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Abstract

The Minimum Volume Ellipsoid (MVE) estimator is based on the smallest-
volume ellipsoid that covers h of the n observations. It is an affine equivari-
ant, high-breakdown robust estimator of multivariate location and scatter. The
MVE can be computed by a resampling algorithm. Its low bias makes the MVE
very useful for outlier detection in multivariate data, often through the use of
MVE-based robust distances.

We review the basic MVE definition as well as some useful extensions such
as the one-step reweighted MVE. We discuss the main properties of the MVE
including its breakdown value, affine equivariance, and efficiency. We discuss
the basic resampling algorithm to calculate the MVE and illustrate its use on
two examples. An overview of applications is given, as well as some related
classes of robust estimators of multivariate location and scatter.
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The Minimum Volume Ellipsoid (MVE), introduced by Rousseeuw [60, 61], was
the first high-breakdown robust estimator of multivariate location and scatter
that became regularly used in practice. The MVE became popular thanks to its
high resistance to outliers, which makes it a reliable tool for outlier detection,
and the widely available, user-friendly implementations of its computational al-
gorithm. We first review the definition of the MVE and illustrate its use on two
real data examples. We then give an overview of some important properties
of the MVE, which are affine equivariance, breakdown value and efficiency.



We discuss the standard resampling algorithm to calculate MVE estimates in
practice and give references to alternative algorithms. We give an overview of
applications of the MVE estimators of location and scatter, which often involve
outlier detection in multivariate data. We also discuss some extensions of the
MVE, and related estimators.

Definition
We consider a multivariate data s&, = {x1,...,x,} with n observationse; =
(zi1,...,mip)'5 i = 1,...,nin p dimensions. Note that all vectors in this overview

are considered to be column vectors. We focus on estimdimdptation and scatter
of this multivariate data seX,,. It is convenient to collect the observations of a data
setX,, in ann x p data matrixX where each row corresponds to an observatipaf
X,.

As an example, we consider the pulp fibre data [41] which idable in the R package
‘robustbase’. This data set contains measurements of giiepef pulp fibres and the
paper made from them. The final aim is to investigate relatioetween pulp fibre
properties and the resulting paper properties, se g@@ﬁ Here we focus on the
pulp fibre properties. The dataset contains= 62 measurements of the following
four pulp fibre characteristics: arithmetic fibre lengthnddfibre fraction, fine fibre
fraction, and zero span tensile strength. A standard apprtminvestigate whether
this multivariate data set forms a homogeneous group oagmaberrant points is to
calculate the Mahalanobis distances of the observatioven ¢y

MD () = \/ (@ — ,)'S;, (@i — @) i=1,....n 1)

wherez,, is the sample mean arsl, the sample covariance matrix of the data. It is
well-known that if the data follow a four-dimensional Gaassdistribution, then the
squared Mahalanobis distances approximately follow asghare distribution with 4
degrees of freedom. Therefore, we compare the Mahalan@i@ndes to the square
root of x7 , 975, Which is the97.5% quantile of the chi-square distribution with 4 de-
grees of freedom. This cutoff value is represented by thiztwtal line in Figuré la.

If the data indeed form a homogeneous cloud, then we do natcexp find any Ma-
halanobis distances far above the horizontal cutoff lingyufe 1a suggests that the
data are fairly homogeneous with at most two observatioasdbviate a little from
the data cloud formed by the other observations. Howevés vitell-known that the
sample mean and sample covariance matrix can be heavilgmud by outliers in a
multivariate data set (see e.g. [32, 65, 47]). As a resulinéf/there are outliers in
the data set, they can affect the sample mean and sampléatmeamatrix in such a
way that these outliers get small Mahalanobis distanceg#P Hence, outliers can
remain undetected in Figure 1a. This phenomenon is calledndsking effec{see
e.g. @[é]). Because the dimension of the data set in thasgle is fairly low, we
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Figure 1: Distances of the observations in the pulp fibre slet&ased on the four pulp
fibre properties: (a) Mahalanobis distances based on samgde and sample covari-
ance matrix; (b) Robust distances based on MVE estimategafibn and scatter. The

horizontal cutoff line in both panels is thio'gm = 3.34.

