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 ABstRACt     Cancer cells display DNA hypermethylation at specifi c CpG islands in comparison 
with their normal healthy counterparts, but the mechanism that drives this so-

called CpG island methylator phenotype (CIMP) remains poorly understood. Here, we show that CpG 
island methylation in human T-cell acute lymphoblastic leukemia (T-ALL) mainly occurs at promoters 
of Polycomb Repressor Complex 2 ( PRC2 ) target genes that are not expressed in normal or malignant 
T cells and that display a reciprocal association with H3K27me3 binding. In addition, we reveal that 
this aberrant methylation profi le refl ects the epigenetic history of T-ALL and is established already 
in preleukemic, self-renewing thymocytes that precede T-ALL development. Finally, we unexpectedly 
uncover that this age-related CpG island hypermethylation signature in T-ALL is completely resistant 
to the FDA-approved hypomethylating agent decitabine. Altogether, we provide conceptual evidence 
for the involvement of a preleukemic phase characterized by self-renewing thymocytes in the patho-
genesis of human T-ALL.  

  SIGNIFICANCE:   We developed a DNA methylation signature that reveals the epigenetic history of thy-
mocytes during T-cell transformation. This human signature was recapitulated by murine self-renewing 
preleukemic thymocytes that build an age-related CpG island hypermethylation phenotype, providing 
conceptual evidence for the involvement of a preleukemic thymic phase in human T-cell leukemia.         
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  INtRodUCtIoN 
 During the last decade, aberrant DNA methylation has 

been identifi ed as a hallmark of human cancer and several 
studies have highlighted the promising potential of DNA 
methylation as a clinically or diagnostically relevant bio-
marker ( 1 ). In comparison with their putative normal healthy 
counterparts, cancer cells generally display DNA hypermeth-
ylation at specifi c CpG islands, but the actual mechanism 
that drive this so-called CpG island methylator phenotype 
(CIMP) remains poorly understood ( 2 ). Despite the fact that 
DNA hypomethylating agents are actively used in the clinic 
for the treatment of some hematologic malignancies, their 
putative effects on leukemia-specifi c DNA methylation signa-
tures and gene expression remain unclear ( 1, 2 ). 

 T-cell acute lymphoblastic leukemia (T-ALL) is an aggres-
sive hematologic cancer for which prognostically relevant 
CIMP subtypes have also been described ( 3 ). Indeed, based on 
the methylation status of about 1,000 promoter-associated 

CpG sites, CIMP +  T-ALLs were associated with a better event-
free and overall survival as compared to CIMP −  leukemias 
( 3 ). Notably, these fi ndings were recently confi rmed in inde-
pendent pediatric ( 4 ) and adult ( 5 ) T-ALL cohorts, further 
reinforcing the idea that aberrant DNA methylation might 
act as a clinically relevant biomarker in human T-ALL. How-
ever, the mechanism driving the CIMP in T-cell leukemia has 
remained elusive so far. 

 In this study, we performed a comprehensive DNA methyl-
ome analysis of normal and malignant T cells in both human 
and murine settings in an attempt to increase our understand-
ing on the origin of aberrant DNA methylation in T-ALL.  

  ResULts 
  A CpG Island and Open Sea DNA Methylation 
Signature in Human T-ALL 

 Previous studies have shown that molecular genetic sub-
types of human T-ALL are associated with an arrest at specifi c 
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stages of normal human T-cell differentiation (6, 7). Here, we 
performed DNA methylation profiling using the 850k EPIC 
array platform on 109 primary T-ALLs (ref. 8; Supplementary 
Table S1) and 10 stages of sorted human thymocytes (9, 
10), reflecting the normal counterparts of this disease (refs. 
6, 7; Supplementary Table S2). Using unsupervised cluster-
ing of the 5,000 most variably methylated CpGs, we built a 
methylation-based signature that we termed COSMe (CpG 
island and Open Sea Methylation), referring to CpGs located 
inside CpG islands (n = 2,713), CpGs located outside CpG 
islands (n = 1,245), and CpGs that flank CpG islands (CpG 
shores and shelves, n = 1,042; Supplementary Table S3). This 
COSMe signature divides T-ALLs in two methylation-based 
categories, that is, COSMe type I and type II (Fig.  1A; Sup-
plementary Table S3), based on three main clusters of CpGs 
(cluster A, B, and C). The subdivision of T-ALLs in COSMe-I 
and COSMe-II is dominated by sites located in cluster A, 
which are mainly located at CpG islands and largely cor-
respond to the CIMP classification that has previously been 
established in T-ALL (ref. 3; Fig.  1A; Supplementary Table 
S3). In line with previous reports on the clinical relevance of 
CIMP status in both pediatric (3, 4) and adult (5) T-ALL, we 
also observed a significantly higher cumulative incidence of 
relapse in the CIMP− T-cell leukemias from our cohort treated 
according to the ALL IC-BFM 2002/2009 protocol (P = 0.04; 
Supplementary Fig. S1; Supplementary Tables S4 and S5).

At the genetic level, the COSMe subtypes were differentially 
enriched for genetic defects previously associated with T-ALL 
biology and CIMP status (refs. 7, 8, 11; Fig. 1A; Supplementary 
Fig. S2). COSMe-I T-ALLs were significantly enriched for TAL1 
rearrangements, whereas COSMe-II T-ALLs mainly consisted 
of leukemias with aberrant activation of TLX1, TLX3, NKX2.1, 
or HOXA (Fig.  1A; Supplementary Fig.  S2; Supplementary 
Table S6; ref. 8). In addition, other genetic defects, which have 
previously been associated with the TAL1 gene expression clus-
ter (7), were also more prevalent in COSMe-I T-ALLs, including 
6q deletions (P < 0.01) and PTEN deletions (P = 0.071; Fig. 1A; 
Supplementary Fig. S2; Supplementary Table S6). In contrast, 
COSMe-II T-ALLs showed enrichment for genetic aberrations 
previously associated with double-negative or early-cortical 
T-ALLs (12, 13), including 5q deletions and loss-of-function 
alterations targeting WT1, CTCF, and the Polycomb Repressor 
Complex 2 (PRC2) members EZH2, SUZ12, or EED (Fig.  1A; 
Supplementary Fig. S2; Supplementary Table S6).

COSMe-I T-ALLs showed characteristic low-level methy
lation compared with COSMe-II T-ALLs in the CpG island–

dominated cluster A (Fig. 1A). Nevertheless, COSMe-I T-ALLs 
already displayed increased DNA methylation of these cluster A 
CpGs in comparison with normal developing T cells, which 
uniformly lack any methylation at these sites (Fig. 1B).

