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ABSTRACT
Our main use case features multiple companies that iteratively
optimize on the architectural properties of aircraft components in
a decentralized manner. In each optimization step of the so-called
multi-disciplinary optimization (MDO) process, sensitive data is
exchanged between organizations, and we require auditability and
traceability of actions taken to assure compliance with signed legal
agreements.

In this paper, we present a distributed protocol that coordinates
authenticated and auditable exchanges of files, leveraging a smart
contract. The entire life cycle of a file exchange, including file
registration, access request and key distribution, is recorded and
traceable via the smart contract. Moreover, when one party raises
a dispute, the smart contract can be used to identify the dishonest
party without compromising the file’s confidentiality.

The proposed protocol provides a simple, novel, yet efficient
approach to exchange files with support for data access auditability
between companies involved in a private consortium with no in-
centive to share files outside of the protocol. We implemented the
protocol in Solidity, deployed it on a private Ethereum blockchain,
and validated it within the use case of a decentralized workflow.

CCS CONCEPTS
• Software and its engineering→ Peer-to-peer architectures;
• Applied computing→ Enterprise information systems;
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1 INTRODUCTION
Authenticated and auditable data sharing is crucial for business
processes involving multiple parties. A typical example of such
business processes is distributed multi-disciplinary optimization
(MDO), where a number of companies collaborate on optimizing a
complicated industrial design, such as that of an aircraft. Due to the
design’s complexity and the involved companies’ different exper-
tise, such as structural stability, aerodynamics, and propulsion, data
exchanges happen frequently throughout the decentralized work-
flow. The exchanged data must only be visible to intended receivers
as they are subject to stringent intellectual property constraints.
Furthermore, data integrity also needs to be verifiable because of
the legal implications in case of an accident. Moreover, the data reg-
istration and access operations need to be logged and timestamped
as they are backed by signed legal agreements.

This use case can clearly be generalized to many other cases
that require tracking of data exchanges between organizations for
legal compliance. In such processes, it is highly important to keep
a persistent and tamper-proof record of which data, when, and
with whom has been shared as to back the signed legal agreements.
Therefore, the manner in which such data access operations are
logged must be trustworthy and non-repudiable by either party.

To meet with such requirements of non-repudiation, typically
a trusted third party is involved as an intermediary in the data
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sharing process (e.g. a cloud storage provider) [19, 22]. This trusted
third party can be used to log each operation taken by any party,
and resolve any potential disputes. This traditional approach is
sub-optimal for three key reasons [16]: (i) it requires a minimum of
trust by all involved organizations in the third party, (ii) in case of
disputes manual intervention is required which is time-consuming
and inefficient, and (iii) it may in such cases be required to reveal
the contents of the confidential data.

To this end, decentralized ledger technologies (DLTs) present
opportunities to remove trusted third parties by placing trust in the
decentralized network and its established consensus algorithms.
Indeed, many related works have already focused on the topic of
blockchain and data sharing. A subset of these works have focused
on (i) simply storing file hashes to verify data integrity [9, 13], to (ii)
managing file access permissions on-chain which are then applied
locally [3], or even (iii) executing file access policies on-chain [14].
In some of these works auditability is provided on operations such
as changing the access permissions, or data contents. More impor-
tantly, there are works that (iv) enable the effective operation of
data sharing itself via the blockchain, and even feature blockchain-
managed (P2P) storage [17, 23]. These works support auditability
on the stored data’s integrity, however crucially not who accessed
or modified the files (i.e. the data access trail).

To our knowledge, the only work which provides auditability
on file access operations is CALYPSO [11]. File access is logged
on-chain when a user requests access to a file’s decryption key. A
proof of authorization is first requested from a collection of special
nodes, referred to as the secret-management cothority, which log
the request. Access to the file key itself is granted in a second
step, by providing the proof of authorization to an access-control
cothority.

We propose a protocol which presents a simpler, alternative
request-response scheme via the blockchain to grant file decryption
keys. We provide an implementation of the proposed protocol in
an executable Ethereum [21] contract, implemented in Solidity [6].

Comparing with CALYPSO, our solution provides three key ben-
efits: (i) we avoid the need for complex distributed key management
to preserve confidentiality of data, (ii) our proposed solution is easy
to deploy as a smart contract, and (iii) the smart contract is portable
across many blockchain technologies that support Solidity. A po-
tential downside of our protocol is that the data owner has to be
online to transmit the symmetric file key via the smart contract
upon request. Such active involvement is typically already present
in many cases, such as our use case of a decentralized workflow,
and sharing a key can be automated at each client.

