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Abstract

The Minimum Volume Ellipsoid (MVE) estimator is based on the smallest-
volume ellipsoid that covers h of the n observations. It is an affine equivari-
ant, high-breakdown robust estimator of multivariate location and scatter. The
MVE can be computed by a resampling algorithm. Its low bias makes the MVE
very useful for outlier detection in multivariate data, often through the use of
MVE-based robust distances.

We review the basic MVE definition as well as some useful extensions such
as the one-step reweighted MVE. We discuss the main properties of the MVE
including its breakdown value, affine equivariance, and efficiency. We discuss
the basic resampling algorithm to calculate the MVE and illustrate its use on
two examples. An overview of applications is given, as well as some related
classes of robust estimators of multivariate location and scatter.

Keywords
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The Minimum Volume Ellipsoid (MVE), introduced by Rousseeuw [60, 61], was
the first high-breakdown robust estimator of multivariate location and scatter
that became regularly used in practice. The MVE became popular thanks to its
high resistance to outliers, which makes it a reliable tool for outlier detection,
and the widely available, user-friendly implementations of its computational al-
gorithm. We first review the definition of the MVE and illustrate its use on two
real data examples. We then give an overview of some important properties
of the MVE, which are affine equivariance, breakdown value and efficiency.
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We discuss the standard resampling algorithm to calculate MVE estimates in
practice and give references to alternative algorithms. We give an overview of
applications of the MVE estimators of location and scatter, which often involve
outlier detection in multivariate data. We also discuss some extensions of the
MVE, and related estimators.

Definition

We consider a multivariate data setXn = {x1, . . . ,xn} with n observationsxi =
(xi1, . . . , xip)

t; i = 1, . . . , n in p dimensions. Note that all vectors in this overview
are considered to be column vectors. We focus on estimating the location and scatter
of this multivariate data setXn. It is convenient to collect the observations of a data
setXn in ann× p data matrixX where each row corresponds to an observationxi of
Xn.

As an example, we consider the pulp fibre data [41] which is available in the R package
’robustbase’. This data set contains measurements of properties of pulp fibres and the
paper made from them. The final aim is to investigate relations between pulp fibre
properties and the resulting paper properties, see e.g. [66, 54]. Here we focus on the
pulp fibre properties. The dataset containsn = 62 measurements of the following
four pulp fibre characteristics: arithmetic fibre length, long fibre fraction, fine fibre
fraction, and zero span tensile strength. A standard approach to investigate whether
this multivariate data set forms a homogeneous group or contains aberrant points is to
calculate the Mahalanobis distances of the observations, given by

MD(xi) =

√

(xi − x̄n)tS
−1
n (xi − x̄n) i = 1, . . . , n (1)

wherex̄n is the sample mean andSn the sample covariance matrix of the data. It is
well-known that if the data follow a four-dimensional Gaussian distribution, then the
squared Mahalanobis distances approximately follow a chi-square distribution with 4
degrees of freedom. Therefore, we compare the Mahalanobis distances to the square
root of χ2

4,0.975, which is the97.5% quantile of the chi-square distribution with 4 de-
grees of freedom. This cutoff value is represented by the horizontal line in Figure 1a.

If the data indeed form a homogeneous cloud, then we do not expect to find any Ma-
halanobis distances far above the horizontal cutoff line. Figure 1a suggests that the
data are fairly homogeneous with at most two observations that deviate a little from
the data cloud formed by the other observations. However, itis well-known that the
sample mean and sample covariance matrix can be heavily influenced by outliers in a
multivariate data set (see e.g. [32, 65, 47]). As a result, even if there are outliers in
the data set, they can affect the sample mean and sample covariance matrix in such a
way that these outliers get small Mahalanobis distances MD(xi). Hence, outliers can
remain undetected in Figure 1a. This phenomenon is called the masking effect(see
e.g. [25, 6]). Because the dimension of the data set in this example is fairly low, we
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Figure 1: Distances of the observations in the pulp fibre dataset based on the four pulp
fibre properties: (a) Mahalanobis distances based on samplemean and sample covari-
ance matrix; (b) Robust distances based on MVE estimates of location and scatter. The

horizontal cutoff line in both panels is at
√

χ2
4,0.975 = 3.34.

can examine the data set further by investigating the pairwise scatterplots in Figure 2.
The ellipses shown in these scatterplots are the projections of the tolerance ellipsoid

E(x̄n,Sn, 0.975) = {x; MD(x) ≤
√

χ2
4,0.975} (2)

on the respective coordinate planes. Hence, in a homogeneous point cloud all observa-
tions should lie within or close to the boundaries of these ellipses. From the scatterplots
in Figure 2 we immediately see that although no observationslie far from the ellipses,
the data do not form a homogeneous cloud. Several observations deviate from the
shape of the majority of the points. These outliers have inflated the sample covariance
matrix and also affected its shape, which leads to the masking effect when investigating
Mahalanobis distances. Hence, to reliably estimate the center and scatter of this data
set, robust estimates of location and scatter are needed, such as the MVE estimator.

