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Abstract—Recent research has shown that machine learning
models are susceptible to adversarial examples, allowing attack-
ers to trick a machine learning model into making a mistake
and producing an incorrect output. Adversarial examples are
commonly constructed or discovered by using gradient-based
methods that require white-box access to the model. In most
real-world Al system deployments, having complete access to the
machine learning model is an unrealistic threat model. However,
it is possible for an attacker to construct adversarial examples
even in the black-box case — where one assumes solely a query
capability to the model — with a variety of approaches each with
its advantages and shortcomings.

We introduce AutoAttacker, a novel reinforcement learning
framework where agents learn how to operate around the black-
box model by querying it, to effectively extract the underlying de-
cision behaviour, and to undermine it successfully. AutoAttacker
is a first of its kind framework that uses reinforcement learning
and assumes nothing about the differentiability or structure of
the underlying function and is thus robust towards common
defenses like gradient obfuscation or adversarial training. Finally,
without differentiable output, as in binary classification, most
methods cease to operate and require either an approximation
of the gradient, or another approach altogether. Our approach,
however, maintains the capability to function when the output
descriptiveness diminishes.

I. INTRODUCTION

Despite the extensive adoption and proliferation of machine
learning models, and the ever-increasing literature on their
robustness properties (through ad-hoc defenses or otherwise),
they are still largely susceptible to adversarial examples.
Adversarial examples are perturbed inputs that fool classifiers,
and the task of discovering them has a bilateral nature in
optimization defined as follows: Find the minimum pertur-
bation under which the sample is classified as something
other than its actual class. These adversarial examples can
potentially be exploited in the real world [1]. For many
commercial or proprietary systems, constructing adversarial
examples has to be considered under a limited threat model.
This has motivated black-box attacks that do not require access
to explicit information about how the classifier decides and
operates, i.e. model family, weights, gradients, or data used
for training.

One common approach to attacking a classifier in this
setting is to train a substitute network to emulate the original
network and its decision behaviour, and to subsequently attack
the substitute in a white-box manner with first-order methods
[2] like gradient descent. Recent works note that adversarial

examples constructed on substitute networks do not always
transfer to the target model, especially when conducting tar-
geted attacks [3] [4]. As a consequence the focus has instead
shifted into constructing adversarial examples by estimating
the gradient through the classifier with coordinate-wise finite
difference methods [5] [6].

The main challenge addressed in this work is the fact that
many adversarial attacks assume an unrealistic threat model.
We therefore consider additional access and resource restric-
tions on the black-box model that characterize restrictions
in real-world systems. To counter these restrictions a host
of attacks with exploratory components has been proposed,
e.g. by utilizing genetic algorithms [7]. But even in that case,
information that was queried under a budget (i.e. imposing a
limit on the amount of queries), is lost the moment we move to
the next sample. We are looking into a way to combine the ad-
versarial example generation together with reverse-engineering
the decision boundary of the model under attack. For that
reason, we propose a reinforcement learning framework for
constructing adversarial perturbations conditional on sample
input. In this way we ensure that the information queried from
the black-box model is not squandered when we move to the
next sample. In this work, the adversarial example discovery
is staged as a game being played between the learning agent
and the black-box environment, and enabled by the vast range
of algorithms available in reinforcement learning, capable of
operating even in binary input-output environments with non-
differentiable elements.

As expected, different query capabilities and output de-
scriptiveness imply different applicable techniques. Under the
reinforcement learning framework, there are techniques that
can deal with discrete input and output spaces, like Deep
Q-Networks [8], and with continuous spaces, like Deep De-
terministic Policy Gradient [9]. To demonstrate the potential
of the framework, we formulate the attacks under a black-
box model-as-environment: a Convolutional Neural Network
trained on the MNIST dataset achieving 99.2% accuracy. The
black-box model accepts images of numbers as continuous
inputs, and outputs probabilities for each class.

The remainder of this paper is structured as follows: In
section II, we provide the necessary background to adversarial
examples and the black-box setting. Section III presents our re-
inforcement learning based approach. We present experimental
results with our framework in section I'V. Finally, we conclude
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Fig. 1. MNIST adversarial examples. Row label is the true label and column
label is the target label.

this paper summarizing our main contributions and findings in
section V.