The remainder of the paper is structured as follows. Section 2
presents the motivating use case and Section 3 its requirements.
Section 4 details the proposed protocol, and several scenarios. Sec-
tion 5 discusses a practical implementation of the protocol in a smart
contract. Section 6 validates this architecture deployed within our
initial use case, that of a decentralized workflow. Section 7 discusses
related work. Section 8 concludes the paper.

2 USE CASE AND PROBLEM STATEMENT
We motivate our proposed solution for auditable data sharing in
the context of an industrial case by Noesis Solutions [18] regarding

multi-disciplinary optimization (MDO). The MDO process is an iter-
ative, distributed process that involves the sharing of optimization
results on industrial designs [5, 12]. In the initial phases, the design
may be rather simple and communication can remain internal to
the company.

As the design grows increasingly complex, more specialists are
involved that are experts in their respective domains (e.g. structural
stability, aerodynamics). Consequentially, communication becomes
increasingly more difficult to coordinate and oversee between these
organizations. In our case, Noesis Solutions’ [18] has developed the
Optimus tool which effectively coordinates these types of work-
flows.

In a workflow, shown in Figure 1, there are two types of actors:
a singular workflow coordinator, and multiple disciplinary expert
companies. Every time a parameter is changed, each participant has
to re-run their optimization in an iterative fashion, which ultimately
converges to the optimal design.

In this paper, we primarily focus on the manner in which data is
exchanged, since the data involves optimization results on sensitive
designs that have to be delivered within certain time frames.

2.1 Data sharing with traceability
In the MDO process, sensitive data is shared involving aircraft
components and designs that are subject to intellectual property
rights, and are covered by signed legal agreements between the
parties. As a result, it is important to log which parties shared which
data, at which time, and with whom. These logs can furthermore
help to trace any mistake in the optimization process, or to verify if
parties meet with contractual obligations such as delivering results
within a given time frame. Consequentially, any operation must be
logged in a non-repudiable manner.

2.1.1 Current situation. In order to log any event or operation with
non-repudiation, a trusted third party serves as an intermediary
in the data sharing process. The shared data is typically encrypted
as to preserve its confidentiality from the trusted third party. This
intermediary has several responsibilities: (i) storing and managing
retrieval of the data, (ii) creating log events on every operation that
occurs, (iii) allowing auditability of these events, and (iv) facilitating
conflict resolution when disputes arise.

Dispute and conflict resolution. Several conflicts can arise be-
tween parties, for example a file recipient can claim that the owner
sent rubbish instead of the actual required data. In such a case,
the encrypted data can be revealed to the trusted third party, or
an external validator, as to resolve the conflict. Conflicts can also
arise on for example the timeliness of operations, or the correctness
of a decryption key. In the former case, the validity can simply
be checked by a third party without revealing too much private
information. However, in the case of verifying file contents, this
may result in revealing the file’s confidential nature.

2.1.2 Problem statement. The involvement of a trusted third party,
while highly common in many business cases, is sub-optimal for
three reasons [16]: (i) it is costly, and requires a level of trust by all
involved entities, (ii) conflict resolution may require exposing the
contents of the sensitive files to this party, and (iii) such intervention
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Figure 1: MDO process and data sharing between participants and the coordinator [16].

can involve manual interference which is time-consuming and
hinders overall efficiency of the application.

2.2 Decentralized ledger technologies
Decentralized ledger technologies (DLTs) are highly promising
in certain cases to avoid the use of trusted parties. Instead, trust
can be placed in the entire network and its established consensus
algorithms. Numerous blockchain technologies have emerged over
the years, the most prominent being Bitcoin [15] and Ethereum [21],
each with different trade-offs between performance, security, and
functionality. Ledger technologies can be used within our use case
to log any data operations taking place in a persistent, and tamper-
proof manner, or to actually coordinate the operation itself.

In the next section, we outline the functional and non-functional
requirements given the presented use case.

3 REQUIREMENTS
The proposed solution and the case of distributed multi-disciplinary
optimization (MDO) has to meet with specific functional, and non-
functional requirements [16]. These requirements are typically also
in line with other cases that involve communication between or-
ganizatios, and which require auditability and traceability of data
sharing operations.

