8: genCFED← newRACFED(isa)

9: default :
10: raise error(“Requested technique not supported!”)

11: genCFED.implTech(intraBlock)

systems. Next, it creates an instance of the selected tech-
niques and finally calls its implTech method. As the name
gives away, that method makes sure the selected technique
is implemented for the function.

The implTech method of the GeneralCFED class imple-
ments the selected technique and is shown in Algorithm 3.
First all necessary variables, e.g. signatures and other auxil-
iary compile-time variables, are calculated in the calcVari-

ables method. Next, the local error branch to the general
error handler is inserted. Because recovering from a CFE
is too application specific, we let its implementation to the
user. Different applications or application domains often re-
quire a different strategy once a CFE has been detected.
Possible options are 1) transitioning to a safe state, 2) doing
a system reset, 3) starting an automatic recovery method
or 4) halting and triggering an alarm signal or escalating
to a higher level. All we define, is the handler name which
is CFED Handler. For each function, the insertError

method adds a branch to the CFED Handler function and
returns a label to itself. That label is used in the remaining
insert-methods to jump to the local error branch. Next,
the technique itself is implemented. First the intra-block
CFE detection instructions are inserted if needed. Secondly,
the instructions that need to be added in the middle of the
basic block are added. Thirdly, the instructions to be added

Algorithm 3 Pseudo-code describing the procedure to im-
plement the different instructions of the selected technique.

1: function GeneralCFED::implTech(intraBlock)
2: calcVariables()
3: jumpLabel ← insertError()
4: for all basic blocks in the CFG do
5: if intraBlock is True then
6: insertIntraBlockDetection(jumpLabel)

7: insertMiddle(jumpLabel)
8: insertBegin(jumpLabel)
9: insertEnd(jumpLabel)

10: insertSetup()
11: insertPushPop()

at the beginning of each basic block are inserted, ending
with adding the necessary instructions at the end of the ba-
sic block. Next, the insertSetup method adds the setup
procedure of the technique to the beginning of the first ba-
sic block. This setup procedure makes sure that the needed
registers are filled with the expected values to allow a correct
verification of the run-time variables in the first basic block
of the CFG. Finally, the implTech method ends by calling
the insertPushPop method, which adds push and pop in-
structions to place the necessary run-time variables on and
remove them from our run-time variable stack. To make
sure the regular stack remains valid, this run-time variables
stack is a second stack next to the regular stack of the used
microcontroller.

Although the GeneralCFED class implements the implTech
method and thus is in control of the execution order of the
calcVariables and insert-methods, their implementation
is provided in the specific classes of the supported tech-
niques, as indicated in the bottom Fig. 3. As depicted, the
specific technique classes RACFED and CFCSS implement the
needed methods but nothing more [22, 18]. This makes it
easy to support new techniques, as they only need to imple-
ment the six abstract methods defined by the implement-

Technique function of the GeneralCFED class.

4.2 The Need For insertPushPop
As discussed, the insertPushPop method is used to store

and restore the value of the run-time variables. This is
needed when multiple functions of a program have to be
protected or when a recursive function has to be protected.
Illustrating this with an example, consider functions f1 and
f2 of Fig. 4. These are two functions from one fictitious
program and f1 calls f2, indicated with the BL instruction.
When both functions have to be protected and no push -
pop sequence is implemented, the situation above the black
separator line is created. Function f1 assigns the value of 10
to the run-time variable held in register r11 and verifies it
at the end. Function f2 does the same, but with the value of
25. In this situation, f1 will always detect a false CFE once
f2 has been called. As can be seen, r11 is 10 when calling
f2, but has the value of 25 once f2 has executed. Next, r11
is verified in function f1 and that verification falsely detects
a CFE and would call the appropriate error-handler.

Our solution to this problem is inserting a push instruc-
tion at the beginning of each function and a pop instruction
at the end of each function. These instructions store the
value of the run-time variables and allows to restore them.

Figure 4: ARMv7-M code showing the need for ex-
tra push and pop instructions.

Figure 5: The CFG of the bit count algorithm when
compiled for an ARM Cortex-M3 using arm-none-
eabi-gcc7.3

Applied to the example, the situation below the black sep-
arator line of Fig. 4 is now created. Both functions now
start by pushing the current value of the run-time variable
held in register r11 to the stack, and end by popping that
value from the stack and storing it back into r11. As can
be seen, the run-time value of 25 is now local to function
f2 and the value of 10 is restored back into r11 once f2 has
executed. Since r11 now matches the expected value within
f1, its verification instruction does not detect a CFE and
execution resumes as expected.