II. BACKGROUND AND RELATED WORK

Adversarial examples are inputs that have been minimally
perturbed in order to induce a targeted or untargeted mis-
classification from the model. Depending on the underlying
threat model, the ease and success of creating these adversarial
examples varies. Most often it decreases as we move from (a)
the white-box case where we assume complete knowledge of
the underlying model, that is the model family, architecture,
parameters, and data used for training, to (b) the black-box
case where we have no knowledge of the above and only the
following capability remains: to submit queries to the model
and record the output. The reason that this phenomenon is
observed is that creating adversarial examples is commonly
posed as an optimization problem. More specifically, having
white-box access to the model entails the ability to calculate
the gradient of the output w.r.t. the input in closed form.
Even when gradients are not readily applied, there is always a
workaround as long as the adversary has access to the model:

o deep neural networks: use backpropagation of errors and
the chain rule

o non-differentiable components: make linear approxima-
tions of these components

o stochastic elements: use the reparameterization trick

The less precise the attacker’s knowledge of the inner model
workings gets, the more the attacker is forced to use ap-
proximations of the actual gradient, or to even abandon the
optimization approach altogether.

A. White-Box attacks

In the white-box scenario, adversaries have complete knowl-
edge of and access to the model. Assuming continuous
function components, e.g. most activation functions in deep
neural networks, the adversary is able to compute the exact
gradient of the function which has been shown in the literature
to enable a host of powerful attacks. In one of the first
works to document this non-robust behaviour, Szegedy et al.
[10] argue that the reason for the existence of adversarial
examples is a question of robust learning and they attribute
their occurrence to blind-spots in the decision boundaries of
neural networks. In order to generate adversarial examples
they use a box-constrained L-BFGS algorithm to solve the
following optimization problem:

minimize ||d]|2
subject to  f(x +0) =t (1)
x+4d€[0,1)"

where f: R™ — {1,..,k} is the function that classifies the
input as a discrete label. ¢t € {1,.,.,k} is the target class and
0 is the added noise.

One of the earliest approaches for generating adversarial
examples is the Fast Gradient Sign Method and its iterative
version [11]. FGSM uses the gradient of the training loss
(V. J) with respect to the input for crafting adversarial ex-
amples. Let z, and x; denote the original and adversarial
examples respectively, and let ¢ denote the target class. As
an attack it is constrained under the L., norm and is crafted
in the following manner:

¥ =1z —e-sign(VyJ(x,t)) (2)

where ¢ specifies the Lo, constraint between z and z’, and
sign(V,J) is the sign of the gradient. In [12] the iterative
version was introduced, where FGSM is applied iteratively
with a finer distortion, followed by an e-ball clipping. Madry
et al. [13] reformulated the multi-step FGSM as projected
gradient descent (PGD), while they maintain L., constraints:

minimize f(x)
subject to z € C
xt — eV f(x) )

argmin ||ys+1 — z|]

Y41 =

Ti41 =

where z; is the sample, € the update step, and x4 ; is the
perturbed sample.

Carlini & Wagner [14] and Elastic Net Attacks [15] do not
use the training loss directly. Instead they designed an Lo reg-
ularized loss function based on the logit layer representation
of the DNN. It is formulated is as follows:

minimize c¢- f(z,t) + ||z — x0||3 @)
subject to  x € [0,1]"

where f(z,t) is the logit layer loss function. They have
defined a separate function f for each Lo, Lo, and L;, ¢ attack,



but all contain a parameter k that regulates the necessary
margin between the predicted probability of the target class
and that of the rest. Parameter £ is effectively controlling how
strong the adversarial examples are, with the accompanied
increase in distortion. What puts Elastic Net Attacks apart
from the C&W attack is that they incorporate L; minimization
in the loss and thus perform elastic-net regularization. This has
been shown to generate more robust, transferable adversarial
examples [16] [3].

B. Black-Box attacks

As a black-box we describe the environment where the
attacker has no access to the specifics of the underlying
model, like the model family, parameters, and the data used to
train, but still has the capability to submit queries and record
the model output. This threat model is the most pervasive
in the literature regarding black-box attacks [5] [3] [17]. It
thus follows naturally that constructing adversarial examples
under the black-box case shares a lot of common ground with
the literature of optimizing black-box functions [18]. We can
group the different approaches in 3 principal categories.

o Transferable Attacks: the attacker builds a substitute

model and attacks it in white-box fashion.

o Gradient Estimation: the attacker attempts to use
gradient-free optimization techniques to approximate the
gradient of the black-box function.