The Minimum Volume Ellipsoid estimator of multivariate location and scatter of a data
setXn is defined as the center and covariance structure of the ellipsoid with minimal
volume that covers at least h points ofXn, whereh can be chosen between[n/2] + 1
andn. Note that for anyx ∈ R, the value[x] denotes the largest integer smaller than
or equal tox. More formally, the MVE estimator is defined as follows.

Definition 1 The MVE location estimatortn and scatter estimatorCn minimize the
determinant ofC subject to the condition

#{i; (xi − t)t
C

−1(xi − t) ≤ c2} ≥ h, (3)
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Figure 2: Pairwise scatterplots of the four pulp fibre variables. The ellipses repre-
sent the97.5% tolerance ellipsoid for the observations, based on the sample mean and
sample covariance matrix.

where the minimization is over allt ∈ R
p and C ∈ PDS(p), the class of positive

definite symmetric matrices of sizep.

The valuec is a fixed chosen constant that determines the magnitude ofCn. Usually,
c is chosen such thatCn is a consistent estimator of the covariance matrix for data

coming from a multivariate normal distribution, i.e.c =
√

χ2
p,α whereα = h/n.

From its definition it is clear that the MVE estimates the center and scatter of theh
most concentrated observations in the data set. The value ofh can be chosen by the
user and determines the robustness of the resulting MVE estimates. A standard choice
is h = [(n + p + 1)/2] because it yields the maximal breakdown value as will be
explained in the next section, where we give an overview of the properties of the MVE
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estimator. The examples in this article all use this standard choice ofh.

Let us return to the example. Figure 1b shows the robust distances of the observations
based on the MVE estimates of location and scatter [65], given by

RD(xi) =

√

(xi − tn)tC
−1
n (xi − tn) i = 1, . . . , n. (4)

In Figure 1b we immediately see that the data set contains twofar outliers and seven
less extreme outliers. Figure 3 shows the pairwise scatterplots with the MVE-based
tolerance ellipsoid

E(tn,Cn, 0.975) = {x; RD(x) ≤
√

χ2
4,0.975}. (5)

These scatterplots illustrate that the MVE estimates of location and scatter indeed re-
flect the center and shape of the majority of the data.

As a second example we consider an engineering problem that was first analyzed
in [67]. Philips Mecoma (The Netherlands) produced diaphragm parts for TV sets.
These are thin metal plates, molded by a press. When starting anew production line,
p = 9 characteristics were measured forn = 677 parts. The aim was to gain insight in
the production process and to find out whether abnormalitieshave occurred and why.
We can again calculate distances of the observations and check for unexpectedly large
distances that indicate anomalies in the data. When classical Mahalanobis distances
are used, there is no indication of severe anomalies (see Figure 1 in [67]), but as be-
fore this may be the consequence of the masking effect. Therefore, we now examine
the MVE-based robust distances shown in Figure 4. This figuregives a much better
insight in the evolution of the production process. The robust distances immediately
reveal that the production line was unstable in the begining(first 100 observations) and
reveals a strongly deviating group of outliers, ranging from index 491 to index 565.
Both phenomena were investigated and interpreted by engineers at Philips.

Properties

Affine equivariance

A natural property of estimators in the multivariate location and scatter model is affine
equivariance, which means that the estimators behave properly under affine transfor-
mations of the data. That is, the estimatorsT andC of multivariate location and scatter
are affine equivariant iff for any data matrixX

T (XA + 1nv
t) = A

t
T (X) + v

C(XA + 1nv
t) = A

t
C(X)A (6)

for all nonsingularp×p matricesA andv ∈ R
p. The vector1n = (1, 1, . . . , 1)t ∈ R

n.
Affine equivariance of the estimators is important because it makes the analysis inde-
pendent of the measurement scale of the variables as well as translations or rotations
of the data.
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Figure 3: Pairwise scatterplots of the four pulp fibre variables. The ellipses represent
the 97.5% tolerance ellipsoid for the observations, based on the MVE estimates of
location and scatter.