Besides cluster A, the COSMe signature also included two 
clusters that mainly consisted of Open Sea CpG sites (clus-
ters B and C; Supplementary Table S3; Fig. 1A). Remarkably, 
cluster B methylation gradually increased during T-cell devel-
opment (Fig. 1C). Cluster B CpG sites displayed hypermeth-
ylation in almost all COSMe-I T-ALLs but in only a subset of 
COSMe-II leukemias (Fig. 1A and C).

To further study this, we performed clustering of COSMe-II  
leukemias solely based on cluster B methylation levels and 
identified COSMe-II cluster B+ and COSMe-II cluster B− T-ALLs 
(Supplementary Fig. S3A). Of note, COSMe-II cluster B− leuke-
mias showed a trend for enrichment of genetic defects previously 
associated with early immature T-ALL and early T-cell precursor 
acute lymphoblastic leukemia (ETP-ALL; refs. 12, 13), including 
5q deletions, loss-of-function alterations targeting WT1, CTCF, 
PRC2 (EZH2, SUZ12, or EED), as well as leukemias displaying 
aberrant activation of HOXA genes (Supplementary Fig.  S3A 
and S3B). In contrast, there was a trend for higher prevalence of 
6q deletions, loss-of-function alterations targeting PTEN, as well 
as T-ALLs showing aberrant expression of NKX2.1 in COSMe-II 
cluster B+ leukemias (Supplementary Fig. S3A and S3B).

Finally, and in contrast to clusters A and B, cluster C CpG 
methylation was more heterogeneous in normal T cells and 
both COSMe T-ALL subtypes (Fig. 1A).

To further validate these findings, we subsequently profiled 
an independent cohort of 14 patients with T-ALL and two thy-
mocyte subsets (CD34+ and CD4+CD8+) by EPIC sequencing 
(EPIC-seq), an alternative, sequencing-based DNA methyla-
tion profiling method (Supplementary Fig. S4A–S4C). Clus-
tering using the COSMe signature (Supplementary Table S3) 
confirmed the presence of COSMe-I and COSMe-II T-ALLs, 
with TAL1-rearranged T-ALLs being exclusively present in the 
COSMe-I subtype (Supplementary Fig.  S4A). Furthermore, 
in this series, COSMe-II T-ALLs consisted of immature ETP-
ALL as well as TLX1+, TLX3+, NKX2.1+, or HOXA+ leukemias. In 
addition, within COSMe-II T-ALLs, the lowest levels of clus-
ter B methylation were also present in immature ETP-ALLs 
and a HOXA+ T-ALL (Supplementary Fig. S4A).

Altogether, we here show robust COSMe classification as 
a more elaborate version of the previously established CIMP 
classification in T-ALL, using different DNA profiling meth-
ods and two independent leukemia patient cohorts.

Figure 1.  DNA methylation profiling in normal and malignant T cells. A, Unsupervised clustering of mean-centered methylation score (β values) of 
the 5,000 most variably methylated CpGs in 109 T-ALL cases and 10 subsets of developing thymocytes (two biological replicates each), with indication 
of the three main clusters of CpG probes and their location with respect to CpG context. T-ALL subtypes and genetic defects of all T-ALL cases are 
indicated below the heatmap. Mean β values of cluster A (B) and cluster B (C) CpG sites in COSMe type I and II T-ALLs and normal thymic precursors. 
DP, CD4+ CD8+ double positive; ISP, immature single positive; SP, single positive. D, Percentage of probes located inside different genomic categories for 
each of the clusters defined above. UTR, untranslated region. E, Mean expression (log2-transformed normalized counts per million, EdgeR) per sample 
of genes linked to CpG sites in clusters A, B, and C (A) in a T-ALL cohort (GSE110637) plotted separately for TAL1-rearranged T-ALLs (enriched in 
COSMe-I) and T-ALLs without such rearrangements (enriched in COSMe-II). Normal thymocytes (GSE151079) were included as healthy controls. Genes 
in the NOTCH1 pathway were used as positive reference value for T-ALL. F, ChIP-seq enrichment in clusters A, B, and C for H3K27me3 in CD34+ HSPCs 
(GSM2277181) and in the JURKAT T-ALL cell line (GSM2279072) and for PU.1 in CD34+ HSPCs (GSM1816090) and the TALL-1 cell line transfected with 
FLAG-PU.1 (GSE128837). Data publicly available from the Gene Expression Omnibus. G, COSMe signature in paired primary-relapsed T-ALL samples 
(21). Row-scaled β values of CpG methylation are shown.
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Characterization of CpG Clusters that Define 
COSMe in T-ALL

To understand which genes or regulatory pathways are 
potentially affected by COSMe methylation in T-ALL, we 
performed enrichment (14) and gene expression analysis 
(15, 16) of transcripts associated with the CpG clusters men-
tioned above. Of note, cluster A sites were mostly located 
in gene promoters, while cluster B and C CpG sites were 
mostly located in gene bodies or intergenic regions (Fig. 1D). 
cluster A CpG sites were enriched for promoters of PRC2 
targets (Supplementary Fig.  S5), which uniformly showed 
very low expression in T-ALLs as well as normal thymocytes 
(Fig. 1E). Using publicly available chromatin immunoprecipi-
tation (ChIP) sequencing (ChIP-seq) data, we confirmed the 
presence of the repressive H3K27me3 histone mark at these  
cluster A CpG sites in both human CD34+ hematopoietic 
stem/precursor cells (HSPC) and the T-ALL cell line JURKAT 
(ref. 17; Fig. 1F).

Notably, cluster B CpG sites did not show enrichment 
for repressive histone modifications (Supplementary Fig. S5) 
and were associated with genes higher expressed in T-ALL 
compared with normal developing T cells (Fig.  1E). Cluster 
B sites showed significant enrichment for PU.1 (SPI1) bind-
ing motifs (Supplementary Fig. S5), which corresponded to 
specific binding of PU.1 (18, 19) at these exact loci in CD34+ 
HSPCs and the Flag-tag PU-1–transfected T-ALL cell line 
TALL-1 (ref. 20; Fig. 1F). Of note, during normal T-cell dif-
ferentiation, we observed a significant inverse correlation 
between cluster B PU.1–binding site methylation and SPI1 
(which encodes PU.1) expression (Supplementary Fig. S6).