« Exploratory Attacks: the attacker is delivering random
payloads to the model and records the results, quite akin
to fuzzing in penetration testing.

1) Transferable Attacks: Transferability is an intriguing
property that adversarial examples exhibit. It maintains that
adversarial examples generated against a specific model can
also be misclassified by other models. In [19] Ling et al. run
a comprehensive evaluation of transferability from one model
to another. There is an expansive part of the literature that
employs the queries in order to train a substitute model. The
property of transferability has been studied exhaustively and it
has been shown that it holds at its strongest when examples are
transferred between models of the same family, e.g. a DNN to
DNN attack. The principle of operation in this case is that the
substitute model will learn an approximately similar decision
boundary as the one in the black-box model.

Training model substitutes, generating adversarial examples
on them, and then relying on the transferability property has
certain advantages and drawbacks. It can be used to generate
adversarial examples without the requirement to access the
black-box model again. If the attacker is interested in learning
how to generate a multitude of adversarial examples, it is
query efficient, and it also can be combined with generative
models in order to generate perturbations conditional on input.
But as it is based solely on the transferability property, it
has lower success rate than gradient estimation, dependent on
source and target model family [20]. This property diminishes
as outputs get less informative and the attacker cannot make
reasonable assumptions about the underlying model family and
architecture [6].

Another approach in training substitute models for black-
box attacks involves Generative Adversarial Networks. In [21]
Hu et al. attack a malware detector in black-box fashion.
In order to achieve this, they employ the standard GAN
architecture, where the generator takes as input both a malware
sample and a noise vector and the generated result is submitted
to the black-box detector as a query. The training data of
the substitute discriminator consist of adversarial malware
examples from the generator, and benign programs from an
additional benign dataset collected by malware authors. The
pivotal notion compared to typical substitute training is the
following: The ground-truth labels of the training data are
not used to train the discriminator. Instead the goal of the
substitute discriminator is to fit the black-box detector, and
this is achieved by replacing the ground-truth labels with the
detector’s output.

2) Gradient Estimation: Gradient estimation is a funda-
mentally different approach. One of the first to propose it in
the context of black-box attacks were Chen et al. [5], where
they compute the gradient approximation by using the finite
difference method instead of actual back propagation through
the unknown network. Given a sample x,, to calculate a single
gradient with the finite difference method, for the Inception-v3
network it requires 299 x 299 x 3 x 2 = 536.406 queries to it.
This number of queries is for a single perturbation step, for a
single sample. It is evident that this approach, while seminal
in the black-box attack literature and an important proof-of-
concept, is fairly naive and it does not scale at all. Following
work like [6] and [22] expand on it, employing probability
priors to reduce the required amount of queries per successful
adversarial example construction.

We can summarize the advantages and drawbacks of gradi-
ent estimation techniques as follows: They have a high success
rate as their approximation is based directly on the specific
black-box function behaviour, they operate irrespective to the
model family being attacked, and they are still useful, albeit
with an increase in required number of queries, when the
output gets less informative. But they usually have a high
query budget, they construct tailored, one-use perturbations
and they squander what they learn.

The projected gradient descent (PGD) method as described
above, is designed to be used in the context of white-box
attacks. That is, in the setting where the adversary has full
access to the gradient V,L(x,y) of the loss function of the
attacked model. In the corresponding and more realistic black-
box setting, the adversary has access only to an oracle that
returns, for a given input (x,y), only the output of the model
and subsequently the value of the adversarial loss function
the attacker has defined on that output. As Ilyas et al. [22]
have shown, one can estimate the gradient using sequential
queries. The finite difference method is still being employed
as a primitive to approximate the gradient, where it estimates
the directional derivative D, f(x) = (V. f(x),v) of some
function f at a point = in the direction of a vector v as