Functional requirements
We first outline the functional requirements:

F1 Data sharing with access control. Files can be uploaded,
and shared to a specific set of recipients.

F2 Auditability of any data operation. Any data access op-
eration (read, or write) can be checked by anyone, including
external auditors.

F3 Data validation. Any party involved can verify indepen-
dently whether a downloaded file, or a given symmetric file
key, is correct.

F4 Conflict resolution. Appropriate mechanisms are in place
in the network to resolve either conflicts on (i) the integrity
of a file, or (ii) the integrity of a key.

Non-functional requirements
NF1 Decentralization. Trust is placed in the decentralized net-

work and its established consensus algorithms, over the typ-
ical traditional approach of involving centralized 3rd parties,
which require a level of trust by all involved parties.

NF2 Non-repudiation of data operations. Log creation on any
data operation (e.g. write, read) occurs in a trustworthy, non-
repudiable, and tamper-proof manner. Neither party can
refute the correctness of any logged operation.

NF3 Availability and scalability.We require high availability
and scalability of the system as the data set grows, or the
number of participants increases.

NF4 Data confidentiality. Any exchanges of for example sym-
metric file keys, while they may occur on a public blockchain
network, must remain confidential.

Blockchain platforms are in essence a tamper-proof decentralized
shared ledger, and as a result the shared data is highly available. As
such, many of these requirements are either partially or completely
satisfied by simply employing the use of a blockchain platform
(NF1, NF2, NF3).

Further emphasis can be placed on confidentiality, such as limit-
ing the visibility of data transactions only to organizations involved
in the specific process.

In the next section we propose a protocol to satisfy the afore-
mentioned requirements and attain authenticated and auditable
data sharing.

4 AUDITABLE DATA SHARING PROTOCOL
When simply using the blockchain as a logging mechanism for
sharing data, there are two possibilities regarding malicious data
transfer, as also explained in [8, 16]:

• The receiving party can receive the file without acknowledg-
ing receipt, or falsely claiming that the data is incorrect.

• The file owner can send rubbish data.

In order to guarantee data access accountability and identifi-
cation of dishonest parties in case of such malicious transfer, the
blockchain has to be an essential part of the data sharing process
and cannot be omitted in order to gain access to the files.
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Table 1: Terminology and definitions.

Symbol Symbol

Do Data owner F File
Dp Data participant Cf Encrypted file F
Kf File key Kf ,1 Part of file key
Rx Random number Kf ,2 Part of file key
PKp Public key participant

Symbol

Commit1 Hash of first file key part and random number R1
Commit2 Hash of second file key part and random number R2
C1 Encrypts file key part 1 and R1 using a public key.
C2 Encrypts file key part 2 and R2 using a public key.

We present a protocol that is a request-response based scheme
to exchange symmetric file keys between parties. The protocol
involves two actors: the data owner (Do ) and data participant (Dp ).
The scheme leverages a smart contract, and the files are exchanged
via a shared storage platform.

We outline the protocol specification on the basis of several sce-
narios that involve one or both of the two actors. The key scenarios
that comprise the protocol are explained in order of: creating a file,
uploading and announcing a file, to other parties requesting file
access, and finally responding with the decryption key.

Table 1 summarizes the terminology and abbreviations used
within the protocol’s specification.

4.1 Scenario: uploading a file
Assume the case where the data owner Do wishes to share a file
with a set of recipients. Before anything occurs on the blockchain
network itself, the file is encrypted and uploaded to a shared P2P or
centralized storage system. Figure 2 essentially shows the following
steps in the file upload process that take place:

(1) Do encrypts file F , obtaining Cf using a symmetric key Kf .
(2) Do uploads the encrypted fileCf to a shared storage system.

Data owner (Do)

Encrypted File

Shared storage Participant (Dp)

Read

P2P (IPFS)File Server OR

Kf

Figure 2: Upload file to shared storage.

The shared storage can be a centralized cloud storage service,
or a P2P system such as IPFS [4] The protocol only requires that
everyone, or at least each recipient, can access the file, verify it,
and that it remains available. With regards to availability, it may be
wise to assure that when using a distributed file network the file

remains properly replicated (NF3). For such purposes, incentivized
P2P file storage solutions such as Sia [2] and Storj [1] are potentially
interesting. Alternatively, files can also be hosted on the involved
parties’ owned servers, or a combination of cloud storage providers.