can examine the data set further by investigating the psénscatterplots in Figure 2.
The ellipses shown in these scatterplots are the projectibthe tolerance ellipsoid

on the respective coordinate planes. Hence, in a homogsipeint cloud all observa-
tions should lie within or close to the boundaries of thepsas. From the scatterplots
in Figure 2 we immediately see that although no observatierfar from the ellipses,
the data do not form a homogeneous cloud. Several obsersatieviate from the
shape of the majority of the points. These outliers havetgdithe sample covariance
matrix and also affected its shape, which leads to the mgsfact when investigating
Mahalanobis distances. Hence, to reliably estimate theecamd scatter of this data
set, robust estimates of location and scatter are needgdastthe MVE estimator.

The Minimum Volume Ellipsoid estimator of multivariate ktion and scatter of a data
set X, is defined as the center and covariance structure of theseitivith minimal
volume that covers at least h points ®f,, whereh can be chosen betweén/2] + 1
andn. Note that for anyr € R, the value]x] denotes the largest integer smaller than
or equal tox. More formally, the MVE estimator is defined as follows.

Definition 1 The MVE location estimatat,, and scatter estimato€',, minimize the
determinant of”' subject to the condition

#{i; (x; —t)'C (@i —t) <P} > b, ©)
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Figure 2: Pairwise scatterplots of the four pulp fibre vadeab The ellipses repre-
sent thed7.5% tolerance ellipsoid for the observations, based on the lkamean and
sample covariance matrix.

where the minimization is over afl € R? and C € PDYp), the class of positive
definite symmetric matrices of size

The valuec is a fixed chosen constant that determines the magnitudg,ofUsually,
c is chosen such thaf’,, is a consistent estimator of the covariance matrix for data

coming from a multivariate normal distribution, i.e. = ,/x2 , wherea = h/n.

From its definition it is clear that the MVE estimates the eerand scatter of the
most concentrated observations in the data set. The valuecah be chosen by the
user and determines the robustness of the resulting MVEats. A standard choice
ish = [(n + p+ 1)/2] because it yields the maximal breakdown value as will be
explained in the next section, where we give an overview efitoperties of the MVE



estimator. The examples in this article all use this stashdboice ofh.

Let us return to the example. Figure 1b shows the robustrdistaof the observations
based on the MVE estimates of location and scatter [65]ndiye

RD(:) = \/ (@ — £.)'C; (@i — ) i=1,...,m. )

In Figure 1b we immediately see that the data set containdawoutliers and seven
less extreme outliers. Figure 3 shows the pairwise scédtsrpith the MVE-based
tolerance ellipsoid

E(t,,Cp,0.975) = {z; RD(z) < \/X3 0.075} (5)

These scatterplots illustrate that the MVE estimates adtion and scatter indeed re-
flect the center and shape of the majority of the data.

As a second example we consider an engineering problem thsitfivst analyzed
in [@]. Philips Mecoma (The Netherlands) produced diaghrgarts for TV sets.
These are thin metal plates, molded by a press. When startieg/groduction line,
p = 9 characteristics were measured fo= 677 parts. The aim was to gain insight in
the production process and to find out whether abnormatitie®s occurred and why.
We can again calculate distances of the observations amné éhreunexpectedly large
distances that indicate anomalies in the data. When claddmiaalanobis distances
are used, there is no indication of severe anomalies (segd-Igin E?]), but as be-
fore this may be the consequence of the masking effect. Tdrereve now examine
the MVE-based robust distances shown in Figure 4. This figives a much better
insight in the evolution of the production process. The sildistances immediately
reveal that the production line was unstable in the begiffirgt 100 observations) and
reveals a strongly deviating group of outliers, rangingrfrmdex 491 to index 565.
Both phenomena were investigated and interpreted by emigira Philips.