Cluster C CpG sites, characterized by a heterogeneous 
pattern of DNA methylation, also showed higher expression 
in T-ALL as compared with normal T cells (Fig. 1E). Cluster 
C sites showed significant enrichment for genes specifically 
expressed in T-ALL cell lines, which was not the case for  
cluster A– or cluster B–associated transcripts (Supplementary 
Fig. S7A–S7C). More specifically, cluster C sites include CpGs 
associated with genes known to be involved in T-ALL disease 
and/or normal T-cell differentiation, such as TLX3, LCK, 
CDKN2B, BCL2L11, MEF2C, BCL11B, RAG1, RAG2, CD1, CD28, 
and the TCR loci (Supplementary Table S3). Thus, cluster C 
CpG sites are enriched near genes with known roles in normal 
and malignant T-cell development.

Finally, to evaluate the progression of COSMe methyla-
tion from diagnosis to relapse, we investigated paired pri-
mary and relapsed T-ALL cases that were previously profiled 
by EPIC arrays (21). Out of 9 patients analyzed, we found 
that 6 patients were classified as COSMe-I and 3 patients 
as COSMe-II at diagnosis (Fig.  1G). Patients at relapse still 
clustered together with the corresponding primary samples, 
suggesting that COSMe status is largely conserved from 
diagnosis to relapse (Fig.  1G). Nevertheless, patients with 
COSMe-I did show a significant increase in cluster A methyla-
tion from diagnosis to relapse (Supplementary Fig. S8).

Reciprocal DNA Methylation and H3K27me3 
Association in COSMe-I and COSMe-II T-ALLs

As described above, COSMe cluster A CpG sites are 
located in the promoters of PRC2 target genes that uniformly 

show low expression across all genetic subtypes of human 
T-ALL. PRC2 is a methyltransferase that primarily produces 
H3K27me3, a mark of transcriptionally silent chromatin. 
To validate the enrichment for PRC2 targets at cluster A 
CpGs, we profiled H3K27me3 in 3 COSMe-I and 3 COSMe-II 
human T-ALLs using ChIPmentation (22).

Remarkably, at cluster A sites, H3K27me3 was found more 
abundant in COSMe-I T-ALLs, which have lower levels of 
DNA methylation at these sites, as compared with COSMe-II 
T-ALLs (Fig.  2A). To further study this apparent anticorrela-
tion between DNA methylation and H3K27me3, a differential 
analysis was conducted comparing H3K27me3 of COSMe-II  
with COSMe-I T-ALLs (Fig. 2B). This revealed that the major-
ity of differential regions (88%) had significantly lower levels 
of H3K27me3 in COSMe-II compared with COSMe-I T-ALLs 
(Fig. 2B), as also shown in a genome browser view for the genes 
ESRRG and DKK2 as representative examples (Supplementary 
Fig. S9). Genes with differential H3K27me3 were generally low 
but not differentially expressed between different T-ALL sub-
types (Supplementary Fig. S10). Forty-four percent of all genes 
with differential H3K27me3 in this comparison (Fig. 2B) were 
also present in cluster A, underlining the reciprocal association 
between DNA methylation and H3K27me3 at these sites. High 
levels of cluster A H3K27me3 also corresponded to low levels 
of cluster A DNA methylation in 4 patients for which paired 
EPICseq and H3K27me3 profiles were available (Fig.  2C). In 
line with this, core components of the PRC2 complex showed 
higher expression in TAL1-rearranged T-ALLs (EZH2, EED, 
Padj < 0.05, SUZ12 not significant; Supplementary Fig.  S11), 
which are most often COSMe-I T-ALLs displaying low levels 
of cluster A methylation. In contrast, deletions of PRC2 mem-
bers were significantly more prevalent in COSMe-II T-ALLs, 
whereas amplifications were exclusively found in COSMe-I 
T-ALLs (Supplementary Fig. S2).

Finally, from all differential H3K27me3 regions, those that 
overlapped with CpG islands did show a differential DNA 
methylation pattern (111 regions, 50%), whereas the meth-
ylation of Open Sea sites was not affected by the presence of 
differential H3K27me3 (Fig. 2D).

Altogether, these data collectively show a reciprocal asso-
ciation between DNA methylation and H3K27me3 levels at 
cluster A CpG islands in human T-ALL.

Cluster A CpG Island Methylation Defines the 
Proliferative History of Human T-ALL

Cluster A CpG sites are mainly located in promoters of PRC2 
target genes that are differentially covered by H3K27me3 
between COSMe-I and II T-ALL subtypes. Interestingly, DNA 
hypermethylation at PRC2-enriched CpG sites has previously 
been associated with increased age and proliferative history 
in both hematopoietic stem cells and T-ALL (11, 23). Given 
this, we predicted the mitotic age of our T-ALL patient cohort 
using the Epigenetic Timer of Cancer (Epitoc; ref. 24) and 
identified a strong and significant correlation with the level 
of cluster A methylation, which was not observed for cluster 
B or cluster C (Fig. 3A).

Furthermore, using the Horvath (25) age predictor, which 
employs methylation of a set of CpGs to predict a person’s 
actual age in years, an increase in epigenetic age of pri-
mary T-ALL samples was observed in comparison with the 
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Figure 2.  Correlation between cluster A DNA methylation and H3K27me3. A, H3K27me3 binding at cluster A, B, and C sites in COSMe-I and COSMe-II 
T-ALLs (summarized for visualization, n = 3 per group). B, Volcano plot of differential H3K27me3 between COSMe-II and COSMe-I T-ALLs. Gene names 
from the top 25 most differential genes based on Padj value are indicated. C, Patient-specific comparison between cluster A DNA methylation levels (β values)  
and corresponding differential H3K27me3 (normalized counts, DESeq2) in COSMe-II versus COSMe-I. Pearson coefficient of the linear correlation with 
P value is shown. D, The levels of DNA methylation (β values) at all differential H3K27me3 regions between COSMe-II and COSMe-I T-ALLs that were 
covered by the EPIC array dataset, separately plotted for CpG islands (111 regions) and Open Sea CpGs (111 regions).
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actual age at diagnosis (Fig.  3B; Supplementary Table S7). 
A significant interaction between the patient’s age and the 
Horvath age was indeed observed (t test, P < 2e-16). How-
ever, although the age at diagnosis was already significantly 
different between COSMe-I and -II T-ALL patients (Fig. 3C; 
P = 0.02506), the predicted Horvath and Epitoc age showed 
a much better segregation between the two T-ALL subtypes 
(Fig.  3B and C; P < 2.2e-16 and 3.85e-16). Thus, cluster A 
methylation defines the proliferative history of T-ALL, with 

COSMe type I having a shorter history of proliferation in 
comparison with COSMe type II T-ALL.