4.2 Scenario: announcing a file
When a new file has been added, any party that has access to the
shared storage can already download the encrypted file, but not yet
decrypt it except for Do . The data owner Do can now announce to
everyone, or a specific list of recipients, that a new file F is ready
to be shared. The process is shown in Figure 3 and takes place as
follows:

(1) Two random numbers R1 and R2 are generated.
(2) Owner Do splits the symmetric file key Kf into Kf ,1 and

Kf ,2, so that Kf = Kf ,1 ⊕ Kf ,2.
(3) Owner Do makes the following commit messages.

• Commit1 = Hash(Kf ,1 | |R1)
• Commit2 = Hash(Kf ,2 | |R2)

(4) Do publishes the commit messages and file meta-data, an-
nouncing to all involved recipients that a specific file at a
given location is available for request.

This announcement is conducted ideally via a smart contract
on the blockchain, which can limit a file’s access requests to a set
list of recipients (i.e. provide a degree of access control). It is only
after file announcement that the smart contract’s functionality to
request a decryption key becomes available. The operations used
such as a key split is a simple XOR operation, whereas the hash
function can be SHA2, since the latter is typically supported by
smart contract languages such as Solidity.

Data owner (Do) Participant (Dp)Blockchain 
Network

Publish Read

Kf Kf,2Kf,1

(ii) split key

R1 R2

(i) choose random numbers (iii) create two commit hashes

(iv) publish hashes and meta data

Id Location Hash

Announce a file

Commit1,2

Figure 3: Announce a file to the shared ledger.

The commit messages will later be used when anyone disputes
the validity of the key. Such dispute functionality can be imple-
mented in a smart contract to verify one key sharewithout revealing
a single bit of the actual key. The random numbers are used to hide
the key share, and specifically to prevent anyone from verifying
a leaked share’s correctness by hashing it, or attempting to find a
key share via a brute-force attack.
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4.3 Scenario: requesting a file
The next scenario is that of a party who wishes to become a data
participant Dp . The prospective data participant Dp publishes a
request for the file Cf on the blockchain, or via a smart contract
(which can enforce access control on file requests).

(1) Dp downloads the encrypted file Cf to which he wants to
gain access.

(2) Dp checks Cf against the announced file hash by Do .
(3) Dp publishes a request for the fileCf ’s key, and includes his

public key PKp .
The explicit request ensures that no party can demand the file

decryption key without being logged. Moreover,Dp must only send
the request after verifying the file’s integrity, eliminating potential
disputes. The data owner Do can then check the blockchain for any
pending decryption requests.

4.4 Scenario: responding to a file request
The data owner Do observes on the blockchain that a request has
been made for one of his/her files. The owner can decide to either
respond, or to ignore the request when the party isn’t permitted
access. In case the owner responds to the decryption request, the
file key is sent to the data participant Dp via the blockchain as
follows:

(1) Owner Do sends the following messages, and encrypts them
using the requester’s public key PKp .
• C1 = EncryptPKp (Kf ,1 | |R1)
• C2 = EncryptPKp (Kf ,2 | |R2)

(2) The format of the decrypted text ofC1 andC2 clearly defines
the random number and key part. Dp can now decrypt both
messages and discover respectively R1, Kf ,1, and R2, Kf ,2.

If the transmitted keys are correct and Kf decrypts the file, then
this public exchange serves as a proof of file access. The key can
be invalid when either (i) the key doesn’t match with the commit
hashes published by the owner, or (ii) the key doesn’t decrypt the
file properly. In case of key incorrectness, it can be challenged later
by any involved party which relies on the fact that every event
in the request-response based scheme is logged in a tamper-proof
manner.

4.5 Scenario: disputing a key
Suppose the data owner Do sends an incorrect key to the party Dp ,
as in not being the key that was originally promised. In that case,
one or both parts of the following calculation must not match up
with the original commit message.

• Commit
′

1 = hash(Kf ′,1 | |R1) , the original Commit1
• Commit

′

2 = hash(Kf ′,2 | |R2) , the original Commit1

If one of these conditions is valid, then this can be checked
autonomously by the network when the entire exchange was coor-
dinated via a smart contract. In such a case, the party Dp reveals
one of the following conditions to the smart contract:

• The receiving party only reveals R1 and Kf ′,1.
• The receiving party only reveals R2 and Kf ′,2.