Properties

Affine equivariance

A natural property of estimators in the multivariate looatand scatter model is affine
equivariance, which means that the estimators behave gyapeder affine transfor-
mations of the data. That is, the estimatérandC' of multivariate location and scatter
are affine equivariant iff for any data matrX

T(XA+1,v") = AT(X)+wv
C(XA+1,0") = A'C(X)A (6)
for all nonsingulap x p matricesA andv € R?. The vectorl,, = (1,1,...,1)! € R™.

Affine equivariance of the estimators is important becatsskes the analysis inde-
pendent of the measurement scale of the variables as welraddtions or rotations
of the data.
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Figure 3: Pairwise scatterplots of the four pulp fibre vaeab The ellipses represent
the 97.5% tolerance ellipsoid for the observations, based on the M¥fiimates of
location and scatter.

The MVE estimates,, andC,, of multivariate location and scatter are affine equiv-
ariant [61, 65]. This follows from the fact that the nonsitaguaffine transformation
x — A'z + v transforms an ellipsoid with centen and scatter matrix§ containing

at leasth points of X into an ellipsoid with centeA’m + v and scatter matrix’S A
which contains at least points of X A + 1,,v'. The volume of the transformed el-
lipsoid equals dgtA’SA)'/? = |det(A)|detS)'/2. Since|det A)| is a constant, the
MVE estimates ofX A + 1,,v* are indeed given by’t,, + v and A'C,, A where
t,, C,, are the MVE estimates oX.
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Figure 4: MVE-based robust distances of the observatiottseifPhilips data set. The

horizontal cutoff line is at /x3 ¢ g75 = 4-36.

Breakdown value

A useful measure of the global robustness of an estimatty is@éakdown value. Intu-
itively, the breakdown value is the smallest percentagenfamination that can have
an arbitrarily large effect on the estimator (see e.g. [32). GResults for the breakdown
value of the MVE estimators of location and scatter have lggem in [61, 46, 24].

We discuss the finite-sample replacement breakdown vattrduced in [27]. For
a given data sek,,, consider all possible contaminated datasgtsobtained by re-
placinganym of the original observations byrbitrary points. Then the finite-sample
breakdown value’, (T, X,,) of a location estimatdI” at the data seX,, is the smallest
fractionm/n of outliers that can carry the estimate over all bounds:

e (T, Xp) = mnin {1::7 S}lp”T(Xn) —T(X,)|| = OO} : (7)
Xn

Usuallye? (T, X,,) varies only slightly between samples and with the sampksigo
that we can denote its limiting value (far— oo) by £*(T"). Similarly, the breakdown
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value of a covariance matrix estimatér is defined as the smallest fraction of con-
tamination that can either take the largest eigenval€) to infinity or the smallest
eigenvalue\,(C) to zero. For the MVE estimators we then have the followingites

Theorem 1 Consider a data seX,, C R? thatis in general position, which means that
nop+ 1 points lie on a hyperplane. Then the MVE estimaters C,,) of multivariate
location and scatter have finite-sample breakdown value
in(n—h+1,h—
67*1(13717 Xn) = E;;(Cann) = mln(n L p) . (8)

n

It follows immediately that fom — oo the breakdown value of the MVE estimators
equalse*(T) = ¢*(C) = min(wo,1 — ) whereaw = h/n as before. From The-
orem 1 it can be shown that the MVE estimates have their higireskdown value
ef(tn, Xpn) =€ (Cr, X)) = [(n—p+1)/2]/n =~ 50% whenh = [(n+ p+1)/2]
(seeF[Zb]). One can prove that this is the maximal breakdaiuevfor all affine equiv-
ariant estimators of scatt@ZB] and location [62].