Proliferation during the time frame from primary diagnosis 
to relapsed T-ALL disease should also lead to an increase in 
mitotic age. Indeed, a significant increase in Epitoc age was 
also observed by comparing 9 paired diagnosis and relapse 
samples (ref. 21; Fig.  3D). However, the increase in age and 
methylation was considerably more pronounced in COSMe-I 
T-ALLs (ΔEpitoc 0.11, P = 0.0020) as compared with COSMe-II 
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T-ALLs (ΔEpitoc 0.015, P = 0.0522), yet there was no significant 
difference between the time of relapse between both entities 
(Supplementary Table S8; P = 0.2619). From this limited 
analysis (21), COSMe-I T-ALLs seem to proliferate at a faster 
pace than COSMe-II T-ALLs between diagnosis and relapse.

Proliferation of Preleukemic Thymocytes  
Drives the Aging CpG Island Methylation 
Signature in T-ALL

As shown above, cluster A CpG island methylation posi-
tively correlates with the proliferative history and mitotic age 
of human T-ALL cells. To investigate whether two distinct 
trajectories toward T-ALL development might underlie the 

observed discrepancy in epigenetic age between COSMe-I and 
COSMe-II T-ALLs (Fig. 3B and C), we used two known T-ALL 
mouse models that might recapitulate these features.

First, we investigated whether CD2-Lmo2 transgenic (CD2-
Lmo2tg) mice (26) could function as a model for COSMe-II 
T-ALLs. This in vivo T-ALL mouse model has a long disease 
latency and an immature T-ALL phenotype reminiscent of 
T-ALLs inside the COSMe-II subgroup. In CD2-Lmo2tg mice, 
a long-term self-renewing thymocyte population has been 
observed many months before tumor development. In con-
trast to wild-type (WT) control mice, in which the thymus 
is continuously replenished by progenitor cells from the 
bone marrow, these preleukemic CD2-Lmo2tg thymocytes are  

Figure 3.  Epigenetic age in T-ALLs at diagnosis and relapse. A, Correlation between epigenetic “Epitoc” age and mean methylation per patient in 
clusters A, B, and C. B, Age at diagnosis (Dx) and age predicted by Horvath for each patient and normal T-cell subset. C, Mean age at diagnosis (Dx) and 
in different age predictors in COSMe-I and COSMe-II subgroups with P values of differences (Wilcoxon signed-rank test). D, Epigenetic “Epitoc” age of 
paired diagnosis–relapse patients.
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self-sustaining from young age. Therefore, CD2-Lmo2tg thy-
mocytes should undergo a gradual aging process in the 
months prior to malignant transformation.

Second, we investigated whether Lck-Cretg/+Ptenfl/fl mice 
could function as a model for COSMe-I T-ALL. This mouse 
T-ALL model has a short disease latency and results in the 
development of more mature murine T-cell leukemias. In 
addition, PTEN mutations and deletions are also more often 
observed in human COSMe-I T-ALLs.

To study this, we isolated full thymus from CD2-Lmo2tg 
and Lck-Cretg/+ Ptenfl/fl mice and littermate controls at dif-
ferent time points before and after leukemia development 
and performed DNA methylation profiling by reduced rep-
resentation bisulfite sequencing (RRBS; n = 4 biological rep-
licates per condition). The most variably methylated CpGs 
between CD2-Lmo2tg and Lck-Cretg/+ Ptenfl/fl thymocytes and 
blasts (Supplementary Table S9) were more often situated in 
CpG islands (Fig. 4A, cluster 1) than in Open Sea–enriched 
regions (Fig. 4A, clusters 2 and 3). The CpG methylation in 
cluster 1 was highly increased in preleukemic and leukemic 
CD2-Lmo2tg mice, but not in Lck-Cretg/+ Ptenfl/fl mice isolated 
before leukemia development. In leukemic Lck-Cretg/+ Ptenfl/fl  
mice, cluster 1 methylation was only moderately increased 
compared with CD2-Lmo2tg samples at the same stage of dis-
ease manifestation.

Notably, cluster 1 CpGs were mostly situated in promoter 
regions (Fig. 4B) of lowly expressed genes (Fig. 4C) and dis-
played enrichment for PRC2 target genes and H3K27me3 
(27, 28) at these sites (Supplementary Fig. S12; Fig. 4D), thus 
showing similarity with the hypermethylation phenotype of 
T-ALLs in the human cluster A. In contrast, we did not find 
any evidence in these mouse models for potential overlap 
between murine clusters 2 or 3 and the human COSMe  
cluster B.

To further confirm similarities between murine cluster 1 
and human cluster A, we subsequently looked at cross-species  
overlap at the gene level. Notably, 726 of 2,248 CpG sites in 
mouse cluster 1 overlapped with human gene orthologs in 
cluster A (overlap significant at P < 0.0001, exact hypergeo-
metric probability). These sites, which we termed cluster Amm 
sites (Supplementary Table S10), were equally significantly 
enriched for PRC2 target genes (Padj <0.0001).

Cluster Amm regions showed a gradual increase in meth-
ylation with aging in CD2-Lmo2tg thymocytes but remained 
constant in corresponding WT mice from 8, 16, and 24 weeks 
old (Fig. 4E). Already in 8-week-old CD2-Lmo2tg thymocytes, a 
strong increase in methylation could be observed compared 
with WT control cells of the same age. In contrast, in Lck-
Cretg/+ Ptenfl/fl mice at 8 weeks, no difference in cluster Amm  
methylation was detected. We found that cluster Amm meth-
ylation did not further increase in fully transformed CD2-
Lmo2tg leukemia, sacrificed on average at 35.75 ± 8.28 weeks, 
compared with preleukemic CD2-Lmo2tg at 24 weeks (Fig. 4E), 
whereas only a moderate increase in cluster Amm methylation 
was detected in leukemic Lck-Cretg/+ Ptenfl/fl mice (sacrificed 
on average at 18 ± 3.83 weeks). Finally, the epigenetic age, 
calculated using the mouse-specific calculation method of 
Petkovich and colleagues (29), increased over time in preleu-
kemic thymocytes of the CD2-Lmo2tg mice, which was not the 
case in the Lck-Cretg/+ Ptenfl/fl model (Fig. 4F).