Dyf(x) = (Vof(z),v) = (f(z +6v) = f(2))/6 (5
The step size § > 0 governs the quality of the gradient
estimate. Decreasing § gives more accurate estimates but also
decreases reliability, due to precision and noise issues. In
practice, § is a tunable parameter. It follows that the attacker
is able to find the d components of the gradient by estimating
the inner products of the gradient with all the standard basis
vectors b1, .., by:

d
VoL(z,y) = > bi(VaL(z,y), bi) (6)
k=1

3) Exploratory Attacks: The idea of exploration is fairly
common in search based optimization techniques, where the
goal is to get a fair understanding about the data space and
then emphasize only on the promising directions. In [23]
Sethi et al. propose the Seed-Explore-Exploit framework for
generating adversarial samples. The attack starts with the Seed
phase where it acquires a legitimate sample and a malicious
sample to form the seed set D, It is followed by the
Explore phase, where the goal is to obtain diverse information
about the space of legitimately classified samples by using the
Gram-Schmidt process for orthonormalising a set of vectors.
Finally at the Exploit phase, the information gathered is used
to generate the attack samples by what they define as Anchor
Point attacks, where they stochastically try perturbations on
them, and Reverse Engineering attack where they attempt to
infer the decision surface of the black-box model.

Another approach in exploratory attacks is based on genetic
algorithms which are population-based gradient-free optimiza-
tion strategies and are inspired by the process of natural
selection. In [7] Alzantot et al. iteratively evolve a population
of candidate adversarial solutions towards better ones. In each
generation, the quality of population members is evaluated
using a fitness function. Fitter adversarial examples are more
likely to be selected for “breeding” the next generation.
Successive generations are generated through a combination
of the crossover technique, where characteristics from two
parent solutions are intermixed to produce a child solution, and
the mutation technique, where it accounts for the necessary
stochastic element required for exploration.

The GenAttack algorithm gets the original image z and
the target classification label ¢ chosen by the attacker, and
it computes an adversarial image .4, such that the model
classifies zqq, as t and || — Zagulloo < Omaz- Then each
population members’ fitness is evaluated repeatedly, until a
successful example is found. The fitness function reflects the
optimization objective, where in this case is the output score
given to the target class label directly. The authors claim that
it actually improves efficiency when they jointly motivate the
decrease in the probability of other classes.

C. Motivation for this work

The above landscape of black-box attacks motivates our
work, which attempts to bring together the advantages of

Fig. 2. Left: A linearly separable set of points. Right: Perturbations lying
within the Loo-box around the points can position them on the other side of
the decision boundary. The yellow stars are adversarial examples that will be
misclassified.

the approaches and circumvent the disadvantages, under one
framework/attack methodology. So the main question being
posed in this work is the following: Can we efficiently produce
a tailored perturbation (or series thereof) conditional on input,
that does not make any assumptions about the underlying
model and can at the same time inform future perturbations?

III. APPROACH

Gradient based optimization has been key to many recent
advances in machine learning and the progressively deeper
variants. In most actual threat model cases, the mapping,
loss, or adversarial function is either not accessible or not
differentiable (or both). In reinforcement learning for example,
the function being optimized is unknown to the agent and is
treated as a black box [24]. Reappropriating the reinforcement
learning framework for attacking black-box models, otherwise
seen as optimizing unknown adversarial functions, is the key
concept of our approach.

A reinforcement learning framework consists of an envi-
ronment that represents the unknown world, in our case the
black-box model, and an agent that takes actions, receives
observations from the environment, a reward for the action
taken, and information about the new state. The reward in-
forms the agent of how good or bad was the action taken, and
the observation indicates the next state in the environment. The
environment and the agent interact for an amount of turns ¢
until a predefined goal is reached, and the agent attempts to
figure out the best actions to take or the optimal way to behave
in the environment in order to reach the goal.

A. Environment

In a black-box environment, the agent is trying to find
the action, or to be more specific the series of actions, that
will push the example to the other side of the decision
boundary of the model. A visual representation of the goal



is shown in Figure 2. The game being played is navigating
a N-dimensional hypercube if the perturbation constraint is
L, or a N-dimensional hypersphere maze if the perturbation
constraint is L. The model output is used as the sole
feedback on how well the agent is doing, i.e. where is
the perturbed sample located w.r.t. the adversarial goal.
But not every black-box environment falls under the same
threat model. There is a continuum of output descriptiveness
under the black-box scope that enables different attacker
capabilities. We assume that query limits are constituent of all
black-box threat models and we employ a slightly modified
taxonomy of the one used by Ilyas et al. in [6] that reflects
access and resource restrictions in real-world systems:

1) Logit setting. In the logit setting, the attacker has access
to the logits or the probabilities of each class as been
produced by the model. Example: The Clarifai NSFW
(Not Safe for Work) detection API is a binary classifier
that outputs P(NSFW/|z) for a submitted image x.