The MVE estimatestn andCn of multivariate location and scatter are affine equiv-
ariant [61, 65]. This follows from the fact that the nonsingular affine transformation
x → A

t
x + v transforms an ellipsoid with centerm and scatter matrixS containing

at leasth points ofX into an ellipsoid with centerAt
m+v and scatter matrixAt

SA

which contains at leasth points ofXA + 1nvt. The volume of the transformed el-
lipsoid equals det(At

SA)1/2 = |det(A)|det(S)1/2. Since|det(A)| is a constant, the
MVE estimates ofXA + 1nvt are indeed given byAt

tn + v andA
t
CnA where

tn, Cn are the MVE estimates ofX.
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Figure 4: MVE-based robust distances of the observations inthe Philips data set. The

horizontal cutoff line is at
√

χ2
9,0.975 = 4.36.

Breakdown value

A useful measure of the global robustness of an estimator is its breakdown value. Intu-
itively, the breakdown value is the smallest percentage of contamination that can have
an arbitrarily large effect on the estimator (see e.g. [32, 65]). Results for the breakdown
value of the MVE estimators of location and scatter have beengiven in [61, 46, 24].

We discuss the finite-sample replacement breakdown value, introduced in [27]. For
a given data setXn, consider all possible contaminated datasetsX̃n obtained by re-
placinganym of the original observations byarbitrary points. Then the finite-sample
breakdown valueε∗n(T ,Xn) of a location estimatorT at the data setXn is the smallest
fractionm/n of outliers that can carry the estimate over all bounds:

ε∗n(T ,Xn) := min
m

{

m

n
; sup

X̃n

‖T (X̃n) − T (Xn)‖ = ∞

}

. (7)

Usuallyε∗n(T ,Xn) varies only slightly between samples and with the sample sizen, so
that we can denote its limiting value (forn → ∞) by ε∗(T ). Similarly, the breakdown
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value of a covariance matrix estimatorC is defined as the smallest fraction of con-
tamination that can either take the largest eigenvalueλ1(C) to infinity or the smallest
eigenvalueλp(C) to zero. For the MVE estimators we then have the following result.

Theorem 1 Consider a data setXn ⊂ R
p that is in general position, which means that

nop+1 points lie on a hyperplane. Then the MVE estimators(tn,Cn) of multivariate
location and scatter have finite-sample breakdown value

ε∗n(tn,Xn) = ε∗n(Cn,Xn) =
min(n − h + 1, h − p)

n
. (8)

It follows immediately that forn → ∞ the breakdown value of the MVE estimators
equalsε∗(T ) = ε∗(C) = min(α, 1 − α) whereα = h/n as before. From The-
orem 1 it can be shown that the MVE estimates have their highest breakdown value
ε∗n(tn,Xn) = ε∗n(Cn,Xn) = [(n − p + 1)/2]/n ≈ 50% whenh = [(n + p + 1)/2]
(see [46]). One can prove that this is the maximal breakdown value for all affine equiv-
ariant estimators of scatter [23] and location [62].

Efficiency

Davies [24] has shown that the MVE estimators of location andscatter converge at rate
n−1/3 to a non-Gaussian distribution. This low rate of convergence implies that the
asymptotic efficiency of the MVE estimators is0%. Also the finite-sample efficiency
of the MVE estimates is low (see e.g. [65]). Therefore, one usually computes the one-
step reweighted MVE estimates [68], given by

t
1
n =

(

n
∑

i=1

wixi

)/(

n
∑

i=1

wi

)

C
1
n =

(

n
∑

i=1

wi(xi − t
1
n)(xi − t

1
n)′

)/(

n
∑

i=1

wi

)

(9)

with

wi =

{

1 if RD(xi) ≤
√

χ2
p,0.975

0 otherwise

where RD(xi) are the robust distances of the observations based on the initial MVE
estimates of location and scatter as defined in (4). These one-step reweighted MVE
estimates are a weighted mean and covariance where regular observations are given
weight one, but outliers (according to the initial MVE solution) are given weight zero.
The one-step reweighted MVE estimators have the same breakdown value as the ini-
tial MVE estimators [46] but a much better finite-sample efficiency (see e.g. [65, 68]).
Note that many software implementations (such as the implementation in R that we
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used for the examples in this review) report the one-step reweighted MVE estimates by
default.

Note that it has been shown more recently that the one-step reweighted MVE estimates
do not improve on the convergence rate (and thus the0% asymptotic efficiency) of the
initial MVE estimator [45]. Therefore, as an alternative, aone-step M-estimator can
be calculated with the MVE estimates as initial solution [61, 44], which results in an
estimator with the standardn−1/2 convergence rate to a normal asymptotic distribution.
Another alternative to increase the efficiency of the MVE while retaining its robustness
properties has been proposed in [35].