In order not to corrupt the stack used by the program, we
defined a second stack and push run-time variables to and
pop them from this second stack. Practically, this can be
realised by adjusting the linker -script and startup procedure
of the used microcontroller.

5. EXAMPLE USAGE
To show the usage and outcome of our plugin, we’ll use

the bit count (BC) algorithm of the MiBench benchmark
suite [11]. The BC algorithm counts the numbers of bits set
in a given code word. When compiled with the arm-none-
eabi-gcc7.3 toolchain for an ARM Cortex-M3, which uses
the ARMv7M ISA, it has the CFG shown in Fig. 5. It is a
small algorithm, containing nine instructions, and therefore
has a rather small and easy CFG which can be manually
validated for correct execution.

1 extern "C"{
2 void __attribute__ ((noProtection))

CFED_Handler(void){
3 while (1);
4 }
5 }

Listing 1: Adjustment to be made to the source code
to use our plugin

5.1 Needed Adjustments
To use our plugin, both the source code and the compiler

flags have to be adjusted. As shown in Listing 1, the CFED_

Handler function has to be defined in the source code. As
discussed in the previous section, this handler is the func-
tion that will be executed once a CFE has been detected.
When working with C++, it is necessary to define the han-
dler in an extern "C" environment, as shown on the first
line. This tells the compiler to keep the function name as
defined and not to mangle it, as is often the case with C++
functions. Name mangling is the encoding of function and
variable names into unique names and is most commonly
used to facilitate the overloading feature and to facilitate
visibility within different scopes. We do not want this for
our CFED_Handler function, hence the need for the extern

"C" environment. The handler can have our noProtection

function attribute set to tell our plugin the function must
not be protected. In our example we implement the CFED_

Handler function as an infinite loop instructing the target
to wait there, but any alternative functionality can be pro-
vided.

The changes to be made in the compiler flags are shown
in Listing 2. In total, six extra compiler flags have to be
added, i.e. four plugin-related flags and two global com-
pilation flags. The global compilation flags, -ffixed-r11

and -ffixed-r7, tell the compiler not to use registers r11

and r7 during compilation. The plugin will use the first
register to implement the chosen technique and the latter
as stack pointer for the run-time variable stack. We se-
lected register r7 as stack pointer, due to limitations of the
ARMv6-M ISA. For ARMv6-M, register r7 is the highest
register that can be used as stack pointer and to keep the
common part between the different supported ISAs as large
as possible, we defined register r7 as the stack pointer for all
supported ISAs. We selected register r11 to implement the
chosen technique because it is the highest general purpose
register that can be reserved with the -ffixed-r<number>
option.

The four plugin-related flags specify where to find the plu-
gin (line 4), which function to protect (line 6), what type of
technique to apply (line 8) and which technique to imple-
ment (line 10). In our example, the flags have been set to
only protect the BC algorithm itself, i.e. function=bit_

count, and to implement the RACFED technique with both
intra-block and inter-block CFE detection, i.e. technique-

Type=fullCFED, technique=RACFED [22].

5.2 Protected Example
Using the adjusted source code and compiler flags, com-

piling the BC algorithm with the arm-none-eabi-gcc7.3 tool-
chain for an ARM Cortex-M3, now generates the CFG pre-
sented in Fig. 6. Indicated in bold are the instructions added

Figure 6: The CFG of the bit count algorithm when
compiled for an ARM Cortex-M3 using arm-none-
eabi-gcc7.3 and our plugin

by our plugin with the needed run-time variable stored in
register r11. For the first basic block and the two exit blocks,
the two basic blocks containing the BX lr statement, we in-
dicated which plugin method inserted which instructions in
light-gray.

The first instruction of the bit count algorithm is now the
push of the run-time variable. As indicated by the com-
piler flags, register r7 is used as stack pointer and is used
to store the run-time variable stored in register r11 (STR).
Next, the setup procedure has been inserted. For the chosen
RACFED technique, this means storing a specific value in
r11 (MOV). Since the plugin argument techniqueType spec-
ified that both intra-block and inter-block CFE detection
must be inserted, the first and lower-right basic blocks have
the necessary intra-block detection updates inserted. For
RACFED, these are additions or subtractions between the
run-time variable and a random value. These are the in-
structions located at addresses 0x1e4, 0x212 and 0x218.
Then, the instructions of the insertBegin method are in-
serted, which in the case of RACFED are three instruc-
tions. First, an update of r11 is inserted (SUB), then the
run-time verification between the run-time variable and its
compile-time value is inserted (CMP) and finally the branch
to the local error handler in case an CFE has occurred is
inserted (BNE 24c). As shown in Algorithm 3, the local
error handler is added to the function by the insertEr-

ror method. In this example, it is added at address 24c

and calls the function located at 0x268, which is the CFED_

Handler function. Next, the instructions of the insertEnd

method are inserted, which in case of RACFED is a final
update of the run-time variable. To conclude the final in-
struction of the bit count algorithm, before exiting, is now
the pop of the run-time variable (LDR).

