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Abstract

In this era of ubiquitous automation, all fields of optimal control are subject to
widespread scientific and industrial interest. This includes a field like Mixed-
Integer Optimal Control (MI-OCP) which, despite its ability to represent
many interesting problems, has struggled to find application due to its high
numerical complexity. Nevertheless, thanks to the general increase of available
computational power and the development of efficient solution algorithms, MI-
OCP has become a viable technique in an ever-increasing number of practical
scenarios. The present PhD dissertation contributes to this field by presenting
three distinct algorithms, each addressing a specific issue related to MI-OCP.
Additionally, special attention is paid to hybrid electric vehicle control: an
application that can largely benefit from robust and efficient MI-OCP schemes.

The most performant existing solvers for Mixed-Integer Convex Optimization
implement some sort of outer approximation technique. Consequently, the first
contribution presented is named Proximal Outer Approximation (POA). POA
is an algorithm designed to reduce the computational cost of solving highly
non-linear problem instances. POA has the same structure as the original
Outer Approximation algorithm but, thanks to additional adaptive proximity-
promoting cost terms, it is able to provide noteworthy computational savings,
especially on the most difficult instances.

Designing a real-time Mixed-Integer Model Predictive Control (MI-MPC) scheme
is often challenging from the computational complexity perspective. However,
any MPC procedure consists mainly in solving a sequence of problems where
each problem is quite similar to the next. The second algorithm presented
in this dissertation, namely the Mixed-Integer Real Time Optimal Control
(MIRT-OC) technique, exploits such similarity to reduce the complexity of MI-
MPC. In particular, MIRT-OC uses part of the information collected during one
MPC iteration to speed up the next. The collected numerical evidence clearly
shows the greater effectiveness of MIRT-OC with respect to the commonly used
approach.
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iv ABSTRACT

The complexity of Mixed-Integer Non-Linear Optimal Control may greatly
increase if systems described by non-convex functions are considered. The
last contribution presented consists of an algorithm named Disjunctive Outer
Approximation for Optimal Control (DOA-OC). DOA-OC is applicable to
any mixed-integer optimal control problem where constraints and objective
terms, while being non-convex, depend in a convex manner on the continuous
variables of the problem. The proposed algorithm extends the OA framework
to the aforementioned problem class and, by the same token, represents a much
more convenient alternative to the extremely complex non-convex optimization
schemes.

Additionally, the conclusion of this dissertation presents a number of suggestions
on possible interesting future developments for the presented work.



Beknopte samenvatting

In dit tijdperk van alomtegenwoordige automatiseringis er brede wetenschap-
pelijke en industriële interesse voor optimale controle. Dit omvat ook het
domein van "Mixed-Integer"Optimale Controle (MI-OCP) dat, ondanks de
brede waaier van toepassingsmogelijkheden, moeite heeft om toepassing te
vinden vanwege de hoge numerieke complexiteit. Niettemin is MI-OCP, dankzij
de algemene toename van de beschikbare rekenkracht en de ontwikkeling van
efficiënte oplossingsalgoritmen, een levensvatbare techniek geworden in een
steeds toenemend aantal praktische scenario’s. Dit doctoraatsproefschrift draagt
bij aan dit vakgebied met drie verschillende algoritmen, die elk een specifiek
probleem met betrekking tot MI-OCP aanpakken. Daarnaast wordt speciale
aandacht besteed aan de besturing van hybride elektrische voertuigen: een
toepassing die in belangrijke mate kan profiteren van robuuste en efficiënte
MI-OCP-schema’s.

De best presterende bestaande oplossingsmethoden voor Mixed-Integer Convexe
Optimalisatie implementeren een soort externe benaderingstechniek. Bijgevolg
wordt de eerste de eerste bijdrage in dit proefschrif Proximal Outer approxima-
tion (POA) genoemd. POA is een algoritme dat is ontworpen om de rekenkosten
voor het oplossen van zeer niet-lineaire probleemgevallen te verlagen. POA
heeft dezelfde structuur als het oorspronkelijke Outer approximation-algoritme,
maar die dankzij aanvullende adaptieve kostfuncties die de nabijheid van een
oplossing bevorderen, aanzienlijke besparingen in rekentijd kunnen realiseren,
vooral indien men te maken heeft met complexe problemen.

Het ontwerpen van een real-time Mixed-Integer model-gebaseerd voorspellend
regelschema (MI-MPC)-schema is vaak een uitdaging vanuit het perspectief van
computationele complexiteit. Elke MPC-procedure bestaat echter hoofdzakelijk
uit het oplossen van een reeks problemen waarbij elk probleem vrij gelijkaardig
is aan het volgende. Het tweede algoritme dat in dit proefschrift wordt
gepresenteerd, namelijk de Mixed-Integer Real Time Optimal Control (MIRT-
OC) -techniek, maakt gebruik van deze gelijkenis om de complexiteit van
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MI-MPC te verminderen. In het bijzonder gebruikt MIRT-OC een deel
van de informatie die tijdens de ene MPC-iteratie wordt verzameld om de
volgende te versnellen. Aan de hand van numerieke experimenten wordt de
grotere effectiviteit van MIRT-OC ten opzichte van de meest gebruikte aanpak
aangetoond.

De complexiteit van niet-lineaire optimale controle kan aanzienlijk toenemen
voor systemen die worden beschreven door niet-convexe functies. De laatste
bijdrage van dit proefschrift bestaat uit een algoritme genaamd Disjunctive
Outer approximation for Optimal Control (DOA-OC). DOA-OC is toepasbaar
op elk mixed-integer optimaal controleprobleem waarbij beperkingen en
doelfuncties, hoewel ze niet-convex zijn, op een convexe manier afhangen
van de continue variabelen van het probleem. Het voorgestelde algoritme
breidt het OA-raamwerk uit naar de bovengenoemde probleemklasse en vormt
op dezelfde manier een veel handiger alternatief voor complexer niet-convexe
optimalisatieschema’s.

Tenslotte presenteert het besluit van dit proefschrift een aantal suggesties over
mogelijke interessante toekomstige ontwikkelingen voor het gepresenteerde werk.



Abbreviations

B&B : Branch and Bound

DOA-OC : Disjunctive Outer Approximation for Optimal Control

EM : Electric Motor

GB : Gear Box

HEV : Hybrid Electric Vehicle

ICE : Internal Combustion Engine

LP-NLP B&B : Linear Programming/Non-Linear Programming Branch and
Bound

MIOCP : Mixed-Integer Optimal Control Problem

MICP : Mixed-Integer Convex Problem

MILP : Mixed-Integer Linear Problem

MINCP : Mixed-Integer Non-Convex Problem

MINLP : Mixed-Integer Non-Linear Problem

MIP : Mixed-Integer Problem

MIQP : Mixed-Integer (convex) Quadratic Problem

MIRT-OC : Mixed-Integer Real-Time Optimal Control

MPC : Model Predictive Control

NLP : Non-Linear Problem

OA : Outer Approximation
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OC : Optimal Control

OCP : Optimal Control Problem

PHEV : Parallel Hybrid Electric Vehicle

POA : Proximal Outer Approximation
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Chapter 1

Introduction

The ability of predicting and manipulating the behaviour of physical systems in
a rigorous manner paved the way that led from the simply mechanical machines
of the first and second industrial revolution to the contemporary autonomous
mechatronic systems. Such rigorous approach to automation takes the name of
“Control Theory”. The twentieth century has witnessed a great proliferation of
control theory applications as automation became almost ubiquitous. Starting
from the 1980s, when desktop-sized digital computers started to become of
common use, a new branch of control theory arose to popularity: Optimal
Control. The aim of optimal control is to manipulate the behaviour of a system
in order to maximize some measure of desirability (e.g. the amount of energy
saved or minimal operation time). To date, Optimal Control finds good success
in many control and planning applications.

The subject matter of the present PhD dissertation is Mixed-Integer Optimal
Control: a branch of Optimal Control focused on the solution of control problems
where some of the variables are constrained to take value within a finite number
of possible assignments while the others are allowed to span continuous sets
(commonly, intervals of the real numbers). In particular, this thesis will address
the issue of developing new efficient strategies capable of reducing the effort
required for the solution of specific classes of mixed-integer non-linear optimal
control problems.

1



2 INTRODUCTION

1.1 Motivation

Mixed-Integer Optimal Control is an important tool for taking the best possible
decisions over time in all those applications where the outcome depends on
some continuous signals as well as on the selection of one out of a finite number
of possible actions. Common examples of optimal control applications are the
autonomous selection of gears for a vehicle or the dynamic assignment of finite
resources in a production line.

In the past, the high complexity of Mixed-Integer Optimal Control relegated its
usage to systems with very slow dynamics and to digital simulations. In spite
of that, over time, thanks to the great increment in available computational
power, Mixed-Integer Optimal Control slowly started to be regarded as a viable
approach for controlling of faster systems in real time.

However, more powerful computers alone are not sufficient to solve the challenges
posed by Mixed-Integer Optimal Control. As a matter of fact, although digital
computers have nowadays almost exhausted their margins of improvement, the
efficient solution of medium-sized mixed-integer non-linear optimal problems is
still quite difficult. As a consequence, it is essential to improve the performances
of the algorithms involved in mixed-integer optimal control in order to further
enlarge the set of its possible applications.

Hybrid Electric Vehicles as Case Study

In this thesis the control for Hybrid Electric Vehicles will be used as main source
of numerical experiments to be used to asses and demonstrate the performances
of the developed algorithm. Nevertheless, none of the methods presented in this
dissertation is limited to this specific application.

The selection of hybrid electric vehicles control as main case study is not
coincidental. In the recent years, many Hybrid Electric Vehicles (HEV) have
entered the automotive market with a fairly good success. This is due to the fact
that HEVs have the potential of achieving a much higher average fuel-efficiency
and environmental sustainability compared to traditional vehicles. The main
advantages of HEVs over traditional vehicles lies in their capability of recovering
energy during deceleration (regenerative braking) together with some additional
degrees of freedom in the selection of the operating point of the combustion
engine. As a consequence of the additional freedom, automatic control plays a
key role in HEVs design as such freedom must be carefully exploited in order
maximize fuel economy and minimize pollutant emissions.
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From a more technical point of view, the optimal control of hybrid cars makes
for an interesting case study. In fact, in such application, difficult mixed-integer
non-linear models have to be considered under the requirement of real-time-
compatible solution times, and therefore, the efficiency of the employed solution
methods is particularly relevant.

1.2 Challenges

Mixed-Integer Optimization is an NP-hard problem. This means that the
time required for the solution of a mixed-integer optimization problem is an
exponential function of the problem size. As a consequence, in Mixed-Integer
Optimal Control the length of the time interval that can be considered might
be severely limited. However, not all mixed-integer control problems are equally
demanding: if, on the one hand, large linear and quadratic mixed-integer optimal
control problems can nowadays be solved with relative ease, on the other hand,
moderately sized mixed-integer non-linear problems still require long times to
be solved due to their higher computational complexity. Consequently, when
considering mixed-integer non-linear optimal control problems, it is in general
quite challenging to obtain real-time compatible performances without taking
shortcuts at the expense of the quality of the resulting solutions.

The difficulty of Mixed-Integer Non-Linear Optimal Control arises from the fact
that, in this field, the high computational cost of Mixed-Integer Optimization
meets the complexity of Non-Linear Programming. In fact, for directly solving a
mixed-integer problem it is normally necessary to solve an exponential number
of continuous subproblems having the same non-linearity characteristics of
the original problem, and non-linear continuous problems are by themselves
already quite demanding to solve. One of the consequences of this is that the
most performant approaches in the field work by partially decoupling the two
complicating aspects of the considered problems. This results in the use of
multi-layered and quite involved algorithms.

Therefore, in order to obtain better performances in the context of Mixed
Integer Optimal Control, it is important to work at all levels of the involved
solution procedures considering the fact that even small implementation details,
such as the ordering function used in tree searches or the specific parameter
setup of each of the involved solvers, might make a large difference. Moreover,
the performances of any general mixed-integer optimization algorithm are
ultimately bound by the underlying complexity of the field. Therefore, it is
arguably beneficial to exploit as much as possible the specific structure of the



4 INTRODUCTION

particular class of problems of interest, as in our case, problems coming from
optimal control applications.

1.3 Contributions

In this dissertation three different algorithms will be presented and evaluated
with the help of a series of numerical experiments.

The first algorithm takes the name of Proximal Outer Approximation (POA).
POA results from the merging and harmonization of the characteristics
of two different approaches to mixed-integer convex optimization: Outer
Approximation (OA) and Feasibility Pump (FP). The algorithm seeks to find an
adaptive balance between the more feasibility-focused FP-like iterations and the
more optimality-focused OA-like iterations. The collected empirical evidence
suggests that, on the analyzed benchmark, Proximal Outer Approximation is
often capable of yielding faster and more robust convergence with respect to
the classical OA algorithm.

Next to be presented is the Mixed-Integer Real-Time Optimal Control (MIRT-
OC) algorithm, a mixed-integer convex Model Predictive Control (MPC)
approach that, inspired from the success of single-tree optimization schemes
for Mixed-Integer Convex Optimal Control, reduces the whole MPC process
to a single tree search. The algorithm, rather than dealing with each MPC
iteration separately, makes use of two specialized routines in order to adapt
the optimization data and the search-tree collected during one MPC iteration
into optimization data and a partially explored search-tree for the subsequent
iteration. Such strategy allows for maximal reuse of the collected information
and, as confirmed by the performed numerical experiments, provides sizeable
computational savings.

Finally, the thesis presents the Disjunctive Outer Approximation for Optimal
Control (DOA-OC) scheme, a specialized variation of Outer Approximation
capable of efficiently solving a certain class of mixed-integer non-convex
optimal control problems. The algorithm exploits the peculiar structure of
the optimization problems that arise from optimal control applications where
the constraints result convex only on the continuous variables of the system.
The distinctive feature of DOA-OC is its ability of efficiently generating linear
relaxations for the non-convex constraints of the considered problems. The
result is the possibility of avoiding the use of extremely expensive mixed-integer
non-convex solution schemes or fiddly reformulations techniques, and thus, of
obtaining vast reductions in computational complexity.
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One schematic guide to the particular field of application of each method can
be found in Table 1.1

Algorithm Field of Application

POA General Mixed-Integer Convex Optimization
MIRT-OC Mixed-Integer Convex MPC

DOA-OC Mixed-Integer Semi-Convex Optimal Control / MPC
Disjunctive-Convex Optimal Control / MPC

Table 1.1: Presented Algorithms and Fields of Application

1.4 Overview

The remainder of this thesis is organized in five chapters besides the current.
Chapter 2 consists of an introduction to the concepts which are the base
of the work to be presented, Mixed-Integer Optimization and Mixed-Integer
Optimal Control, together with the most common methodologies related to them.
Chapters 3, 4 and 5, constitute the core of this dissertation: they consist of the
presentation of, respectively, the Proximal Outer Approximation, the Mixed-
Integer Real-Time Optimal Control and the Disjunctive Outer Approximation
for Optimal Control algorithm. Finally, Chapter 6 concludes the dissertation: it
summarizes the presented work and reports the final comments of the author as
well as some suggestions for the further development of the discussed algorithms.





Chapter 2

Preliminaries and Basic
Methodologies

This chapter serves the purpose of contextualizing the current dissertation. It
consists of a sequence of brief discussions regarding some of the concepts that are
at the base of the work to be presented. Initially, the reader will be introduced
to the concept of optimal control and to one of the most common approaches
to it: “Direct Multiple Shooting”. Then, the focus will shift towards the class
of optimal control problems generally labeled as “Mixed-Integer”. In particular,
towards the reasons for the relevance of such class as well as the challenges posed
by the problems belonging to it. After that, a particularly successful approach
to optimal control named “Model Predictive Control” will be presented. Finally,
the two main existing algorithms for Mixed-Integer Convex Optimization will
be explained, and a few words will be spent on Mixed-Integer Non-Convex
Optimization.

2.1 Optimal Control

First of all, let us briefly and informally introduce the concept of dynamical
systems. A dynamical system is an entity capable of changing its state over time
according to its own characteristics and/or the characteristics of the environment
it is immersed in. For example, consider a car traveling at a certain speed on the
highway. If no torque is applied to the wheels, the speed of the car begins slowly
decreasing by the effect of friction. Defining the state of the car in terms of its
speed with respect to road surface, it is possible to observe the car continuously

7
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varying its state. Now, the state of a dynamical system gets defined according
to the task at hand and needs not to be complete nor absolute. For instance, in
our previous example, order to monitor the speed of the car it is possible to use
different measurements, like the rotational speed of the wheels, and it is not
necessary to include into our set of state variables the absolute position of the
car nor the temperature of the engine.

A control task consists in figuring out a way to interact with a dynamical system
in order to tailor its behavior towards the accomplishment of some goal. Going
back to the previous example, suppose that the task at hand is to have the
car reach and keep some desired speed, then, it is possible to manipulate the
evolution of the state of the car by applying a variable torque to its wheels. In
this case, the torque applied to the wheels is the control variable of the system
and the torque profile over time is the selected control action (control signal).
A complete introduction to the theory behind the field of classical control can
be found in [80], a more practice-oriented introduction can be found in [68].

Optimal control is the branch of applied mathematics concerned with the
development of methods aimed at finding a suitable set of control signals that,
if applied to the system, guide its evolution is such a manner to maximize some
measure of performance. For instance, optimal control may help us to find the
torque profile allowing a car to remain within a certain interval of speeds with
the lowest fuel consumption possible. Optimal control is an important aspect
of many fields where the manner in which a task is executed is as important
as the mere execution of the task is. For example, in aerospace applications,
where the amount of fuel a vehicle can carry is limited, fuel economy is critical
to the feasibility of many operations. An other example is industrial production:
being able to produce a good in the least amount of time or with the least
amount of energy can make the difference between a profitable production and
non-profitable one. An introduction to the field of optimal control can be found
in [31].

There exist several ways of formalizing optimal control problems, each tailored
towards a specific type of dynamical system or task. However, in this dissertation
we will focus on the following particular form:

(x̃∗, ũ∗) := argmin
x̃,ũ

T∫
t=0

s(x̃(t), ũ(t), t) dt+ f(x̃(T ))

s.t. x̃(0) = x̄0[
˙̃x(t) = d(x̃(t), ũ(t), t)
p(x̃(t), ũ(t), t) ≤ 0

]
t∈[0,T ]

e(x̃(T )) ≤ 0

(POC)
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where x̃ and ũ are array-valued functions defined over the interval [0, T ]
representing, respectively, the state of the system and the applied controls.

At this point, it is useful to lay-down some terminology to be used in this
dissertation:

• s(x̃(t), ũ(t), t): “path cost”.

• f(x̃(T )): “end cost” or “tail cost”.

• x̄0: “initial state”.

• e(x̃(T )) ≤ 0: “end constraint” or “tail constraint”.

• ˙̃x(t) = d(x̃(t), ũ(t), t): “dynamic equation”.

• p(x̃(t), ũ(t), t) ≤ 0: “path constraints”

In general, problems like POC need to be reformulated or approximated in
order to be solved. The next subsection is devoted to the presentation of the
approximation technique of choice for this thesis: Direct Multiple Shooting.

2.2 Direct Methods For Optimal Control

In the early years of optimal control as a main-stream topic of research
(1950-1980), solutions were mostly obtained by means of indirect optimization
methods1 or via Dynamic Programming2 ([3],[13]). However, on the one hand,
indirect optimization methods are difficult to deploy and very sensitive to the
characteristics of the specific problem instance to be solved. On the other hand,
the usefulness of Dynamic Programming is limited to problems with low state
dimensionality due to Bellman’s “curse of dimensionality”. As a consequence,
starting from the 80s, a new class of approaches has risen to prominence: direct
optimization methods.

Direct optimization methods derive tractable approximations to optimal control
problems by considering only piece-wise defined control actions which can
be determined using a finite number of parameters. Thanks to this choice,

1Indirect optimization methods use optimality conditions (conditions that any optimal
solution satisfies) in order to transform the optimal control at hand into a boundary-value-
problem (a differential equation coupled with a set of constraints on the value of the solution
at the borders of its domain of definition) which is then solved analytically or numerically.

2Dynamic Programming uses the Bellman’s Principle of Optimality to recursively split
an optimal control problem into a number of easier subproblems. Then, the solutions of the
subproblems are used to compute an approximate optimal control action.
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the original infinite-dimensional optimal control problem is translated into a
finite-dimensional numerical optimization problem that can be readily solved
using any appropriate out-of-the-shelf solver. The reason for the success of
such class of methods is two-fold: firstly, their “translation procedure” from
optimal control to optimization is not very sensitive to the characteristics of
a problem instance and can be easily automated; secondly, they benefit from
the abundance of results of a well established and extensively developed field as
numerical optimization.

Direct optimization methods differ one from another on the way the evolution
of the state of the system is handled. Each of the existing methods has its own
advantages and flaws. However, for the sake of simplicity, in this dissertation
only Direct Multiple Shooting will be considered3.

2.2.1 Direct Multiple Shooting

Direct Multiple Shooting (DMS) was firstly presented by Bock and Plitt in 1984
([15]). To date, DMS is possibly the most used approach to optimal control.

Before discussing the reasons for the success of DMS it is useful to briefly dive
into its functioning. In DMS, the control action is assumed to be defined in a
piece-wise fashion. For simplicity, assume the control action to be piecewise-
constant. As a consequence, the first step to be taken in order to apply DMS
to a control problem is to define a suitable partition of the time interval [0, T ].
To this end, consider N sub-intervals [tk, tk+1] such that:

0 = t0 < t1 < · · · < TN−1 < TN = T (2.1)

Then, for each k ∈ {0, · · · , N − 1} DMS proceeds as follows:

1. A variable uk is defined to represent the value of ũ(t) over the sub-interval
[tk, tk+1].

2. A variable xk is defined to represent the value x̃(tk).

3. A function dk(xk, uk) is defined as xxk,uk
(tk+1) where xxk,uk

is the
parametric solution of the following initial-value problem:{

ẋ(t) = d(x(t), uk, t)
x(tk) = xk

(2.2)

3Nevertheless, all the presented results can be easily extended to all those other methods
that generate block-sparse optimization problems as, for example, Direct Collocation
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4. A function sk(xk, uk) is defined as follows:

sk(xk, uk) :=
tk+1∫
tk

s(xxk,uk
(t), uk, t) dt (2.3)

5. A function pk(xk, uk) is defined as follows:

pk(xk, uk) := p(xk, uk, tk) (2.4)

Finally, a last state variable xN is created and the following optimization
problem defined:

(x∗, u∗) := argmin
x,u

N−1∑
k=0

sk(xk, uk) + f(xN )

s.t. x0 = x̄0[
xk+1 = dk(xk, uk)
pk(xk, uk) ≤ 0

]N−1

k=0
e(xN ) ≤ 0

(PDMS)

Figure 2.1: Representation of a typical control solution found via DMS including
pre-convergence discontinuous state trajectory.

Now, PDMS is an approximation of POC. This is mainly due to the fact that the
control action is limited to be piece-wise constant, but also because the path
constraints are imposed only at the beginning of each sub-interval. Moreover,
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the vast majority of practical implementations of DMS use numerical integration
to approximate the value of si(xi, ui) and di(xi, ui). Nevertheless, the accuracy
of the DMS approximation can be arbitrarily increased by refining the defined
partition of [0, T ] and by using error-controlled numerical integration schemes.

The optimization problems generated by DMS are fairly large. The more so
the finer the used time partition is. However, they have a specific block-sparse
structure which can be used by specialized solvers to significantly reduce the
computational burden of the solution process. Additionally, the structure of
PDMS allows solvers to take advantage of a good initialization for the state
trajectory (warm-starting). Another important feature of DMS is the fact that
the continuity of the state trajectory is imposed only via a set of state continuity
constraints: xk+1 = dk(xk, uk). This prevents the non-linearity due to the
dynamics of the system to accumulate along the whole time interval making
easier to deal with strongly non-linear dynamical systems. One drawback
of such approach is that many solvers (especially the most efficient ones) do
not ensure the satisfaction of the problems constraints up until convergence.
Consequently, if a solver is interrupted well before convergence, for example
because of some time limit, there is the possibility of obtaining a plan based on
a discontinuous state trajectory (which is clearly unrealistic). But in light of
the high performances attainable with DMS, this issue interests only extremely
fast applications.

In conclusion, the advantages of DMS can be summarized as follows:

• It is easily generalized and automated.

• It can use error-controlled numerical integration schemes to boost accuracy.

• Its structure allows for effective warm-starting.

• There exist efficient solvers specifically tailored to the kind of optimization
problems it generates.

• It handles strongly non-linear dynamical systems with more ease than
other methods.

2.3 Mixed-Integer Optimal Control

In order to define a Mixed-Integer Optimal Control Problem (MI-OCP) it is
necessary to introduce two new vector valued functions: the “integer states” ỹ(t)
and the “integer controls” ṽ(t). The new functions are allowed to take value
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only in a bounded subset, respectively: Dy and Dv, of the integer numbers, Z.
Inserting these new components in the formulation of POC results in:

(x̃∗, ỹ∗, ũ∗, ṽ∗) := argmin
x̃,ỹ,ũ,ṽ

T∫
t=0

s(x̃(t), ỹ(t), ũ(t), ṽ(t), t) dt+ f(x̃(T ), ỹ(T ))

s.t. x̃(0) = x̄0

ỹ(0) = ȳ0
˙̃x(t) = d(x̃(t), ỹ(t), ũ(t), ṽ(t), t)
ỹ(t+) = tr(x̃(t), ỹ(t), ũ(t), ṽ(t), t)
p(x̃(t), ỹ(t), ũ(t), ṽ(t), t) ≤ 0
(ỹ(t), ṽ(t)) ∈ Dy ×Dv ⊂ Zny+nv

∣∣∣∣∣∣∣∣∣
t∈[0,T ]

e(x̃(T ), ỹ(T )) ≤ 0
(P ′OC)

where the symbol t+ represents the time an infinitesimal instant after t.