2) Partial-information setting. In the partial-information
setting, the model outputs a subset of all the possible
classes. This aggravates the problem of discovering
adversarial examples as the target class might not belong
(initially) to this subset and any learning algorithm
is deprived of direct information on how to improve.
Example: A non-binary sentiment analysis API that
outputs a variable number of detected sentiments.

3) Binary setting. In the binary setting, the model outputs
a binary decision on each of the k possible classes. This
setting is the most difficult to tackle as the output is
non-differentiable and thus gradient methods not directly
applicable. Example: A malware detection API that
returns true of false.

B. Reinforcement Learning

A common occurrence in black-box environments is sparse
and delayed rewards, where an agent has to operate under
constant uncertainty regarding its performance and uninforma-
tive feedback. It is deemed advantageous to employ a learning
framework that can operate in this fashion, like reinforcement
learning, for the simple reason that the reward of discovering
a successful adversarial example might require a number of
action steps to come. We express black-box adversarial attacks
as a sequential, non-cooperative game learned by an agent.
The motivation behind this choice is twofold. With regard to
previous work, there are two key aspects that we consider
unaddressed:

1) While in [22] Ilyas et al. put priors on successive
queries and intersample dependencies, the “episode” is
over as soon as a successful example is found. The
information that these queries gleaned under a budget, is
lost when we move to the next sample. There should be
a sufficiently expressive learning framework for creating
perturbations conditional on input and with the ability
to generalize on unseen instances.

2) While the approach of gradient approximation relies
on how close the gradient is compared to the actual
one, it still is an optimization approach which means
it preserves the same pitfall: Being stuck in an inade-
quate local minimum and with insufficient exploration to
overcome it. As a multitude of attack techniques rely on
FGSM as a building block, which is performing gradient
ascent on the model loss function, an obvious defense at
training time would be to select among the various local
minima the one with the smallest e-close maximum. An
attacker utilizing a purely gradient based policy will be
stuck in a suboptimal maximum.

Therefore, we claim that posing the problem as a game
environment is intuitive, in the sense that reinforcement
learning as a framework provides a combination of
exploitation, that is following the gradient from the
information already queried from the black-box, and
exploration, that is guiding the stochastic component of its
operation through shaped noise and/or probability priors.
A RL agent parameterized by neural networks and with
experience replay (ER) has the ability to simultaneously learn
tailored actions and generalize. We provide an approximate
correspondence between terms used in adversarial machine
learning context and reinforcement learning:

« Perturbation Action

o Perturbation Steps———  Episode

o Input & Output & Target—— State

e Adversarial Goal ———  Rewards

¢ Deterministic Model——— Model-Free

o Feature Engineering—— State Representation

¢ Domain Knowledge—— Reward & Noise Shaping

The procedure of discovering a successful adversarial ex-
ample by querying a black-box model can be formulated as a
Markov Decision Process (MDP) equipped with a state space
S, an action space A, a transition function P(s'|s, a), a reward
function R(s,a) : S x A — R, and a discount factor 7. We
construct s as a tuple containing an ingestion of input x, the
original class o, the target class ¢, and the model output .
Given s and a, s’ is conditionally independent of all previous
states and actions; in other words, the state transitions satisfy
the Markov property and this formulation can be considered
a Markov Decision Process.

We consider a standard reinforcement learning setup con-
sisting of an agent interacting with an environment £ in dis-
crete timesteps. The environment in our case is the topological
space of the black-box model’s decision surface, constrained
on the N-dimensional input space. Initially the adversarial goal
O — T is set that maps the original classes to target ones. The
black-box model is queried with the unperturbed example, and
the output is recorded to construct the initial state s. The game
of discovering an adversarial example is played in episodic
fashion: At each timestep t the agent receives the state si,
takes an action a; and receives a scalar reward r;. In this
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Fig. 3. Actor-Critic architecture. By bootstrapping with temporal difference,
the critic loss guides the actor learning. Source: [25]

work the actions taken are real-valued a; € RY, where N
is the dimensionality of the perturbation vector. As the tuple
describing the state contains all necessary information about
it, we operate under the assertion that the environment is fully-
observable.