Thus, preleukemic, self-renewing thymocytes display a 
murine CpG island DNA hypermethylation signature that 
recapitulates features of the CpG island hypermethylation 
phenotype that we observed in human COSMe-II T-ALL. 
Therefore, CD2-Lmo2tg might serve as a bona fide model for 
COSMe-II T-ALL development. In contrast, this CpG island 
hypermethylation phenotype was not observed in preleuke-
mic thymocytes of Lck-Cretg/+ Ptenfl/fl mice, suggesting that 
this murine model is more similar to COSMe-I human T-ALL. 
Furthermore, based on these results, COSMe-I and COSMe-II  
T-ALLs might have followed a different trajectory toward 
leukemia, marked by the absence or presence of a thymic self-
renewing population that preceded leukemia development.

Age-Related CpG Island Hypermethylation Is 
Resistant to the FDA-Approved Hypomethylating 
Agent Decitabine

DNA hypomethylating agents such as azacitidine and 
decitabine are approved for myelodysplastic syndrome and 
acute myeloid leukemia (30). Interestingly, few publications 
have also investigated the possible use of DNA hypomethylat-
ing agents for the treatment of human T-ALL. One ETP-ALL 
and T-ALL patient responded to decitabine and achieved 
complete response in a phase I clinical trial (31). In addition, 
durable remissions have been reported for few other cases of 
(early) T-cell precursor ALL treated with decitabine as mono-
therapy (32–34) or in combination with the BCL-2 inhibitor 
venetoclax (35, 36). The largely perturbed DNA methylation 
profile observed in T-ALL further supports the rationale of 
using DNA hypomethylating agents for the treatment of this 
disease. However, the actual mechanism of action that could 
explain the antileukemic properties of these hypomethylating 
agents and their putative effect on aberrant DNA methyla-
tion in T-ALL, as exemplified by the COSMe phenotype, has 
remained largely unclear.

To address these questions, we first evaluated the anti-
leukemic properties of decitabine in a preclinical setting 
using four different primary human T-ALL patient-derived 
xenograft (PDX) models with variable genetic backgrounds 
(Supplementary Table S11A–S11H). Notably, 10 days of 
decitabine (5 days on, 2 days off, 0.5 mg/kg) significantly 
improved leukemia-free survival for all PDX samples ana-
lyzed, including a sample that originated from a STIL-TAL1+ 
mature T-ALL at second relapse (Fig.  5A). As expected, this 
improved survival coincided with a significant decrease in 
blast percentage in the peripheral blood, as shown for one 
PDX T-ALL (Supplementary Fig. S13).

We selected two PDX T-ALLs for DNA methylation profiling 
representative for a COSMe-I and a COSMe-II T-ALL based on 
the genetics (PDX#1 and PDX#2). For this, 7 days after start 
of the treatment, leukemic blasts from control and decitabine-
treated animals –> (0.5 mg/kg, n = 3 each group) were collected 
from the spleen. We performed differential methylation analy-
sis comparing decitabine treatment with vehicle control for 
each PDX in vivo. As expected, a very large number of regions 
showed a significant decrease in DNA methylation, but a sub-
stantial portion of CpGs also displayed an increase in methyla-
tion, especially those located in CpG islands (Fig. 5B; DESeq2 
Padj < 0.05). Despite these global changes in DNA meth-
ylation, decitabine did not drastically affect DNA methylation  
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Figure 4.  Murine in vivo T-ALL models recapitulate the COSMe 
phenotype. A, Mean-centered methylation scores (β values) of the 
most variably methylated CpGs in RRBS profiling of aging (8, 16, 
and 24 weeks) preleukemic and fully transformed CD2-Lmo2tg  
mice (Tg), 8-week-old and fully transformed Lck-CreTg/+Ptenfl/fl mice 
(KO), and littermate controls (WT), with indication of three main 
subclusters and their relation to CpG context. Data from 4 mice  
per condition. B, Percentage of CpGs located in different genomic 
categories for each of the clusters defined in A. UTR, untrans-
lated region. C, Per sample mean expression of genes in the clusters 
defined in A shown in CD2-Lmo2tg mice (Limma log2 normalized 
counts, microarray data, GSE49164) or in Lck-CreTg/+Ptenfl/fl 
(FPKM RNA sequencing, GSE115346). Notch1 pathway genes are 
shown as positive reference values. D, ChIP-seq of H3K27me3 in 
murine clusters 1 to 3 (A) in CD34+ HSPCs (GEO: GSM4067369) and 
mouse T-ALL (GEO: GSM1506768). E, Methylation at 726 cluster 1 
CpGs (defined above in A) that overlap with genes in COSMe cluster A 
(defined in Fig. 1A, now termed cluster Amm sites) in aging preleuke-
mic and transformed CD2-Lmo2tg, Lck-CreTg/+Ptenfl/fl, and control 
mice. F, Relative epigenetic age estimation for (pre)leukemic 
thymocytes from CD2-Lmo2tg, Lck-CreTg/+Ptenfl/fl, and control mice.
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in the 5,000 human COSMe CpGs, neither in PDX#1, which 
we determined to be a COSMe-type I cluster B +  T-ALL, nor in 
the COSMe type II cluster B +  PDX#2 ( Fig. 5C ). 

 To obtain additional insights in the mechanism of action 
of hypomethylating agents in T-ALL, we used the same sam-
ples (PDX T-ALL#1 and #2, 5 days, 0.5 mg/kg,  n  = 3 each 
group) for RNA sequencing (RNA-seq). Decitabine treatment 
resulted in signifi cant differential expression of 456 (PDX 
T-ALL#1) and 886 (PDX T-ALL#2) protein-coding genes 
(Deseq2,  P  adj  < 0.05; Supplementary Table S12A and S12B). 
Of these differentially expressed genes, 361 (PDX#1) and 348 
(PDX#2) genes also showed a signifi cant decrease in methyla-
tion at one or more CpGs (Supplementary Table S13A and 
S13B). However, the transcriptome is less disturbed than one 
would expect, as decitabine induced profound genome-wide 
DNA hypomethylation, which globally followed CpG density 
(Supplementary Fig. S14A and S14B). The genes downregu-
lated by decitabine more frequently had CpG islands in their 
promoters (57%) compared with upregulated or randomly 
selected genes (both 23%,   χ   2  test,  P  < 0.00001). 