1 # 1) Define the plugin name
2 PLUGIN_NAME = CFEDplugin
3 # 2) Specify where to find the plugin
4 COMPILER_FLAGS += -fplugin=<pathToPlugin >/$(PLUGIN_NAME).so
5 # 2) Only protect the bit_count algorithm
6 COMPILER_FLAGS += -fplugin -arg -$(PLUGIN_NAME)-function=bit_count
7 # 3) Implement both inter -block and intra -block CFE detection
8 COMPILER_FLAGS += -fplugin -arg -$(PLUGIN_NAME)-techniqueType=fullCFED
9 # 4) Implement RACFED

10 COMPILER_FLAGS += -fplugin -arg -$(PLUGIN_NAME)-technique=RACFED
11 # 5) RACFED needs one register (r11)
12 COMPILER_FLAGS += -ffixed -r11
13 # 6) The run -time variable stack needs a stack pointer (r7)
14 COMILER_FLAGS += -ffixed -r7

Listing 2: Adjustment to be made to the compiler flags to use our plugin

6. EXPERIMENTS
This section presents experiments performed to validate

the working of the plugin. First the experiment setup is
described, then the results are shown.

6.1 Experiment Setup
To prove the validity of our plugin, we implemented the

RACFED technique for 8 case studies both manually in
high-level code and using the plugin in low-level code. As
case studies we selected the following algorithms: BC, bub-
ble sort (BS), cyclic redundancy check (CRC), cubic func-
tion solver (CU), Dijkstra’s algorithm to find the shortest
path (DIJ), fast fourier tranform (FFT), matrix multiplica-
tion (MM) and quick sort (QS). Many of the selected imple-
mentations are based on the MiBench benchmark suite [11].
These case studies were selected because they are highly
used in the embedded systems domain, are often used in the
literature to validate CFE detection techniques and have
varying CFGs to allow a thorough validation of our plugin.

Next, we performed a fault injection campaign using our
in-house built fault injection tool to test the error detection
capabilities of the implementations. The used fault injection
process gradually steps through the target program and in-
jects all possible CFEs for each program step. We repeated
this process five times for each case study, as we provided
five different input datasets per case study. As hardware
target, we selected a simulated ARM Cortex-M3 [13].

For each injected fault, we categorized its effect in one of
the following four categories:

• Detected (Det.): This category represents the faults
that were detected by the implemented CFE detection
technique. So, for this paper, these are the faults de-
tected by RACFED.

• Hardware Detected (HD): Current microcontrollers
have several hardware mechanisms that detect for in-
stance improper bus usage or stack corruption. This
category represents the faults that were detected by
such mechanisms.

• Silent Data Corruption (SDC): These are the faults
that were not detected, neither by RACFED nor by the
hardware and corrupted the outcome of the case study.
This is the group of faults that needs to be minimized.

• No Effect (NE): This final category represents the

faults that were not detected but did not corrupt the
output of the case study.

6.2 Results
The results of the fault injection campaign are shown in

Fig. 7. For each of the eight case studies, we have three vari-
ants: HL NoVol, HL WithVol and LL Plugin. The HL No-
Vol variant represents the high-level implementation of RA-
CFED without taking any measures to avoid the compiler
optimize away the instructions of the technique. HL With-
Vol represents the high-level implementation of RACFED
with taking appropriate measures to make sure the com-
piler keeps the necessary instructions. These two variants
are called NoVol and WithVol because using the C++ key-
word volatile when defining the needed variables proved
sufficient to prevent the compiler from removing the instruc-
tions inserted to implement RACFED. Finally, LL Plugin
represents the low-level implementation of RACFED using
the GCC plugin and is indicated with the orange label.

The green part of each bar represents the faults detected
by RACFED, thus the Det. category and the red part rep-
resents the non-detected errors that corrupted the output,
thus the unwanted and dangerous SDC category. The HD
and NE categories are not in our control, and are therefore
shown together in the gray part of the bar.