The smart contract can then indeed check whether one of the
above conditions is correct or not, and thus whether or not the data

owner has transmitted the promised key. When both key parts are
wrong, only one part is revealed to prove that the key is isn’t the
promised key by the owner. In this manner, the entire key is never
leaked. In case the transmitted key was actually an invalid key, and
it does not allow for a proper decryption, then other measures have
to be taken, for example via off-chain resolution (e.g. consulting a
trusted 3rd party).

5 SMART CONTRACT IMPLEMENTATION
In this section we detail a practical implementation of the afore-
mentioned protocol for auditable data sharing.

There are two options to implement this protocol, either record-
ing each request-response inside meta-data of a blockchain transc-
tion, or coordinating the protocol via a smart contract.

A smart contract deployed on a blockchain is a program which
runs on all the miner nodes concurrently. The contract lives in its
own sandboxed environment, with its own memory stack. Function
calls to the contract are executed simultaneously on all its instances
in the network. In this manner, the state is kept synchronous and
the trust in its output is based on the consensus of multiple simul-
taneous executions.

Within the context of our protocol, a smart contract provides sev-
eral benefits versus simply storing data in blockchain transactions,
namely: (i) enabling access control and limiting requests, and (ii)
enabling key correctness validation autonomously. Thirdly, (iii) a
smart contract is portable across multiple blockchain technologies.

5.1 Smart contract functionality
In this section, we briefly outline the contract’s functionality. We
opted to implement the smart contract using the smart contract
programming language Solidity [6], for reasons of its widespread
adoption and compatibility with numerous platforms, of which
most notably Ethereum [21]. The smart contract’s functionality
mostly runs on the basis of internally-kept data structures that
maintain the state of which files are shared, and with which parties.

5.1.1 Data structures. The internal state of the smart contract is
comprised of: the owner’s address, lists of recipients, and lists of
files. A file is comprised of its hash, location, owner’s public key,
version number, and the set of parties that are considered either
viewers or requesters. These parties are stored as a list of Ethereum
addresses and their respective public keys. The file structure also
keeps track of the decryption keys that have been shared, which are
encrypted using the public keys initially provided by the requesters.

5.1.2 Functionality. Our contract provides functionality that is
publicly accessible, as well as functions that are exclusively available
to the contract owner (its deployer). We first outline the four core
publicly-available functions:

• createFile: Anyone can create a file, listing its location, hash,
the owner’s public key, commit hashes and intended list of
recipients.

• askDecrypt: Once a file has been created, only parties that
are in the list of recipients can request decryption, and they
do so by providing their public key.
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• respondDecrypt: A request can be responded to, only by
the owner of that file. In doing so, the owner provides an
encrypted copy of the file key.

• Inspectors: Methods which reveal the state of the contract.
These states include: pending requests for a file, all files
owned by a party, file information, and encrypted keys.

5.1.3 Access control. The owner of the contract has special func-
tionality which pertains to the management of the list of recipients.
He can create a new list of recipients, to which a name (identifier)
is associated, which is used in the creation of files. Importantly, the
owner cannot alter existing files, or events that have occurred.

5.1.4 Current implementation. In this version of the contract there
is no functionality yet to resolve key conflicts via the smart contract.
Such issues will have to be resolved off-chain for now, or can be
added at a later stage. The main reason as to why this is the case is
that the smart contract is currently not aware of commit messages,
and their significance. Instead, we currently resort to off-chain
resolution in case of any conflicts that arise, with the blockchain
and the smart contract serving as a tamper-proof history of events
that took place, and which can not be repudiated by any involved,
or external party.

Such automated conflict resolution mechanisms on-chain are out
of the scope of the use case, that is instead focused on achieving the
properties of non-repudiation and auditability on the data access
trail. In fact, conflict resolution in an MDO process would require
complex activities that should be taken by actors in the process (i.e.
uploading a different file), and it is not desirable by the involved
companies to automate at this stage. On the other hand, it is critical
to provide a tamper-proof log of reads and writes to a human
operator that is in charge of resolving the conflict.

6 DEPLOYMENT AND VALIDATION
Figure 4 illustrates the setup of our deployment. In our use case, that
of a decentralized workflow, we setup an Ethereum node within
each company’s premises. This Ethereumnode has an RPC interface,
and an Ethereum wallet with a pre-defined set of currency that
originates from the genesis block. A sufficient amount of funds
has been allocated to each company in a range that it will never
become an issue. In our use case, currency isn’t the incentive which
drives the network, rather it’s the organizations’ desire to keep the
workflow operational.