 As decitabine did not revert the COSMe methylation sig-
nature, we further looked at the gene expression changes 
induced by this hypomethylating agent to explain its anti-
leukemic properties. Both PDX samples showed signifi cant 
upregulation of tumor suppressor genes (TSG) upon decit-
abine treatment, including  BCL2L11  (BIM),  BBC3  (PUMA), 
and  BMF  (Supplementary Table S12A and S12B). In addition, 
multiple known T-ALL oncogenes were signifi cantly down-
regulated by  in vivo  decitabine treatment, including  MYC, 
HES1 , and  BCL2  in PDX#1 and  NOTCH3, GFI1, IL7R, CISH, 
MYB , and  TOX  in PDX#2 ( Fig.  5D ). Enrichment analysis 
revealed that decitabine induced a global downregulation of 
MYC target genes in both PDX samples, as exemplifi ed by pre-
ranked gene set enrichment analysis (GSEA; ref.  37 ;  Fig.  5E ; 
Supplementary Table S14). To further validate these fi ndings, 
we performed additional RNA-seq on fi ve human T-ALL cell 
lines (LOUCY, PER117, PEER, MOLT16, and TALL-1) follow-
ing  in vitro  decitabine treatment (1  μ mol/L, 48 hours). The 
differentially expressed genes from both PDX samples signifi -
cantly overlapped with the differential data from the cell lines 
(33% in PDX#1 and 35% in PDX#2). Indeed, also in these cell 

lines, signifi cant upregulation of TSGs like  BMF  and  BBC3  
(PUMA) and coordinate downregulation of the MYC pathway 
upon treatment with decitabine were observed (Supplemen-
tary Fig. S15A and S15B; Supplementary Table S15A–S15F). 

 Several studies showed that DNA methylation can alter the 
binding of CTCF to infl uence the three-dimensional architec-
ture of the genome ( 38–40 ); therefore, we compared the genes 
downregulated by decitabine in both PDX and T-ALL cell 
lines with gene expression in CTCF-depleted acute leukemia 
( 41 ). Interestingly, we observed a very signifi cant enrichment 
for downregulated genes in both datasets by GSEA (Sup-
plementary Fig.  S16), providing a potential mechanism for 
decitabine-induced downregulation of the MYC pathway in 
human T-ALL.   

  dIsCUssIoN 
 In this study, we directly compared the genome-wide DNA 

methylation landscape in human T-ALL with human thy-
mocytes covering the complete trajectory of normal T-cell 
development. This simultaneous DNA methylome analysis of 
T-cell leukemias with their putative cell of origin empowered 
us to distinguish cell-of-origin methylation profi les from 
leukemia-specifi c alterations at CpG islands and Open Sea sites. 
Integration of DNA methylation profi les with gene expres-
sion signatures and ChIP-seq allowed us to obtain novel 
insights in the functional relevance of differentially methyl-
ated CpG sites between normal and malignant T cells, and 
to distinguish two trajectories toward T-ALL development. 

 We built a DNA methylation–based signature for T-ALL, 
termed COSMe. COSMe comprises three clusters that can 
divide T-ALLs in two subgroups, COSMe type I and COSMe 
type II, which both have unique characteristics, as sum-
marized in  Table 1 . First, COSMe cluster A sites were 
closely related to the CpG sites that have previously been 
used to determine CIMP status in T-ALL ( 42 ) and showed 
low expression in both normal developing thymocytes and 
human T-ALLs. An inverse correlation between cluster A 
DNA methylation and H3K27me3 was observed. This inter-
play could explain the low expression of cluster A genes 
across all genetic subtypes of human T-ALLs, as repression 

 table 1.      Summary  overview of DNA methylation clusters in COSMe type-I and COSMe type-II T-ALLs and normal T cells 
with different characteristics   

Normal T cells COSMe-I T-ALL COSMe-II T-ALL
Cluster A No DNA methylation Low DNA methylation High DNA methylation

High H3K27me3 Low H3K27me3
PRC2 target genes Epigenetically young Epigenetically old

Lck-Cre Tg/+  Pten fl /fl   mouse model CD2-Lmo2 Tg  mouse model

Cluster B Low DNA methylation increases
 with maturation of thymocytes

High DNA methylation Two subgroups with low or high DNA 
methylation

PU.1 binding sites Inversely correlated with PU.1 
expression

Immature T-ALLs have low cluster 
B methylation

Cluster C Heterogeneous DNA methylation Heterogeneous DNA methylation Heterogeneous DNA methylation

Genetics Enriched for TAL1-rearranged 
T-ALLs

Enriched for HOXA, TLX3, and 
NKX2-1 T-ALLs
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is maintained by different mechanisms in COSMe-I 
(PRC2-mediated repression) and COSMe-II T-ALLs (DNA 
methylation–mediated repression). This phenomenon has 
previously been observed in murine Ezh2 knockout ETP-
ALL (43) that displayed increased DNA methylation. In 
ETP-ALL, EZH2 inactivating events were previously linked 
to oncogenic active stem and progenitor cell genes (44). 
Also, in our cohort, inactivating alterations targeting PRC2 
members were more prevalent in COSMe-II T-ALL. However, 
the relation between PRC2 and DNA methylation is com-
plex, as PRC2 has been shown to recruit both DNMT (45) 
and TET enzymes (46). Therefore, PRC2 might potentially 
affect both methylation as well as demethylation, depend-
ing on the cellular context. However, the mechanism and 
functional relevance of these different levels of H3K27me3 
between human COSMe-I and COSMe-II T-ALLs remains 
to be established. In addition, additional studies will be 
required to further unravel how these epigenetic alterations 
exactly create a permissive landscape for T-ALL transforma-
tion or if they are just the result of specific cell-intrinsic 
antitumor mechanisms.

Next, our study linked DNA hypermethylation in COSMe 
cluster A to the proliferative history of the cancer cells, 
thereby confirming (11) that COSMe-II T-ALLs are epige-
netically older and displayed a longer mitotic history as com-
pared with COSMe-I T-ALL. In line with this, we showed that 
relapsed COSMe-I T-ALLs displayed a larger increase in epige-
netic age during their progression from diagnosis to relapsed 
disease. The younger mitotic age in combination with a faster 
rate of cellular proliferation might potentially contribute to 
the more aggressive nature of COSMe-I T-ALLs as compared 
with COSMe-II leukemias.

Furthermore, we could recapitulate these methylation fea-
tures distinguishing fast and aggressive COSMe-I from the 
slower-transforming COSMe-II T-ALLs in two distinct T-ALL 
mouse models: the spontaneous CD2-Lmo2tg T-ALL mouse 
model, which mimics immature T-ALL development and has 
a long disease latency, and the fast-transforming Lck-Cretg/+ 
Ptenfl/fl mouse model, as a model of more mature human 
T-ALL, where PTEN deletions are more abundant. Notably, 
these findings establish Lck-Cretg/+ Ptenfl/fl and CD2-Lmo2tg 
as models to further study COSMe-I and COSMe-II T-ALL 
cluster A methylation in vivo, but also provide evidence that a 
preleukemic self-renewing thymocyte population might also 
exist in human COSMe-II T-ALL. Indeed, in CD2-Lmo2tg mice, 
but not in Lck-Cretg/+ Ptenfl/fl mice, a preleukemic state has 
been described in which thymic precursors gain self-renewing 
potential prior to full malignant T-cell transformation. The 
preleukemic cells gain DNA methylation at these sites before 
transformation from 8 to 24 weeks, which was not observed 
in the corresponding aging thymocytes of Lck-Cretg/+ Ptenfl/fl  
mice or littermate controls. The methylation at these sites did 
not further increase after full transformation of the preleu-
kemic cells, suggesting that aberrant methylation at these 
sites is mainly derived from the preleukemic history of these 
tumor cells.