Analyzing the chart in Fig. 7, it can be seen that when no
measures are taken to prevent the compiler optimizing away
the implemented technique (HL NoVol), no CFEs are de-
tected. A small exception occurs for the FFT case study in
which some of the protecting instructions remained and were
able to detect 1 % of the injected CFEs. When comparing
the HL WithVol and LL Plugin variants, the chart shows
that the low-level implementation detects more errors than
the high-level implementation for each case study. While
the high-level implementation error detection ratio varies
between 55 % and 75 %, the low-level implementation error
detection ratio varies between 70 % and 86 %. Next to the
error detection ratio, the SDC ratio is important as it repre-
sents undetected CFEs that were able to corrupt the output
of the case study. For this category, the low-level implemen-
tation outperforms the high-level implementation for seven
out of eight case studies with a varying SDC ratio between
0 % and 12 %. In contrast, the high-level implementation
SDC ratio ranges from 1 % to 23 %.

To summarize, the experiments show that the low-level
implementation outperforms the high-level implementation.

0.0 % 10.0 %
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin
HL_Novol

HL_WithVol
LL_Plugin

BC

BS

CRC

CU

DIJ

FFT

MM

QS

Det HD + NE SDC
0.0 % 10.0 %

60.0 % 100.0 %

60.0 % 100.0 %

Figure 7: The results of the fault injection campaign.

On average, the low-level implementation has an error de-
tection ratio of 79 % and an SDC ratio of 4 %, while the
high-level implementation has an average detection ratio of
65 % and an SDC ratio of 11 %.

7. FUTURE WORK
Next to the academic case studies, we also applied the

plugin on an industrial case study, i.e. a small scale fac-
tory. The small scale factory consists of three stations from
the Festo-Didactic MPSR© series: a distribution station, a
testing station and a sorting station [9]. Combined, they
represent a closed process, in which workpieces are pushed
out of a stacked magazine and transported to the testing
area where only the good workpieces are moved to the final
station, which in turn sorts them by color. Each station
is controlled by an ARM Cortex-M3. Using the GCC plu-
gin, approximately 480 functions are protected per station.
Thanks to the plugin, only the changes listed in Listings 1
and 2 are needed. Protecting each station manually would
be arduous and error-prone, while using the plugin makes
it possible with little effort. Further details about the small
scale factory and a preliminary fault injection study are cur-
rently under review [23].

The plugin has been mainly used to protect code on mi-
crocontrollers, such as the ARM Cortex-M0 and ARM Cor-
tex-M3. Currently, we are adding support for the ARM-
v7-A ISA, which is used in application processors such as
the ARM Cortex-A7 [3]. A first validation for this added
support will be to use the plugin on bare-metal code execut-
ing in the trusted-world, next to an untrusted-world, using
the TrustZone support on an ARM Cortex-A7.

In our research group, research is also being performed
on software-implemented data flow error (DFE) detection.
A data flow error is the corruption of data due to an erro-
neous bit-flip. In this research track, focus is being given to
developing new and better software-implemented detection
techniques and to the automatic implementation of those
techniques in the form of another GCC plugin. Once this

second GCC plugin has been thoroughly validated, the goal
is to merge both plugins into one plugin. This single plugin
can then provide a more complete protection against erro-
neous bit-flips, i.e. implement both CFE and DFE detection
techniques and their error handlers to specify a recovery
mechanism.

8. CONCLUSIONS
In this paper, we discussed our compiler extension which is

able to implement a variety of software-implemented CFE
detection techniques. First, the need for such a compiler
extension was shown. When implementing the CFE detec-
tion techniques in high-level code, they detect approximately
65 % of the occurring CFEs. This problem arises due to the
mapping of high-level code to machine-level code, which is
not a one-to-one mapping. Therefore, software-implemented
CFE detection techniques must be implemented in low-level
code. Since performing this manually is arduous and error-
prone, a compiler extension is needed.

Next, we presented our implementation of such compiler
extension in the form of a GCC plugin. Our plugin works on
a low-level intermediate language of GCC, called rtl, and
can implement the following methods: CFCSS, YACCA,
ECCA, RSCFC, SEDSR, SCFC, SIED, RASM and RA-
CFED.

Then, the internal working of the compiler extension was
shown and discussed using on the bit count algorithm of the
MiBench benchmark suite. Finally, we demonstrated that
the low-level implementation of a CFE detection method
always achieves a higher error detection ratio and a lower
silent data corruption ratio when compared to the high-level
implementation using fault injection experiments on eight
representative case studies.

9. REFERENCES
[1] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A.

Abraham. Design and evaluation of system-level
checks for on-line control flow error detection. IEEE

Transactions on Parallel and Distributed Systems,
10(6):627–641, 1999.

[2] ARM, 110 Fulbourn Road Cambridge, England CB1
9NJs. ARMv6-M Architecture Reference Manual, ddi
0419d edition, May 2017.