Agent behavior is defined by a policy 7 that maps states
to either a probability distribution over the actions 7 : S —
P(A), or deterministically to specific actions 7(S) = A.
The environment, F, may also behave in a stochastic manner
as in the adversarial ML literature it can be an important
defense and improve the overall robustness towards adversarial
examples. Zhou et al. [26] evaluate defenses with a game-
theoretic approach, and as defensive distillation [27], obfus-
cated gradients [28] and adversarial training [13] have been
shown to be ultimately circumventable, the authors show that
a promising guarantee of robustness is to have an array n of
diverse models under the black-box hood and for each query
choose a random one with probability 1/n. In that case, the
reinforcement learning framework is capable of adapting as
it can intuitively model stochastic state changes. This path
is deemed beyond of the scope of this paper though, and is
appointed as future work.

While Deep Q-Networks have exhibited impressive perfor-
mance in many environments [8], it is not possible to straight-
forwardly apply Q-learning to continuous action spaces, as
in the case of image perturbations. For this reason, we opt
for an Actor-Critic architecture, as depicted in Fig. 3, where
both actor and critic are parameterized by a neural network.
The critic network is approximating the Q-function, where it
maps states and actions to Q values Q(s,a) and the actor
network is approximating the policy 7(s,a). In continuous
spaces though, finding the policy requires an optimization
of a; every timestep; this optimization is too slow to be
practical with large, unconstrained function approximators and
nontrivial action spaces. For this reason we adapt to our
purposes the Deep Deterministic Policy Gradient (DDPG)

algorithm defined by Lillicrap et al. [9]. It is an extension
of the DPG algorithm [29] that specifies the current policy by
deterministically mapping states to a specific action. As is the
case with Q-learning, the critic (s, a) is learned using the
Bellman equation.

Algorithm 1: AutoAttacker Algorithm

Randomly initialize critic network Q(s, a|#%) and actor
w(s|0") with weights 69 and 0#;

Initialize target network Q" and p’ with weights
09 « 09, 0% + g1

Initialize replay buffer R;

for episode = 1, M do

Initialize the noise process H for action exploration,
based on the adversarial shape;

Receive initial state s; by querying the black-box
model;

fort =1, T do

Select action a; = pu(s¢|0") + Ny according to the
current policy and exploration noise;

Perturb by action a; and observe new state s;i
and compute reward ry;

Store transition (s¢, as, ¢, S¢+1) in buffer R;

Sample a random minibatch of N transitions
(8¢, at, 74, S¢41) from R;

Use Bellman equation to set:
Yi =15 +7Q (8141, 1 (s1110")|09);

Update critic by minimizing the loss:
L= %2y — Q(si,a:]69))?;

Update the actor policy using the policy gradient:;

V@MJ ~
% > VaQ(s, a|0Q)|S:Si;a:ll(3i)v0“lu’(8|9#)|S'i;

Update the target networks:;

09" « 109 + (1 — 7)Y,

0" O + (1 —7)0M";

end
end

Introducing non-linear function approximators means that
convergence is no longer guaranteed. Introducing them in
a black-box environment also implies that hyper-parameter
tuning will by definition be constrained and heavily rely on
domain knowledge. However, such approximators are essen-
tial in order to learn and generalize on large state spaces.
One challenge when using neural networks for reinforcement
learning is that most optimization algorithms assume that
the samples are independently and identically distributed. To
decorrelate the learning process from the bias introduced by
successive queries to the black-box model, we store experience
tuples [s,a,r, s] to the replay buffer and train both actor and
critic networks by drawing minibatches from there. DDPG
is an off-policy algorithm, so the replay buffer can be large,
allowing the algorithm to benefit from learning across a set
of uncorrelated transitions, or even a completely different
adversarial environment configuration. The process is shown



in Algorithm 1.

C. Implementation

In our experiments, we use a 300-dimensional continuous
state space, comprised of the following features:

o A 2D-convolution feature map generated from the digit

image

o A 1-hot vector of the target class

o The output layer of the black-box model

The action space is a 784-dimensional vector that is straight-
forwardly applied as a perturbation on the input image. The
actor network has the following architecture:

1) Input Layer: 300-dimensional state vector

2) Hidden Layer: Dense of size 512

3) Hidden Layer: Dense of size 512

4) Output Layer: 784-dimensional action vector

The critic network has the following architecture:

1) Input Layer: 300-dimensional state vector & 784-

dimensional action vector

2) Hidden Layer: Dense of size 512

3) Hidden Layer: Dense of size 512

4) Output Layer: single neuron containing the Q-Value

IV. EVALUATION

We evaluate AutoAttacker by running experiments attacking
a state-of-the-art MNIST classification model that achieves
99.2% accuracy on the test set. Results are still preliminary and
we mainly outline the testing methodology and the obstacles
lying ahead.