Besides cluster A CpG island methylation as a surrogate 
marker for the epigenetic age and replicative history of 
tumor cells, cluster B sites enabled additional classification 
of COSMe type-II T-ALL into two categories based on the 

methylation level of specific Open Sea–enriched CpG sites. 
Interestingly, these cluster B loci displayed significant enrich-
ment for the binding motif of PU.1, a transcription factor 
critically involved in early T-cell development (47).

Of note, we could show that these cluster B sites are able to 
distinguish immature from more mature T-ALLs within the 
COSMe-II leukemias. Furthermore, immunophenotypically 
validated ETP-ALLs, which are derived from the most imma-
ture T-cell precursors, also showed the lowest levels of cluster 
B methylation in the validation cohort. Whereas conclusive 
immunophenotypic data were missing to accurately define 
ETP-ALLs in the initial T-ALL cohort, these data do collec-
tively suggest that both immature T-ALL and ETP-ALL could 
be distinguished from other T-ALLs based on the absence of 
cluster B methylation within COSMe-II leukemias.

Notably, a similar correlation between PU.1-binding site 
methylation and SPI1 expression was recently also identified 
in TCF7–SPI1 fusion–positive T-ALLs (4). However, the lack 
of cluster B methylation in this very aggressive subtype of 
PU.1-rearranged human T-ALL (4) is most probably caused 
by the aberrant SPI1 expression downstream of the fusion 
proto-oncogene rather than being associated with its cell 
of origin.

Finally, cluster C CpG sites were also enriched for Open 
Sea sites but showed more heterogeneity in DNA methylation 
between T-ALLs. Cluster C–associated transcripts showed 
generally lower expression in normal T-cell subsets but were 
clearly active in at least some T-ALL tumors and included 
genes involved in T-ALL disease biology (48) as well as normal 
T-cell differentiation. Thus, the methylation pattern at some 
of these cluster C Open Sea CpG sites might be T-ALL specific 
and potentially hold some information on the genetic abnor-
malities present in each individual T-ALL.

In the last part of our work, we looked for further evidence 
for DNA hypomethylating agents as a promising therapeutic 
strategy for human T-ALL. Indeed, some case reports have 
previously shown that the FDA-approved drug decitabine 
might be effective as salvage therapy for T-ALL (31) and 
ETP-ALL (32–34). In line with this, decitabine here displayed 
profound antileukemic properties in PDXs from a variety of 
different human T-ALLs obtained from both primary as well 
as relapse tumor material; however, and most unexpectedly, 
these antitumoral effects, which were shown to be mediated 
by downregulating oncogenic MYC signaling, were observed 
in both COSMe-I and COSMe-II samples. Indeed, decitabine 
did not revert the age-related human CpG island hypermeth-
ylation phenotype in vivo. Instead, this hypomethylating agent 
triggered a profound and genome-wide hypomethylation 
effect on CpGs located in Open Sea areas, and surprisingly 
also hypermethylation in CpG islands. The widely altered 
DNA methylation profile has only limited effects on the tran-
scriptome of these cells. Decitabine-downregulated genes are 
reconciled by CTCF depletion, thus DNA hypomethylating  
agents might alter the binding capacity of CTCF as a poten-
tial mechanism to induce changes at the transcriptomic level. 
Several studies also show a direct link between MYC and 
DNMTs (49). MYC inactivation has been shown to reduce 
the expression of DNMT3B in T-ALL (50), and reciprocally, 
reduced expression of DNMT3B resulted in reduced prolifera-
tion and tumor maintenance, reflecting the effects observed 
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in our decitabine-treated PDX T-ALLs. Thus, downregulation 
of MYC or inhibition of DNMTs by decitabine might con-
verge on counteracting T-ALL disease burden.

Altogether, our work identifies aging of preleukemic thy-
mocytes as a driver of the CIMP in human T-ALL, reveal-
ing different trajectories toward T-cell transformation. Our 
work provides evidence for the involvement of preleukemic 
thymocytes in the pathogenesis of human T-ALL, which has 
previously only been reported in mouse T-ALL models so 
far. In addition, we provide a biological explanation for the 
profound differences in epigenetic age between COSMe-I and 
COSMe-II T-ALLs and show that the FDA-approved hypo-
methylation drug decitabine shows a promising increase in 
survival of both epigenetically young and old T-ALLs, but 
fails to revert age-related CpG island hypermethylation in 
human T-ALL xenografts. This very extensive DNA methyl-
ome dataset of murine and human T-ALL will be of impor-
tance to further increase our understanding of T-ALL disease 
biology, which could ultimately result in better treatment 
stratification and the development of novel and less toxic 
therapeutic strategies for the treatment of this aggressive 
hematologic malignancy.

Methods
Patient Samples, Normal T Cells, and Cell Lines

DNA from 109 T-ALLs was collected from the previously charac-
terized (8, 51) ALL IC-BFM 2002/2009 protocol. Exome sequencing 
was performed by Novogene. Clinical characteristics of patients 
treated according to both treatment regimens were not significantly 
different (χ2 test).

Thymocytes were isolated from postnatal thymus suspension of 
two donors each, as described previously (9, 16).

Cell lines were purchased from DSMZ and cultured in RPMI1640 
medium (Life Technologies) supplemented with 10% or 20% FCS, 
100 U/mL penicillin, 100 μg/mL streptomycin (Life Technologies), 
and 2 mmol/L l-glutamine (Life Technologies) at 37°C with 5% 
CO2. CUTTL-1 and PER-117 were a kind gift from Adolfo Ferrando 
(Columbia University, New York, NY) and Rishi Kotecha (Telethon 
Kids Cancer Center, Perth, Western Australia), respectively. Cell lines 
were screened monthly for Mycoplasma contamination and were con-
sistently negative.

All human samples were acquired with written informed con-
sent according to the Declaration of Helsinki, and the studies were 
approved by the ethical committee review board of the Department 
of Pediatric Hemato-Oncology at Ghent University Hospital (Ghent, 
Belgium).