Efficiency

Davies [24] has shown that the MVE estimators of locationsoatter converge at rate
n~1/3 to a non-Gaussian distribution. This low rate of convergeinaplies that the
asymptotic efficiency of the MVE estimators(i%:. Also the finite-sample efficiency
of the MVE estimates is low (see e.[65]). Therefore, onellg computes the one-
step reweighted MVE estimat&[GS], given by

Y/
C, = (iwi(wi—ti)(wi—ti))/(Zn:wz) 9)

with

w; = {1 ifRD(z:) < 1/X3.0.075

0 otherwise

where ROz;) are the robust distances of the observations based on tie MVE

estimates of location and scatter as defined in (4). Thesestepereweighted MVE
estimates are a weighted mean and covariance where redpdarvations are given
weight one, but outliers (according to the initial MVE sadur) are given weight zero.
The one-step reweighted MVE estimators have the same hreakdalue as the ini-
tial MVE estimatorsF[ZG] but a much better finite-sample éficy (see e.g@g 68]).
Note that many software implementations (such as the imghéation in R that we



used for the examples in this review) report the one-stepighted MVE estimates by
default.

Note that it has been shown more recently that the one-steggbted MVE estimates
do not improve on the convergence rate (and thu$thesymptotic efficiency) of the
initial MVE estimator [HS]. Therefore, as an alternativegree-step M-estimator can
be calculated with the MVE estimates as initial solution, ], which results in an
estimator with the standard™!/2 convergence rate to a normal asymptotic distribution.
Another alternative to increase the efficiency of the MVEIle/hétaining its robustness
properties has been proposecm [35].

Algorithm

From Definition 1 it follows that calculating the exact MVErfa data sefX,, would
require examining al(}) ellipsoids containing: observations ofX,, to find the ellip-
soid with smallest volume. This number of ellipsoids is Ulyugery large, hence
solving this combinatorial problem is only feasible in gree for small data sets
in low dimensions@G,FS]. Therefore, one resorts to appnate algorithms. The
standard MVE algorithm limits its search to ellipsoids detimed by subsets con-
sisting of (p + 1) observations ofX,,. For each subset of sizg@ + 1), indexed by

J = {i1,...,ip41} C {1,...,n}, its sample mean and sample covariance matrix
given by
1 p+1 1p+1
Z;=——Y x;, and S; == x;,. —x5)(x; —xs) 10
T A Sy= Y, s, ) 0

are calculated. The covariance matfy is nonsingular iff the(p + 1)-subset is in
general position. If thép+ 1)-subset is not in general position, then observations from
X, are added until a subset with nonsingular sample covariamatex is obtained (or

a singular subsample of siZeis obtained, in which case the final MVE solution is
singular). The ellipsoid determined tay; and S ; is then inflated or deflated until it

contains exactly: points: the scaling factor is given by /c? with ¢ =/ X3, @S
before and
D3 =[(z; — 2,)"(Ss) " (zi — ZJ)]hin (11)

whereh : n indicates theith smallest squared distance among the squared distances
of then observations inX,,. The resulting ellipsoid then satisfies conditioh (3) asd it
volume is proportional to

[det((D3/c*)S,)]"/? = (D /c)del( S ,)"/>. (12)

The algorithm then returns the solution with smallest ofjjedunction (12) among a
large number ofp + 1)-subsets.

It has been shown that this resampling algorithm keeps theaquivariance property
of the MVE estimator. Moreover, if all,; ;) subsets of sizép + 1) are considered,

9



then the solution of the algorithm has the same breakdowure\ad the exact MVEI63].
However, in practice the total number @f + 1)-subsets is infeasibly large and only
a random collection is considered. Standard implememsitid the MVE algorithm
usem = 3000 random(p + 1)-subsets by default, to keep the computation time rea-
sonable@]. However, modern computers can handle mang fpef 1)-subsets in a
short period of time. For example, for the Philips data= 677, p = 9) that we used
as an example in this review, it takes less than 9 secondddolai the approximate
MVE solution based omn = 30000 random(p + 1)-subsamples when using the R
implementation on a standard contemporary PC.