To incentivize exploration, and guide the agent towards the
desired adversarial goal, we introduce shaped noise which is
added after each actor network decision. The noise is based
on the uniform distribution U (0, 1) and is calculated as:

H(t) = U(,1)- (th zo) 7

where x7 is a random sample from the target class and zo

is the original sample respectively, and ¢ is the incremental

number of steps within the episode. Noise in the case of
untargeted attacks is plainly uniform.

The reward function describes how the agent ought to
behave, stipulating what we want the agent to accomplish and
facilitating speed of convergence and not getting stuck in local
minima. Thus designing a reward function that can perform,
guide the agent’s learning and be well-behaved takes a degree
of domain knowledge, insights about monotonicity, and inge-
nuity. We have devised several different reward functions by
permuting a number of fundamental components:

ry = w F(2')r

re = wo(F(2')r — F(z)r)
r3 = w3(F<xl)T - F<xl)0) (8)
ry = wy(maz(0, (F(z")r — maz(F(x")ixr))))

r5 = wslall2

Te =— —C

112131416161%18(910

Fig. 4. MNIST adversarial examples generated by AutoAttacker

where w,, are weights for the components, F(z')r is the
output logit for the target class T', F'(x)r is the same logit from
previous step, F'(2')o is the output logit of the original class
O, F(2');xr is the output logits of every other class but the
original one, a is the action taken, and c is a positive constant.
We discover that the most robust and consistently performing
reward function R(s,a,s’) > Ris R=1r; + 14— 1rg/r5.

A. Experimental setup

We adhere to the following experiment methodology: the
black-box MNIST classification model is trained on the train-
ing split, and we submit one sample per episode from the
testing split. Each episode is run until a successful adversarial
example is found, or 100 steps have passed. We consider 100
to be a reasonable depth for successive moves and a sufficient
delineation for a box-constrained path. The evaluation is done
over two types of adversarial goals: targeted and untargeted
attacks.

In the targeted attack case, in order to define the adversarial
goal we elect to rotate the ground truth class one spot to the
right. This means that 1 is mapped to 2, 2 to 3, and so on.
We chose to do so in order to enforce consistency between
differently parameterized runs and reproducibility of results.
As long as the source-target class mapping is random but
consistent between each experiment, it should be a sufficiently
good approximation of the performance.

In the untargeted attack case, the adversarial goal is to be
classified as any other class than the ground truth one. It is a
strictly less difficult task than producing a targeted adversarial
example, as the results also confirm.

Hyperparameters: For the MNIST experiment, aside from
limiting the episode length to 100 and using Adam as opti-
mizer for the network updates, we set the hyperparameters to
the following values: discount factor v = 0.9, critic learning
rate 7. = 0.0005, actor learning rate 7, = 0.17., target
network learning rate 7 = 0.1.

B. Results

We present the summary results on the MNIST test set, that
includes 10000 instances in total. We report on the success
rate, the average number of queries required, and the average
runtime per episode. Query and runtime figures are computed
only over successful episodes. Results for the targeted attack
are shown in Table I, and for the untargeted attack are shown
in Table II.

To have an indirect initial comparison to how the rest of
the recent literature is performing on MNIST, we also include
their results in Table I. Note that the C&W attack is white-box,
so there are no query restrictions, and that GenAttack does
not evaluate on untargeted attacks. At this point we should



mention that according to our testing methodology, when an
episode ends unsuccessfully (¢ > 100), we move to the next
sample. As is exhibited by the results, this is a form of trade-
off between success rate and number of queries required. If
we were set on optimizing success rate, we could revisit each
unsuccessful sample by running new clean-slate episodes on
them.