DNA Methylation Profiling
Human DNA methylation analysis of 109 T-ALLs was done with 

the Infinium HumanMethylationEPIC BeadChip array (Illumina). 
DNA (250 ng) was used for bisulfite conversion by the EZ DNA Meth-
ylation Kit (Zymo Research).

DNA methylation profiling of the 14 human T-ALL validation 
cohort was done by TruSeq Methyl Capture EPIC-seq using 500 ng 
of DNA. Sequencing was done on the Hiseq3000 (PE150). Reads were 
trimmed using TrimGalore (v0.4.5) and aligned with Bismark (ref. 
52;  v0.20.0) on hg38.

RRBS was done on thymus isolated from CD2-Lmo2tg and Lck-Cretg/+  
Ptenfl/fl mice and littermate controls (n = 4 mice per condition). DNA was 
isolated from full thymus using the QIAamp DNA Mini Kit (Qiagen).  
RRBS was done using MSPI digest. Bisulfite-converted DNA libraries 
were sequenced on Illumina NextSeq500 using the NextSeq 500/550 

High Output v2 kit (SE75). Reads were trimmed using TrimGalore 
(v0.4.5) with –rrbs and –nondirectional and aligned with Bismark 
(ref. 52; v0.20.0) on GRCm38.

Illumina EPIC array and RRBS data were analyzed using RnBeads.
hg19 or RnBeads.mm10, respectively (53) in R (versions >3.4). 
Beta values were obtained after filtering and normalization using  
the default preprocessing pipeline. EPIC-seq was analyzed using 
the package “methylkit” in R. Annotation of CpGs to the closest 
gene was done by ChipPeakAnno (54). Copy number variations 
were called from EPIC array data using the R packages “minfi” and 
“conumee.”

H3K27me3 Profiling
Fifty to 100,000 CD45+ sorted cells were fixed using 1% formal-

dehyde (Thermo Fisher Scientific 28906) and quenched by gly-
cin (125 mmol/L final). Next, cell pellets were lysed in 100 μL of 
short-term complete lysis buffer [50 mmol/L Tris-HCl pH 8.0, 10 
mmol/L EDTA, 0.25% SDS, 20 mmol/L NaBu histone deacety-
lase inhibitor, 1X complete protease inhibitors cocktail EDTA free 
(Roche, 5056489001)]. Chromatin was sheared on the Bioruptor 
Pico (Diagenode) using a 15 seconds–on/30 seconds–off, 7-cycle 
regimen. Sheared chromatin was magnetically immunoprecipitated 
and tagmentated using the Auto ChIPmentation Kit for Histones 
(Diagenode, C01011010) on the IP-Star Compact Automated System 
(Diagenode, B03000002), according to the manufacturer’s instruc-
tions. Input DNA was decrosslinked, purified (MinElute, Qiagen), 
and tagmentated (Nextera DNA Library Prep, Illumina). Stripping, 
end repair, and library amplification were performed according to 
the ChIPmentation Kit guidelines. Libraries were sequenced with the 
NextSeq500 (SR75, High Output). Reads were trimmed by Trimmo-
matic and aligned to hg38 with Bowtie2 using the parameters -N 1 
-k 1. Peaks were called with MACS2 with the respective input control 
for each patient sample.

Gene Expression Profiling
Total RNA was isolated using the miRNeasy Mini Kit (Qiagen) and 

evaluated on the Agilent 2100 bioanalyzer (Agilent Technologies). 
Library preparation was performed using QuantSeq 3′mRNA-Seq 
FWD for Illumina (LEXOGEN). cDNA libraries were sequenced as 
described above. Reads were aligned to GRCh38 using STAR2.4.2a 
(55) and quantified on Gencode v24.

For visualization of RNA-seq data, EdgeR log2-transformed nor-
malized counts per million were plotted unless mentioned otherwise.

Microarray data normalized with Limma and was log2 transformed.

In Vivo Treatment of Xenografts
PDXs were established in female NOD/SCID γ (NSG) mice. For the 

initial PDX experiments, upon disease establishment, human leuke-
mic cells were isolated from the spleen. Secondary injections were per-
formed in randomized NSG mice (two groups of 5) and treated two 
cycles (5 days on, 2 days off) with vehicle-only or decitabine (0.5 mg/kg 
body weight).

For RNA and DNA collection, mice were randomized in two groups 
of 3 and treated for 5 days with vehicle only or decitabine (0.5 mg/kg  
bodyweight). At day 7, animals were sacrificed and tumor cells col-
lected from the spleen.

The animal welfare ethical committee (Ghent University Hospital) 
approved all animal experiments.

CIMP Classification
CIMP CpGs (1,099) were defined by filtering (3) CIMP probes to 

exclude CpGs within five base pairs from European SNPs, cross-
hybridizing probes, repeated regions (56), and methylation quantita-
tive trait locus (57). Missing values were imputed using K nearest 
neighbor.
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COSMe Classification
Five-thousand human COSMe CpGs were defined by most variably 

methylated CpGs in all normal thymocyte subsets and 109 T-ALLs. 
The classification of diagnosis and relapsed T-ALLs was obtained by 
hierarchical clustering of these 5,000 CpGs with Euclidean distance 
measures and clustering method “ward.D” using row scaling.

Epigenetic Age Calculations
The Horvath (25) and Epitoc (24) age were calculated with 

“cgageR.” Epigenetic age in mouse samples was estimated by tak-
ing the weighted average of CpGs within the 90 CpG age classifier 
defined by Petkovich and colleagues (29). Only CpGs that had 
enough coverage (>5) after data imputation with BoostMe (58) were 
retained. The weighted average was scaled and used as a relative meas-
ure of epigenetic age.

Data Analysis and Statistics
R or GraphPad Prism 6.0 was used for statistical analyses. When 

applicable, normality was tested using a Shapiro–Wilk test.
Publicly available ChIP-seq data were retrieved from the ChIP-Atlas 

(59). Heatmaps of ChIPseq data were generated by deepTools (60) 
computeMatrix, and plotHeatmap with the options reference-point 
and missingDataAsZero.

Enrichment analyses were performed with GSEA (37, 61), DAVID 
(62, 63), and Enrichr (14, 64). Hierarchical clustering and heatmaps 
were generated with R “pheatmap” using row scaling. Differential 
expression was identified by DeSEQ2 (65).

Data Availability
All generated data was deposited in NCBI Gene Expression Omni-

bus (GEO) under accession number GSE155339.
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