Each workflow participant or coordinator calls their respective
node’s RPC interface to execute contract functions, or to inspect the
overall state of the blockchain. The Ethereum nodes themselves are
running on the go-ethereum (geth) implementation of Ethereum.

6.1 Contract deployment
In our case, we have a single contract pre-deployed, and we simply
refer to a static address where it resides. In practice, all participants
would have to agree on the location of the smart contract which is
going to be used for the exchange of files. If multiple deployments
of the smart contract exist, then the file exchange coordination may
become fragmented.

However, there may also be benefits for creating multiple deploy-
ments of the same file exchange smart contracts when for example

Smart contract

Ethereum
Node

Wallet

Ethereum
Node

Wallet

Ethereum
Node

Wallet

Workflow
Coordinator

Workflow
Participant

Workflow
Participant

Figure 4: Deployment setup.

the internal data structure grows rather large due to an increasing
number of files shared. If a certain workflow is finished, and no
conflicts are signalled after a certain time window, then it may be
of interest to create a new deployment of the contract.

6.2 Application architecture
In order to connect the blockchain and smart contract functionality
to our existing workflow application (written in python), we can
make use of several libraries such as the web3py framework. The
web3py framework acts as wrapper around the low-level blockchain
API and provides functions to load a contract’s binary code, deploy
it, and call its functions.

6.2.1 Python client. Since the web3py framework isn’t tailored to
the specific API of our smart contract and its functions, we have
written a class FileTransferContract.py which neatly packs all
the required functionality for a specific company. Each company
configures their own Ethereum node IP in the class, and can subse-
quently inspect all files present, create a file, or request decryption.
Since these inspectors reveal a large set of data, we have also pro-
vided a visual web interface on top of this wrapper to allow each
company to inspect the on-going status.

6.2.2 Web interface. The web interface (shown in Figure 5) is the
portal for each company to the smart contract, where it can interact
with existing files, check pending file requests, or received files. The
web server is a complete standalone service that can be launched
on any node, as long as this node can interface with the company’s
specific Ethereum node and interface with its RPC interface to
inspect the blockchain and execute contract functions. Each web
service request generally makes use of the previously-discussed
Python client functionality.

6.3 Validation
We used this web portal to validate the case of a decentralized work-
flow, and assure that the design of our setupmeets our requirements
of non-repudiation, and auditability of data access.

Use case scenarios. We tested several scenarios starting with the
announcement of a file, which mentions the owner’s public key and
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Figure 5: Web interface to manage files and key requests.

a list of recipients (Ethereum addresses). Subsequently, we tested
the case where both a permitted, and unpermitted organization
request access to the file. The unpermitted request was cancelled by
the smart contract, whereas a permitted organization can submit its
public key as a request. In our web interface, we then subsequently
tested the case where the data owner Do responds to a key request,
which sends the file key encrypted using the provided public key.
The other organization was able to properly request its decryption
key from the contract, and subsequently decrypt the symmetric
key locally. Any other involved organization was able to audit
which organizations had shared files andwith whom for auditability
purposes.

Performance. In terms of performance, we observed that the
Ethereum network takes time to process certain transactions which
create actual data. For example, creating a file announcement via
the smart contract took on average 15 seconds. Whereas a simple
call to inspect the existing files returns relatively fast, as it mainly
involves network latency.

7 RELATEDWORK
Cloud storage services, such as Google Drive or Dropbox, allow
users to store, and share their data in a convenient manner. These
platforms, while very common in practice, lack the clear functional
requirement for data access accountability for our organizations.
Moreover, such centralized solutions pose a single point of potential
failure or compromise, with for example the user even unaware
of any potential or on-going breaches [10]. In light of our require-
ments, these platforms are therefore not suitable regarding data
integrity assurance, data access accountability, and preserving data
confidentiality.

In light of avoiding a single point of trust, decentralization of
such services presents many opportunities. A main advantage of
decentralization is that it can annul the need for a trusted third
party. Still, proper caution has to be taken to ensure data integrity,
confidentiality and accountability properties.