At this point, applying DMS, with some adaptations4, to P ′OC leads to:

(x∗, y∗, u∗, v∗) := argmin
x,y,u,v

N−1∑
k=0

sk(xk, yk, uk, vk) + f(xN , yN )

s.t. x0 = x̄0

y0 = ȳ0
xk+1 = dk(xk, yk, uk, vk)
yk+1 = trk(xk, yk, uk, vk)
pk(xk, yk, uk, vk) ≤ 0
(yk, vk) ∈ Dy ×Dv ⊂ Zny+nv


N−1

k=0
e(xN , yN ) ≤ 0

(P ′DMS)

Problems like P ′DMS are generally referred to as Mixed-Integer Problems
(MIPs). Mixed-integer optimization is a really powerful instrument to deal with

4Discrete states have to be treated carefully. In facts, unhandled state switches occurring in
between DMS time discretization grid points may harm the accuracy of the DMS method. One
solution to this is to use integration schemes able detect state switches and act accordingly.
However, such schemes introduce discontinuity in the constraint set of the optimization
problem obtained by DMS, possibly hindering the solution process. A less general but easier
option is to consider only discrete states whose transition function tr(. . . ) does not depend
on the continuous states of the system. In this way, state switches are bound to occur on
DMS time discretization grid points, and the integration issue is avoided altogether.
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applications where the assigning a non-integer value to some decision variables
makes little sense. However, in particular, P ′DMS represents a control problem,
and consequently, it falls in the field of Mixed-Integer Optimal Control (MIOC).

MIOC is useful in many applications, here are a few examples:

• Dynamic Resource Assignment: If, in an automated warehouse, the aim
is to optimally plan the assignment of a number of robots to each of the
necessary transportation tasks then, as new orders with different priority
levels come in, the plan has to be extended and updated in a dynamic
and adaptive manner.

• Hybrid Dynamic Control: Consider a running legged robot. During
the run, the robot continuously switches between being and not being in
contact with the ground. Clearly, the robot acquires a profoundly different
dynamic behaviour depending on the phase it is in. Such discontinuity in
the dynamics can be handled via the definition of an appropriate binary
state.

• Policy optimization: A famous example concerns the regulation of fishing
in a sea region ([73]). Assuming that the population growth of the fish
follows a specific dynamical equation (e.g. the Lotka-Volterra’s equation)
Mixed-Integer Optimal Control could be used in order to establish the
periods of the year in which to forbid fishing in order to stabilize the fish
population around a healthy level while also preserving the productivity
of fishing.

• Control of Hybrid Systems: The drive-train of many land vehicles features
stepped gearboxes. This kind of transmissions limit the usable engine-to-
wheels gear-ratios to a predetermined set of choices. Therefore, the car
dynamics is best modeled using discrete variables.

When dealing with Mixed-Integer Optimal Control, the greatest challenge to
overcome concerns the computational complexity of the involved optimization
methods. In fact, the complexity of Mixed-Integer Optimization grows
exponentially with the problem size. In terms of optimal control, this limits
either the size of the time interval that can be considered at once or the
maximum switching frequency for the integer states/controls.

Nevertheless, despite its limitations, MIOC can still generate high quality
controlling strategies in many applications. Hence, MIOC constitutes an
interesting and fairly wide-spread field of research.
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2.4 Mixed-Integer Model Predictive Control

As said, Mixed-Integer Optimal Control is hard. Still, billions of people around
the world are capable of properly managing the stepped-gearbox of a car without
the help of a super-computer. The reason for this resides in the fact that humans
do not normally plan the exact sequence of gears they will select during a whole
trip beforehand. Rather, drivers change gears reactively (e.g. whenever the
engine gives signs of lower efficiency) or slightly proactively (e.g. whenever a
curve or a change of speed is foreseen). This approach has three main advantages:
firstly, it prevents brains from over-heating, secondly, it enables the driver to
take into account changes in the control problem that cannot be predicted a
priori (e.g. due to the behavior of other drivers), and, thirdly, does not impose
any limit to the length of the time interval over which the control problem is
defined (it could even be infinite).

Such slightly proactive approach to optimal control is present also in the
literature with the name of Model Predictive Control (MPC). Since the 1980s,
MPC is commonly used to tackle complex optimal control problems where the
methods from classical control theory would fail (e.g. problems with strong
non-linearities or restrictive constraints). MPC is a (potentially online) scheme
that incrementally builds a control strategy for a long-horizon optimal control
problem by, at each time step, extracting a control action from the solution of a
short-horizon subproblem. Generally, MPC does not provide optimal solutions
but it is possible to run it for as long as needed with substantially constant
memory and time requirements across the iterations. Such feature qualifies MPC
as an interesting tool for finding close-to-optimal solutions to mixed-integer
optimal control problems. A complete presentation of MPC, its characteristics
and its applications is well beyond the scope of this introduction. Therefore,
in this section only the aspects of MPC that are the most interesting from the
perspective of the Mixed-Integer Optimal Control approach presented so far
will be discussed. A complete introduction to MPC can be found in [72].

2.4.1 Mixed-Integer MPC in offline conditions

Assume perfect a priori knowledge of the system to control and its environment,
i.e. there are no unmodeled or unpredictable effects that would impose changes
to the control problem during the optimization. Then, assume that we are
interested in computing a sufficiently good (not necessary the globally optimal)
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feasible point for the following problem obtained via DMS:

(x∗, y∗, u∗, v∗) := argmin
x,y,u,v

N−1∑
k=0

sk(xk, yk, uk, vk)

s.t. x0 = x̄0

y0 = ȳ0
xk+1 = dk(xk, yk, uk, vk)
yk+1 = trk(xk, yk, uk, vk)
pk(xk, yk, uk, vk) ≤ 0
(yk, vk) ∈ Dy ×Dv ⊂ Zny+nv


N−1

k=0
(P ′′DMS)

In order to tackle P ′′DMS in a MPC fashion, a sequence of shorter subproblems
are defined:

(x(j), y(j), u(j), v(j)) := argmin
x,y,u,v

Ej−1∑
k=Ij

sk(xk, uk) + fj(xEj
, yEj

)

s.t. xIj
= x̄Ij

yIj
= ȳIj
xk+1 = dk(xk, yk, uk, vk)
yk+1 = trk(xk, yk, uk, vk)
pk(xk, yk, uk, vk) ≤ 0
(yk, vk) ∈ Dy ×Dv ⊂ Zny+nv


Ej−1

k=Ij

ej(xEj , yEj ) ≤ 0
(P(j)

MPC)
where:

• Hj := Ej−Ij > 0 is the length of the (discretized) time window considered
by the j-th subproblem (horizon length).

• I0 ≤ I1 ≤ · · · ≤ IM , i.e. the subproblems are numbered in ascending order
with respect to their initial time.

• ∀j ∈ {0, · · · ,M}: Ij+1 ≤ Ej , i.e. the time windows of two subsequent
subproblems intersect.

• I0 = 0 and EM = T , i.e. the union of all the considered time windows
covers the whole interval [0, T ].

• x̄Ij is an initial state derived from the solution of the (j−1)-th subproblem.



MIXED-INTEGER MODEL PREDICTIVE CONTROL 17

• fj(xEj
, yEj

) and ej(xEj
, yEj

) ≤ 0 are, respectively, a tail cost and a tail
constraint that were not present in P ′′DMS. This type of costs/constraints
are often added to MPC subproblems for specific reasons that will be
discussed later in this section.

The MPC procedure starts by defining x̄0 := x0. Then, in each iteration, the
problem P(j)

MPC is solved obtaining the point (x(j), y(j), u(j), v(j)), and the values:

{x(j)
Ij
, · · · , x(j)

Ij+1
}, {y(j)

Ij
, · · · , y(j)

Ij+1
}, {u(j)

Ij
, · · · , u(j)

Ij+1−1}, {v
(j)
Ij
, · · · , v(j)

Ij+1−1}

are stored. In this way, if each of the subproblems results feasible, the procedure
is able to iteratively build a state trajectory and a control action for P ′′DMS.

However, even when applied to a feasible problem P ′′DMS, MPC does not
intrinsically ensure the feasibility of each subproblem and therefore, if not
carefully deployed, the scheme might not be able to produce meaningful solutions.
Moreover, it is not straightforward to predict in advance how far from the global
optimum an eventually obtained solution would lie.

In order to ensure the feasibility of each iteration, the additional tail cost
fj(xEj

, yEj
) and/or the tail constraint ej(xEj

, yEj
) can be designed, respectively,

to discourage or to prevent the solution of P(j)
MPC from ending up in a state that

would make P(j+1)
MPC infeasible. Further, if fj(xEj

, yEj
) defines a look-ahead cost,

i.e. it approximates the optimal objective value for the residual part of the
control task (as in Approximate Dynamic Programming [13]), it can be used to
deduce bounds on the sub-optimality of the eventual MPC solution.

Remark: Originally, MPC was designed for online applications and using it
offline might seem unnecessary. But actually, for difficult control applications,
MPC can allow for the solution of problems that are unsolvable otherwise. For
example, while the complexity of solving P ′′DMS all at once is exponential in N ,
the complexity of solving M MPC iterations is linear in M .

2.4.2 Mixed-Integer MPC in online conditions

In control applications, it is often the case that the mathematical model for a
system does not allow for perfect predictions of the model behavior. Moreover,
the environment the system is immersed in might present some degree of
unpredictability. In those cases, it is necessary to constantly monitor for possible
prediction errors in the state of the system/environment and, consequently,
adapt the future control actions just before executing them.



18 PRELIMINARIES AND BASIC METHODOLOGIES

In online conditions, each MPC iteration runs while the control action obtained
by the last iteration is being executed. More explicitly, assume that in iteration
j − 1 a control action

(
u(j−1), v(j−1)) was found. Then, the MPC controller

would apply to the plant the initial portion of such control action:

C(j−1) :=
[(
u

(j−1)
Ij−1

, v
(j−1)
Ij−1

)
,
(
u

(j−1)
Ij−1+1, v

(j−1)
Ij−1+1

)
, · · · ,

(
u

(j−1)
Ij−1 , v

(j−1)
Ij−1

)]
while solving the j-th MPC subproblem.

Assuming for simplicity that the disturbances in the system/environment are
random, the “actual” discretized dynamic of the system could be represented
as follows:

x̂k+1 := dk(x̂k, uk) + ∆x̂k+1 (2.5)
where ∆x̂k+1 is a random variable of some form. Further, assume that
it is possible to measure/estimate the state of the system but that such
measurement/estimation is subject to some random error as well. Then, at the
beginning of each MPC iteration j, the following quantity will be available to
the controller:

ξIj−1 := x̂Ij−1 + ∆ξj−1 (2.6)
for some random variable ∆ξj−1. As a consequence, in order to take into
account this information, the MPC subproblems need to be redefined:

(x(j), y(j), u(j), v(j)) := argmin
x,y,u,v

Ej−1∑
k=Ij

sk(xk, uk) + fj(xEj
, yEj

)

s.t. xIj = Dj−1,j(ξ̂Ij−1)
yIj

= ȳIj
xk+1 = dk(xk, yk, uk, vk)
yk+1 = trk(xk, yk, uk, vk)
pk(xk, yk, uk, vk) ≤ 0
(yk, vk) ∈ Dy ×Dv ⊂ Zny+nv


Ej−1

k=Ij

ej(xEj
, yEj

) ≤ 0
(P̂(j)

MPC)
where Dj−1,j(ξ̂Ij−1) is a prediction of the state at time Ij obtained assuming
measured state ξIj−1 to be accurate and considering the future application of
the control action C(j−1).

P̂(j)
MPC is identical to P(j)

MPC except for the definition of the initial point for
the state. Including in the formulation of the MPC subproblems information
obtained at run-time constitutes a correction mechanism (or feedback) that
prevents the controller internal representation of the state of the system from
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“drifting” away from the actual state. This characteristic allows online MPC to
be robust with respect to mild model errors or external disturbances.

Online-MPC has few limitations with respect to its offline counterpart. The most
important one regards the allowed time per iteration. In fact, the maximum
time that can be spent in solving P̂(j)

MPC is restricted by the size of the interval
of time between tIj and tIj+1 . This implies that there might be not enough
time to identify an optimal point for P̂(j)

MPC. Nevertheless, it is often safe to
assume that during each iteration at least one feasible point for the current
MPC subproblem is found.

Remark: When using online-MPC one can easily assume that the MPC
controller could run forever. This gives rise to a new concern: stability. To
give an informal definition of stability we can say that a system is stable if
its state remains within a bounded region at all time. Stability is important
to avoid malfunctioning in the controller or critical failures of the system due
“unreasonably” large values of the state (e.g. the temperature of the core of a
nuclear plant cannot be allowed to raise above a given threshold). One common
way to ensure the stability in MPC is to design the terminal costs/constraints
in such a way that the optimal solution of each MPC subproblem would always
drive the state closer to a certain desired region according to some measure of
distance (e.g. a Lyapunov Function).

2.5 Mixed-Integer Optimization

While MPC alleviates the complexity issue of Mixed-Integer Optimal Control, it
does not solve it all together. In fact, on the one hand, in MPC the quality of the
obtained control action increases with the length of the control horizon of the
subproblems, on the other hand, the computational cost of each MPC iteration
depends exponentially on the size of the considered subproblem. Consequently,
it is still important to be able to rely on efficient approaches to Mixed-Integer
Optimization. For this reason, this thesis presents also results in the field of
pure Mixed-Integer Optimization.

In the present and the next section, the optimal control nature of the problems
to be solved will be momentarily set aside in order to explain some basic concepts
regarding optimization and Mixed-Integer Optimization. These concepts will
be helpful for understanding of the work presented in this dissertation.
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Let us start by defining a general form for a mixed-integer optimization problem:

(x∗, y∗) = argmin
x,y

c(x, y)

s.t. g(x, y) ≤ 0
y ∈ Zny

(PMI)

where:

• c is either a linear function or a quadratic function.

• g is a continuously differentiable function.

• The constraints g(x, y) ≤ 0 imply the following box constraints on y:

ly ≤ y ≤ uy where ‖ly‖∞ , ‖uy‖∞ <∞

2.5.1 Nomenclature

Problems like P are generally referred to as Mixed-Integer Problems (MIPs).
Still, depending on the particular characteristics of the problem at hand, it is
useful to define a further categorization:

MILP: If c and g are linear, P is said to be Mixed-Integer Linear.

MIQP: If only g is linear, P is said to be Mixed-Integer Quadratic.

MINLP: If g is non-linear, P is said to be Mixed-Integer Non-Linear. 5

MICP: If c and g are convex, P is said to be Mixed-Integer Convex.

2.5.2 Feasibility and Optimality in Mixed-Integer Optimiza-
tion

In the formulation of problem P , two kinds of constraints are present: the explicit
constraints: g(x, y) ≤ 0, and the integer requirements y ∈ Zny . Consequently,
in the remainder of this thesis, given a couple (x, y), we will distinguish between
three concepts of feasibility:

5In case of a problem having a non-linear objective function, the problem can be brought
to adhere to the structure of P via an epigraph reformulation of its objective.
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Constraint-feasibility: (x̃, ỹ) is “constraint-feasible” for P if g(x̃, ỹ) ≤ 0.

Integer-feasibility: (x̃, ỹ) is “integer-feasible” for P if ỹ ∈ Zny

Feasibility: (x̃, ỹ) is “feasible” for P if it is simultaneously
constraint- and integer-feasible for P.

Moreover, we will define the feasible set of P as the set of all the couples (x, y)
such that: (x, y) is feasible for P. Further, with a slight abuse of terminology,
we will say that a discrete assignment ȳ is feasible for P if there exists x̄ such
that (x̄, ȳ) is feasible for P.

Finally, in optimization it is usual to distinguish between local and global
optima. However, in Mixed-Integer Optimization, only the concept of global
optimality has an unambiguous and universally accepted definition: a global
optimum (or globally optimal point) for P is a feasible point for P, (x∗, y∗),
such that:

c(x∗, y∗) ≤ c(x, y), ∀(x, y) feasible for P

The Cover Property: Consider a set of restrictions {P̂i} of P such that the
union of their feasible sets coincide with the feasible set of P. Collecting a
globally optimal point for each of the P̂’s and then taking the best among the
collected points we obtain a globally optimal point for P.

2.5.3 Relaxations and Restrictions

Denote with (x∗, y∗) a globally optimal point for P.

Relaxation: Any optimization problem P̃ that can be obtained from P by
expanding its feasible set is called a relaxation of P. If a relaxation of P, P̃,
has a global optimum in (x̃∗, ỹ∗) then:

c(x̃∗, ỹ∗) ≤ c(x∗, y∗) (2.7)

Restriction: Any optimization problem P̄ that can be obtained from P by
reducing its feasible set is called a restriction of P . If a restriction of P , P̄ , has
a global optimum in (x̄∗, ȳ∗) then:

c(x̄∗, ȳ∗) ≥ c(x∗, y∗) (2.8)

Moreover, if a problem P is infeasible then so are all its restrictions.
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Note: The notions of relaxation and restriction define a partial ordering in
the set of optimization problems:

Reflexivity: P is simultaneously a relaxation and a restriction of itself.

Anti-symmetry: If P1 is a relaxation of P2 then P2 is a restriction of P1, and vice versa.

Transitivity: If P1 is a relaxation of P2 and P2 is a relaxation of P3
then P1 is a relaxation of P3.

Notable Examples:

• The continuous relaxation of P can be obtained by dropping the integer
requirements: y ∈ Zny .

• A linearly-constrained relaxation of P can be obtained by substituting
the constraint g(x, y) ≤ 0 with a linear constraint: Lxx + Lyy + l ≤ 0,
where, for all possible couples (x, y), Lxx+ Lyy + l ≤ g(x, y). 6

• A discrete-domain restriction for P can be obtained by adding to its
formulation a number of constraints of the form : yk ∈ [ y′k, y′k].

2.6 Methods for Mixed-Integer Convex Optimiza-
tion

The demanding complexity level of Mixed-Integer Optimization calls for the
continuing development of more efficient algorithms. As a consequence, there
exists a high number of different solution approaches for it. Nevertheless, each
one of these approaches is actually just a specific implementation of one out of
few theoretical methodologies. This section presents the two main methodologies
for Mixed-Integer Convex Optimization to date: Branch&Bound and Outer
Approximation.

Despite the fact that in theory all MIPs are equally difficult to solve, in practical
terms, the characteristics of each subclass have a large impact on how rapidly
and cheaply a problem instance can be solved. In this regard, one important
class of MIPs is constituted by those problem whose constraint sets and objective
function are convex. Such characteristic entails two important properties:

6Often, if c(x, y) is linear, we will refer to the linearly-constrained relaxation of P with
the term “linear relaxation”.
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1. The continuous relaxation of a MICP is a continuous convex problem.

2. For any MICP P, substituting g(x, y) with any number of first-order
Taylor approximations for it computed around an arbitrary set of points:
{(x̄i, ȳi)}i∈I , leads to the definition of a relaxation of P.

Since linearly-constrained problems are easier to solve than non-linearly-
constrained ones, and convex problems are easier to solve than non-convex
ones, what the two properties above mean is that it is “easy” to compute lower
bounds for the optimal objective value of a MICP. Notably, the first property
is vital for the efficiency of Branch&Bound while the second is at the base of
Outer Approximation.

2.6.1 The Branch&Bound algorithm

The simplest way of solving a mixed-integer convex problem P consists in
collecting all the possible value assignments for the discrete variables in the
problem formulation, and solving all the continuous problems that can be
obtained by fixing the discrete variables of P to a single assignment. Then, the
best of the obtained solutions would be a globally optimal point for P . However,
such brute-force approach is enormously cumbersome for obvious reasons.

Unfortunately, it is not possible to tell a priori if a specific assignment would
generate a good, a bad or no solution at all. Therefore, a complete search on the
set of all the discrete assignments is unavoidable. Anyhow, the search can be
performed in a “informed” or “smart” way. In particular, it is possible to avoid
the explicit enumeration of all the assignments by grouping them in meaningful
subsets for which general bounds on the quality of the solutions obtainable from
each group can be deduced.

In this direction goes the Branch&Bound (B&B) algorithm. B&B was described
for the first time by Land and Doing in 1960 in the context of discrete
programming ([58]). However, the name “Branch and Bound” appears for
the first time in a paper by Little et. al. addressing the “Traveling Salesman
Problem” in 1963 ([61]). From the sixties onward, B&B has become the most
prominent method for the solution of many NP-hard problems.

The B&B algorithm explores the whole set of possible discrete assignments
for P but avoids explicit enumeration of entire portions of the set whenever
such portions are proven to contain only suboptimal or infeasible assignments.
More specifically, B&B searches for a globally optimal point for P exploring an
implicitly defined tree where the nodes represent optimization problems. The
root node of the tree represents the continuous relaxation of P, each non-root
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node of the tree is constructed from its parent by adding a domain restriction
on one of the discrete variables of P and the leaf nodes represent all the possible
problems that can be obtained from P by fixing the discrete variables to a
specific assignment. This structure helps B&B to limit the time spent exploring
useless portions of the assignment space.

During the search, B&B maintains a queue of “active” subproblems. The active
subproblems represent the portion of the assignment space still to explore. At
the beginning, the queue contains only the continuous relaxation of P (root).
Then, at each iteration, B&B removes one subproblem from the queue and,
depending on its feasibility and optimal objective value, decides whether or not
to “branch” on it to obtain a number of “smaller” new subproblems. Finally,
the obtained subproblems, if any, are inserted in the queue and a new iteration
starts.

In the most classical setting, the branching procedure applied to the subproblem
P̂ starts by selecting one of the discrete variables of P, yk, whose value in the
optimal solution of P̂ , ŷk, is not integer. Then, two copies of P̂ are produced
and to each of them a discrete-domain restriction is added: in one copy, the
value of yk is constrained to take value below the integer that is obtained by
rounding-down ŷk, while, in the other copy, the value of yk is constrained to
take value above the integer that is obtained by rounding-up ŷk. A simplified
pseudo-code for the standard branching procedure can be found in algorithm 1.

Algorithm 1: B&B: Branch
Input :A B&B subproblem P̂
Output :Children subproblems P̂1 and P̂2

Select a discrete variable di whose value d̂i at the optimal solution of P̂ is not
integer;

Create two children subproblems P̂1 and P̂2 by adding to the formulation of P̂
the constraints yk ≤ floor(ŷk) and yk ≥ ceil(ŷk), respectively;

While exploring the tree, B&B keeps in memory the best feasible point
encountered (incumbent solution). B&B stops whenever the queue gets empty
or a user-defined time limit is exceeded. If the algorithm terminates having
emptied the queue and, in the meanwhile, an incumbent solution was found,
then such solution is a globally-optimal point for P. Contrarily, if when the
queue gets empty no incumbent solution exists, then P is guaranteed to be
infeasible. Further, if B&B terminates because of the time limit, the incumbent
solution, if any, is a feasible point for P whose objective value can be guaranteed
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to lie within an estimable distance from the globally optimal objective value.

Denoting with Oobj.(P̂) and with Osol.(P̂), respectively, the optimal objective
value and the obtained optimal point for problem P̂, a pseudo-code for B&B
can be found in Algorithm 2.

Algorithm 2: Branch&Bound
Input :A Mixed-integer convex problem P, a time limit T̄
Output :A globally-optimal solution for P
Insert into Queue the continuous relaxation of P;
UpB :=∞ ;
while Queue is not empty and time ≤ T̄ do

Extract the first problem P̂ from Queue;
Solve P̂ until convergence or until proving Oobj.(P̂) ≥ UpB;
if P̂ is feasible and Oobj.(P̂) < UpB then

if P̂ is integer-feasible then
I := Osol.(P̂), UpB := Oobj.(P̂)

else
Children := Branch(P̂);
for P̂j ∈ Children do

Insert P̂j into Queue
end

end
end

end

In B&B some of the subproblems do not generate children. This happens if the
subproblem P̂ satisfies at least one of the following conditions:

• Infeasibility: P̂ is infeasible.

• Sub-optimality: The optimal objective value of P̂ is greater or equal
than the objective value of the incumbent solution.

• Integrality: The solution of P̂ is integer-feasible.

Such phenomenon is called pruning. Whenever a subproblem is pruned, the full
sub-tree of its descendants is removed from the search. Pruning is a critical
aspect for the efficiency of B&B as it reduces the search space while keeping in
it at least one globally optimal point.
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Figure 2.2: Behaviour of B&B on a simple problem P.
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In order to understand the logic behind pruning it is important to note that all
the descendants of a problem P̂ in the B&B tree are restrictions of it. Therefore,
their optimal objective value cannot be lower than the one of P̂. Moreover,
if P̂ is infeasible, so all its descendants are. As a consequence, if P̂ is found
to be suboptimal or infeasible, it is possible to extend this conclusion to all
its descendants, and accordingly, remove them from the search. Similarly,
regarding the third rule of pruning, the fact the solution found for P̂ is already
integer-feasible entails that no descendant of P̂ may lead to a better solution.

In practice, the efficiency of B&B depends heavily on the selection of index
k in Algorithm 1 and on the ordering of Queue in Algorithm 2. Nevertheless,
analyzing these aspects goes beyond the scope of this brief introduction. Thus,
for a more in depth discussion on B&B, we refer the interested reader to [45].

B&B has proven to be a very efficient algorithm for the solution of MILPs and
MIQPs, and it has established itself as the gold-standard in these contexts.
However, in the mixed-integer non-linear setting (MINLPs), B&B does not shine
for efficiency. In fact, in this setting, after each branching step, two expensive
non-linear optimizations have to be performed. Despite all, B&B constitutes
an important building stone for the majority of the mixed-integer non-linear
solvers, although rarely as a stand-alone approach.

2.6.2 The Outer Approximation Algorithm

If P is a convex MINLP, there exist algorithms generally more efficient than B&B.
The most prominent of these algorithms is called Outer Approximation (OA)
and it was introduced by Duran and Grossmann in 1986 [33]. OA is a multi-step
iterative procedure that generates an alternating sequence of integer-feasible and
constraint-feasible guesses for (x, y) which are guaranteed to converge together
to a globally optimal point for P ([39],[59],[45],[60]). After more than thirty
years, the algorithmic ideas of the original OA method are still at the core of
some of the most competitive MICP solution approaches. Supporting evidence
for that can be found on recent survey from Kronqvist et al. [56]. The survey
shows that, on the selected benchmark, the most robust and performant solvers
to date are those based on some form of outer approximation, as for example
SHOT ([57],[63]) and AOA ([52]).