TABLE 1
SUCCESS RATE (SR), MEAN QUERIES (MQ), MEAN RUNTIME PER
EPISODE (MRE) AND PERTURBATION NORM L

MNIST Targeted
SR MQ MRE Loo
C&W 100% - 0.006hr | 0.3
700 98% 2,118,222 | 0.013hr | 0.3
GenAttack 100% 996 0.002hr | 0.3
AutoAttacker 6% 19 0.005hr 0.3
AutoAttacker 44% 11 0.003hr 0.4

TABLE 11

SUCCESS RATE (SR), MEAN QUERIES (MQ), MEAN RUNTIME PER
EPISODE (MRE) AND PERTURBATION NORM L

MNIST Untargeted
SR MQ
73.4% 55

MRE Loo
0.012hr | 0.4

AutoAttacker

C. Discussion

We acknowledge that these are preliminary and work-in-
progress results, and they should be interpreted as the result
of a proof of concept rather than an exhaustive evaluation over
a range of diverse models and a comparative study to state-
of-the-art approaches. We consider it being of value to report
on the obstacles that the proposed agent and framework in
general have faced during the learning process.

The actor and critic networks are trained in tandem with
querying the black-box model and recording [s, a, r, s'] tuples
in the replay buffer. To be more specific, after each query, the
minibatch is sampled from the replay buffer and a single batch
update is made to both actor and critic networks. This might
lead to a premature overfitting. So, if the noise deployed is not
sufficiently diverse to generate equally diverse query results,
we face an interesting conundrum: the variance between action
vectors will be low, leading to the compounding effect of the
critic stagnating on similar Q-Values and its gradient getting
uninformative, and subsequently the actor generating similar
actions. It is a vicious circle where the actor will require
diverse states as input to produce diverse actions, that will not
come if the exploration plateaus in a local minimum. While our
proposed framework has shown decent robustness to typical
hyperparameter ranges, we have discovered that it is sensitive
to higher values of the discount factor v in combination with
the r5 penalty in the reward function. In this scenario Q-Values
might spiral out of control and the model will not converge.

The MNIST classification models have a fairly low di-
mensional input, that flattened is comprised of 784 features.
This translates to a dimensionality of 784 continuous actions.
Continuous control environments in the literature [30] rarely
go above a dimensionality of 20 for the action space. We
posit that the task to learn in our environment while with
much higher dimensionality than the above environments, it
has a significantly lower sequential/combinatorial complexity
and thus simpler MDP graph. This observation explains why
the approach can be successful with a relatively low amount
of data points, but also why it can be dominated by noise and
never find a path towards the designated goal.

As the actions are consecutive, the path drawn within the
N-dimensional box that constrains the maximum perturbation
might not be improving the reward fast enough, i.e. it might
be stagnating in a local suboptimal maximum. In that case and
in order to conserve the amount of queries required, it might
be beneficial to reset the episode conditional on the reward
function’s rate of improvement.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented AutoAttacker, a reinforcement
learning based framework for black-box adversarial attacks. It
is novel in the sense that it is able to construct adversarial
perturbations conditional on sample input, in such a way that
information queried from the black-box model is maintained
and reused between samples. Our approach for constructing
adversarial examples is staged as a game being played between
the learning agent and the black-box model, and is capable
of operating in high-dimensional continuous action and state
environments all the way to discrete input / binary output
environments with non-differentiable elements. We carried out
experimental evaluations with the black-box MNIST classifica-
tion model, and compared the success rate, the average number
of queries required, and the average runtime per episode
with the related work. The results demonstrate the practical
feasibility of our reinforcement learning-based AutoAttacker
approach.

There are several unexplored paths that we leave open for
future investigation. Regarding this work mainly as a proof
of concept, we intend to expand the evaluation on different
environments, e.g. in binary input and output domains where
DQN approaches are pertinent [31]. Additionally, there is
an ever-evolving literature that improves the state of the art
on different environments, so we intend to incorporate more
algorithms [32] [24] in our framework. We also take note
on the fact that prioritizing specific experiences from the
replay buffer has been shown to be advantageous in many
environments [33] [34]. In the context of reinforcement learn-
ing, experience replay is the mechanism that controls the all-
important overarching task of statistical learning, and it might
be impactful to devise a strategy of retrieving experiences
adapted to the adversarial goal and domain in general.

On a final note, a main assumption made in this work is that
the black-box model is stationary, that is it does not retrain or
adapt or employ countermeasures between each query. Part of



the recent literature is examining the adversarial attack domain
from game-theoretic and multi-agent points of view [35] [36]
[37] and we are inquisitive as to how intelligent agents could
be deployed from the defensive side to counter adversarial
attacks, and on the disparate and complex interplays possible
under a unified multi-agent adversarial environment.
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