7.1 Blockchain for file integrity and
management of access policies

Several works facilitate data sharing, or integrity verification in a
decentralized manner, without access accountability or auditability

as a key requirement. We briefly categorize these related work as
follows:

• Frameworks that use blockchain to verify data integrity by
simply storing file hashes on blockchain-based databases [9,
13]. Any user can check if the file they receive is valid after
computing its hash and comparing the hash value with the
value stored in the tamper-proof shared ledger.

• Themanagement of file access permissions on the blockchain
in combination with local clients that alter these permis-
sions [3]. The blockchain provides a tamper-proof record,
and history of file permissions. In [14] the evaluation of
access policies is even conducted on-chain.

The frameworks listed above provide auditability in terms of
changing file access permissions, or the integrity of file data (via
stored hashes) but crucially aren’t involved in the data sharing
process itself. The latter is a key requirement towards achieving
data access auditability.

7.2 Blockchain file sharing platforms
The following academic and industrial implementations enable data
sharing via the blockchain as an essential part of the process.

• Zyskind et al. [23] and Shafagh et al. [17] enable data shar-
ing and integrity auditability via blockchain-governed P2P
storage nodes.

• Blockchain file storage solutions, such as Sia [2] and Storj [1],
manage a shared P2P file network on which users can store
and retrieve files in an incentivized manner.

These works unfortunately do not provide a mechanism to track
a file’s access trail.

Auditable data sharing. NuCypher KMS [7] is a decentralized
Key Management System (KMS) that can compliment decentralized
file storage solutions such as Sia [2] and Storj [1]. It uses proxy
re-encryption (PRE) to grant access to a list of receivers. Selected
nodes in the blockchain act as re-encryption nodes that hold re-
encryption keys for several files. Whenever a designated receiver
requests access to a file stored in distributed storage such as Sia [2],
the re-encryption nodes carry out PRE on the file key such that the
receiver can decrypt it while no information is leaked to any other
party. While access trail logging isn’t implemented yet, the authors
do argue that it can be integrated [7].
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To our knowledge, CALYPSO [11] is the only work that enables
extensive auditability of file access operations. The CALYPSO pro-
tocol uses threshold cryptography, blockchain technology and a
group of witnesses or trustees referred to as a collective author-
ity [20]. It is sufficient and enables the monitoring of the file’s access
trail, as everything is logged on the blockchain.

Despite the fact that this platform meets with a large portion of
our requirements, protocols such as CALYPSO [11] are complex in
regards of their underlying architecture. A large communication
overhead is involved which stems from two separate consensus
mechanisms to authenticate and process a data request. The first
mechanism verifies the write and read transaction, which responds
with a proof of permitted access. This proof can be send to a second
cothority of nodes which govern access to the file decryption key.
These consensus mechanisms deliver the proof of file access in
an auditable manner, however involve a large communication and
upkeep overhead. The main advantage of the CALYPSO protocol is
that the owner of a secret does not need to be online after storing
his secret on-chain.

Our proposed protocol avoids the need for a complex architec-
ture involving dedicated nodes that manage the file keys on-chain.
Instead, we rely on the data owner to respond to file decryption
requests with the required key. A single smart contract is used to
carry out this request-response scheme, and delivers auditability on
file access operations, while storing the files off-chain. This reliance
on a single smart contract keeps the architecture of our protocol
fairly simple and portable.

8 CONCLUSIONS
Many application cases and especially in an industrial, inter-
organizational context (e.g. B2B) today require the involvement
of 3rd party intermediaries to enable data access accountability.
Unfortunately, the involvement of such a third party requires a
minimum degree of trust by all involved participants, and secondly
potentially exposes highly confidential files to these intermediaries.
Many ongoing research has already focused on the combination of
blockchain technologies to remove the necessity of trusted third
parties, by placing trust in the network and its consensus algo-
rithms.

In this paper, we have presented the specification for a protocol
to auditable data sharing via a blockchain platform. The solution
in comparison to existing related work is much more simpler in
terms of architecture and algorithms, but does require that the data
owner is online and available to respond to document requests (to
obtain decryption keys).

We have provided a practical proof-of-concept implementation
of the protocol in the smart contract language Solidity, making our
solution portable across many blockchain platforms. The smart
contract has been tested and validated within the industrial use
case of multi-disciplinary optimization (MDO).

In its current state, this smart contract can be deployed on a
public blockchain and used reliably to attain data access auditabil-
ity. Further research is however required to analyze the potential
privacy threats, such as the ability of an outsider to infer which
parties are involved in a collaboration, or to observe which data is
exchanged and how frequently.
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