Assume, without loss of generality7, that the objective of PMI is linear and
denote it with: CTx x + CTy y. OA starts by solving the continuous relaxation
of P. From the obtained solution, (x̃0, ỹ0), OA obtains an integer-feasible (but
normally constraint-infeasible) guess ȳ0 on the value of the discrete variables of
the MICP via a rounding step. Then, the following quantities are defined:
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• A lower bound on the optimal value for P:

V LB := −∞

• An upper bound on the optimal value for P:

V UB :=∞

• An initial set of linear constraints:

Lx,0 := ∂g
∂x (x̃0, ỹ0)

Ly,0 := ∂g
∂y (x̃0, ỹ0)

l0 := g(x̃0, ỹ0)− ∂g

∂x, y
g(x̃0, ỹ0)

[
x̃0
ỹ0

] (2.9)

Then, at each iteration k, OA attempts at solving the following NLP:

x̃k := argmin
x

CTx x+ CTy ȳk−1

s.t. g(x, ȳk−1) ≤ 0
x ∈ Rnx

(P1)

If the above problem is feasible, i.e. ȳk−1 ∈ Y , then (x̃k, ȳk−1) is a feasible
point for P yielding an upper bound on the optimal objective-value for P.
Consequently, in case:

V UB > CTx x̃k + CTy ȳk−1

the upper bound, V UB, and the incumbent solution, I, can be updated as
follows:

V UB := CTx x̃k + CTy ȳk−1
I := (x̃k, ȳk−1)

However, frequently, P1 is infeasible. In that case, x̃k is extracted from the
solution of an NLP of the following form:

(x̃k, s̃k) := argmin
x,s

wT s

s.t. g(x, ȳk−1) ≤ s
s ≥ 0
x ∈ Rnx , s ∈ Rng

(P2)

7Any MIP can be easily reformulated so to have a linear objective. For instance, using an
epigraph reformulation.
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where, s is a vector of “slack” variables and w is a vector of non-negative
weights. The idea behind P2 is to find a x̃k that, in some sense, minimizes the
constraint-infeasibility of (x̃k, ȳk−1).

Whether P1 resulted to be feasible or not, the constraint function g is linearized
via a first order Taylor expansion around (x̃k, ȳk−1) and the resulting linear
approximations are added to the current set of linear approximations as follows:

Lx,k :=
[

Lx,k−1
∂g

∂x
(x̃k, ȳk−1)

]
Ly,k :=

 Ly,k−1
∂g

∂y
(x̃k, ȳk−1)



lk :=

 lk−1

g(x̃k, ȳk−1)− ∂g

∂x, y
(x̃k, ȳk−1)

[
x̃k
ȳk−1

] 
(2.10)

Next, a new integer-feasible guess is found by solving the following MILP:

(x̄k, ȳk) := argmin
x,y

CTx x+ CTy y

s.t. Lx,kx+ Ly,ky + lk ≤ 0
x ∈ Rnx , y ∈ Zny

(P3)

Thanks to the convexity assumption (A-2), at each iteration k, the linear
function:

g(x̃k, ȳk−1) + ∂g

∂x, y
(x̃k, ȳk−1)

[
x− x̃k
y − ȳk−1

]
under-estimates g(x, y). Therefore, the feasible set defined from Lx,kx+Ly,ky+
lk ≤ 0 contains the feasible set defined from g(x, y) ≤ 0. Consequently, the
optimal value of P3 yields a lower bound on the optimal value of P . Then, V LB

can be updated as follows:

V LB := max{CTx x̄k + CTy ȳk, V
LB}

Now, if the following condition is met8:

V UB − V LB ≤ εabs or V UB − V LB

δ + |V UB|
≤ εrel : δ > 0

The algorithm stops as I is guaranteed to be a globally optimal point (up to
the required tolerance) for P. Otherwise, OA proceeds with the next iteration.

8According to the definition of the relative optimality gap used in Cplex ([90])
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Figure 2.3: Schematic Representation of OA
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2.7 Mixed-Integer Non-Convex Optimization

Mixed-integer problems that do not satisfy the convexity assumption pose a
largely greater challenge than the convex ones. This is due to the fact that not
being able to easily estimate the lowest objective value obtainable by selecting
a specific discrete assignment makes informed searches in the assignment space
of a problem very hard to achieve. Moreover, applying convex algorithms
to non-convex mixed-integer problems does not only entail the possibility of
missing the globally optimal solution, as in the case of continuous optimization,
but also the possibility of not finding any feasible point at all.

Generally, solution methods with guarantees of feasibility and global optimality
for mixed-integer non-convex problems are extremely computationally expensive.
For example, one such method can be obtained by using the algorithm named
Spatial Branch&Bound (SB&B). SB&B differs from B&B in the fact that it
branches on the domain of the continuous variables of the problem as well as the
discrete ones. This causes the search-tree of SB&B to grow exponentially many
times larger than the one of B&B, for a given problem size. Additionally, the
construction of even a single SB&B-subproblem may be quite cumbersome as it
requires the identification of a convex relaxation of the non-convex constraints
of the problem.

In conclusion, mixed-integer non-convex formulations are, in general, ill suited
for optimal control. Consequently, this dissertation will consider only mixed-
integer non-convex optimal control problems having a very specific structure.

2.8 Summary and Final Comments

In this chapter, the reader has been introduced to the concepts of Mixed-Integer
Optimal Control, Model Predictive Control and Mixed-Integer Optimization.
In the reminder of the present dissertation, these topics will often recur, and
familiarity with the discussed methodologies will be of help for the understanding
of the presented work.





Chapter 3

Mixed-Integer Convex
Optimization: Proximal-Outer
Approximation

In the last decades, several approaches for tackling Mixed-Integer Convex
Problems (MICPs) have been developed. Some of such approaches, usually
defined as exact methods, aim at finding a globally optimal solution for a given
MICP at the expense of a long execution time, while others, generally defined
as heuristics, aim at discovering suboptimal feasible points in the shortest time
possible. Among the various proposed paradigms, Outer Approximation (OA)
and Feasibility Pump (FP), respectively as exact method and as heuristic,
deserve a special mention for the number of relevant publications and successful
implementations related to them.

In this chapter we present an original exact method called Proximal Outer
Approximation (POA). POA blends the fundamental ideas behind FP into
the general OA scheme in order to attempt at yielding faster and more robust
convergence with respect to OA while retaining the good performances of FP
in terms of rapid retrieval of feasible solutions.

The remainder of this chapter is organized in six sections. The first section
discusses the considerations that led to the development of POA. In the second
section we introduce the class of problems that the proposed algorithm solves.
The third section provides the reader with a brief introduction to FP. In the
fourth section, our proposed algorithmic approach is described. Finally, in the
last two sections, the supporting computational results are shown and some

33
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conclusions drawn.

3.1 Motivation

The practical solvability of a MICP instance often depends, among other factors,
on how rapidly the used solution algorithm is capable of identifying feasible
points for it. For instance, OA derives its convergence from the construction and
the iterative refinement of a linear approximation of the non-linear constraint
set of the MICP to solve. The refinements are obtained by adding to the current
linear approximation new linearizations of the original constraint-set. Using
feasible points it is possible to obtain stronger linearizations ([54]), therefore,
better refinements and quicker convergence. Consequently, it is common in
practice to deploy heuristic methods to rapidly retrieve feasible points in the early
stages of MICPs optimizations ([37],[11],[24]). For example, in [9] the authors
propose to prepend to the OA iterations some iterations of the widely used
heuristics for MICPs named Feasibility Pump (FP) ([19],[37],[1]). Furthermore,
in this setting, it is also important to deploy heuristics that are capable of
rapidly retrieve close-to-optimal points for a given MICP ([79],[36]). In fact, a
close-to-optimal feasible point for a problem provides a tight upper bound on
the globally optimal objective-value of the problem and, in turn, such upper
bound can be used to speed-up the convergence. In this direction goes the
concept of objective-FP ([37],[1],[79]) from which the work to be presented in
this chapter takes some inspiration.

Differently from the algorithm presented in [9], our solution scheme follows
an integrated approach. The underlying idea is to incorporate some of the
fundamental concepts of FP into the general OA scheme. Specifically, the NLP
step of POA closely resembles the one of FP while its MILP step is an adaptive
trade-off between the more feasibility focused MILP step of FP and the more
optimality focused MILP step of OA. Such operation results into an optimization
scheme that breaks through the distinction between main scheme and supporting
heuristic yielding fast convergence properties while retaining good performances
in terms of rapid retrieval of feasible solutions. It is important to note that
the presented work does not stand isolated in the literature. For instance, in
[49] the concept of inner-approximation for separable MICPs is introduced in
order to ease the task of providing feasible integer guesses and, analogously,
the algorithm presented in [55] selects integer guesses close to the center of the
current linear outer approximation.
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3.2 Problem Definition

Consider problem PMI:

(x∗, y∗) = argmin
x,y

c(x, y)

s.t. g(x, y) ≤ 0
y ∈ Zny

(PMI)

and assume, possibly performing an epigraph reformulation, its objective to be
linear, i.e.:

c(x, y) := CTx x+ CTy y

Further, let us assume that PMI satisfies the following conditions:

(A-1) The constraints set g(x, y) ≤ 0 implies the box constraints: ly ≤ y ≤
uy where ‖ly‖∞ , ‖uy‖∞ <∞.

(A-2) The function g is continuously differentiable and jointly convex in x
and y.

(A-3) A constraint qualification, such to guarantee the satisfaction of the
first order KKT conditions, holds at the solution of every NLP
obtained from PMI by fixing the value of the variables y to any
discrete assignment within the box constraints.

3.3 Preliminaries: The Non-Linear Feasibility Pump

Similarly to OA, the non-linear FP generates an alternating sequence of integer-
feasible and constraint-feasible guesses for (x, y). Differently from OA, however,
the FP scheme guarantees that the two sequences will converge to a feasible
assignment for (x, y), disregarding optimality.

FP starts by computing (x̃0, ỹ0) as the solution of the continuous relaxation of
PMI. Next, an initial linear approximation for the non-linear constraints set g
is obtained as in (2.9). Then, at each iteration, a new integer-feasible guess for
(x, y) is generated by solving the following MILP:

(x̄k, ȳk) := argmin
x,y

‖y − ỹk−1‖1

s.t. Lx,kx+ Ly,ky + lk ≤ 0
x ∈ Rnx , y ∈ Zny

(P4)
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Next, a constraint-feasible guess for (x, y) is found via the solution of the
following NLP:

(x̃k, ỹk) := argmin
x,y

1
2 ‖y − ȳk‖

2
2

s.t. g(x, y) ≤ 0
x ∈ Rnx , y ∈ Rny

(P5)

If ȳk ∈ Y then ỹk = ȳk and the point (x̃k, ỹk) is feasible for PMI, therefore, the
algorithm stops. Otherwise, a new set of linear approximations, is obtained as
follows:

Lx,k+1 :=
[

Lx,k
∂g

∂x
(x̃k, ỹk)

]
Ly,k+1 :=

 Ly,k
∂g

∂y
(x̃k, ỹk)



lk+1 :=

 lk

g(x̃k, ỹk)− ∂g

∂x, y
(x̃k, ỹk)

[
x̃k
ỹk

] 
(3.1)

and a new iteration starts.

Note that P4 can be interpreted as an advanced rounding technique that
takes into account the current linear approximation of the constraint set of
PMI. Therefore, it is absolutely feasible to substitute the rounding step at the
start-up of OA with few iterations of FP as for example in [9].

P4 can also be interpreted as an operator that projects the current constraint-
feasible solution into the intersection between the domain of the discrete variables
and the feasible set defined by the current set of approximating linear constraints.
Similarly, P5 can be interpreted as projecting the current integer-feasible solution
into the feasible set of PMI. This has led some researchers to interpret FP as
an “alternating direction method” ([42],[30]).

FP has proven to be a very effective primal heuristic for MICPs but the feasible
points it finds are usually of limited quality in terms of optimality. This is due
to the fact that the original objective-function is considered exclusively during
the generation of the first discrete assignment.



PROXIMAL OUTER APPROXIMATION 37

Figure 3.1: Schematic Representation of Non-Linear Feasibility Pump

3.4 Proximal Outer Approximation

3.4.1 Structure of POA

Just like OA, POA starts by computing (x̃0, ỹ0) as the solution of the continuous
relaxation of PMI, and it obtains a guess ȳ0 by rounding ỹ0. Furthermore, POA
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defines the same initial set of linear approximations that OA defines:

Lx,0 := ∂g
∂x (x̃0, ỹ0)

Ly,0 := ∂g
∂y (x̃0, ỹ0)

l0 := g(x̃0, ỹ0)− ∂g

∂x, y
g(x̃0, ỹ0)

[
x̃0
ỹ0

] (3.2)

Then, the following bounds are set:

• A lower bound on the optimal value for PMI:

V LB := CTx x̃0 + CTy ỹ0

• An upper bound on the optimal value for PMI:

V UB :=∞

Next, a constraint feasible guess for (x, y) is obtained by solving the following
FP-like NLP:

(x̃k, ỹk) := argmin
x,y

1
2 ‖y − ȳk−1‖2

2

s.t. CTx x+ CTy y ≤ V UB − εabs

g(x, y) ≤ 0
x ∈ Rnx , y ∈ Rny

(P6)

where εabs it is the user provided absolute optimality tolerance1.

Now, we can distinguish two cases:

1. The optimal objective of P6 is greater than zero or, equivalently, ỹk 6= ȳk−1.
Then, ȳk−1 is infeasible or, in other words, there exists no point (x, ȳk−1)
simultaneously satisfying g(x, ȳk−1) ≤ 0 and CTx x̃+CTy ȳk−1 ≤ V UB−εabs.

1It is common practice, while solving MICPs, to define positive absolute and relative
optimality gap tolerances. Such quantities are used to stop the algorithm whenever the desired
solution accuracy is met. Moreover, setting the optimality gap tolerances to zero in a OA-like
algorithm might lead to numerical difficulties as, normally, the NLP solvers can guarantee
constraint satisfaction and optimality only up to a certain tolerance.
In POA, εabs is used in the MILP and NLP formulation to implement a strict inequality

on the objective-value. As a positive side effect, the algorithm is forced to ignore all the
feasible assignments that have no chance of improving the current best objective of at least
the defined absolute tolerance.
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2. The optimal objective of P6 is equal to zero or, equivalently, ỹk = ȳk−1.
Then, (x̃k, ỹk) is a feasible point for PMI yielding a better objective-value
than the one yielded by the incumbent solution.

In the second case, POA attempts to refine x̃k via the solution of problem P1,
just like OA (with the difference that, at this point, the feasibility of P1 is
guaranteed). Consequently, V UB and the incumbent solution is updated as
follows:

V UB := CTx x̃k + CTy ỹk
I := (x̃k, ỹk) (3.3)

Then, a new set of linearizations is defined as follows:

Lx,k :=
[

Lx,k−1
∂g

∂x
(x̃k, ỹk)

]
Ly,k :=

 Ly,k−1
∂g

∂y
(x̃k, ỹk)



lk :=

 lk−1

g(x̃k, ỹk)− ∂g

∂x, y
(x̃k, ỹk)

[
x̃k
ỹk

] 
(3.4)

Next, a new integer-feasible guess is generated via the solution of the following
MILP:

(x̄k, ȳk) := argmin
x,y

αk

No,k
(CTx x+ CTy y) + (1−αk)

Nd,k
‖y − ỹk‖1

s.t. CTx x+ CTy y ≤ V UB − εabs

Lx,kx+ Ly,ky + lk ≤ 0
x ∈ Rnx , y ∈ Zny

(P7)

where: No,k and Nd,k are normalization parameters and αk ∈ [0, 1] is used to
determine a convex combination of the two normalized objectives.

If α is set to one and P7 results feasible, (x̄k, ȳk) yields a lower bound for the
globally optimal objective-value of PMI. Therefore, in such case, the lower
bound V LB can be updated as follows:

V LB := CTx x̄k + CTy ȳk

Eventually, POA stops whenever P7 the following condition is met:

P7 results infeasible or V UB − V LB ≤ εabs or V UB − V LB

10−10 + |V UB|
≤ εrel
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In any case, if at the time of termination, if an incumbent solution is present,
such is an optimal point (up to the defined tolerances) for PMI, otherwise, PMI
is proven infeasible. A schematic representation of the POA algorithm can be
found in fig. 3.2.

Figure 3.2: Schematic Representation of POA
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It is important to note that the first constraint in P7 has two functions:

1. It prevents POA from discovering the same integer assignment twice (so
that the finite termination of the algorithm can be guaranteed).

2. Forces the MILP to ignore clearly suboptimal integer assignments also in
case αk < 1.

Moreover, the convexity assumption (A-1) guarantees that the feasible set
defined by Lx,kx+Ly,ky+ lk ≤ 0 strictly contains the one defined by g(x, y) ≤ 0.
Consequently, the possible infeasibility of P7 implies the nonexistence of any
assignment for (x, y) simultaneously respecting the non-linear constraints of
PMI and providing an objective-value lower than the current upper bound.

If, instead, P7 is feasible and αk = 1, then the optimal objective-value of P7 is
a lower bound on the optimal objective-value of PMI, and:

V LB := CTx x̄k + CTy ȳk (3.5)

3.4.2 POA compared to OA

Although the general structure of POA is very similar to the one of OA, the
two algorithms differ in two important aspects.

Discrete assignment guessing: OA selects, as guess, always the discrete
assignment providing the best objective-value in the MILP stage. Therefore,
when the available set of linearizations is a poor approximation of the original
non-linear set of constraints, OA tends to generate guesses which are far from
the non-linear feasible set and thus scarcely informative. Conversely, POA tries
to balance the relaxed objective-value of assignments with their closeness to the
non-linear feasible set. Consequently, POA generates guesses which are closer
to the non-linear feasible set and therefore more informative in the sense that
they generally provide tighter outer approximations.

Linear approximations generation: In case of infeasibility of a discrete
assignment guess y, OA solves problem P2 in order to find a continuous
assignment x such that (x, y) minimizes a certain infeasibility measure. The
result of this operation is a linearization point that lies outside of the feasible
set of PMI and whose location depends heavily on the weighting vector W .
As shown in [57], via a numerical experiment, generating linearizations for a
non-linear constraint set from outside its feasible set might lead to loose linear
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approximations. Consequently, OA might occasionally perform more iterations
than necessary and a bad scaling of the non-linear constraints set can severely
hinder the convergence of the algorithm. Differently, in the same circumstances,
POA finds a linearization point which lies right at the boundary of the feasible
set of PMI via the projection step P6. Moreover, at the linearization point found
by POA all components of g(x, y) ≤ 0 making y infeasible are active. As a
result, independently from the scaling of g(x, y), POA generates tighter linear
approximations with respect to OA.

3.4.3 Convergence and Exactness of POA

POA converges in finite time

The bounds defined on y are assumed finite. Therefore, to prove the finite
convergence of POA is enough to prove that, denoting with ȳk the discrete
assignment found by the MILP (P7) at the k-th iteration, namely MILPk, the
following condition holds:

ȳk+h 6= ȳk−1 : ∀h ∈ N

Since no constraint is ever removed from the linearization set, the above condition
is guaranteed to hold if the linear approximations generated during the k-th
iteration suffice to make any point (x, ȳk−1) : x ∈ Rnx infeasible for MILPk.

Now, let us distinguish two cases, the case where ȳk−1 is feasible, or ȳk−1 ∈ Y ,
and the case where it is not, or ȳk−1 /∈ Y . In both cases, we will prove that, for
all x such that CTx x+ CTy ȳk−1 < V UB, (x, ȳk−1) violates the first order Taylor
approximation of at least one of the components of g(x, y) ≤ 0 which are strictly
active at the solution of either P1 or P6.

Lemma 1: Let ȳk−1 ∈ Y and let x̃k be the solution of P1 then: for all x ∈ Rnx

with CTx x < CTx x̃k there exists i ∈ {1, . . . , ny} such that the constraint gi(x, y)
is strictly active at (x̃k, ȳk−1) and it holds:

∂gi
∂x

(x̃k, ȳk−1)(x− x̃k) > 0 (3.6)

Proof: From the KKT conditions applied to P1, we obtain:
∑
i

µi
∂gi
∂x

(x̃k, ȳk−1) = −CTx

µi ≥ 0 ∀i ∈ {1, . . . , ng}
(3.7)
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Therefore, for x ∈ Rnx such that CTx x < CTx x̃k, we have:∑
i

µi
∂gi
∂x

(x̃k, ȳk−1)(x− x̃k) = −CTx (x− x̃k) > 0

Then, the desired result follows directly from the non-negativity of the
Lagrangian multipliers. �

Lemma 2: Let ȳk−1 /∈ Y and let (x̃k, ỹk) be the solution of P6. Then, there
exists i ∈ {1, . . . , ny} such that the constraint gi(x, y) is strictly active at (x̃k, ỹk)
and, ∀x ∈ Rnx , holds:

∂gi
∂x

(x̃k, ỹk)(x− x̃k) + ∂gi
∂y

(x̃k, ỹk)(ȳk−1 − ỹk) > 0 (3.8)

Proof: Denoting as D(x, y) the function 1
2 ‖y − ȳk−1‖2

2, we get:
∂D

∂x
(x̃k, ỹk) = 0

∂D

∂y
(x̃k, ỹk) = (ỹk − ȳk−1)T

moreover, from the KKT conditions we obtain that:
−∂D
∂x

(x̃k, ỹk) =
∑
i

µi
∂gi
∂x

(x̃k, ỹk)

−∂D
∂y

(x̃k, ỹk) =
∑
i

µi
∂gi
∂y

(x̃k, ỹk)

µi ≥ 0 ∀i ∈ {1, . . . , ng}

(3.9)

Therefore, for any assignment (x, ȳk−1), with x ∈ Rnx , we have:∑
i

µi

(
∂gi
∂x

(x̃k, ỹk)(x− x̃k) + ∂gi
∂y

(x̃k, ỹk)(ȳk−1 − ỹk)
)

=

−
(
∂D

∂x
(x̃k, ỹk)(x− x̃k) + ∂D

∂y
(x̃k, ỹk)(ȳk−1 − ỹk)

)
=

(ỹk − ȳk−1)T (ỹk − ȳk−1) > 0

Finally, the desired result follows from the non-negativity of the Lagrangian
multipliers. �
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Now, let i be an index such that gi(x, y) ≤ 0 is strictly active at the solution
of either P1 or P6. Possibly renaming ȳk−1 to ỹk, we have: gi(x̃k, ỹk) = 0.
Therefore, taking the first order Taylor expansion of gi(x, y) ≤ 0 around (x̃k, ỹk),
we get the following linear constraint:

∂gi
∂x

(x̃k, ỹk)(x− x̃k) + ∂gi
∂y

(x̃k, ỹk)(y − ỹk) ≤ 0

The two lemmas above prove that for any point (x, ȳk−1) : x ∈ Rnx it exists
one index i∗ such that (x, ȳk−1) violates either the above linear constraint
or the upper-bound defined in (3.3). Therefore, thanks to (3.4), the discrete
assignment ȳk−1 is infeasible for every MILPk+h : h ∈ N. As a consequence,
ȳk−1 cannot be discovered twice and, thanks to the boundedness of the set Y ,
this guarantees the finite convergence of POA.

For the sake of completeness, we would like to refer the interested reader to
[39] and [54] where similar properties are proven in a similar context using a
different approach.

POA converges to an optimal point for the MICP

POA stops whenever MILPk, for some k, results infeasible, i.e., whenever:

@(x, y) ∈ Rnx × Zny s.t.
{

Lx,kx+ Ly,ky + lk ≤ 0
CTx x+ CTy y < V UB

Now, given the convexity of the non-linear constraints set g(x, y) ≤ 0, we have
that the linear constraints Lx,kx+Ly,ky+lk ≤ 0 form a relaxation of g(x, y) ≤ 0.
Then, it follows:

@(x, y) ∈ Rnx × Zny s.t.
{

g(x, y) ≤ 0
CTx x+ CTy y < V UB

Therefore:

• If V UB = ∞, there is no incumbent solution and the original MICP is
infeasible.

• If V UB is finite, the incumbent solution, whose objective-value is V UB, is
globally optimal for the original MICP.
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3.4.4 Setting the parameters

At each iteration, POA solves a MILP in order to find a new guess on the optimal
discrete assignment for PMI. The objective function in P7 is a combination of
the objective of PMI and a L1 distance term. To each term a different relative
importance is given depending on the value of the parameter αk. The idea
behind such structure is to look for new discrete assignments trading off between
their potential objective-value and their chances of constraint-feasibility.

In fact, whenever the current linear approximations set is a poor approximation
of the original non-linear constraints set, it is beneficial to focus more
on constraint-feasibility chances in order to rapidly retrieve good solutions.
Contrarily, if the generated linearizations form a good approximation of the
nonlinear feasible set, focusing on minimal objective-value may speed up the
convergence towards a globally optimal point.

In the next paragraphs, an attempt to put some basis for the development of a
general rule for the αk parameter will be presented.

Normalization Constants

First of all, we need to minimize the impact of the scaling of the objective of PMI
on its importance in P7. Therefore, we aim to find a couple of iteration dependent
constants, No,k and Nd,k, such that the normalized terms 1

No,k
(CTx x+CTy y) and

1
Nd,k
‖y − ỹk‖1 have, approximately, the same magnitude. A classical solution

to this problem consists in normalizing the two terms using their values at
the extremes of the pareto-optimal curve arising from varying the value of
αk ∈ [0, 1]. Clearly, such approach is impractical as it requires the solution of
two additional MILPs, one with αk = 1 and the other with αk = 0, at each
iteration. A cheaper approximate method consists in setting:

No,k = CTx (x̃k−1 − x̃0) + CTy (ỹk−1 − ỹ0)
Nd,k = ‖ỹ0 − ỹk−1‖1

(3.10)

This approximation performs well in practice and requires almost no additional
computational load.