[3] ARM, 110 Fulbourn Road Cambridge, England CB1
9NJs. ARMv7-A and ARMv7-R Architecture
Reference Manual, ddi 0406c.d edition, March 2018.

[4] ARM, 110 Fulbourn Road Cambridge, England CB1
9NJs. ARMv7-M Architecture Reference Manual, ddi
0403e.d edition, June 2018.

[5] S. A. Asghari, A. Abdi, H. Taheri, H. Pedram,
S. Pourmozaffari, et al. SEDSR: soft error detection
using software redundancy. Journal of Software
Engineering and Applications, 5(09):664–670, 2012.

[6] S. A. Asghari, H. Taheri, H. Pedram, and O. Kaynak.
Software-based control flow checking against transient
faults in industrial environments. IEEE Transactions
on Industrial Informatics, 10(1):481–490, 2014.

[7] S. Baffreau, S. Bendhia, M. Ramdani, and E. Sicard.
Characterisation of microcontroller susceptibility to
radio frequency interference. In Proceedings of the
Fourth IEEE International Caracas Conference on
Devices, Circuits and Systems (Cat. No.02TH8611),
pages I031–1–I031–5, 2002.

[8] R. De Keulenaer. Softwarebeveiliging van smartcards
tegen laseraanvallen. Master’s thesis, Universiteit
Gent, 2013.

[9] Festo-Didactic. Mps the modular production system.

[10] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and
M. Violante. Soft-error detection using control flow
assertions. In Defect and Fault Tolerance in VLSI
Systems, 2003. Proceedings. 18th IEEE International
Symposium on, pages 581–588. IEEE, 2003.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, pages 3–14.
IEEE, 2001.

[12] E. H. Ibe, S. Yoshimoto, M. Yoshimoto, H. Kawaguchi,
K. Kobayashi, J. Furuta, Y. Mitsuyama,
M. Hashimoto, T. Onoye, H. Kanbara, H. Ochi,
K. Wakabayashi, H. Onodera, and M. Sugihara. VLSI
Design and Test for Systems Dependability, chapter
Radiation-Induced Soft Errors. Springer Japan, 2019.

[13] Imperas. Revolutionizing embedded software
development. Online, 2018.

[14] S. Jagannathan, Z. Diggins, N. Mahatme, T. D.
Loveless, B. L. Bhuva, S. J. Wen, R. Wong, and L. W.
Massengill. Temperature dependence of soft error rate
in flip-flop designs. In 2012 IEEE International
Reliability Physics Symposium (IRPS), pages
SE.2.1–SE.2.6, April 2012.

[15] M. Kishani, M. Tahoori, and H. Asadi. Dependability
analysis of data storage systems in presence of soft
errors. IEEE Transactions on Reliability,
68(1):201–2015, Jan 2019.

[16] A. LI and B. Hong. Software implemented transient
fault detection in space computer. Aerospace science
and technology, 11(2):245–252, 2007.

[17] B. Nicolescu, Y. Savaria, and R. Velazco. SIED:
Software implemented error detection. In Defect and
Fault Tolerance in VLSI Systems, 2003. Proceedings.
18th IEEE International Symposium on, pages
589–596. IEEE, 2003.

[18] N. Oh, P. P. Shirvani, and E. J. McCluskey.
Control-flow checking by software signatures. IEEE
transactions on Reliability, 51(1):111–122, 2002.

[19] B. D. Sierawski, R. A. Reed, M. H. Mendenhall, R. A.
Weller, R. D. Schrimpf, S. J. Wen, R. Wong, N. Tam,
and R. C. Baumann. Effects of scaling on
muon-induced soft errors. In 2011 International
Reliability Physics Symposium, pages 3C.3.1–3C.3.6,
April 2011.

[20] R. M. Stallman and the GCC Developer Community.
GNU Compiler Collection Internals for GCC version
7.3.0. Free Software Foundation, 2017.

[21] J. Vankeirsbilck, N. Penneman, H. Hallez, and
J. Boydens. Random additive signature monitoring for
control flow error detection. IEEE Transactions on
Reliability, 66(4):1178–1192, Dec 2017.

[22] J. Vankeirsbilck, N. Penneman, H. Hallez, and
J. Boydens. Random additive control flow error
detection. In B. Gallina, A. Skavhaug, and F. Bitsch,
editors, Computer Safety, Reliability, and Security,
pages 220–234, Cham, 2018. Springer International
Publishing.

[23] J. Vankeirsbilck, J. Van Waes, H. Hallez, D. Pissoort,
and J. Boydens. Control flow erros in an industry 4.0
setup: a preliminary study. In accepted at IEEE SMC,
2019.