Croux and Haesbroel?] proposed a modification of thedstahresampling algo-
rithm for MVE by taking an average of the solutions corregping to several ‘near-
optimal’ (p + 1)-subsets instead of considering only the solution corneding to the
best(p + 1)-subset. They showed that their average solution maintaébreakdown
value and has a better finite-sample eﬁicieﬁ/ ﬁgi 21]. Taerdard resampling al-
gorithm can also be improved by using location adjustmergraposed in [22]. An
alternative improvement of the standard resampling algorifor MVE has been pro-
posed in@?, p. 198-199] by updating the center and scastémates correspond-
ing to the best(p + 1)-subset, using thé observations within its minimum vol-
ume ellipsoid. Several alternative algorithms to calaldte MVE have been pro-
[G?H, 3

posed 3, 83, 84, 58, 56, 57, 34, 51].

The resampling algorithm to calculate the MVE estimatomnaftivariate location and
scatter has been implemented in several software packagesandard S-PLUS the
MVE is available as the functiotov.mve In R this function is part of the librayIASS
The improved resampling algorithm proposeﬁ [47] has lep@emented in the R li-
braryrrcov as the functiolCovMve The MVE is also available in SAS/IML as the call
MVE (since Version 6.12). Finally, the MVE is still available astand-alone FOR-
TRAN program that can be downloaded from the wellsitp://www.agoras.ua.ac.he/

Applications

To reliably detect outliers in multivariate data it is notypimportant that the estimators
of location and scatter have a high breakdown value, butthksbias of the estimators
caused by a fraction of contamination below the breakdovuevshould be as small as
possible. The maximal possible asymptotic bias, catteabias of the MVE estimates
caused by a fixed fraction of contamination has been inwegstin EOEQ] in the one-
dimensional case and in ﬂﬂ 2] in the multivariate case. riigwout that the maxbias
of the MVE estimators is generally low and compares favgrabdlmany other high-
breakdown estimators of multivariate location and scasiech as the Stahel-Donoho
estimatorﬁGQﬂQ] and the Minimum Covariance Determﬁr&stimator@b@l].
The good bias behavior of the MVE makes the estimator seitiloutlier detection.
For this purpose, the MVE estimate of scatter is often miidiipby a finite-sample
correction factor such that the resulting robust distaacesppropriately scaled when
the observations come from a multivariate normal dist'rdru'(see[%b] for details).
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Therefore, cutoff values of the usuaj distribution can be used for the robust distances
based on the MVE.

MVE-based robust distances are often used to detect levgraigts in linear regres-
sion ]. Leverage points are outliers in the explanat@siables of the regression
model and have a high influence on the standard least sqegression (see e.E[GS]).
Detecting leverage points by examining the MVE-based rotdissances of the ex-
planatory part of the observations was first proposed in tmtext of Least Median
of Squares (LMS) regressi(EGO]. LMS or its generalizatithe Least Quantile of
Squares (LQS) estimatdﬂ64], is a regression analog of thi&MConsider a data set
Zn ={(x1,21), ..., (s, yn)} and the multiple regression model

yi:alxi1+"'+0p$ip+€i:w§0+6i; izl,...,n (13)

wheree; are the errors centered at zero. The residuals corresgpialia fit @ are
denoted byr;(0) = y; — x!6. The LQS looks for the fip,, that minimizes theh
smallest squared residugl(6) ..., whereh is usually chosen betweén/2] + 1 andn.
From this definition it is clear that the LQS is determined lbg /i observations in the
data set that lie most concentrated around a hyperplangh&achoiceh = [n/2] + 1,
the LQS minimizes the median of the squared residuals wieiatid to the LMS. For
data sets in general position, the breakdown value of the is@&en by
min(n —h+1,h—p+1)

er(0n, Z,) = " . (14)

It follows immediately that fom — oo the breakdown value of the LQS becomes
*(0rgs) = min(a, 1 — o) wherea = h/n as before. Moreover, the LQS reaches
its maximal breakdown valug’ (6,,, Z,,) = ([(n — p)/2] + 1)/n = 50% whenh =
[(n+ p+1)/2] (see [64] for details).