Setting αk

It is not straightforward to a priori determine a general rule for the αk values.
In this section we will limit ourselves to present some of the expertise on the
matter gained during the development phase of the presented work.
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First of all, we need to define a measurable quantity to monitor in order to
assess the quality of the linear approximations set at each iteration. Let us, for
the moment, denote such quantity with qk and assume that qk tends to zero as
the inaccuracy of the linear constraint set (Lx,k, Ly,k, lk) is iteratively reduced.
Then, it is necessary to map qk into a suitable value of αk. In order to do so,
we exploited the following algorithm depending on two parameters (τ, λ):

Qk :=
{

0 if k = 0
(λ− 1)Qk−1 + λqk otherwise

α̃k := τ

τ +Qk

αk :=
{

1 if α̃k ≥ 0.99
α̃k otherwise

(αalg(τ, λ))

where Qk is some sort of integrated measurement or running average with λ as
damping parameter and τ is used as scaling factor for Qk in the soft thresholding
function 1

1+x . It is important to note that the hard thresholding in the last step
of αalg(τ, λ) serves the vital purpose of allowing POA to set αk to exactly one
when qk approaches zero. In fact, when αk = 1 problem P7 provides a lower
bound on the optimal objective-value for PMI and such lower bound can be
used to trigger the termination of the algorithm.

Coming back to the definition of qk, a number of metrics have been tested
out. For each of the metrics, several tests have been performed varying the
values of the two parameters in αalg(τ, λ). Each test consisted in solving a
number of problem instances taken from MICPLib [93] and storing the yielded
performances for each of the considered instances. At the end of the testing
phase the most promising approaches resulted to be the following two:

1. L1 averaged distance along the discrete directions between the solution of
P7 and its projection onto the non-linear feasible set:

qk = ||ȳk−1 − ỹk||1
ny

(3.11)

2. Average violation of the non-linear constraints at the solution of P7:

qk = ||max(g(x̄k−1, ȳk−1), 0)||1
ng

(3.12)

Consequently, in the next section only the two above metrics will be considered to
showcase the possible advantages in using the hereby presented POA algorithm.
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3.5 Numerical Evaluation

This section presents a comparison between the performances of four different
algorithms applied to a number of problem instances taken from MINLPLib
[93]. The four considered algorithms are:

1. OA: a basic Outer Approximation implementation as described in the
second chapter of this thesis.

2. FP + OA: the algorithm performs Feasibility Pump iterations until a first
feasible solution is found then it continues applying Outer Approximation
until finding a solution or exceeding the time limit.

3. POA1(1, 1/3): Proximal Outer Approximation where alpha is computed
according to algorithm αalg(τ, λ) with qk computed as in (3.11) and
(τ := 1, λ := 1/3)

4. POA2(100, 1/3): Proximal Outer Approximation where alpha is computed
according to algorithm αalg(τ, λ) with qk computed as in (3.12) and
(τ := 100, λ := 1/3)

The tests hereby presented were performed on a personal computer equipped
with a 3.7GHz octa-core processor (AMD Ryzen 7 2700X) and 16 Gb of RAM,
selecting some instances from MINLPLib ([93]) according to the following rules:

1. Mixed-integer/mixed-boolean variable set and non-linear constraints set
and/or objective.

2. Proven convex instances with known globally optimal objective (found by
at least 3 solvers).

3. Not relaxations of other problems in the set (to the authors knowledge).

4. Having a “.nl” representation (14 instances excluded for this reason).

For each problem instance and each algorithm a maximum of 300 seconds of
computation was allowed, the primal and the integer tolerances where set to
10−6 while the absolute and relative gap tolerances were set to 10−4. In order
to obtain a fair comparison all the algorithms share the same base code and
general sub-solver settings. All the tested algorithms use Cplex v12.9 ([90])
and Ipopt v3.12.11([83]). In the appendix at the end of this chapter a table
can be found showing the computational time and the number iterations each
algorithm needs to obtain the global optimal solution for each problem instance.
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A problem instance is considered successfully solved by an algorithm if the
algorithm runtime does not exceed 303 seconds (+1% of the imposed limit to
account for possible non-instantaneous terminations) and the obtained objective-
value falls within a relative or absolute gap of 10−3 from the known globally
optimal objective-value of the instance. In the table, all the unsuccessful runs
are denoted with the symbol − in place of the number of iterations and the
runtime.3

3.5.1 Analysis Via Shifted Geometric Mean

In this subsection, the global performances of the tested algorithms are
summarized and compared with the aid of two metrics: number of instances
solved and the shifted geometric mean of both the computational times and
the numbers of iterations. In the following, SGM(q, s) will indicate the shifted
geometric mean of the quantity q given the shift s:

SGM(q, s) :=
(
nq∏
i=1

(s+ qi)
)1/nq

− s : q ∈ Rnq , s ∈ [0,∞)

In the coming evaluation, we consider only those problem instances where all
the algorithms were successful. The shift used for each quantity was selected in
order to limit the impact of very easy problems (solved in less of one second
and in one or two iterations) in the final comparison. Table 3.1 summarizes the
collected data.

Metric OA FP + OA POA1(1,1/3) POA2(100,1/3)
# of solved instances 210 210 213 212
SGM(times, 0.5) 1.83 1.74 1.66 1.62

SGM(# iterations, 1.5) 6.95 7.46 6.21 5.80

Table 3.1: Absolute performances of the analyzed algorithms (full dataset).

According to the averages presented in Table 3.1, it is possible to compare each
algorithm against the classical OA. The result of such comparison can be found
in Table 3.2.

Evaluating the complexity of each instance using as reference the performances
of the algorithm that performed the best on them (according to the considered

3The appendix contains also the full timing and number of iterations data relative to
Bonmin. The data shows how, in terms of number of iterations, our test code is capable of
matching the performances of a state-of-the-art OA implementation. However, the data shows
also that Bonmin has a good margin of advantage over our test code in terms of execution
times. This is due to the fact our test code was built as a proof of concept and, while our
code was implemented in Python, Bonmin enjoys a fairly optimized C implementation.
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metric), Table 3.3 shows the comparison obtained considering only the most
time-demanding 25% of the instances while Table 3.4 considers only the most
iteration-intesive 25% of the instances.

Performances VS OA FP + OA POA1(1,1/3) POA2(100,1/3)
Complexity (time) -4.66 % -9.38 % -11.57 %

Complexity (# iterations) +7.48 % -10.65 % -16.49 %

Table 3.2: Performance comparison versus classical OA (full dataset).

Performances VS OA FP + OA POA1(1,1/3) POA2(100,1/3)
Complexity (time) -7.18 % -11.00 % -8.31 %

Complexity (# iterations) +10.81 % -13.64 % -16.24 %

Table 3.3: Performance comparison versus classical OA (time-demanding
instances).

Performances VS OA FP + OA POA1(1,1/3) POA2(100,1/3)
Complexity (time) -1.90 % -41.17 % -42.85 %

Complexity (# iterations) +2.69 % -46.35 % -48.55 %

Table 3.4: Performance comparison versus classical OA (iteration-intensive
instances).

On the one hand, Table 3.2 shows how, especially on time-demanding problems,
prepending an FP run to the OA iterations is likely to reduce the average time
needed to find the solution, explaining the popularity of such approach. On
the other hand, Table 3.4 shows that the advantages of FP tend to be nullified
over the more iteration-intensive problems. This is probably due to the fact
that, for those problems, the effort necessary to find the first feasible solution is
overshadowed by the large number of iterations required in order to close the
optimality gaps.

Regarding POA, we can see that both the tested versions maintain a good
performance edge over the classical algorithm in all analyzed scenarios, with
POA2(100,1/3) being more effective than POA1(1,1/3) in general but slightly
less effective on the more time-intensive instances. The most noteworthy finding
comes from Table 3.4. The table shows how the presented algorithm is capable
of providing very large computational savings in those problems where, due
to the high level of non-linearity in the constraint set, the construction of an
accurate enough linear relaxation requires a large number of linearization steps.
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3.5.2 Analysis Via Performance Profiles

This subsection offers a different approach on the analysis of the collected data.
The technique we will use is called Performance Profiles. A Performance Profiles
plot compares the performances of different solvers in terms of probability of
solving a given problem instance in within a certain amount of time. In order to
handle differences in the complexity of the considered instances, the time limits
for each instance are normalized by the minimum time for soulution obtained
on such instance among all the tested solvers. More specifically, let S denote
the set of solvers to compare and let P denote the set of considered problem
instances. Then, for all s ∈ S and p ∈ P define t(s, p) as the time needed by
solver s to solve problem p. Next, define:

t∗(p) := min
s∈S

t(s, p) and r(s, p) := t(s, p)
t∗(s)

where r(s, p) can be referred to as “ratio of solver s on problem p”. Finally, for
each solver, consider the following function:

πs(ρ) := |{p ∈ P s.t. r(s, p) ≤ ρ}|
|P |

: ρ ∈ [1,∞]

where |.| denotes the cardinality of a set. The function πs(.) is the “performance
profile” of solver s and plotting the performace profiles of all solvers one against
the other we obtain a Performance Profiles plot.

In our case, Figure 3.3 depicts the Performance Profile plot obtained by
considering OA, FP+OA and POA2(100, 1/3). The plot shows that OA is
in general the solver with the highest probability of being the fastest while POA
has a slightly lower mean ratio and it appears more robust in the sense that,
for instance, it has a better probability of solving a given instance within 150%
of the minimum time obtained for such instance.

Furthering the analysis, it is possible to see that the higher rate of victories
of OA is mainly established on the easier problems in the test set. In fact, if
we consider only the problems that required more than a fraction of second to
be solved, like shown in Figure 3.4, the “probability of victory” advantage of
OA tends to be nullified and even reversed while the “robustness” advantage of
POA becomes more pronounced. Moreover, in these conditions, the mean ratio
of OA is substantially higher than the one of POA.

In conclusion, if on the one hand, this second analysis shows that POA enjoys
more robust convergence properties with respect to OA, on the other hand,
it suggests that OA may be considered better suited for dealing with the less
challenging problems.
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Figure 3.3: Performance Profiles plot obtained considering all instances.

Figure 3.4: Performance Profiles plot obtained considering less trivial instances.

3.6 Summary and Final Comments

In this chapter we presented a new solution algorithm for convex mixed-integer
non-linear programming named Proximal Outer Approximation. The proposed
algorithm combines ideas and properties of Outer Approximation and Non-
Linear Feasibility Pump to construct an integrated iterative solution scheme.

The aim of this work was to create an Outer Approximation scheme with
improved generation of approximating linear constraints and better discrete
assignment candidates selection. The performed computational experiments
have shown the advantages of the new scheme over both the classical Outer
Approximation and Outer Approximation warm-started by Feasibility Pump
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especially on the more complex instances of the test set. Moreover, the
comparison between two versions of POA suggested that, through a careful
selection of parameters, an additional performance improvement is attainable.

In this chapter, we have found POA2(100,1/3) having the best average and
peak performances among all the analyzed algorithms. However, this does not
exclude the possibility that for different classes of problems different parameter
choices could happen to be more efficient.
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3.7 Appendix: Table of Results

Examples Bonmin OA OA + FP POA1 POA2
Id Name #It. Time #It. Time #It. Time #It. Time #It. Time
1 batch - - - - - - - - - -
2 batch0812 - - - - - - - - - -
3 batchdes - - - - - - - - - -
4 batchs101006m - - - - - - - - - -
5 batchs121208m - - - - - - - - - -
6 batchs151208m - - - - - - - - - -
7 batchs201210m - - - - - - - - - -
8 clay0203h 9 0.56 8 0.55 8 0.48 9 0.49 11 0.69
9 clay0203hfsg 8 0.49 6 0.39 7 0.38 6 0.34 6 0.35
10 clay0203m 9 0.35 8 0.33 9 0.35 11 0.5 10 0.51
11 clay0204h 3 0.55 3 0.35 1 0.13 6 0.52 4 0.41
12 clay0204hfsg 3 0.45 3 0.32 4 0.31 4 0.78 4 0.47
13 clay0204m 3 0.15 4 0.24 5 0.22 5 0.26 7 0.41
14 clay0205h 4 5.83 5 2.85 4 2.47 5 3.74 8 6.11
15 clay0205m 6 1.34 6 1.3 9 1.78 9 1.81 8 1.65
16 clay0303h 9 0.95 7 0.69 7 0.77 11 0.67 13 0.81
17 clay0303hfsg 6 0.44 5 0.46 6 0.42 7 0.45 7 0.50
18 clay0303m 10 0.5 8 0.38 13 0.5 9 0.43 11 0.57
19 clay0304h 12 2.32 15 2.84 11 2.03 14 1.97 17 2.12
20 clay0304hfsg 9 1.63 10 1.72 11 1.47 8 1.02 10 1.41
21 clay0304m 18 1.58 17 1.33 21 1.44 16 1.5 21 2.02
22 clay0305h 6 7.62 6 3.32 5 2.76 9 5.87 8 2.68
23 clay0305m 6 1.55 7 1.66 10 2.12 9 2.47 11 2.19
24 cvxnonsep_normcon20 413 9.58 1 0.02 1 0.03 1 0.02 1 0.02
25 cvxnonsep_normcon30 1088 58.21 727 61.95 70 1.49 186 15.24 3 0.08
26 cvxnonsep_normcon40 1876 120.45 - - - - - - 3 0.07
27 cvxnonsep_nsig20 309 6.56 266 8.73 266 8.65 65 2.32 66 2.13
28 cvxnonsep_nsig30 - - 1 0.03 1 0.05 1 0.03 1 0.04
29 cvxnonsep_nsig40 - - 690 43.27 693 43.69 686 109.77 93 3.33
30 cvxnonsep_pcon20 - - 56 1.91 59 2.24 30 0.87 26 0.76
31 cvxnonsep_pcon30 - - 142 7.55 158 7.23 77 2.9 65 2.19
32 cvxnonsep_pcon40 - - 317 21.5 292 19.82 167 8.43 160 6.44
33 cvxnonsep_psig20 531 11.12 1 0.02 1 0.02 1 0.02 1 0.02
34 cvxnonsep_psig30 704 40.28 630 31.6 600 31.1 177 11.48 152 5.66
35 cvxnonsep_psig40 - - - - - - - - - -
36 enpro48pb - - - - - - - - - -
37 enpro56pb - - - - - - - - - -
38 ex1223 3 0.06 3 0.06 3 0.07 4 0.12 3 0.07
39 ex1223a 1 0.04 1 0.03 1 0.02 1 0.02 1 0.02
40 ex1223b 3 0.05 4 0.1 4 0.09 6 0.16 3 0.10
41 ex4 2 0.11 3 0.14 3 0.14 3 0.18 5 0.30
42 fac1 3 0.07 - - - - 3 0.79 24 1.25
43 fac2 6 1.52 - - - - 5 0.3 49 1.60
44 flay02h 2 0.09 3 0.18 3 0.64 3 0.15 3 0.15
45 flay02m 2 0.06 3 0.56 2 0.57 4 0.15 5 0.21
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Examples Bonmin OA OA + FP POA1 POA2
Id Name #It. Time #It. Time #It. Time #It. Time #It. Time
46 flay03h 8 0.31 9 0.6 8 1.17 9 0.71 9 0.91
47 flay03m 8 0.19 9 0.4 9 0.36 9 1.21 9 1.17
48 flay04h 23 4.69 22 4.36 24 6.12 22 5.75 21 4.86
49 flay04m 20 2.01 21 1.88 22 2.15 25 2.42 24 2.34
50 flay05h - - 57 265.25 73 281.65 38 278.95 38 208.16
51 flay05m - - 40 32.01 36 35.8 38 45.93 37 40.42
52 fo7 3 5.39 3 9.9 5 13.88 4 10.54 3 9.22
53 fo7_2 2 3.08 2 2.36 3 2.57 2 2.26 2 2.70
54 fo7_ar2_1 2 2.91 3 4.71 4 3.08 4 3.87 3 4.70
55 fo7_ar25_1 5 5.57 6 10.17 6 10.06 6 9.07 6 10.62
56 fo7_ar3_1 3 5.1 4 7.92 4 5.52 4 10.27 4 10.08
57 fo7_ar4_1 2 3.05 3 4.14 5 4.48 3 4.87 3 5.04
58 fo7_ar5_1 1 1.8 2 2.12 1 0.81 2 2.32 2 2.27
59 fo8 2 7.09 3 17.1 4 11.08 2 10.26 2 10.18
60 fo8_ar2_1 2 12.68 4 41.04 4 13.51 4 26.72 4 38.24
61 fo8_ar25_1 3 15.37 4 26.92 7 36.77 4 28.16 4 35.07
62 fo8_ar3_1 1 1.99 2 3.29 4 3.22 2 2.9 3 4.43
63 fo8_ar4_1 1 4.21 2 3.8 3 3.01 2 4.18 2 4.24
64 fo8_ar5_1 1 4.18 2 8.74 4 8.04 3 9.52 3 9.37
65 fo9 - - 3 45.08 4 53.2 3 46.3 3 45.43
66 fo9_ar3_1 1 4.75 2 3.92 3 6.03 2 7.37 2 5.32
67 fo9_ar4_1 1 3.53 2 7.68 4 11.45 2 10.31 2 9.91
68 fo9_ar5_1 3 23.05 4 24.87 4 26.17 4 40.77 4 40.78
69 jit1 5 0.31 1 0.02 - - 1 0.02 1 0.02
70 m3 1 0.04 1 0.03 1 0.04 1 0.04 1 0.06
71 m6 2 0.19 2 0.11 4 0.14 2 0.19 2 0.13
72 m7 1 0.26 2 0.18 3 0.22 2 0.23 2 0.26
73 m7_ar2_1 1 0.35 2 0.54 3 0.62 2 0.62 2 0.53
74 m7_ar25_1 1 0.21 2 0.21 3 0.29 2 0.23 2 0.30
75 m7_ar3_1 1 0.52 2 0.58 4 0.37 2 0.63 2 0.60
76 m7_ar4_1 1 0.2 2 0.19 3 0.22 3 0.41 2 0.22
77 m7_ar5_1 1 0.15 2 0.29 4 0.35 2 0.61 2 0.33
78 no7_ar2_1 1 2.31 2 3.41 3 5.72 2 3.14 2 5.55
79 no7_ar25_1 2 6.3 4 16.59 5 21.21 3 10.35 4 17.64
80 no7_ar3_1 4 24.37 5 48.51 4 31.37 5 66.58 5 66.35
81 no7_ar4_1 4 15.81 6 65.98 6 38.25 6 72.78 6 73.61
82 no7_ar5_1 7 27.06 7 72.39 7 57.49 7 67.18 7 67.95
83 o7_2 - - 6 280.21 5 157.73 5 223.75 6 268.26
84 o7_ar2_1 1 10.17 2 12.3 6 15.21 2 13.02 2 14.92
85 o7_ar25_1 - - 5 139.07 6 90.03 5 125.5 5 208.92
86 o7_ar5_1 - - 5 247.14 7 238.31 5 291.85 5 289.30
87 portfol_buyin 7 0.09 6 0.11 6 0.1 5 0.12 5 0.13
88 portfol_card 4 0.16 5 0.11 6 0.12 6 0.16 5 0.13
89 ravempb - - - - - - - - - -
90 risk2bpb 1 0.15 2 0.29 2 0.2 2 0.41 2 0.44
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Examples Bonmin OA OA + FP POA1 POA2
Id Name #It. Time #It. Time #It. Time #It. Time #It. Time
91 rsyn0805h 1 0.11 2 0.17 3 0.18 3 0.34 2 0.21
92 rsyn0805m 2 0.2 2 0.2 4 0.31 3 0.25 3 0.33
93 rsyn0805m02h 5 0.54 4 0.75 4 0.53 3 0.67 3 0.53
94 rsyn0805m02m 4 1.08 5 6.19 6 1.74 6 2.56 5 1.63
95 rsyn0805m03h 3 0.55 4 1.13 3 0.8 3 0.98 3 0.88
96 rsyn0805m03m 2 1.35 3 1.43 4 1.96 4 1.99 3 1.64
97 rsyn0805m04h 2 0.53 3 1.45 3 1.54 2 1.3 2 1.39
98 rsyn0805m04m 2 1.72 3 1.62 4 1.75 4 2.28 4 2.70
99 rsyn0810h 1 0.11 2 0.16 2 0.18 3 0.32 2 0.18
100 rsyn0810m 2 0.17 2 0.23 3 0.33 3 0.31 3 0.28
101 rsyn0810m02h 3 0.43 3 2.48 3 0.7 4 2.56 4 2.66
102 rsyn0810m02m 4 1.2 4 1.6 5 1.42 4 1.23 4 1.64
103 rsyn0810m03h 3 0.78 3 1.28 4 1.2 3 1.37 4 1.48
104 rsyn0810m03m 3 2.02 4 2.74 5 4.72 4 2.71 4 3.05
105 rsyn0810m04h 3 0.9 3 1.3 4 1.68 4 1.69 3 1.55
106 rsyn0810m04m 4 2.24 4 2.35 3 1.68 5 2.78 4 2.41
107 rsyn0815h 1 0.14 2 0.28 3 0.24 3 0.41 2 0.28
108 rsyn0815m 2 0.21 2 0.23 4 0.36 3 0.33 3 0.42
109 rsyn0815m02h 3 0.44 4 0.94 3 0.74 3 0.86 2 0.63
110 rsyn0815m02m 5 1.26 6 1.78 3 0.79 3 0.92 3 0.93
111 rsyn0815m03h 5 1.12 5 2.2 4 1.36 4 1.98 3 1.64
112 rsyn0815m03m 5 2.38 6 6.7 5 3.28 5 3.97 4 3.47
113 rsyn0815m04h 3 1.04 4 2.47 3 1.7 3 2.06 2 1.71
114 rsyn0815m04m 4 2.91 5 5.05 4 3.59 4 3.22 4 2.96
115 rsyn0820h 3 0.23 3 0.38 3 0.33 5 0.44 5 0.43
116 rsyn0820m 2 0.19 2 0.22 3 0.27 2 0.25 2 0.28
117 rsyn0820m02h 3 0.46 3 0.87 3 0.88 6 1.24 6 1.31
118 rsyn0820m02m 3 0.93 4 1.52 4 1.34 4 1.51 4 1.95
119 rsyn0820m03h 2 0.69 3 1.49 4 2.79 4 1.64 3 1.74
120 rsyn0820m03m 3 2.76 4 3.33 5 3.71 4 3.28 4 3.44
121 rsyn0820m04h 4 1.68 4 3 4 2.95 3 2.39 4 2.45
122 rsyn0820m04m 3 2.83 4 7.3 5 7.53 4 6.33 4 5.90
123 rsyn0830h 4 0.3 4 0.46 4 0.48 5 0.82 4 0.48
124 rsyn0830m 4 0.3 5 0.46 5 0.67 5 0.53 5 0.59
125 rsyn0830m03h 2 0.7 3 2.06 4 3.49 3 2.15 3 2.42
126 rsyn0830m03m 4 1.89 4 3.38 5 6.2 4 3.65 4 4
127 rsyn0830m04h 3 1.44 3 2.95 4 3.29 3 3.03 3 3.19
128 rsyn0830m04m 4 3.76 5 13.77 5 10.37 5 23.54 5 17.70
129 rsyn0840h 2 0.21 3 0.38 4 0.43 3 0.45 3 0.48
130 rsyn0840m 2 0.23 3 0.34 4 0.6 3 0.44 3 0.55
131 rsyn0840m03m 4 1.94 5 4.57 4 2.38 5 4.63 5 4.86
132 rsyn0840m04h 2 1.42 3 3.9 3 5.65 3 4.15 4 4.91
133 rsyn0840m04m 4 3.81 5 17.03 4 7.43 5 10.07 5 10.36
134 smallinvDAXr1b010-011 43 2.88 38 2.7 37 2.59 18 1.18 18 1.30
135 smallinvDAXr1b020-022 44 6.25 46 3.42 42 2.63 15 1.31 32 2.74
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Examples Bonmin OA OA + FP POA1 POA2
Id Name #It. Time #It. Time #It. Time #It. Time #It. Time
136 smallinvDAXr1b050-055 67 6.98 70 3.45 62 3.5 27 1.69 29 2.05
137 smallinvDAXr1b100-110 92 9.16 88 3.78 95 4.3 37 2.05 26 1.21
138 smallinvDAXr1b150-165 103 9.26 101 4.64 119 5.26 23 1.24 28 1.29
139 smallinvDAXr1b200-220 111 24.56 - - 115 4.67 22 1.21 20 0.89
140 smallinvDAXr2b010-011 43 2.9 35 2.18 37 2.75 18 0.92 20 1.68
141 smallinvDAXr2b020-022 48 5.75 42 3.35 48 2.97 19 1.4 32 2.39
142 smallinvDAXr2b050-055 70 6.29 68 3.63 67 3.72 29 1.99 31 2.11
143 smallinvDAXr2b100-110 92 8.38 93 4.04 103 4.5 37 1.99 20 1.01
144 smallinvDAXr2b150-165 104 10.6 93 4.3 76 3.34 48 2.52 25 1.19
145 smallinvDAXr2b200-220 97 20.44 116 4.79 126 5.73 25 4.33 27 1.29
146 smallinvDAXr3b010-011 43 3.99 38 2.63 40 2.62 18 1.16 20 1.05
147 smallinvDAXr3b020-022 48 5.94 39 2.88 38 2.71 19 1.34 30 2.53
148 smallinvDAXr3b050-055 67 6.69 65 3.77 77 3.88 26 1.95 31 2.15
149 smallinvDAXr3b100-110 87 8.56 92 4.16 87 3.57 36 1.89 29 1.71
150 smallinvDAXr3b150-165 104 10.47 94 4.43 113 5.3 46 2.73 30 1.58
151 smallinvDAXr3b200-220 106 29.22 109 4.92 100 4.78 22 1.55 22 1.44
152 smallinvDAXr4b010-011 43 3.74 39 2.88 40 2.96 19 1.07 20 1.61
153 smallinvDAXr4b020-022 50 7.31 44 3.14 35 2.82 17 1.33 28 2.12
154 smallinvDAXr4b050-055 66 6.54 73 3.79 70 3.72 26 2.51 31 2.21
155 smallinvDAXr4b100-110 99 10.56 92 4.07 97 4.39 37 2.26 29 1.91
156 smallinvDAXr4b150-165 103 11.45 85 3.71 109 5.2 34 1.54 19 1.36
157 smallinvDAXr4b200-220 113 25.51 129 5.82 101 4.19 27 1.59 28 1.38
158 smallinvDAXr5b010-011 41 3.02 37 2.62 39 2.65 17 1.06 20 1.28
159 smallinvDAXr5b020-022 46 4.89 40 2.66 39 2.95 18 1.73 24 1.54
160 smallinvDAXr5b050-055 62 5.86 68 4.22 77 4.3 28 1.81 29 2.01
161 smallinvDAXr5b100-110 82 8.63 99 4.66 82 3.48 41 2.67 25 1.91
162 smallinvDAXr5b150-165 114 12.07 99 4.5 106 4.78 27 1.42 22 1.15
163 smallinvDAXr5b200-220 105 30.35 114 5.76 129 6.07 25 1.23 21 1.37
164 sssd08-04 6 0.51 7 0.65 8 0.51 8 0.54 8 0.66
165 sssd12-05 8 3.18 6 1.78 7 1.37 8 3.62 8 2.52
166 sssd15-04 9 1.73 7 2.01 7 1.35 7 1.23 8 1.63
167 sssd15-06 11 13.71 11 28.94 9 9.69 9 7.82 9 75.55
168 sssd15-08 15 19.71 11 205.1 8 100.55 7 83.58 - -
169 sssd16-07 16 27.77 13 142.49 10 45.75 10 36.64 9 50.72
170 sssd18-06 11 11.54 10 11.93 10 31.03 9 7.39 8 31.01
171 sssd20-04 10 4.42 9 5.14 9 2.08 8 1.61 8 1.73
172 sssd25-04 9 2.73 6 2.76 13 14.17 8 1.62 9 4.46
173 st_e14 3 0.05 3 0.09 3 0.07 4 0.22 3 0.12
174 syn05h 2 0.04 2 0.04 2 0.04 2 0.06 2 0.05
175 syn05hfsg 2 0.04 2 0.04 2 0.04 2 0.05 2 0.06
176 syn05m 2 0.03 2 0.05 2 0.04 2 0.05 2 0.05
177 syn05m02h 1 0.04 1 0.04 1 0.05 1 0.06 1 0.06
178 syn05m02hfsg 1 0.05 1 0.04 1 0.05 1 0.06 1 0.06
179 syn05m02m 1 0.17 2 0.06 2 0.06 2 0.08 2 0.08
180 syn05m03h 1 0.05 1 0.05 1 0.07 1 0.08 1 0.08
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Examples Bonmin OA OA + FP POA1 POA2
Id Name #It. Time #It. Time #It. Time #It. Time #It. Time
181 syn05m03hfsg 1 0.05 1 0.06 1 0.07 1 0.09 1 0.08
182 syn05m03m 1 0.06 2 0.08 3 0.09 2 0.1 2 0.10
183 syn05m04h 1 0.06 1 0.08 1 0.1 1 0.11 1 0.10
184 syn05m04m 1 0.06 2 0.11 2 0.1 2 0.14 2 0.15
185 syn10h 1 0.03 1 0.04 1 0.05 1 0.05 1 0.05
186 syn10hfsg 1 0.03 1 0.04 1 0.04 1 0.05 1 0.05
187 syn10m 2 0.04 2 0.05 2 0.04 2 0.07 2 0.06
188 syn10m02h 1 0.06 2 0.1 2 0.12 2 0.14 2 0.15
189 syn10m02hfsg 1 0.17 2 0.13 2 0.12 2 0.14 2 0.15
190 syn10m02m 2 0.07 2 0.11 2 0.11 2 0.16 2 0.17
191 syn10m03h 1 0.09 2 0.15 2 0.24 2 0.22 2 0.21
192 syn10m03m 1 0.06 2 0.16 2 0.21 2 0.21 2 0.19
193 syn10m04h 1 0.09 2 0.18 3 0.26 3 0.4 2 0.21
194 syn10m04m 1 0.08 2 0.23 2 0.21 2 0.28 2 0.33
195 syn15h 1 0.05 1 0.06 1 0.08 1 0.08 1 0.09
196 syn15hfsg 1 0.04 1 0.07 1 0.08 1 0.08 1 0.08
197 syn15m 2 0.05 2 0.07 2 0.08 2 0.1 2 0.10
198 syn15m02h 1 0.07 2 0.16 2 0.14 2 0.21 2 0.20
199 syn15m02m 1 0.06 2 0.33 3 0.19 3 0.42 2 0.36
200 syn15m03h 1 0.09 2 0.23 2 0.21 3 0.32 3 0.32
201 syn15m03m 2 0.11 2 0.21 3 0.24 3 0.95 2 0.84
202 syn15m04h 1 0.12 2 0.29 3 0.4 10 0.58 3 0.38
203 syn15m04m 2 0.13 3 0.47 3 0.43 4 0.71 3 0.54
204 syn20h 2 0.08 2 0.1 2 0.12 5 0.3 2 0.11
205 syn20hfsg 2 0.08 2 0.09 2 0.11 5 0.3 2 0.11
206 syn20m 2 0.06 2 0.07 2 0.1 2 0.12 2 0.13
207 syn20m02h 2 0.13 2 0.21 2 0.21 2 0.24 2 0.25
208 syn20m02m 2 0.09 3 0.71 3 0.19 3 0.68 3 0.69
209 syn20m03h 1 0.12 2 0.29 3 0.39 3 0.63 2 0.36
210 syn20m03m 2 0.14 3 0.36 3 0.33 3 0.45 3 0.50
211 syn20m04h 1 0.15 2 0.46 3 0.73 7 0.72 3 0.62
212 syn20m04m 2 0.16 3 0.55 3 0.65 3 0.78 3 0.73
213 syn30h 3 0.11 3 0.19 3 0.17 48 4.18 48 4.21
214 syn30m 3 0.2 4 0.19 4 0.44 4 0.25 4 0.25
215 syn30m02h 3 0.2 3 0.39 3 0.42 6 0.69 6 0.69
216 syn30m03h 3 0.29 3 0.63 9 1.45 6 1.05 5 1.11
217 syn30m04h 3 0.37 3 0.87 5 1.19 3 1.22 7 1.86
218 syn40h 4 0.18 6 0.44 4 0.29 9 0.69 9 0.73
219 syn40m03h 4 0.52 4 1.05 4 1.02 8 1.98 8 2.16
220 synthes1 3 0.1 3 0.04 3 0.04 3 0.06 3 0.06
221 synthes2 3 0.09 3 0.09 3 0.07 3 0.07 3 0.08
222 synthes3 6 0.12 6 0.17 6 0.17 7 0.22 8 0.25
223 tls2 7 0.18 8 0.26 11 0.24 8 0.19 8 0.19
224 tls4 - - 78 17.91 90 22.38 77 24.86 82 22.48
- SGM(time=0.5,iter.=1.5) 1.38 5.98 1.49 6.28 1.42 6.75 1.34 5.65 1.34 5.32





Chapter 4

Mixed-Integer Convex Model
Predictive Control: The
MIRT-OC Algorithm

Recall from Chapter 2 that, on the one hand, the quality of control actions
obtained via MPC increases with the length of the time interval considered
at each iteration. On the other hand, uncertainties on the system dynamics
and possible disturbances often require the control action to be computed in
a on-line and closed-loop fashion. This creates a conflict of goals which is
especially challenging in mixed-integer MPC due to the high computational
cost of mixed-integer programming. Nevertheless, the specific structure of MPC
might help alleviating this conflict. In fact, in MPC, the subproblem to solve at
a given iteration is very similar to the one solved in the previous iteration. This
allows for the development of strategies capable of reducing the computational
cost of each iteration by reusing the information generated during the last
iterations. In the continuous setting, such techniques are generally referred to
as real-time techniques for MPC and a large body of literature on the topic
exists ([32],[50],[44],[71]). However, to the author’s knowledge far less efforts
have been spent on the development of similar strategies in the mixed-integer
context ([48],[64]).

The current chapter presents the latest developments regarding the “Mixed-
Integer Real Time Optimal Control” (MIRT-OC) algorithm. MIRT-OC is
a technique for Convex Mixed-Integer MPC aimed at reducing the cost of
each MPC iteration by reusing the information generated during the past
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iterations. The idea behind MIRT-OC is to extend the concept of single-tree
optimization1, which has found good success in the context of mixed-integer
non-linear optimization, to mixed-integer MPC. In essence, MIRT-OC tackles
a whole mixed-integer non-linear MPC process as a unique linear/quadratic
B&B process where the operations needed to enforce the satisfaction of the
non-linear constraints and the transition between one MPC subproblem to the
next (MPC-shift) are streamlined directly in B&B.

This new version of MIRT-OC combines the results from two different sources:
[28] which introduced the first version of MIRT-OC and [64] where a strategy
similar to the one used by MIRT-OC was proposed for the solution of mixed-
integer linear-quadratic MPC. The result is an algorithm that can deal with
a large class of mixed-integer convex MPC problems as the first version of
MIRT-OC, while being robust to model mismatch like the algorithm presented
in [64]. Additionally, the algorithm hereby presented is capable of handling
general convex tail costs whereas its earlier version made use of more restrictive
assumptions. In the following sections, the functioning of MIRT-OC is presented
in detail and its performances are demonstrated with the help of a practical
case of study involving the control of a hybrid electric vehicle.

4.1 Problem Definition

Let us start from problem P ′′DMS:

(x∗, y∗, u∗, v∗) := argmin
x,y,u,v

N−1∑
k=0

sk(xk, yk, uk, vk)

s.t. x0 = x̄0

y0 = ȳ0
xk+1 = dk(xk, yk, uk, vk)
yk+1 = trk(xk, yk, uk, vk)
pk(xk, yk, uk, vk) ≤ 0
(yk, vk) ∈ Dy ×Dv ⊂ Zny+nv


N−1

k=0

and assume that:

A-1 The transition functions trk do not depend on the continuous states.
1A single-tree approach for mixed-integer optimization in a scheme where the optimal

solution is found via the exploration of a single search tree. This concept is used in opposition
to multi-tree approaches (e.g. OA) where, instead, a number of, possibly smaller, trees are
explored. More information on the topic can be found in [6].
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A-2 The discretized dynamic constraints, xk+1 = dk(xk, uk, vk), are
linear, i.e. dk(xk, uk, vk) := Akxk+Bk

[
uk

T vk
T
]T for some matrices

Ak and Bk.

A-3 The path-cost functions sk and the path-constraint functions pk are
convex and continuously differentiable.

A-4 The continuous controls are fully bounded, i.e. the path constraints
entail:

∀k : ∃uk, uk s.t. uk ≤ uk ≤ uk and ‖uk‖∞ , ‖uk‖∞ <∞

A-5 The domain of the discrete controls Dv can be expressed as the
intersection of Znv with a rectangular subset of Rnv :

Dv := {v ∈ Z s.t. v ≤ v ≤ v}

Then, defining wk :=
[
uk

T vk
T
]T and reformulating the discrete states yk as

continuous states (by enlarging the set of discrete controls, as shown in appendix
A), it is possible to obtain the following specialized problem formulation:

(x∗, w∗) := argmin
x,u,v

N−1∑
k=0

sk(xk, wk)

s.t. x0 = x̄0
Akxk +Bkwk = xk+1

pk(xk, wk) ≤ 0
wk ≤ wk ≤ wk
[wk]nu+nv

k=nv
∈ Znv


N−1

k=0

(PMIRT-OC)

Consequently, tackling the resulting control problem in an MPC fashion, we
can assume the MPC subproblems to have the following from:

min
x,w

j+h−1∑
k=j

sk(xk, wk) + fj+h(xj+h)

s.t. xj = x̄j
Akxk +Bkwk = xk+1

pk(xk, wk) ≤ 0
wk ≤ wk ≤ wk
[wk]nu+nv

k=nv
∈ Znv


j+h−1

k=j

(P(j)
NL)
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where h > 1 is the constant horizon-length of the subproblems.

Introducing a set of slack variables: {ηk}j+hk=j , we can rewrite the problem in
such a way that all the non-linearity occurs in the constraint set:

min
x,w,η

j+h∑
k=j

ηk

s.t. xj = x̄j
Akxk +Bkwk = xk+1

pk(xk, wk) ≤ 0
sk(xk, wk)− ηk ≤ 0
wk ≤ wk ≤ wk
[wk]nu+nv

k=nv
∈ Znv



j+h−1

k=j
fj+h(xj+h)− ηj+h ≤ 0

(P(j)
NL)

Clearly, each of the above problems can be readily solved as a stand-alone
problem using any off-the-shelves mixed-integer convex solver. However, given
the high degree of similarity between two subsequent subproblems, it is arguably
beneficial to reuse some of the information generated during the solution of one
subproblem in order to speed-up the solution process for the next.

Before diving into the procedures that MIRT-OC uses to exploit such similarity,
it is necessary to have a clearer picture of the functioning of the convex mixed-
integer programming algorithm named LP/NLP Branch&Bound.

4.2 LP/NLP Branch&Bound

LP/NLP Branch&Bound (LP/NLP-B&B) was introduced by Quesada and
Grossman in 1992 ([70]) as a variation of the OA algorithm where, instead of
performing a sequence MILP steps, one single more complex MILP was solved.
The following discussion on the structure of LP/NLP-B&B serves the purpose
of setting the bases for the presentation of MIRT-OC.

LP/NLP-B&B constitutes the basic building block for MIRT-OC, thus, it is
convenient to expose the behaviour of LP/NLP-B&B as the algorithm is applied
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to P(j)
NL. To this end, consider the following linear relaxation of P(j)

NL:

min
x,w,η

j+h∑
k=j

ηk

s.t. xj = x̄j

Fj+hxj+h − 1 ηj+h ≤ fj+h
Akxk +Bkwk = xk+1

Px,kxk + Pw,kwk ≤ pk
Sx,kxk + Sw,kwk − 1 ηk ≤ sk
wk ≤ wk ≤ wk
[wk]nu+nv

k=nv
∈ Znv



j+h−1

k=j

(P(j)
L )

where the nonlinear functions pk, sk and fk have been replaced by a set of
first-order Taylor approximations for them (1 denotes the unitary vector of
appropriate dimension). LP/NLP-B&B starts by defining P(j)

L using a single
linearization point so to obtain a rough relaxation of P(j)

NL. Then, the algorithm
begins solving the obtained relaxation using B&B. Every time a new integer-
feasible point for the current definition of P(j)

L is found, the B&B process is
paused and the point is tested against the non-linear constraints of the original
problem. If the point satisfies also the non-linear constraints it is marked as
the new incumbent solution and removed from the tree, otherwise, the point is
reinserted in the tree. Next, an OA-like NLP step is performed in order to obtain
a new set of suitable linearizations for the non-linear constraints of P(j)

NL. Finally,
P(j)

L is refined adding to its constraint set the obtained linearizations and the
B&B process is resumed. LP/NLP-B&B stops whenever the B&B-tree for the
current relaxation is fully explored or a user-defined time limit is exceeded. At
this point, the incumbent solution I, if any, is returned as a feasible point for
P(j)

NL. Additionally, if the algorithm terminates before hitting the time limit, I is
guaranteed to be an globally optimal point for P(j)

NL. A schematic representation
of LP/NLP-B&B can be found in Algorithm 32.

2The LP/NLP-B&B algorithm presented here is a slightly modified version of the LP/NLP
Branch&Bound algorithm. In the standard version of LP/NLP-B&B, the infeasible and sub-
optimal nodes are simply deleted. Contrarily, in the version presented here, such nodes are
stored in a separated container named: Inactive. This modification does not affect the general
structure of the algorithm nor has a significant impact on its performances, however, it is
necessary for the development of MIRT-OC.
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Algorithm 3: LP/NLP Branch&Bound

Input :Mixed-integer convex problem P(j)
NL, a time limit T

Output : If T large enough, a globally optimal point for P(j)
NL

Generate a rough linear-relaxation P(j)
L of P(j)

NL ;
Insert into Queue the continuous relaxation of P(j)

L ;
UpB :=∞ ;
while Queue is not empty and time ≤ T do

Extract the first problem P̂ from Queue;
Solve P̂ until convergence or until proving Oobj.(P̂) ≥ UpB;
if P̂ is feasible and Oobj.(P̂) < UpB then

if Osol.(P̂) is integer-feasible then
if Osol.(P̂) is feasible also for P(j)

NL then
I := Osol.(P̂), UpB := Oobj.(P̂);
Insert P̂ into Inactive;

else
Reinsert P̂ into Queue;

end
Obtain a suitable linearization of the non-linear constraints of
P(j)

NL via an OA-like NLP step;
Refine P(j)

L by adding to its constraint set the new linearizations;
else

Children := Branch(P̂);
for P̂n ∈ Children(P̂) do

Insert P̂n into Queue;
end

end
else

Insert P̂ into Inactive;
end

end
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Similarly to B&B, LP/NLP-B&B computes the optimal objective value of each
node in the B&B tree and uses those values to avoid exploring useless portions
of the tree. However, differently from B&B, the constraint set considered by
LP/NLP-B&B keeps increasing in size during the execution. Clearly, after
each constraints insertion, the already computed objective values are not valid
anymore. Nevertheless, LP/NLP-B&B can still use those values to safely prune
the B&B-tree because the optimal objective value computed for a node before
the constraint addition remains lower-bound for the optimal objective value of
the node after the constraint addition. This is due to the fact that a constraint
addition cannot improve the optimal objective value of an optimization problem.

LP/NLP-B&B is the prototypical OA-based single-tree (one only B&B-tree
is explored) approach, whereas the classical OA is a multi-tree approach. In
many circumstances, it appears that single-tree approaches have a performance
edge over their competitor algorithms. In fact, according to the recent surveys
by Kronqvist and al. ([56]), at the state of the art, the most performative
solvers for mixed-integer non-linear convex problems use a single-tree approach.
Therefore, it can be expected that selecting an LP/NLP-B&B-like approach
over an OA one in the context of mixed-integer MPC does not entail a loss in
terms of performance.

4.3 The Algorithmic Structure of MIRT-OC

As said, the driving idea behind MIRT-OC is to extend the concept of single-tree
non-linear mixed-integer optimization to non-linear mixed-integer MPC. The
present section consists of a high-level description of the procedures employed
by MIRT-OC to do so.

During the j-th iteration a LP/NLP-B&B process is run on P(j)
NL until either the

algorithm terminates or a given computation time limit is met. Assume that, at
the end of the iteration at least one feasible point (x′, w′) for P(j)

NL is known. At
this point, the control action w′j is sent to the plant and a measurement on the
state is taken. Denoting the measured state with x̃j , the initial value for the
state in P(j+1)

NL is defined as x̄j+1 := Aj x̃j +Bjw
′
j . After that, two subroutines

are called in order to transform part of the information collected during the
solution of P(j)

NL into information useful for speeding-up the solution process for
P(j+1)

NL and a new iteration begins.

The first of the two subroutines, “Relaxation-Shift”, transforms the linearly-
constrained relaxation built for P(j)

NL into an initial linearly-constrained relaxation
for P(j+1)

NL , namely: P(j+1)
L . The second subroutine, “Tree-Shift”, transforms
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the B&B-tree built during the solution of P(j)
NL into a partially explored tree for

P(j+1)
L . A concise representation of MIRT-OC can be found in Algorithm 4.

Algorithm 4: MIRT-OC
Input :Mixed-integer convex OCP POC,

A time per iteration limit T
Output :A control strategy for POC

Define P(0)
NL and generate a rough linear-relaxation P(0)

L for it;
Insert into Queue(0)

0 the continuous relaxation of P(0)
L ;

for j ∈ {0, · · · ,M} do (x′, w′)
P(j)

L
Queue(j)

Inactive(j)

:= LP/NLP-B&B(P(j)
NL,P

(j)
L ,Queue(j)

0 , T );

Send w′j to the plant and receive x̃j ;
Define P(j+1)

NL using x̄j+1 := Aj x̃j +Bjw
′
j ;

P(i+1)
L := Relaxation-Shift(P(j)

L , x(j)
j+1);

Queue(j+1)
0 := Tree-Shift(Queue(j),Inactive(j),P(j+1)

L , w
(j)
j );

end

4.3.1 Linearization-Shift

The first operation needed is the generation of an initial linearly-constrained
relaxation for P(j+1)

NL . Since most of the constraint sets of P(j)
NL and P(j+1)

NL
coincide, it is natural to consider propagating the linearizations generated
for the former to the latter. In fact, thanks to the structure of P(··· )

NL being
almost decoupled in time, all the constraints relative to the time-steps from the
(j + 1)-th to the (j + h− 1)-th can be propagated forward with no additional
computation.

However, before proceeding with the construction of the desired linear relaxation,
it is necessary to obtain a set of linearizations for the new non-linear constraints:

pj+h(xj+h, wj+h) ≤ 0
sj+h(xj+h, wj+h)− ηj+h ≤ 0
fj+h+1(xj+h+1)− ηj+h+1 ≤ 0

(4.1)



THE ALGORITHMIC STRUCTURE OF MIRT-OC 67

For such purpose, assume that the LP/NLP-B&B process for P(j)
NL has identified

L feasible primal points, namely: {(x(l), w(l))}Ll=1, and conjecture (possibly
incorrectly) that the point:

(x(l)
j+1, w

(l)
j+1, · · · , w

(l)
j+h−1, x

(l)
j+h, w

(l)
j+h, x̃

(l)
j+h+1)

where: x̃(l)
j+h+1 := Aj+hx

(l)
j+h +Bj+hw

(l)
j+h−1

is feasible for P(j+1)
NL . Next, consider linearizing the above constraints around

each of the obtained hypothetical feasible points. Then, ∀l ∈ {1, · · · , L}, we
obtain the following linearizations:

P̃
(l)
x,j+h := ∂pj+h

∂xj+h
(x(l)
j+h, w

(l)
j+h−1)

P̃
(l)
w,j+h := ∂pj+h

∂wj+h
(x(l)
j+h, w

(l)
j+h−1)

p̃
(l)
j+h := ∂pj+h

∂ ·
(x(l)
j+h, w

(l)
j+h−1)

[
x

(l)
j+h

w
(l)
j+h−1

]
− pj+h(x(l)

j+h, w
(l)
j+h−1)

S̃
(l)
x,j+h := ∂sj+h

∂xj+h
(x(l)
j+h, w

(l)
j+h−1)

S̃
(l)
w,j+h := ∂sj+h

∂wj+h
(x(l)
j+h, w

(l)
j+h−1)

s̃
(l)
j+h := ∂sj+h

∂ ·
(x(l)
j+h, w

(l)
j+h−1)

[
x

(l)
j+h

w
(l)
j+h−1

]
− sj+h(x(l)

j+h, w
(l)
j+h−1)

F̃
(l)
j+h+1 := ∂fj+h+1

∂ ·
(x̃(l)
j+h+1)

f̃
(l)
j+h+1 := ∂fj+h+1

∂ ·
(x̃(l)
j+h+1)x̃(l)

j+h+1 − fj+h+1(x̃(l)
j+h+1)

(4.2)

where:

∂g

∂ ·
:= “Jacobian of function g with respect all occuring variables”

∂g

∂y
:= “Jacobian of function g with respect to variable y”
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At this point, it is possible to construct a linearly-constrained relaxation for
P(j+1)

NL by manipulating the current linearization for P(j)
NL in the following

manner:

1. In the objective, subtract the term: ηj+h, and add the term: ηj+h+1.

2. In the constraint set, replace:

xj = x̄j

Ajxj +Bjwj = xj+1

wj ≤ wj ≤ wj
Px,jxj + Pw,jwj ≤ cj
Sx,jxj + Sw,jwj − 1 ηj ≤ sj
Mjwj ≤ mj

with:
xj+1 = x̄j+1

3. Finally, define:

(Px,j+h, Pw,j+h, pj+h) :=
([
P̃

(l)
x,j+h

]L
l=1

,
[
P̃

(l)
w,j+h

]L
l=1

,
[
p̃

(l)
j+h

]L
l=1

)
(Sx,j+h, Sw,j+h, sj+h) :=

([
S̃

(l)
x,j+h

]L
l=1

,
[
S̃

(l)
w,j+h

]L
l=1

,
[
s̃

(l)
j+h

]L
l=1

)
(Fj+h+1, fj+h+1) :=

([
F̃

(l)
j+h+1

]L
l=1

,
[
f̃

(l)
j+h+1

]L
l=1

)
and replace:

Fj+hxj+h − 1 ηj+h ≤ fj+h
with:

Aj+hxj+h +Bj+hwj+h = xj+h+1

wj+h ≤ wj+h ≤ wj+h
Px,j+hxj+h + Pw,j+hwj+h ≤ pj+h
Sx,j+hxj+h + Sw,j+hwj+h − 1 ηj+h ≤ sj+h
Fj+h+1xj+h+1 − 1 ηj+h+1 ≤ fj+h+1

4.3.2 Tree-Shift

First of all, it is worth to specify what a Tree-Shift actually implies. As
observable in Algorithm 3, LP/NLP-B&B simultaneously builds and explores
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a B&B-tree. However, the tree is never fully stored in memory as all the
information useful to the optimization is, instant by instant, stored into the
“frontier” nodes of the current B&B-tree3. A node belongs to the “frontier” if
it belongs to the Queue (i.e. the algorithm still has to branch on it) or to the
Inactive set (i.e. it was found infeasible or suboptimal). As a consequence, in
the following, the expression “all the nodes in the B&B-tree” actually refers to
the “frontier” nodes only.

Now, since the choice of applying to the plant the control w′j is irreversible, all
the nodes in the B&B-tree for P(j)

L where the variable wj is constrained to take
some value different form w′j can be safely deleted. After that, in order to obtain
a B&B-tree for P(j+1)

L , the remaining nodes have to be adapted to the new
problem formulation. From an implementation point of view, each B&B-node
contains all the information necessary to define the subproblem it represent
and some auxiliary information. In order to not to complicate the discourse
unnecessarily, assume that each node contains only the following information:

• The branching constraints that define the associated subproblem.

• A primal/dual guess for the associated subproblem (for hot-starting).