To detect regression outliers and leverage points simediasly, a diagnostic plot was
introduced [68] which divides the observations into foutegaries:regular observa-
tions, vertical outliers, good leverage pointgs)dbad leverage pointsA vertical out-
lier is an observation whose, is inlying but whosgx;, y;) doesn't fit the linear trend
formed by the majority of the data. A leverage point is an ole@®n with outlying
x;. Itis called a good leverage point if its:;, y;) fits the linear trend formed by the
majority of the data, and a bad leverage point when it doegxpplications of LMS
with MVE-based detection of leverage points have been giveeveral areas such as
chemometrics [12], management [73], and astronomy [55].

MVE-based robust distances were used in [75, 15, 28, 74]drctimtext of one-step
M-estimators with high breakdown value, in 10] in theataxt of high-breakdown
rank regression, and iE[& 7] for high-breakdown estinmgiar heteroscedastic re-
gression models. The MVE can also be used for estimatingitocavith dependent
data[@b].

The MVE has also been used for outlier detection in many athétivariate analysis
models such as principal component analﬁ%@?, 11], ididcant analysisﬁ , 18],
factor analysis [14], multiplicative factor models [53age segmentation [39], and
multivariate control chart 8,{8[38]. Some textboolsaecommend using the
MVE for robust multivariate data analysis (see éE [29,6:64]).

11



Extensions

The MVE can be seen as a special case within the class off8atsts [7 fO] Location-
scatter S-estimators [f 65, 5, 42] are defined as follows.

Definition 2 The S-estimators of multivariate location and scatter dre $olution
(t%, ) which minimizes the determinant@funder the constraint

meM 0 (@i~ 1)) < b (15)

over allt € R? andC € PDS(p).

Settingb = EFr[po(]|X)]|] assures consistency at the model distributfonwhich
usually is taken to be multivariate normal. The choice of digcontinuous func-
tionpp = 1 — I(x € [0,¢]) andb = (n — h)/n yields the MVE estimators. It can
be shown that for suitable choices of continuously difféiedie loss functiong,, S-
estimators have a high breakdown value and are asymptgtivaimal @,]. A
standard choice for the loss functipg is Tukey’s biweightp-function, given by

b e <c

p(x) = (16)

Q‘QN M‘HN

if |z| > c.

The constant determines the breakdown value which is givereby= 6b/c?, so S-
estimators can be tuned to have high breakdown value. Swagstis have a positive
efficiency at the multivariate normal distribution, but thexists a trade-off between
efficiency and breakdown value. The efficiency of high-bteain S-estimators can
still be quite low, especially in lower dimensions, whichkea them less suitable for
inference. Note that S-estimators of scatter can also bedbas differences of the
observations, which yields a higher eﬁicien@ [59].

MM-estimators are an extension of S-estimators that hayle &ificiency at the mul-
tivariate normal distribution and at the same time a higrakdewn value [77, 71].
Location-scatter MM-estimators are defined as follows.

Definition 3 let (£, C?) be multivariate S-estimators as given by Definition 2. De-

no

note s, := det(CY)/(?), Then the multivariate MM-estimators for location and
shape(t!, V1) minimize

—Zpl( = 0)'G (@i~ 1) s)

among allt € R? andG € PDSp) for which detG)=1. The MM-estimator for the
scatter matrix isC), := s2 V..

12



MM-estimators are thus two-step estimators. In the firgs ateobust high-breakdown
estimators,, of the scale of the distribution is obtained. This prelinmnastimate

of scale is then used to calculate M-estimators of locatipand shapd/’.. It can

be shown that the loss functigy used to calculate the initial S-estimator determines
the breakdown value of the estimatafs V', andC, while the loss functiomp; can

be tuned to obtain a high efficiency, e.§5% efficiency for the location estimator
t} when the data come from a multivariate normal distributisee@?ﬁl] for de-
tails). Related classes of multivariate location and scatstimators that can attain
high breakdown value and high efficiency at the same timehar€M-estimators [40]
andr-estimators@S].