• A lower-bound on the optimal objective value of the associated subproblem.

Then, in order to adapt each node after the shift, it is sufficient to remove from
it the branching constraints relative to the j-th time step, to deduce a new
primal/dual guess (it does not need to be feasible) and to set the the lower-
bound to −∞. However, for the efficiency of LP/NLP-B&B, it is important
that each node is provided with the tightest objective lower bound possible.
One obvious way to obtain such bounds would be to re-solve all the transformed
B&B-nodes up to some optimality tolerance. Clearly, such approach would be
very computationally expensive. Thus, instead, it could be beneficial to find
approximate lower bounds using cheaper techniques. The next section explains
the procedure used by MIRT-OC to this end.

4.4 Obtaining Lower-Bounds for The Shifted Nodes

The present section discusses the theoretical devices that allow MIRT-OC to
compute new approximate objective lower-bounds for the all nodes in the shifted
B&B-tree at the cost of solving a small number of linear problems.

3In fact, as already proven in [28] and in [64], the union of the feasible sets of the
subproblems represented by the ’frontier“ nodes of a B&B-tree always contains the feasible
set of the original problem.
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4.4.1 Branch&Bound Sub-Problems

The theoretical results to be presented in this section will make use of the
specific structure of the B&B-subproblems induced by the formulation of P(j)

L .
Consequently, it is convenient to take a closer look at such structure.

The subproblem stored at each node in the B&B tree for P(j)
L reads as follows :

min
x,w,η

j+h∑
k=j

ηk

s.t. xj = x̄j
Akxk +Bkwk = xk+1

Px,kxk + Pw,kwk ≤ pk
Sx,kxk + Sw,kwk − 1 ηk ≤ sk
wk ≤ wk ≤ wk
Mkwk ≤ mk



j+h−1

k=j
Fj+hxj+h − 1 ηj+h ≤ fj+h

(P(j)
BB)

where the branching constraints, Mkwk ≤ mk, have replaced the discrete
requirements on the control variables present in P(j)

L .

Additionally, since P(j)
BB is a linear problem, its dual reads as follows:

max
α,β,π,

σ,µ,φ

−x̄Tj αj − wT max{β, 0} − wT min{β, 0}
−cTπ − sTσ −mTµ− fTj+hφ

s.t.  αk −ATk αk+1 + PTx,kπk + STx,kσk = 0
βk −BTk αk+1 + PTw,kπk + STw,kσk +MT

k µk = 0
1Tσk = 1; πk, σk, µk ≥ 0


j+h−1

k=j
αj+h + FTj+hφ = 0
1Tφ = 1; φ ≥ 0

(D(j)
BB)

D(j)
BB is important for two reasons:

1. The objective value of any feasible solution for D(j)
BB is a lower bound on

the optimal objective value of P(j)
BB (by weak duality).
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2. A feasible dual point for a B&B-subproblem is also a feasible dual point
for all the descendants of the subproblem.4

This two characteristics make of dual problems a powerful instrument for MIRT-
OC and in the remainder of this chapter it will be presumed that for each
subproblem in the B&B-tree a feasible dual point is available (even in case of
primal infeasibility). This assumption is not very restrictive as already most of
the B&B implementations to date employ dual algorithms (e.g. dual simplex) for
the solution of the B&B-subproblems. In fact, this practice has two advantages:
firstly, it allows for early detection of suboptimality, and secondly, it makes
possible to hot-start the solution process for a subproblem using the optimal
dual solution of its parent.

4.4.2 Computing a New Feasible Dual-Point

Given the availability of dual solutions for the nodes in the B&B-tree the task
of computing new objective lower-bounds after an MPC-shift can be naturally
carried out leveraging on the dual of the B&B-subproblems. From the last
iteration, for each of the nodes in the B&B-tree, we have a dual point:

d ′ :=
(
{α′k}

j+h
k=j , {β

′
k}
j+h
k=j , {π

′
k}
j+h−1
k=j , {µ′k}

j+h−1
k=j , {σ′k}

j+h−1
k=j , φ′

)
(4.3)

satisfiying the constraint set of D(j)
BB. After the shift, it is necessary to extend

d ′ with a set of multipliers for the new portion of the problem while ensuring
the feasibility of the resulting point with respect to the subproblem represented
by the shifted node. The strategy that MIRT-OC uses to do so consists in
first trivially adapting d ′, and then, for ensuring feasibility, summing to the
result a correction term. Clearly, the correction term has to be tailored to each
individual node. However, MIRT-OC obtains each term as a linear combination
of a small set of dual points that can be generated upfront. In this way, the
computational cost of obtaining the new lower-bounds does not significantly
depend on the size of the B&B-tree and essentially equals the cost of solving a
small number of linear optimization problems.

First, let us adapt d ′ by setting the missing multipliers (βj+h, πj+h, · · · ) to zero
and by dropping the obsolete ones (α′j , β′j , · · · ). The result is a point:

d ′′ :=
(
{α′′k}

j+h+1
k=j+1, {β

′′
k}

j+h
k=j+1, {π

′′
k}
j+h
k=j+1, {σ

′′
k}
j+h
k=j+1, {µ

′′
k}
j+h
k=j+1, φ

′′
)

(4.4)

4This is due to the fact that each non-root node is obtained from its parent via the
addition of a branching constraint whose dual multiplier can be assumed to be initially zero.
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for which it holds:[
α′′k −ATk α′′k+1 + PTx,kπ

′′
k + STx,kσ

′′
k = 0

β′′k −BTk α′′k+1 + PTw,kπ
′′
k + STw,kσ

′′
k = 0

]j+h−1

k=j+1
α′′j+h −ATj+hα′′j+h+1 + PTx,j+hπ

′′
j+h + STx,j+hσ

′′
j+h = −FTj+hφ′

β′′j+h −BTj+hα′′j+h+1 + PTw,j+hπ
′′
j+h + STw,j+hσ

′′
j+h = 0

α′′j+h+1 + FTj+h+1φ
′′ = 0

(4.5)

Now, d ′′ is not dual feasible for the the subproblem represented from the
shifted node because of the extra term: −FTj+h. Additionally, setting the newly
introduced dual variables to zero generally results in overly conservative lower
bounds. Therefore, we are looking for a correction term that can solve both
issues. With this in mind, assume Fj+h ∈ RNr ×Rnx and denote with F [r]

j+h the
r-th row of Fj+h. Then, for r ∈ {1, · · · , Nr}, consider the following problems:

min
x,w

ηj+h + ηj+h+1 − F [r]
j+hxj+h

s.t. xj+1 = x̄j+1 Akxk +Bkwk = xk+1

wk ≤ wk ≤ wk
Px,kxk + Pw,kwk ≤ pk


j+h

k=j+1
Sx,j+hxj+h + Sw,j+hwj+h − 1 ηj+h ≤ sj+h
Fj+h+1xj+h+1 − 1 ηj+h+1 ≤ fj+h+1

(P(j+1,r)
Corr. )

The duals of the P(j+1,r)
Corr. read as:

max
α,β,π,

σ,φ

−x̄Tj+1αj+1 − wT max{β, 0} − wT min{β, 0}
−cTπ − sTj+hσj+h − fTj+h+1φ

s.t.  αk −ATk αk+1 + PTx,kπk = 0
βk −BTk αk+1 + PTw,kπk = 0
πk ≥ 0


j+h−1

k=j+1

αj+h −ATj+hαj+h+1 + PTx,j+hπj+h + STx,j+hσj+h = F
[r]
j+h

T

βj+h −BTj+hαj+h+1 + PTw,j+hπj+h + STw,j+hσj+h = 0
1Tσj+h = 1; πj+h, σj+h ≥ 0
αj+h+1 + FTj+h+1φ = 0
1Tφ = 1; φ ≥ 0

(D(j+1,r)
Corr. )
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Denote the dual solution of each of the above problems as follows:{(
{α[r]

k }
j+h+1
k=j , {β[r]

k }
j+h
k=j , {π

[r]
k }

j+h
k=j , σ

[r]
j+h, φ

[r]
)}Nr

r=1
(4.6)

and extend it defining the following dummy multipliers:{
{σ[r]

k := 0}j+hk=j , {µ
[r]
k := 0}j+hk=j

}
As a result, we now have Nr points:

∆d [r] :=
(
{α[r]

k }
j+h+1
k=j , {β[r]

k }
j+h
k=j , {π

[r]
k }

j+h
k=j , {σ

[r]
k }

j+h
k=j , {µ

[r]
k }

j+h
k=j , φ

[r]
)

(4.7)

with the dimensionality of a dual point for a shifted node.

Next, with a slight abuse of notation, we can define the following linear
combination of the obtained dual points:

∆d(w) =
Nr∑
r=1

wr∆d [r] : w ∈ RNr (4.8)

Then, since for each node it holds: 1Tφ′ = 1 and φ′ ≥ 0, we have: αk(φ′)−ATk αk+1(φ′) + PTx,kπk(φ′) + STx,kσk(φ′) = 0
βk(φ′)−BTk αk+1(φ′) + PTw,kπk(φ′) + STw,kσk(φ′) = 0
1Tσk(φ′) = 1; πk(φ′), σk(φ′) ≥ 0


j+h−1

k=j+1
αj+h(φ′)−ATj+hαj+h+1(φ′) + PTx,j+hπj+h(φ′) + STx,j+hσj+h(φ′) = FTj+hφ

′

βj+h(φ′)−BTj+hαj+h+1(φ′) + PTw,j+hπj+h(φ′) + STw,j+hσj+h(φ′) = 0
1Tσj+h(φ′) = 1; πj+h(φ′), σj+h(φ′) ≥ 0
αj+h+1(φ′) + FTj+h+1φ(φ′) = 0
1Tφ(φ′) = 1; φ(φ′) ≥ 0

(4.9)

Finally, it is easy to see that the dual point:

d ′′′ := d ′′ + ∆d(φ′) (4.10)

is feasible for the problem represented by the shifted node.

4.4.3 Computing a New Lower-Bound

Denote the optimal objective value of a convex problem P with V(P) and with

¯
V(P) any lower bound for it. Using the dual point built in the last section, it is
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now possible to obtain an objective lower bound for the shifted node:

Oobj.(P(j+1)
BB ) := Oobj.(P(j)

BB) +Ocontraction +Oexpansion (4.11)

where:
Ocontraction := −ηj +

(
Aj x̄j +Bjw

′
j − x̄j+1

)T
α′j+1 (4.12)

derives from the removal of the initial constraints and from the imposition of
the new initial state, and where:

Oexpansion :=
([
Oobj.(P(j+1,1)

Corr. ) · · · Oobj.(P(j+1,Nr)
Corr. )

]
+ fTj+h

)
φ′ (4.13)

is due to the removal of the old tail cost and the addition of the new stage cost
and the new tail cost.

While the expression for Oexpansion can be obtained straightforwardly from the
objective function of the dual of the shifted node, the derivation of Ocontraction
is less direct and deserves some explanation. We refer the interested reader to
Appendix B at the end of this chapter for more information.

4.5 Numerical Validation

4.5.1 The Case of Study

The model used for the numerical evaluation of the performances of MIRT-OC is
a convex dynamical model of a Parallel Hybrid Electric Vehicle (PHEV). PHEVs
are vehicles whose power-train features one or more electric motors/generators
and where both the engines and the motors/generators are mechanically
connected to the wheels. Many possible ways of designing a PHEV power-
train exist, however only the most common of the topologies will be considered:
Figure 4.5.1.

Figure 4.1: Parallel Hybrid Electric Vehicle Topology

During normal operation, road vehicles are constantly aware of their
instantaneous speed and continuously receive a torque/power request from
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the driver. Assuming that the requested power profile is followed exactly, the
control optimization problem considered in this section consists in minimizing
the fuel consumption of the vehicle while ensuring the stability of the battery
state of charge around a predefined set-point Edes.5

In order to model the road characteristics together with the driver’s inputs over
time, a standard drive cycle was used. The considered drive cycle is a derivation
of the “EPA Urban Dynamometer Driving Schedule” called FTP-75 (or Federal
Test Procedure 75) and it is commonly used for emission certification and fuel
economy testing of light-duty vehicles in the United States (Fig. 4.2).

Figure 4.2: the Federal Test Procedure 75

Vehicle Body

The HEV considered in this case of study is a small consumer car. Given the
vehicle speed profile over time, vcycle(t), the longitudinal dynamics of the car
can be modeled as follows:

Freq(t) [N] := M·v̇cycle(t) + Ffriction ·χ+(vcycle(t))+
0.5·ρair ·Cdrag ·Afrontal ·(vcycle(t))2 (4.14)

where χ+(x) is a function whose value is one if x > 0 and zero otherwise, and
the following parameters were used:

Parameter M Ffriction ρair Cdrag Afrontal

Value 971.5 0.005 1.225 0.35 2
Units kg N kg/m3 - m2

From (4.14) and considering Rwheels := 0.285m, we can deduce the following
requirements on the vehicle power-train:{

Preq(t) [W] := Freq(t)·vcycle(t)
ωcycle(t) [rad/s] := vcycle(t)/Rwheels (4.15)

5In our case, Edes is the 65% of the nominal maximum charge of the battery.
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Finally, the accessory systems of the vehicle as the external lighting, the internal
air conditioning, the on-board electronics and the various control systems, are
assumed to continuously draw from the battery a power Paux. equal to 0.3kW.

Battery

The battery pack was modeled with the help of the simple open-circuit-voltage
based model that can be found in [51]. The battery size and output voltage were
obtained emulating the newest Toyota Yaris Hybrid. The result is a battery pack
with the capacity of approximately 1kWh operating at approximately 145 volts
and obtained connecting in parallel three stripes of 44 battery cells (connected
in series) each. Denoting with E the residual energy in the battery and with
PBAT the power being drawn from the battery (before losses), the equations
modelling the discharge dynamics and the output power for the considered
battery pack read as follows:

Ė [W] = PBAT

PoutBAT(PBAT,E) [W] := PBAT − R·C ·PBAT2

2·E− 132·U2
0 ·C

132·Ecell,max ≤ E [J] ≤ 132·Ecell,max

(4.16)

where E, PBAT, represent the residual stored energy and the internal power
of the battery, and C, R, U0 and Ecell,max represent, respectively, the energy
stored in the capacitance, the internal resistance, the open-circuit-voltage and
the capacity of a single battery cell.

Parameter C R U0 Ecell,max

Value 51782 0.01 3.3 27854
Units Farad Ω V J

Note that the resulting battery model is concave in PBAT.

Internal Combustion Engine

For the PHEV model a 50kW Internal Combustion Engine (ICE) was chosen.
The ICE transforms the chemical energy of the fuel into mechanical energy
and heat. The efficiency of this process depends mostly on the temperature of
the engine, its operating speed and the power output. In order to model such
efficiency profile a set of measurements taken from a real engine model [94]
was used. The dataset relative to the engine fuel consumption while running
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Figure 4.3: Engine:Fitted Model VS Original Data (Efficiency)

at approximately 80-90oC along with the maximum possible power output is
represented in figure 4.5.1.

The data were fitted using MATLAB curve fitting toolbox obtaining the following
fuel consumption map:

dFinICE(PICE, ωICE) [g] := max
l∈{1,··· ,5}

dFinICE
l (PICE, ωICE) (4.17)

where:
dFinICE

l (PICE, ωICE) := f(l,2,0)ω
2
n + f(l,0,2)P2

n + f(l,1,1)ωnPn+
f(l,1,0)ωn + f(l,0,1)Pn + f(l,0,0)

Pn := PICE

50e3 and ωn := ωICE

628.32
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and:

l f(l,2,0) f(l,0,2) f(l,1,1) f(l,1,0) f(l,0,1) f(l,0,0)

1 1.8771 2.0258 0.1057 -1.0349 1.2862 0.2166
2 1.0000 9.3144 -5.4182 0.0546 -1.2264 0.1662
3 0.0746 4.0246 -1.0000 0.0000 1.5890 0.0000
4 0.0000 0.0000 0.0000 0.6964 2.2740 -0.0483
5 0.0000 0.0000 0.0000 -2.5000 6.0000 -0.07

Similarly, the measurements on the maximum output power were fitted,
obtaining:

PICE
max(ωICE) [W] := 50e3·min (1.12ωn, 0.536ωn + 0.4668) (4.18)

Electric Motor/Generator

For our HEV model a 25kW Electric Motor/Generator (EMG) was chosen. The
EMG can either draw electric power from the battery pack to give power to
the wheels or draw power from the wheels to recharge the battery pack. The
procedure followed to model the efficiency and power limits of the EMG is
analogous to the one used to model the ICE.

The fitting resulted in the following power absorption map:

PinEMG(PEMG, ωEMG) [W] := max
l∈{1,2,3}

PinEMG
l (PEMG, ωEMG) (4.19)

where:

PinEMG
l (PEMG, ωEMG) := p(l,2,0)ω

2
n + p(l,0,2)P2

n + p(l,1,0)ωn + p(l,0,1)Pn

with:
Pn := PEMG

25e3 and ωn := ωEMG

1047.2
and:

l p(l,2,0) p(l,0,2) p(l,1,0) p(l,0,1)

1 0.6 3652.9 513.6 25000.0
2 -66725.0 6062.6 15247.5 25000.0
3 9860.0 2191.8 -9757.5 -29375.0
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Figure 4.4: Electric Motor: Fitted Model VS Original Data (Efficiency)

In this case, the resulting input-power map is non-convex but can still be used
in our convex model. In fact, the map depends convexely on the output power
and the speed of the motor/generator is at each instant is a constant deriving
from the driving cycle.

For the maximum-power curve we obtained the following function:

PEMG
max (ωEMG) [W] := min(25000, 94645ωn) (4.20)

Gearbox and Torque Coupling

For each gear in the gearbox a reference vehicle speed set-point was chosen
and a gear-ratio was computed so that the engine would operate at 2500rpm
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whenever the speed of the vehicle would equal the given set-point. The resulting
ratios can be found in the following table:

Gear 1st 2nd 3rd 4th 5th
Ref. Speed (km/h) 15 30 55 85 115

Ratio 17.72 8.86 4.83 3.13 2.31

The fixed EMG-to-wheels ratio, was designed to keep the EMG speed within
the maximal torque region in most city-like working conditions:

REMG := 5.3721 (i.e. 3000rpm at 60km/h)

Remark: The modeling of the mechanical drive-train hereby presented is the
result of a series of practical considerations. Thus, it is possible that a better
design could be found via optimization or more expert insight. Anyway, the
obtained model is functional enough to serve the purpose of showcasing the
properties of MIRT-OC.

Discrete Controls

In order to model the discrete behavior of the power-train, some integer variables
have to be introduced. Thus, consider the following binary controls:

Offk : Offk = 1 means that the engine is off and the gearbox is in neutral.
[Gi,k]5i=1 : Gi,k = 1 means that the engine is on and the i-th gear is in use.

The above controls are mutually exclusive. Therefore, the following “Special
Ordered Set” constraint needs to be added to the formulation:

Offk +
5∑
j=1

Gi,k = 1

Finally, in order to assign a fuel cost to the turning on and off of the engine an
auxiliary state pOff can be defined in such a way that:

pOffk+1 = Offk
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4.5.2 The resulting model

Once all the components have been modeled we can finally define the optimal
control problem of interest. In order to get a manageable formulation for
the subproblem to solve at each MPC iteration we will use DMS with a time
discretization resolution of one second. The result reads as follows:

min
j+h−1∑

k=j

(
dFk +KE2FPBAT

k

)
+ η

s.t. # Initial state[
Fj ,Ej , pOffj

]T =
[
F̄j , Ēj , ¯pOffj

]T

# Dynamic Constraints
Fk+1 = −dFk + Fk

Ek+1 = −PBAT
k + Ek

pOffk+1 = Offk

# Integer Requirements and SoS1 Constraints
Offk ∈ {0, 1}; [Gi,k ∈ {0, 1}]5i=1

Offk +
∑5

j=1 Gi,k = 1
# Battery and Electric Motor/Generator
Emin ≤ E ≤ Emax

PinEMG(PEMG
k ,REMGωcycle

k ) + Paux. ≤ PoutBAT(PBAT
k ,Ek)∣∣PEMG

k

∣∣ ≤ PEMG
max (REMGωcycle

k )
# Internal Combustion Engine∑5

j=1 Gj,kRGBX
j ωcycle

k ≤ ωICE
max

PICE ≤ PICE
max(

∑5
j=1 Gj,kRGBX

j ωcycle
k )

dFk ≥ dFinICE(PICE,
∑5

j=1 Gj,kω
cycle
k RGBX

j )+
Offk ·((1− pOffk)·fstart/2)

# Power Requirement
Preq

k ≤ PEMG
k + PICE

k



j+h−1

k=j

# Tail Cost
K tail(Ēj)(Edes − Ej+h)2 ≤ η

(P(j)
CoS)

where KE2F := 200g/kWh is a rough estimation of the the maximum efficiency
of the engine and:

K tail(Ēj) := 10 Emax − Ēj
(Emax − Emin) + (Emax − Ēj)

(4.21)
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is a time-varying parameter that influences the relative importance of the
stabilizing terminal cost over the stage costs and prevents the controller from
planning a waste of electric energy if the state of charge surpasses the desired
set-point.

4.5.3 Numerical Results

For this evaluation we considered two different algorithms:

1. Classical MI-MPC: Each of the MPC subproblems is solved as a stand-
alone problem with LP/NLP-B&B.

2. MIRT-OC: The full MIRT-OC algorithm, with both linearization and
tree shifting procedure.

Each of the algorithms have been tested using 5, 10 and 15 seconds of prediction
length (1 step per second) and performing 120 MPC iterations in three different
scenarios:

• No disturbance: The dynamic model of the system is exact and no
measurement disturbance is added.

• Medium disturbance: The actual dynamic of the system is:

xk+1 := (I +N (10%))(Akxk +Bkwk)

Moreover, the state measurements are disturbed as follows:

x̃k := xk +N (10%)(max(xk+1)−min(xk+1))

where N (x%) is a normally distributed variable with mean zero and
standard deviation: x

100 .

• High disturbance: The real dynamic of the system is:

xk+1 := (I +N (100%))(Akxk +Bkwk)

Moreover, the state measurements are disturbed as follows:

x̃k := xk +N (10%)(max(xk+1)−min(xk+1))

Samples of the resulting solutions (using 10 seconds of prediction) can be found
in Figure 4.5.
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For the sake of comparison, in all the tests performed B&B (as implemented in
OpenBB [87]) was run in its pure form, disabling any kind of heuristic. In fact,
heuristic methods can have very different outcomes even when applied to just
slightly different problem instances, hindering the assessment of the relative
performances among the schemes. During the testing phase, ipopt ([83]) was
used as NLP solver and CLP ([88]) as LP subsolver. The obtained results are
summarized in Table 4.1.

No disturbance:
Classical MIRT-OC Classical MIRT-OC Classical MIRT-OC

#LPs 1100 329 4044 1251 8471 2855
#NLPs 138 132 159 143 165 141

5s of prediction 10s of prediction 15s of prediction

Medium disturbance:
Classical MIRT-OC Classical MIRT-OC Classical MIRT-OC

#LPs 1111 341 3898 1441 7426 3357
#NLPs 137 133 161 146 159 141

5s of prediction 10s of prediction 15s of prediction

High disturbance:
Classical MIRT-OC Classical MIRT-OC Classical MIRT-OC

#LPs 1126 345 3390 1318 13861 5534
#NLPs 137 132 153 142 282 221

5s of prediction 10s of prediction 15s of prediction

Table 4.1: Comparison between MIRT-OC and the classical MI-MPC approach
for different scenarios/prediction lengths
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Figure 4.5: Sample solutions with 15 seconds of prediction
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4.6 Summary and Final Comments

In this chapter we have detailed the functioning of MIRT-OC: a novel approach
for mixed-integer non-linear MPC aimed at reducing the computational cost of
each MPC iteration by reusing the information generated during the previous
iterations.

The collected evidence shows how, in the analyzed scenarios, MIRT-OC is
capable of largely reducing the complexity of the MPC iterations regardless of
the presence of heavy model mismatch and disturbances. Such characteristics
might allow the user to define larger MPC subproblems while respecting the
predefined time-per-iteration limit. In turn, this can allow the MPC scheme to
produce higher quality control actions for the benefit of the performances of
the controlled system.

The performed tests resulted in a very promising picture on the performances
of MIRT-OC. However, the current version of the algorithm is based on a pure
B&B implementation. Consequently, the author has reason to believe that,
with additional testing/development, it is possible to develop/select heuristic
methods and preprocessing techniques capable of providing MIRT-OC with an
increased performance edge.
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4.7 Appendix A: Getting Rid Of Discrete States

Consider the following discrete-time mixed-integer linear dynamic constraints:

x0 = x̄0; y0 = ȳ0 xk+1 = Ax,xxk +Ax,yyk +Bxwk

yk+1 = Ay,yyk +Bxwk

yk ∈ [yk, yk] ∩ N


N

k=0
yN ∈ [yN , yN ] ∩ N

Now, adding an auxiliary control variable, ∆yk, it is easy to obtain the following
equivalent set of constraints:

x0 = x̄0; y0 = ȳ0
xk+1 = Ax,xxk +Ax,yyk +Bxwk

yk+1 = yk + ∆yk
∆yk = (Ay,y − I)yk +Bywk

yk ∈ [yk, yk] ∩ N


N

k=0
yN ∈ [yN , yN ] ∩ N

where I represents the identity matrix of appropriate dimensionality. Then,
since: yk+1, yk ∈ N, we have: yk+1 − yk ∈ N. Therefore, assuming ȳ0 ∈ N
(feasibility), the above constraints are equivalent to:

x0 = x̄0; y0 = ȳ0
xk+1 = Ax,xxk +Ax,yyk +Bxwk

yk+1 = yk + ∆yk
∆yk = (Ay,y − I)yk +Bywk

yk ∈ [yk, yk]; ∆yk ∈ N


N

k=0
yN ∈ [yN , yN ]

which describes a system with no discrete states but one additional set of
discrete controls ∆y.
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4.8 Appendix B: Derivation of Ocontraction

Comparing the dual objective each subproblem with the one of its transformed
version we can define:

Ocontraction := x̄j
Tα′j + wj

T max{β′j , 0}+ wj
T min{β′j , 0}

+cTj π′j + sTj σ
′
j +mT

j µ
′
j − x̄j+1

Tα′j+1

Now, denoting with δj := x̄j+1 −Aj x̄j −Bjw′j the model mismatch detected in
the j-th iteration, and substituting x̄j+1 with Aj x̄j +Bjw

′
j + δj , we obtain:

Ocontraction = x̄j
Tα′j + wj

T max{β′j , 0}+ wj
T min{β′j , 0}

+cTj π′j + sTj σ
′
j +mT

j µ
′
j

−x̄Tj ATj α′j+1 − w′j
T
BTj α

′
j+1 − δj

Tα′j+1

Furthermore, using the constraints defined in D(j)
BB to expand ATj α

′
j+1 and

BTj α
′
j+1, the above expression can be rewritten as follows:

Ocontraction = −
(
Px,j x̄j + Pw,ju

′
j − cj

)T
π′j

−
(
Sx,j x̄j + Sw,ju

′
j − sj

)T
σ′j

−
(
w′j − wj

)T max{β′j , 0} − (wj − wj)T min{β′j , 0}
−
(
Mjw

′
j −mj

)T
µ′j − δj

Tα′j+1

Then, assuming that the original node was solved up to optimality and using
the complementary slackness property of the dual solution, we obtain:

Ocontraction = −
(
Sx,j x̄j + Sw,ju

′
j − sj

)T
σ′j − δj

Tα′j+1

or equivalently:

Ocontraction = −
(
Sx,j x̄j + Sw,ju

′
j − sj − 1 η′j

)T
σ′j − η′j 1Tσ′j − δjTα′j+1

Now, recalling that the constraints in D(j)
BB impose: 1Tσ′j = 1, and applying

the complementary slackness property once again we can rewrite the above
expression as follows:

Ocontraction = −η′j − δjTα′j+1

Therefore, the term Ocontraction consists of the negative of the portion of the
objective relative to the first time step and of a term proportional to the model
mismatch.
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4.9 Appendix C: Extensions and Different Applica-
tions

Delayed MPC and Adaptive Prediction Lengths

Observing the linearization and node shifting procedure it is possible to
distinguish two distinct transformations being applied. In the first, the initial
portion of the problem (the first time step) is removed from the problem and
the effect of model mismatch is accounted for. In the second, the old tail cost
is replaced by a new portion of control problem. For simplicity, this two steps
have been presented as adding/removing one time step to/from the problem,
however, this is not necessary to their functioning. In fact, it is easy to extend
those operations to consider shifts of more than one step (delayed MPC) and
it is even possible have them consider different shifts. In the latter case, the
length of the prediction horizon can change from one MPC iteration to the
next. This property can be used to adapt the length of the prediction horizon
at run-time in order to find an adaptive compromise between the quality of the
control actions to find and the computational cost of each iteration.

Quadratic Stage Costs

In the case in which the defined stage costs contain convex quadratic terms it
might be beneficial to treat such terms directly in B&B without defining an
epigraph reformulation for them. For instance, assume that the objective of
P(j)

NL would be defined as follows:

j+h−1∑
k=j

(
xTkQkxk

2 + wTk Rkwk
2 + sk(xk, wk)

)
+ fj+h(xj+h) (4.22)

In such case, the strategy presented above for obtaining a feasible dual point for
each shifted node will still hold in essence, requiring only minor adjustments.
However, the objective lower bound for each of the shifted nodes would read as
follows:

Oobj.(P(j+1)
BB ) := Oobj.(P(j)

BB) +Ocontraction +Oexpansion

where:

Ocontraction := −ηj +
yTj Qjyj

2 +
vTj Rjvj

2 +
(
Ajx

(i−1)
j +Bjw

′
j − x

(j)
j+1

)T
α′j+1
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Oexpansion :=
([
Oobj.(P(j+1,1)

Corr. ) · · · Oobj.(P(j+1,Nr)
Corr. )

]
+ fTj+h

)
φ′

+ 1
2
∑Nr

r=1 φ
′
r

(
y

[r]
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T
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′
ry

[r]
j+h

)
− 1

2

(∑Nr
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′
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′
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[r]
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Discounted MPC

Assume the objective function of P(j)
NL to be:

j+h−1∑
k=j

ρk−jsk(xk, wk) + ρhfj+h(xj+h) : ρ ∈ (0, 1)

Then, the considered formulation would fall into the category of discounted
MPC. MIRT-OC can be easily extended in order to deal with this new problem
type. In fact, all it is necessary to do is to slightly modify the shifting strategy
for the dual point stored in each node so that it applies multiplicative factor
ρ−1 on the existing pre-shift dual multipliers, and to redefine the correction
problems as follows:

min
x,w

ρh−1(ηj+h − F [r]
j+hxj) + ρhηj+1

s.t. xj+1 = x̄j+1 Akxk +Bkwk = xk+1

wk ≤ wk ≤ wk
Px,kxk + Pw,kwk ≤ pk


j+h

k=j+1
Sx,j+hxj+h + Sw,j+hwj+h − 1 ηj+h ≤ sj+h
Fx,j+h+1xj+1 − ηj+h+1 ≤ fj+h+1

(P(j+1,r)
Corr. )

As a consequence, the computed objective lower bound for each of the shifted
nodes becomes:

Oobj.(P(j+1)
BB ) := ρ−1(Oobj.(P(j)

BB) +Ocontraction) +Oexpansion (4.23)

with Ocontraction and Oexpansion defined as in Section 4.4.2.
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4.10 Appendix D: Variants for the Shifting Proce-
dure

A More Costly Shifting Procedure (but Sometimes Advantageous)

In general, in the context of mixed-integer linear/quadratic programming, it is
arguably beneficial to solve the B&B subproblems using a dual optimization
algorithm (e.g. dual-simplex). If this is the case, given the fact that the dual
point obtained in 4.4.2 is feasible, running a few (e.g. 1 to 5) iterations of the
mentioned algorithm on each of the shifted nodes might largely improve the
quality of the obtained lower bounds. Such procedure clearly increases the cost
of the shifting step but may dramatically reduce the number of nodes to be
solved during the actual B&B step. A trade-off in this direction can be sought
on a case-by-case basis.

Using A-Priori Knowledge (Inherited Feature)

In some applications as, for example, Approximate Dynamic Programming
([13]), Optimal Control with Reinforcement Learning ([20]) and MPC with time
invariant tail cost, it is reasonable to assume the a-priori knowledge of a εj ∈ R
such that:

Fj+h(x) ≤ min
wj

Sj(x,wj) + Fj+1(Ajx+Bjwj) + εj

s.t. wk ≤ wk ≤ wk
Cj(x,wj) ≤ 0

Then, as proven in [28], it is possible to substitute the term Oexpansion in (4.11)
with εj , if appropriate, possibly helping the shifting procedure to obtain better
lower bounds.



Chapter 5

Tackling Non-Convexity:
Disjunctive Outer
Approximation for Optimal
Control

Although many interesting optimal control problems can be defined using convex
functions, there are cases in which deriving a convex model for a dynamical
system is not possible. This chapter focuses on extending the OA framework
from convex mixed-integer optimal control to a broader class of problems, namely
Mixed-Integer Semi-Convex Optimal Control Problems (MISC-OCPs). MISC-
OCPs are mixed-integer optimal control problems where the model dynamics
and the constraint/objective functions are required to be, respectively, linear
and convex solely with respect to the continuous variables of the problem.

In their base form, MISC-OCPs need to be solved using some sort non-convex
mixed-integer solver like B&B with added spatial-branching. However, doing so
implies a formidable challenge in terms of computational complexity. Luckily,
many MISC-OCPs can be reformulated to fall in a different class of problems
for which it is possible to devise more efficient solution algorithms. Let us
identify such class as the class of Disjunctive-Convex Optimal Control Problems
(DC-OCPs).

In order to introduce the concept of DC-OCP, consider a system that can
assume a number of different dynamic behaviors according to the selected

91
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control strategy. Further, suppose that each of the possible behaviors can be
modeled using a linear dynamical equation and a set of convex constraints.
For example, an istance of control-based disjunctive behavior can be found in
traditional and hybrid cars where the change of dynamic model is due to control
choices (e.g. the selection of gear ratio or driving mode).

In this chapter, after giving a formal definition of DC-OCP and presenting
a MISC-OCP to DC-OCP translation technique, an efficient solution scheme
for DC-OCPs will be presented. The proposed algorithm takes the name of
Disjunctive Outer Approximation for Optimal Control (or DOA-OC in short)
and consists of a simple strategy allowing us to extend the OA framework to
the newly introduced class of problems with minimal effort.

The idea of disjunctive programming it is not new in the literature and many
approaches to it exist ([46],[77],[82]). However, to the author knowledge, no
efforts have been spent in developing global solvers exploiting the particular
structure of disjunctive optimal control problems1.

5.1 Problem Definition

Let us start by defining a canonical form for a DC-OCP:

min
x̃,ũ,ṽ

∑nv

i=1

T∫
t=0

ṽi(t) si(x̃(t), ũ(t), t) dt

s.t. x̃(0) = x̄0∑nv

i=1 ṽi(t)
( ˙̃x(t)− di(x̃(t), ũ(t), t)

)
= 0∑nv

i=1 ṽi(t) ci(x̃(t), ũ(t), t) ≤ 0∑nv

i=1 ṽi(t) = 1; ṽ(t) ∈ {0, 1}nv

∣∣∣∣∣∣∣∣
t∈[0,T ]

(PDC-OCP)

where:

A-1 ∀i ∈ {1, · · · , nv}: the functions si and ci are convex and continuously-
differentiable, while the function di is linear.

Next, applying DMS2 to each of the models that can be obtained by setting
ṽi∗ ≡ 1 and {ṽi ≡ 0}i6=i∗ , for some i∗ ∈ {1, · · · , nv}, and reassembling together

1Although, a quite effective heuristic approach for disjunctive optimal control problems
can be found in [75].
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the results using the piece-wise constant controls vk we obtain:

min
x,u,v

∑nv

i=1
∑N
k=1 vk,isk,i(xk, uk)

s.t. x0 = x̄0
∑nv

i=1 vk,i (xk+1 −Ak,ixk −Bk,iuk) = 0∑nv

i=1 vk,i ck,i(xk, uk) ≤ 0∑nv

i=1 vk,i = 1; vk ∈ {0, 1}nv


N

k=1

(PDC)

which we will consider the canonical form of a discrete-time DC-OCP.

Finally, as usual, before applying Outer Approximation to a MINLP it is
necessary to reformulate the problem in such a way that all the non-linearity
occurs in the constraint set of the problem. In our case, this leads to the
following equivalent formulation for PDC:

min
x,u,v,η

∑N−1
k=1 ηk

s.t. x0 = x̄0
∑nv

i=1 vk,i (xk+1 −Ak,ixk −Bk,iuk) = 0∑nv

i=1 vk,i ck,i(xk, uk) ≤ 0∑nv

i=1 vk,i (sk,i(xk, uk)− ηk) ≤ 0∑nv

i=1 vk,i = 1; vk ∈ {0, 1}nv


N

k=1

(PDC)

Clearly, PDC, is a non-convex problem and thus cannot be solved using any
out-off-the-shelf OA-like algorithm. In particular, OA is not applicable to
non-convex problems for two reasons:

1. Applying OA to an arbitrary non-convex MINLP possibly results in non-
convex problems to be considered in the NLP step. This non-convexity
might provoke errors in the assessment of the feasibility of a discrete
assignment or the incorrect identification of the best objective value
obtainable by fixing the discrete variables of the MINLP to the assignment.
Therefore, in the first case, OA might not find an optimal point (or any
feasible point) for the MINLP, and, in the second case, OA might fail to
converge.

2. Obtaining linearizations of non-convex constraints via first-order Taylor
approximation does not necessarily result in relaxations. This might
provoke the MILP step of OA to wrongly rule out feasible points.

2Assuming also the use of a linearity-preserving numerical integration scheme (e.g. Explicit
Euler, 4th-Order Runge Kutta, etc.)
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In the case of a DC-OCP, the first concern does not apply. In fact, the
problems that can be obtained from PDC by fixing the discrete controls to a
particular assignment are convex. Thus, in this case, the NLP step of OA works
as intended. Contrarily, the second concern stands as the first-order Taylor
approximations of the constraints of PDC are not guaranteed to be relaxations
of the constraints they stemmed from. As a consequence, in order to extend the
OA framework to DC-OCPs, it is necessary to develop a strategy for obtaining
suitable linear relaxations for disjunctive-convex constraints. More specifically,
given the structure of OA, we are interested in building linearizations around
integer-feasible points.

5.1.1 FromMixed-Integer Semi-Convex to Disjunctive-Convex

As said in the introduction of this chapter, any Mixed-Integer Semi-Convex
Optimal Control Problem can be reformulated as a DC-OCP. This subsection
briefly presents one strategy to do so.

To this end, define the standard form for a MISC-OCP as follows3:

(x̃∗, ũ∗, ṽ∗) := argmin
x̃,ũ,ṽ

T∫
t=0

s(x̃(t), ũ(t), ṽ(t), t) dt

s.t. x̃(0) = x̄0
˙̃x(t) = d(x̃(t), ũ(t), ṽ(t), t)
p(x̃(t), ũ(t), ṽ(t), t) ≤ 0
ṽ(t) ∈ Dv ⊂ Znv

∣∣∣∣∣∣∣
t∈[0,T ]

(PMISC)

where the functions s and p are jointly convex in their entries: x(t) and u(t),
and the function d is linear in the same entries.

The first step to take is to substitute the integer controls ṽ with a set of
binary controls ṽ′. This can be done by enumerating all the elements of Dv as
follows: Dv := {ai}#Dv

i=1 , and by assigning a binary control ṽ′i to each element
ai. Accordingly, the following equivalent problem formulation for PMISC is

3As explained in the previous chapter, with an appropriate reformulation step, PMISC can
be used to represent also problems having a set of discrete states whose transition functions
do not depend on the continuous states.
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obtained:

(x̃∗, ũ∗, ṽ′∗) := argmin
x̃,ũ,ṽ′

T∫
t=0

s
(
x̃(t), ũ(t),

∑#Dv
i=1 ṽ′(t) ai, t

)
dt

s.t. x̃(0) = x̄0

˙̃x(t) = d
(
x̃(t), ũ(t),

∑#Dv
i=1 ṽ′(t) ai, t

)
p
(
x̃(t), ũ(t),

∑#Dv
i=1 ṽ′(t) ai, t

)
≤ 0∑#Dv

i=1 ṽ′i(t) = 1; ṽ′(t) ∈ {0, 1}#Dv

∣∣∣∣∣∣∣∣∣
t∈[0,T ]

Then considering the binary nature of the controls v′ and their mutual exclusivity
encoded in the constraint:

∑#Dv
i=1 ṽi(t) = 1, it is possible to perform an operation

called “outer convexification” ([75]) which consists in “factorizing out” the binary
controls as follows:

(x̃∗, ũ∗, ṽ′∗) := argmin
x̃,ũ,ṽ′

∑#Dv
i=1

T∫
t=0

ṽ′(t) s(x̃(t), ũ(t), ai, t) dt

s.t. x̃(0) = x̄0∑#Dv
i=1 ṽ′(t)

( ˙̃x(t)− d(x̃(t), ũ(t), ai, t)
)

= 0∑#Dv
i=1 ṽ′(t) p(x̃(t), ũ(t), ai, t) ≤ 0∑#Dv
i=1 ṽ′i(t) = 1; ṽ′(t) ∈ {0, 1}#Dv

∣∣∣∣∣∣∣
t∈[0,T ]

At this point, we have obtained an equivalent problem formulation for PMISC
which, after renaming the problem functions, is identical to PDC-OCP.

5.2 Preliminaries

This section focuses on the presentation of the two preexisting results that
made possible the development and the refinement of the work under discussion.
These results are the big-M relaxation method, around which the presented
work revolves, and the technique named Linear Bound-Propagation that has
given to the work a broader field of application and better performances.

5.2.1 Big-M reformulation

This subsection presents the big-M reformulation method, a well known strategy
to decouple the discrete and the continuous part of a disjunctive constraint.
The big-M method was introduced for the first time in by Nemhauser and
Wolsey in 1988 ([66]) in the context of Integer Optimization and still to date it
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plays an important role in disjunctive programming and in mixed-integer linear
optimization ([82]).

Consider the following mixed-binary constraint:

bφ(c) ≤ 0 (5.1)

where b ∈ {0, 1} and c ∈ R. Clearly, if b = 0, the above constraint is
automatically satisfied for any value of x, while, if b = 1, (5.1) is equivalent to:
φ(c) ≤ 0. A big-M relaxation of (5.1) is the following constraint:

φ(c) ≤M(1− b) (5.2)

where: ∀c ∈ R : M ≥ φ(c). It is easy to see that, if b = 0 the constraint (5.2)
is always satisfied, while, if b = 1, (5.2) reduces itself to φ(c) ≤ 0. Therefore,
on binary-feasible assignments for b the two above constraints are equivalent.
However, if we allow b to take value in the interval [0, 1], (5.2) results a relaxation
of (5.1).

Using big-M reformulations we could in theory reformulate PDC as a convex
problem. But unfortunately, this would require the computation of an upper
bound for the value for each of the problem functions, and given the convexity of
pk and sk this is not an easy problem. Moreover, such approach may require the
generation of a great number of potentially useless reformulations. Therefore,
at this stage, it is better to refrain from doing so.

5.2.2 Linear Bound-Propagation and Upper Bounds for Linear
Expressions

Bound-Propagation techniques attempt to deduce new tight bounds on the value
the variables of a problem using the already known bounds and the constraints
the variables are involved in. These techniques are quite widespread as they
are used in mixed integer programming ([69],[40],[4],[5]), as well as in machine
learning ([43],[78]) and other fields.

In this subsection the simplest form of bound propagation will be introduced:
Linear (Single-Constraint) Bound-Propagation (LBP). Consider an array of
bounded variables: x ≤ x ≤ x and a linear constraint:

∑nx

i=1 aixi ≤ b. Then,
for any î such that aî 6= 0, the following results stand:

if aî > 0 :


xî ≤

b−
∑
i6=î(max(ai, 0)xi + min(ai, 0)xi)

aî

xî ≥
b−

∑
i6=î(max(ai, 0)xi + min(ai, 0)xi)

aî

(5.3)
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if aî < 0 :


xî ≥

b−
∑
i6=î(max(ai, 0)xi + min(ai, 0)xi)

aî

xî ≤
b−

∑
i6=î(max(ai, 0)xi + min(ai, 0)xi)

aî

(5.4)

Moreover, it holds:
nx∑
i=1

aixi ≤
nx∑
i=1

(max(ai, 0)xi + min(ai, 0)xi) =: b′ (5.5)

so that
∑nx

i=1 aixi ≤ b′ is a tighter-but-equivalent formulation for
∑nx

i=1 aixi ≤ b.

The above results can be used to tighten the bounds for the variables and
the constraint of an optimization problem in such a way that each bound
update for a variable/constraint may trigger a cascade of updates for other
variables/constraints. Such procedure is what we call LBP. In general, LBP
does not terminate in a finite number of steps, but, properly sorting the list
of the next variables and constraints to check, it can be stopped whenever the
obtained bound updates become small enough to be considered irrelevant.

Now, LPB in combination with B&B provides two important advantages:

• Tightening the bounds of the variables and the constraints of the system
provokes the B&B subproblems to yield tighter lower-bounds.

• Using bound propagation on the discrete variables of the problem might
lead to the elimination of large part of the discrete assignment space.

Then, since the above advantages can help to drastically reduce the
computational complexity of B&B, LBP is a popular technique in the context of
mixed-integer programming and almost every MILP/MIQP solver implements
its own version of linear bound propagation ([90],[91]). As a consequence, in
the OA context, it is quite safe to assume the availability of a LBP procedure.

Finally, note that (5.5) gives an example of how easy it is to compute an
upper-bound for a linear expression starting from the bounds of the involved
variables. Such observation is crucial for the remainder of the current chapter.

5.3 Linear Relaxations for Disjunctive-Convex Con-
straints

As already mentioned, the missing block for successfully using OA on disjunctive-
convex problems is a method for obtaining linear relaxations for disjunctive-
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convex constraints around arbitrary integer-feasible points. This section will
focus on the presentation of a functional methodology in this direction.

Now, for simplicity, only one constraint of PDC (and therefore only one time-step)
will be considered. Denote the form of the constraint as:

nv∑
i=1

vk,iφk,i(xk, uk, ηk) ≤ 0 (5.6)

The methodology to be presented is better explained in two steps: in the
first step, only the “continuous parts”: {φk,i(xk, uk, ηk)}nv

i=1, of the above
constraint will be linearized around a generic point (x̂k, ûk, η̂k) obtaining a
bilinear relaxation. In the second step, the resulting bilinear relaxation will be
reformulated using the big-M method around a number of discrete assignments
v̂k.

5.3.1 Relaxing the Continuous Part of the Constraint

∀i ∈ {1, · · · , nv}, the convexity of φk,i entails:

φk,i(xk, uk, ηk) ≥ φk,i(x̂k, ûk, η̂k) + ∂φk,i
∂ ·

(x̂k, ûk, η̂k)

 xk − x̂k
uk − ûk
ηk − η̂k

 (5.7)

for any given point: (x̂k, ûk, η̂k). Now, thanks to the binary nature of the vk,i
it holds:
nv∑
i=1

vk,iφk,i(xk, uk, ηk) ≥
nv∑
i=1

vk,i

(
φk,i(x̂k, ûk, η̂k) + ∂φk,i

∂ ·
(x̂k, ûk, η̂k)

[
xk − x̂k

uk − ûk

ηk − η̂k

])

Therefore, the constraint:

nv∑
i=1

vk,i

φk,i(x̂k, ûk, η̂k) + ∂φk,i
∂ ·

(x̂k, ûk, η̂k)

 xk − x̂k
uk − ûk
ηk − η̂k

 ≤ 0 (5.8)

is a bilinear relaxation of (5.6).

5.3.2 Relaxing the Discrete Part of the Constraint

Before diving in the explaination of the this second step, let us postulate the
knowledge of upper and lower bounds for xk and uk together with a lower
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bound for the slack variable ηk. In the later sections, such assumption will be
discussed in more detail.

The next step, is to obtain a linear relaxation of (5.8), and therefore of (5.6),
around any suitable binary assignment v̂k,i. To this end, consider the following
definition:

∆(v̂k, vk) :=
nv∑
i=1

vk,i − 2v̂k,ivk,i + v̂k,i (5.9)

and observe that the value of ∆(v̂k, vk) is zero if and only if vk = v̂k and greater
than one otherwise. Now, denote with v̂(j)

k the assignment where v̂(j)
k,j = 1 and

v̂
(j)
k,i = 0, ∀i 6= j. Then, assuming the knowledge of a suitable set of parameters
{M (j)}nv

j=1, it is possible to use the big-M reformulation technique on (5.8) to
obtain the following set of constraints:φk,j(x̂k, ûk, η̂k) + ∂φk,j

∂ ·
(x̂k, ûk, η̂k)

 xk − x̂k
uk − ûk
ηk − η̂k

 ≤M (j)∆(v̂(j)
k , vk)


nv

j=1
(5.10)

where, each of the above constraints is a linear relaxation of (5.6) around a
point: (x̂k, ûk, v̂(j)

k , η̂k).

Now, as shown in (5.5), thanks to the linearity of the continuous parts of
(5.8) the computation of the parameters M (j) is trivial. However, it is not
necessary to use all of the above constraints to ensure the convergence of the
OA scheme to be built. In fact, the convergence can be obtained by just using
the assignment v̂(j)

k that matches the current discrete guess in OA. Nevertheless,
it might be beneficial to add more than one linearization and the selection
of which linearizations to consider is matter of compromise. In general, a
good rule of thub is to generate linearizations only for those constraints where:
φk,j(x̂k, ûk, η̂k) > 0.

5.4 Disjunctive Outer Approximation for Optimal
Control

Now that a strategy to obtain suitable linearizations for disjunctive-convex
constraints is in place, it is possible to build an OA-like scheme capable of
efficiently solving PDC. Denote such scheme with DOA-OC (Disjunctive Outer
Approximation). The current section is subdivided in two parts: in the first
part, the structure of DOA-OC is discussed, and the second part contains few
comments on the convergence properties of the proposed algorithm.
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5.4.1 The Algorithmic Structure

For the sake of clarity, the algorithm is hereby presented as consisting of three
steps. The first two steps can be considered pre-processing routines as they
serve the purpose of collecting data to be used in the third step, where the
actual optimization takes place.

Before diving into the functioning of DOA-OC, it is necessary to make two
additional assumptions on the structure of PDC:

A-2 The continuous controls are fully bounded, i.e. the path constraints
entail:

∀k : ∃uk, uk s.t. uk ≤ uk ≤ uk and ‖uk‖∞ , ‖uk‖∞ <∞

A-3 A lower bound for the value of each sk,i(xk, uk) on the feasible space
of PDC is a priori known.

However, these assumptions are not very restrictive as, in most realistic scenarios,
the control action is naturally bounded by the physical limits of the actuators
(e.g. the maximum torque of an electric motor), and sk,i(xk, uk) is convex.

The remainder of this section presents DOA-OC assuming some degree of
familiarity of the reader with the classical OA approach. However, for ease of
understanding, a schematic representation of DOA-OC can be found in Fig. 5.1.

Step 1: big-M relaxation for the dynamic constraints

DOA-OC starts by defining a complete set of big-M reformulations for the
dynamic constraints of PDC following a chronological order4: in the first dynamic
equation (which is disjunctive-linear by construction) the state is fixed by the
initial-state constraint. Thus, it is immediately possible to apply the big-M
method to obtain a linear constraint. Next, a LPB step can be run on each of
the continuous parts of the fist dynamic constraints to obtain a set of bounds:
{(x1,i, x1,i)}nv

i=1. Then the bounds for the first state variables can be deduced
as follows:

x1 := min
i
{x1,i} and x1 := max

i
{x1,i} (5.11)

Finally, the process can be repeated for the second dynamic constraints, then
the third, and so on until the (N − 1)-th time-step.