Note that although these highly efficient estimators altgrat high breakdown value,
there is a robustness cost in terms of the maxbias of theseatsts for fractions of
contamination below the breakdown vaI@[SO]. The highes luf these estimators
makes them somewhat less suitable when the main goal i®oddtection. On the
other hand, their high efficiency makes them more apprapfa@tinference purposes.
Inference can be derived from the asymptotic normal distidin of the estimators, or
the bootstrap approach can be used. However, note that@astibapplication of the
bootstrap to robust estimators poses two problems. Rieshigh computation time of
robust estimators causes practical limitations becawsga@ating robust estimates a
large number of times becomes very time consuming. Secbadrydction of outliers
varies among bootstrap samples. Therefore, the estimatprbmeak down in some
bootstrap samples even though the fraction of outliersenotiiginal sample does not
exceed the breakdown value of the estimator. To solve bathi@ms simultaneously,
we can calculate a one-step approximation for the robushat& in each bootstrap
sample, starting from the solution in the original sampléas been shown that when
a linear correction is used, this fast bootstrap procedsim®bust and consistent in
the sense that the bootstrap distribution converges weakikie distribution of the
estimators (see [71, 72, 80] for detalils).

The MVE estimator of multivariate location and scatter dssed here is also re-
lated to the Minimum Covariance Determinant Estimator (M@fat was introduced
in @),@]. The MCD looks for thé observations whose sample covariance matrix has
the smallest possible determinant. The MCD estimates atilme and scatter are then
the sample mean and sample covariance matrix (multipliea dynsistency factor) of
that optimal subset ot observations where, as beforejs usually chosen between
[n/2]+4 1 andn. The MCD estimators of location and scatter have the sanaktosvn
value as the MVE estimators (see e@;. [4]). The MCD has thé&iaddl advantage
that it converges to a normal distribution at the regulart/? rate [@ . Its efficiency
is generally low, but can be much increased by one-step ghitirg 67@5]. For
many years, the MVE was preferred over the MCD because digtstly better com-
putational efficiency when using a resampling algorithm.wigeer, in 1999 a much
faster MCD algorithm was developed [67] and since then maeysuprefer the MCD
as robust estimator of location and scatter.

Projection estimators of multivariate location and seatBn combine a high break-
down value with a small maxbias that does not depend on therdifoanp [i
@5,@71—88@6} However, these estimators are substgnkiatider to compute, espe-
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cially in higher dimensions. Finally, we note that the MVEsladso been extended to a
class of maximum trimmed likelihood estimators| [31].

Conclusion

We have reviewed the Minimum Volume Ellipsoid estimator of multivariate lo-
cation and scatter. An overview of the main properties of the MVE has been
given, including its affine equivariance, breakdown value and efficiency. The
finite-sample efficiency can easily be improved by reweighting the initial MVE
estimator. We discussed computation of the MVE using a resampling algorithm
based on (p + 1)-subsets. Several researchers have focused on the develop-
ment of efficient algorithms to calculate approximate MVE solutions. However,
it seems to us that there is still room for improvement. Moreover, many of the
already proposed improvements are not available in most statistical software
packages, in contrast with the standard resampling algorithm. The high break-
down value and low maxbias of the MVE estimators makes them very useful
for outlier detection in multivariate data sets, as illustrated in this paper. This
property is often used in regression to detect leverage points. An overview of
applications of MVE has been given as well as some extensions of MVE to
larger classes of robust estimators with useful properties. Note that an exten-
sive overview of high-breakdown robust multivariate methods has been given
in .

A challenging problem for future research is the development of robust estima-
tors of multivariate location and scatter for very high-dimensional data, espe-
cially when the sample size is small compared to the dimension. A discussion
on robustness in very high dimensions is provided in E].
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