4For employing the developed linearization technique it is necessary to have finite upper
and lower bounds on the state variables xk. This step serves principally the purpose of
generating such bounds.
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Remark 1: The above procedure does not take into account the constraints of
the problem therefore the bounds on the state variables can grow unreasonably
large with the time-steps. A solution to this issue is to define general bounds
for the state variables if possible. In fact, in such case the bounds found by the
LBP procedure stay at most as loose as the given general bounds.

Remark 2: The computational cost of this first step grows linearly with the
number of time-steps considered and in practice it is quite modest. Moreover,
if DOA-OC is used in an MPC fashion, in each iteration, it is only necessary
to consider the state variables and the dynamic constraints relative to the new
portion of the MPC subproblem.

Step 2: obtaining an initial binary assignment guess

Next, similarly to OA, DOA-OC necessitates an initial binary assignment to
begin with. Such assignment can be arbitrary but the scheme may benefit from
a good initial guess. In this regard, a fast and convenient strategy consists in
solving the continuous relaxation of the problem at hand and then obtaining a
binary assignment via a procedure called Sum Up Rounding ([75]).

Step 3: Outer Approximation

At this point it is possible to start solving PDC using our specialized OA-
like scheme. The algorithm is almost identical to the classical OA with the
sole difference being that the linearization for the constraints are obtained as
explained in Section 5.3 rather than via simple first-order Taylor approximation.

Remark: The considered problem definition, PDC, features only disjunctive-
convex constraints. However, it is possible to imagine problems in which also
generally convex constraints appear. In this case, the algorithm can easily be
extended in such a way it uses Taylor approximations on the convex constraints
and big-M relaxations on the disjunctive-convex ones.
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Figure 5.1: Schematic representation of Disjunctive OA for Optimal Control
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5.4.2 Convergence Properties

The third step of DOA-OC being almost identical to OA, the new algorithm
inherits its convergence properties from the classical one. In fact, if the binary
variables of the problem at hand are fixed to a specific assignment v̄, the
linearizations obtained via big-M relaxation around such assignment become
identical to the linearizations that could be obtained via Taylor approximation
around the same assignment. This makes possible to prove the finite convergence
of DOA-OC using the same arguments used for OA. The interested reader may
find in [59] a complete proof of the finite convergence of OA.

5.5 Numerical Validation

In this section a case study regarding the control of a hybrid electric vehicle
is used to analyze the performances of Disjunctive OA. The current section is
subdivided in three parts. In the first two, the chosen case study is introduced,
and, in the last part, the results of a series of validating numerical experiments
are presented.

5.5.1 The Case of Study

The model we will use for showcasing the performaces of the DOA-OC scheme
is similar to the one used in the last section for MIRT-OC. In particular, we
will again consider a Parallel Hybrid Vehicle driven along the FTP-75 drive
cycle. However, the current model differs from the last as it features a different
list of components and it is obtained using Torque instead of Power as main
control signal. The latter choice has two consequences: firstly, it allows for a
more accurate modeling of the start-and-stop phases of the vehicle, secondly, it
generates a disjunctive convex model. In the remainder of this section, each of
the components of the considered model will be presented in detail.

Figure 5.2: Parallel Hybrid Electric Vehicle Topology (Rep.)
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Vehicle Body

The HEV considered in this case study medium-sized consumer car. The
longitudinal dynamics of the car was modeled under the assumption of perfect
knowledge of the vehicle speed profile: vcycle(t). The result reads as follows:

Freq(t) [N] := M·v̇cycle(t) + Ffriction ·χ+(vcycle(t))+
0.5·ρair ·Cdrag ·Afrontal ·(vcycle(t))2 (5.12)

where χ+(x) is a function whose value is one if x > 0 and zero otherwise, and
the following parameters were used:

Parameter M Ffriction ρair Cdrag Afrontal

Value 1270.0 0.005 1.225 0.35 2
Units kg N kg/m3 - m2

Next, using (5.12) and assuming a wheel radius of 0.285m, we obtain:{
Treq(t) [W] := Freq(t)·Rwheels

ωcycle(t) [rad/s] := vcycle(t)/Rwheels (5.13)

Battery

The battery pack selected for this new example is identical to the one used in
the last chapter. Therefore, let us limit ourselves to recall its characteristics for
ease of reference:

Ė [W] = PBAT

PoutBAT(PBAT,E) [W] := PBAT − R·C ·PBAT2

2·E− 132·U2
0 ·C

132·Ecell,max ≤ E [J] ≤ 132·Ecell,max

(5.14)

where:

Parameter C R U0 Ecell,max

Value 51782 0.01 3.3 27854
Units Farad Ω V J
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Internal Combustion Engine

For the considered HEV a 80kW Internal Combustion Engine (ICE) was selected.
The data were once again taken from a set of real measurements that can be
found in [94]. A depiction of the measurements versus the fitted model can be
found in Figure 5.3.

Figure 5.3: Engine: Fitted Model VS Original Data (Instant. Fuel Consumption)
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The data were fitted using MATLAB curve fitting toolbox obtaining the following
fuel consumption map:

dFinICE(TICE, ωICE) := (a2ωn2 + a1ωn + a0)·Tn2+
(b2ωn2 + b1ωn + b0)·Tn+
(c2ωn2 + c1ωn + c0)

where:
Tn := TICE

171.6 and ωn := ωICE

628.32
and:

l al bl cl

0 0.7665 -0.1018 0.0348
1 -3.1445 5.3637 1.0270
2 3.7249 1.5618 -0.2544

Similarly, the measurements where used to model the engine speed-dependant
maximum torque. The resulting fitted function is:

T ICE
max(ωICE) := −543.4ωn8 + 2535ωn7 − 4911ωn6 + 5100ωn5 − 3064ωn4+

1075ωn3 − 213.5ωn2 + 22.77ωn− 0.2537

Electric Motor/Generator

For our HEV model a 35kW Electric Motor/Generator (EMG) was chosen. The
original measured data, along with the results of the fitting, can be found in
Figure 5.4. The obtained input-power map reads as follows:

PinEMG(TEMG, ωEMG) := 35e3·(a3ωn3 + a2ωn2 + a1ωn)·Tn2+
35e3·(b3ωn3 + b2ωn2 + b1ωn)·Tn+
35e3·(c3ωn3 + c2ωn2 + c1ωn)

where:
Tn := TEMG

126.5310 and ωn := ωEMG

1047.2
and:

l al bl cl

1 1.4060 3.786 0.1961
2 -5.6970 0.000 -0.3766
3 9.1400 0.000 0.1757
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For the maximum-torque curve the following function was obtained:

TEMG
max (ωEMG) [W] := min(126.53,−65.66ωn3+276.60ωn3−369.34ωn2+192.58)

Figure 5.4: Electric Motor: Fitted Model VS Original Data (Efficiency)



108 TACKLING NON-CONVEXITY: DISJUNCTIVE OUTER APPROXIMATION FOR OPTIMAL
CONTROL

Gearbox and Torque Coupling

Once again, the available ratios in the gearbox have been computed considering
a reference engine speed of 2500RpM obtaining:

Gear 1st 2nd 3rd 4th 5th
Ref. Speed (km/h) 15 30 55 85 115

Ratio 17.72 8.86 4.83 3.13 2.31

Similarly, the fixed EMG-to-wheels ratio, was chosen as follows:

REMG := 3.544 (i.e. 2000RpM at 60km/h)

Discrete Controls

The following binary controls were considered:

Offk : Offk = 1 means that the engine is off and the gearbox is in neutral.
Nk : Nk = 1 means that the engine is on and the gearbox is in neutral.
[Gi,k]5i=1 : Gi,k = 1 means that the engine is on and the i-th gear is in use.

Further, the mutual exclusivity of the binary controls is imposed via:

Offk + Nk +
5∑
i=1

Gi,k = 1

Finally, one auxiliary state variable, pOff, was defined for keeping track of the
past engine state.
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5.5.2 The Resulting Model

According to the MPC structure, we will assume that, at any time, it is possible
to predict with reasonable accuracy the future driver’s inputs up to the next h
seconds. Then, considering a time-discretization resolution of one second and h
seconds of prediction window, the following problem formulation was obtained:

min
j+h−1∑

k=j

(
dFk +KE2F(Ēj)·PBAT

k

)
s.t. # Initial State

[Fj ,Ej , pOffj ]T := [F̄j , Ēj , ¯pOffj ]T

# Dynamic Constraints
Fk+1 = −dFk + Fk

Ek+1 = −PBAT + Ek

pOffk+1 = Offk

# Integer Requirements and SoS1 Constraints
Offk,Nk ∈ {0, 1}; [Gi,k ∈ {0, 1}]5i=1

Offk + Nk +
∑5

i=1 Gi,k = 1
pOffk −Offk ≤ Nk (The engine can start only in neutral gear)

#Battery and Electric Motor/Generator
Emin ≤ E ≤ Emax

PinEMG(TEMG
k /REMG, ωcycle

k REMG) ≤ PoutBAT(PBAT
k ,Ek)∣∣TEMG

k

∣∣ ≤ TEMG
max (REMGωcycle

k )·REMG

# Internal Combustion Engine∑5
i=1 Gi,k ·(ωICE

min − RGBX
i ωcycle

k ) ≤ 0∑5
i=1 Gi,k ·(RGBX

i ωcycle
k − ωICE

max) ≤ 0
TICE ≤

∑5
i=1 Gi,k ·T ICE

max(RGBX
i ωcycle

k )·RGBX
i

dF ≥
∑5

i=1 Gi,k ·dFinICE(TICE/RGBX
i , ωcycle

k RGBX
i )+∑5

i=1 Gi,k ·(1− prevGi,k)·fshift+
Nk ·(fidle + pOffk ·fstart/2) +
Offk ·((1− pOffk)·fstart/2)

# Torque Requirement
Treq

k ≤ TEMG
k + TICE

k



j+h−1

k=j

(P(j)
MPC)

where:
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• F̄j , Ēj and ¯pOffj are values extracted from the solution of P(j−1)
MPC .

• The term: KE2F(Ēj) gives a different relative importance to the
consumption of electric energy with respect to fuel consumption depending
on the state of the vehicle and on the optimization goals. The considered
value for KE2F(Ēj) was selected empirically and reads as follows:

KE2F(Ēj) := 1.2Emax − Ēj
Emax

• The constants fstart, fshift and fidle respectively represent the fuel cost of
turning the ICE on, the fuel cost of changing gear and the engine idle fuel
consumption.

• In the proposed model, the constraint: Offk + Nk ≥ pOffk, is used in
order to force the optimization to assume a delay between the moment in
which the engine starts to turn on and the moment in which it is actually
available for use. Additionally, the fuel cost of turning the ICE on is split
between the actual turning on phase: Nk ·(fidle + pOffk ·fstart/2), and the
turning off phase: Offk·((1− pOffk)·fstart/2). This two characteristics are
meant to prevent the MPC strategy from turning the engine on and off
unnecessarily often.

A sample solution, obtained considering 6 seconds of forward prediction, is
depicted in Figure 5.5.

5.5.3 Numerical Results

This section gives a sample of the tests performed on the proposed algorithm.
The remainder of the current subsection consists of two parts. In the first part,
the performances of Disjunctive OA are evaluated at the variation of the size
of the considered MPC subproblems then, briefly, the differences among the
obtained solutions are explained. In the second part, Disjunctive OA will be
tested against a state-of-the-art mixed-integer non-convex solver: Scip [41] in
order to assess whether or not the developed method shows a performance edge
over the preexisting techniques.

Remark: All the tests were performed on a personal computer equipped with
a AMD Ryzen 2700 processor and 16gb of RAM. Only a single processor core
was used in order to allow for fairer comparisons. Furter, in Disjunctive OA, the
solvers Ipopt [83] and Gurobi [91] have been used for, respectively, the solution
of non-linear and mixed-integer linear problems.
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Figure 5.5: Result for 6[s] of Prediction Horizon

Tests on Disjunctive OA for Optimal Control

This subsection considers DOA-OC coupled with a relaxation-shift procedure.
In other words, some the linearizations generated in one MPC iterations are
reused in the next to reduce the number of OA iterations necessary to solve
each single MPC subproblem. This setting is the best possible for the algorithm
to date, however, as explained in the concluding part of this dissertation, in
future additional improvements could be achieved.

Figure 5.5 shows the first 300 seconds of the solution obtained by setting
the prediction horizon to 6 seconds (h := 6 s). The vehicle is assumed to
start with 30kg of fuel in the tank and a battery state-of-charge equal to
50%. Unsurprisingly, the control system lets the EMG handle the starts from
standstill of the vehicle and generally tries to keep the ICE running around the
2000rmp mark. In fact, as visible in Figure 5.3, at such speed the ICE efficiency
is maximal. On the battery management side, the control strategy tends to
stabilize the state-of-charge between the 60% and the 70% mark.

As Figure 5.6 shows, the average time spent in each MPC iteration increasing
with the length of the prediction horizon. Selecting h := 3 s or h := 6 s results
in a time-per-iteration well below the real time requirements with peaks that
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never exceed the one second barrier. Contrarily, assuming h := 9 s leads
to optimization times which are often incompatible with the desired control
frequency.

Figure 5.6: Time-per-Iteration for Disjunctive OA with Linearizations Shift at
the Variation of the Prediction Horizon

Clearly, also the characteristics of the obtained control strategy depend on
the length of the prediction horizon. We compare the discrete control actions
relative to the three considered horizon lengths in two ways: first, in terms of
objective value after 300 seconds of simulation in Table 5.1, then qualitatively
in Figure 5.7.
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Horizon Length 3s 6s 9s
Objective Value 230.468 205.719 203.900∑300

k=0 dFk 173.321 152.496 151.064∑300
k=0

(
dFk +KE2F(Ēj)·PBAT

k

)
57.1469 53.223 52.837

Table 5.1: Disjunctive OA: Overall Objective at the Variation of the Prediction
Horizon

Figure 5.7: Disjunctive OA: Obtained Discrete Control Actions at the

From Figure 5.7 it is evident that the control actions resulting from setting
h := 6s or h := 9s are quite similar in structure and, according to the above
table, there is only a small difference in terms of fuel consumption and objective
value between the two. However, setting h := 3s, results in a totally different
control action with a much higher objective value. Notably, considering only
three seconds of prediction makes less appealing for the optimization to shift
gear or change the state of the engine. This is due to the fact that the cost
of shifting or turning the engine on/off is rarely dominated by the objective
gain resulting from having the vehicle in the optimal state for the next three
seconds.

In conclusion, for the current setup, setting a prediction horizion length of 6
seconds appears to be the best compromise between the time required for each
MPC iteration and the quality of the resulting control strategy.
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Comparison with SCIP a State-of-the-Art Mixed-Integer Non-Convex Solver

This subsection answers to the question whether or not the developed scheme,
which exploits the particular structure of the considered problems, does
outperform a generic mixed-integer non-convex solver. In the performed tests.
SCIP ([41]), being one of the fastest non-commercial solvers of its type, was
chosen as a representative of the mixed-integer non-convex solvers class. In order
to level up the comparison, the relaxation-shift procedure of Disjunctive OA
was disabled (as no similar support for SCIP was available). The experiments
consisted of running MPC 120 MPC iterations with both solvers and using 3, 6
and 9 seconds of prediction horizon. The results are summarized in Figure 5.8.

Figure 5.8: Comparison Disjunctive OA versus SCIP
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Remark 1: Differently from the last subsection, for the representation of the
results of the tests currently under exam a logarithmic scale was used. This
is due to the fact that the hereby depicted quantities exhibit large reciprocal
differences: up to three orders of magnitude.

Regarding the 3 seconds of prediction horizon tests, Figure 5.8 shows no
noteworthy difference between the tested solvers. This is probably due to the
fact that our implementation of the DOA-OC algorithm is not really optimized
and its higher start-up time overshadows any possible performance edge over
SCIP. However, looking at the 6 and 9 seconds of prediction horizon tests we get
a profoundly different picture. In fact, as the prediction horizon length increases
the solution time with SCIP grows very rapidly until reaching almost 200 seconds
of maximum time per single iteration with only 9 seconds of prediction horizon.
This is not surprising as SCIP needs to branch on the continuous variables in
addition to the binary ones in order to cope with the non-covexity of the problem.
In meanwhile, DOA-OC is able to avoid any kind of spatial Branch&Bound.
Hence, it shows a much tamer complexity growth as its performance is similar
to the one of the classical (convex) OA scheme.

Finally, comparing the data collected for DOA-OC between Figure 5.6 and
Figure 5.8 we can draw some conclusions on the effects of the relaxation-shift
procedure. In fact, the reduction in average time-per-iteration due to the forward
propagation of the obtained linear approximations appears to be about 50%.
Simultaneously, the time-per-iteration obtained using of relaxation-propagation
technique appears be much more variable than the one obtained without it. This
is probably due to variability in the degree of similarity between the solution of
one MPC iteration and the solution of the next. Nevertheless, it is clear that
the relaxation-propagation procedure is capable of providing DOA-OC with a
sizeable performance boost.

Remark 2: The collected results are not a measure of the absolute performances
of the involved solvers but, rather, they demonstrate the usefulness of exploiting
the particular structure of PDC. In fact, in general, SCIP is a much better
optimized solver with respect to the proof-of-concept level Disjunctive OA solver
used for the presented tests.

5.6 Summary and Final Comments

In this chapter we presented an original approach to mixed-integer semi-convex
optimal control, Disjunctive Outer Approximation for optimal control, that
consists of transforming a problem into a disjunctive-convex form and using a



116 TACKLING NON-CONVEXITY: DISJUNCTIVE OUTER APPROXIMATION FOR OPTIMAL
CONTROL

specialized OA-like solution strategy. By means of the performed experiments,
the characteristics of the new algorithm have been explained and it was shown
how, in this setting, Disjunctive Outer Approximation is capable of largely
out-perform a state-of-the-art non-convex solver.

Nevertheless, there is still a large margin of improvement for the proposed
algorithm. In particular, merging DOA-OC with MIRT-OC would yield a
scheme capable to obtain better linearizations updating the big-M coefficients
whenever new bounds on the state variables are discovered while allowing for
the use of a relaxation-propagation technique also in case of model mismatch.



Chapter 6

Summary, Conclusions and
Outlook

This last chapter of the dissertation collects the author’s final comments and
remarks. The remainder of the chapter is subdivided in three parts. The first
part will summarize the presented strategies and the obtained results. In the
second part, in line with to the collected evidence, some conclusions will be
drawn. Finally, the third part will present the principal directions of further
development for the presented technique according to the author’s opinion.

6.1 Summary

The first algorithm, Proximal Outer Approximation (POA), is a mixed-integer
convex programming scheme having an Outer Approximation (OA) like structure.
Similarly to OA, POA uses the solutions of a sequence of NLPs to iteratively
build a linearly constrained relaxation of a given MICP while using the solutions
of a sequence of MILPs for generating informed guesses on the globally optimal
discrete assignment for the problem at hand. However, POA features different
NLP and MILP steps with respect to the original OA algorithm. The NLP steps
of POA are meant to generate linear relaxations of the constraints of the MICP
from within the feasible space of its continuous relaxation. While, the MILP
steps of POA consider an additional adaptive distance term into the objective of
the MILP subproblems. The different NLP steps allow POA to generate tighter
linear relaxations, and therefore, to construct a sufficiently accurate linearly
constrained relaxation of the original MICP faster. The modified MILP steps

117
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keep the generated discrete assignment guesses close to the feasible space of
the original MICP during the phases in which the algorithm has not obtained
an accurate relaxation yet. The performances of POA have been compared
against the ones of OA over a known public library of benchmarks. The results
suggested that POA is capable of yielding faster and more robust convergence
with respect to the classical OA algorithm. In particular, the results show that
POA makes possible to save more than 40% of computation time in the solution
process of highly non-linear problems.

The second technique, namely the Mixed-Integer Real-Time Optimal Control
(MIRT-OC) algorithm, represents an innovative approach to mixed-integer
Model Predictive Control. MIRT-OC takes inspiration from single-tree mixed-
integer convex programming approaches, such as LP/NLP B&B, and extends
the single-tree concept to mixed-integer MPC. In MIRT-OC the some of the
optimization data generated during one MPC iteration is propagated to the
next iteration in the form of an initial linear relaxation and a partially explored
B&B-tree for the new MPC subproblem. The most characteristic elements in
the proposed algorithm are the two specialized routines that make it possible
to adapt the information collected for one MPC subproblem into suitable
information for the next subproblem. Such routines make use of the structure
of the B&B algorithm as well as the theory of duality for linear/quadratic
solvers. In order to evaluate the advantages in using MIRT-OC rather than
a more immediate approach to MPC, a case of study involving the control of
an Hybrid Vehicle was devised. A number numerical experiments, for varying
levels of sensors/model noise and different MPC prediction horizon lengths,
have been performed. As a result, MIRT-OC was found capable of providing
large reductions in the average computational cost of the MPC iterations even
in presence of substantial model inaccuracies and sensors noise. Specifically, on
the performed experiments MIRT-OC required the solution of less NLPs and
between the 30%-45% of the LPs with respect to the common approach.

The third proposed approach, Disjunctive Outer Approximation for Optimal
Control (DOA-OC), is an adaptation of Outer Approximation to disjunctive-
convex optimal control problems. The algorithm exploits the big-M
reformulation technique and the particular structure of the constraints of the
suitable problems to obtain valid OA-compatible linear relaxations. Doing so,
DOA-OC allows mixed-integer optimal control problems resulting convex solely
in their continuous variables to be solved as efficiently as jointly convex problems
are, rather than how their non-convex nature would require. Consequently,
in order to asses the performances of the presented methodology a series of
numerical experiments involving the control of a hybrid electric vehicle have
been performed. Aside from showing the existence of a large computational
advantage in using DOA-OC rather than a general non-convex solver for the
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considered class of problems, the experiments have proven the viability of using
the developed technique in the context of MPC.

6.2 Conclusions

This subsection discusses the general findings that can be deduced by observing
the results obtained during the devolpment of the present work.

The experience with Proximal Outer Approximation has shown that there
exist margins of improvement also in algorithms as well established as Outer
Approximation. In particular, the results suggest that, in Outer Approximation
based algorithms, it is possible to obtain performance gains by adaptively
trading off the chances of generating discrete guesses with low objective values
and the chances of generating feasible assignments. Arguably, this is particularly
true in an MPC context where the solution of the previous MPC subproblem
might give a good insight on the location of a globally optimal assignment for
the current subproblem. Additionally, the experiments have also confirmed the
beneficial impact that choosing linearization points inside the feasible space has
on the quality of the obtained linearizations.

Thanks to the development of MIRT-OC it was proven that it is possible,
although not straightforward, to exploit the similarity existing between to
subsequent mixed-integer MPC iterations to reduce the computational cost of
each iteration. The concept of single-tree methods has already been proven very
efficient in mixed-integer optimization, thus, it is reasonable to expect an even
greater success in mixed-integer MPC (where the idea can be applied on two
distinct levels). Although MIRT-OC is a proof of concept solver and it lacks
many of the components that usually make mixed-integer solvers competitive,
it seems to contain all the basic ingredients for a very effective approach to
mixed-integer MPC.

With DOA-OC it was presented an easy way of extending all the results obtained
using Outer Approximation the class of disjunctive-convex optimal control
problems. The algorithm entails the possibility of solving in a fairly efficient
way non-convex problems that were formerly difficult to tackle. Additionally,
the scheme can benefit from advancements in OA-based techniques as well as
from more refined preprocessing routines for mixed-integer linear programming.
Finally, given the fact that the disjunctive structure is well suited for representing
problems in which piece-wise convex constraints/costs appear, DOA-OC might
also provide the means for better handling a number of challenging non-
convex optimal control problems either via reformulation or via approximation
techniques.



120 SUMMARY, CONCLUSIONS AND OUTLOOK

6.3 Outlook

The presented algorithms have been developed and presented independently in
order to ease the assessment of their performances with respect to the state-of-
the art. However, despite the fact that each of the methodologies can still be
improved on its own, the first and foremost source of further improvements for
them might derive from combining their characteristics. As a consequence, the
current section focuses in proposing ideas in this direction.

6.3.1 Combining POA with MIRT-OC

The proximity considerations present in POA could prove particularly beneficial
for MIRT-OC where the solution of the lastly solved MPC subproblem may give
a good indication on the location of a close-to-optimal points for the current
subproblem. As a consequence, it is quite reasonable to consider combining
POA with MIRT-OC. Even more so considering that two algorithms have quite
compatible structures. However, such confluence is not straightforward to obtain
as the objective function used in the MILP steps of POA varies during the
optimization. In fact, it is necessary to develop a strategy for being able to
rapidly conform the B&B-tree already built to any appropriate change in the
MILP objective. In other words, it is necessary to develop a single-tree version
of POA.

6.3.2 Combining POA with DOA-OC

Unfortunately, the NLP steps of POA it are not compatible with disjunctive
convex problems as in such steps the discrete variables are not fixed, and
thus, they would require the solution of challenging non-convex problems.
Nevertheless, assuming that the appropriate linearizations generation routine
is used, the MILP steps on POA can be applied also to disjunctive
problems. Actually, the fact that the MILP steps of POA tend to keep
two subsequent discrete assignment guesses close to each other is likely to
improve the performances of DOA-OC as the linearizations generated via
big-M reformulations are more “local” than the ones generated via Taylor
approximations.
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6.3.3 Combining DOA-OC with MIRT-OC

In the current status, DOA-OC makes use only of the initial bounds on the
problem variables to compute the big-M constants. However, as the optimization
goes further new tighter bounds might be discovered. Especially in MPC, where
in every new subproblem the initial state is fixed to a certain value, the variable
bounds can change dramatically during the process. Additionally, in case of
model mismatch it is necessary to be in possession of a revising strategy for
the big-M constants for preventing the erroneous removal of feasible discrete
assignments from the search space. Computing revised values for the big-M
constants is by itself cheap and easy, however, in order to perform such update
in a single tree-scheme it is necessary to rapidly obtain a new feasible dual point
for each of the nodes of the current B&B-tree. Conveniently, MIRT-OC is well
equipped for the task and an extension in this direction would be fairly easy to
obtain.
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