Algorithm

From Definition 1 it follows that calculating the exact MVE for a data setXn would
require examining all(n

h) ellipsoids containingh observations ofXn to find the ellip-
soid with smallest volume. This number of ellipsoids is usually very large, hence
solving this combinatorial problem is only feasible in practice for small data sets
in low dimensions [16, 3]. Therefore, one resorts to approximate algorithms. The
standard MVE algorithm limits its search to ellipsoids determined by subsets con-
sisting of (p + 1) observations ofXn. For each subset of size(p + 1), indexed by
J = {i1, . . . , ip+1} ⊂ {1, . . . , n}, its sample mean and sample covariance matrix
given by

x̄J =
1

p + 1

p+1
∑

j=1

xij
and SJ =

1

p

p+1
∑

j=1

(xij
− x̄J )(xij

− x̄J)t (10)

are calculated. The covariance matrixSJ is nonsingular iff the(p + 1)-subset is in
general position. If the(p+1)-subset is not in general position, then observations from
Xn are added until a subset with nonsingular sample covariancematrix is obtained (or
a singular subsample of sizeh is obtained, in which case the final MVE solution is
singular). The ellipsoid determined bȳxJ andSJ is then inflated or deflated until it

contains exactlyh points: the scaling factor is given byD2
J/c2 with c =

√

χ2
p,α as

before and
D2

J = [(xi − x̄J)t(SJ)−1(xi − x̄J)]h:n, (11)

whereh : n indicates thehth smallest squared distance among the squared distances
of then observations inXn. The resulting ellipsoid then satisfies condition (3) and its
volume is proportional to

[det((D2
J/c2)SJ)]1/2 = (DJ/c)pdet(SJ)1/2. (12)

The algorithm then returns the solution with smallest objective function (12) among a
large number of(p + 1)-subsets.

It has been shown that this resampling algorithm keeps the affine equivariance property
of the MVE estimator. Moreover, if all( n

p+1) subsets of size(p + 1) are considered,
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then the solution of the algorithm has the same breakdown value as the exact MVE [63].
However, in practice the total number of(p + 1)-subsets is infeasibly large and only
a random collection is considered. Standard implementations of the MVE algorithm
usem = 3000 random(p + 1)-subsets by default, to keep the computation time rea-
sonable [64]. However, modern computers can handle many more (p + 1)-subsets in a
short period of time. For example, for the Philips data (n = 677, p = 9) that we used
as an example in this review, it takes less than 9 seconds to calculate the approximate
MVE solution based onm = 30000 random(p + 1)-subsamples when using the R
implementation on a standard contemporary PC.

Croux and Haesbroeck [17] proposed a modification of the standard resampling algo-
rithm for MVE by taking an average of the solutions corresponding to several ‘near-
optimal’ (p + 1)-subsets instead of considering only the solution corresponding to the
best(p + 1)-subset. They showed that their average solution maintainsthe breakdown
value and has a better finite-sample efficiency [17, 21]. The standard resampling al-
gorithm can also be improved by using location adjustment asproposed in [22]. An
alternative improvement of the standard resampling algorithm for MVE has been pro-
posed in [47, p. 198-199] by updating the center and scatter estimates correspond-
ing to the best(p + 1)-subset, using theh observations within its minimum vol-
ume ellipsoid. Several alternative algorithms to calculate the MVE have been pro-
posed [68, 33, 83, 84, 58, 56, 57, 34, 51].

The resampling algorithm to calculate the MVE estimators ofmultivariate location and
scatter has been implemented in several software packages.In standard S-PLUS the
MVE is available as the functioncov.mve. In R this function is part of the libraryMASS.
The improved resampling algorithm proposed in [47] has beenimplemented in the R li-
braryrrcov as the functionCovMve. The MVE is also available in SAS/IML as the call
MVE (since Version 6.12). Finally, the MVE is still available asa stand-alone FOR-
TRAN program that can be downloaded from the websitehttp://www.agoras.ua.ac.be/.

Applications

To reliably detect outliers in multivariate data it is not only important that the estimators
of location and scatter have a high breakdown value, but alsothe bias of the estimators
caused by a fraction of contamination below the breakdown value should be as small as
possible. The maximal possible asymptotic bias, calledmaxbias, of the MVE estimates
caused by a fixed fraction of contamination has been investigated in [20, 19] in the one-
dimensional case and in [1, 2] in the multivariate case. It turns out that the maxbias
of the MVE estimators is generally low and compares favorably to many other high-
breakdown estimators of multivariate location and scatter, such as the Stahel-Donoho
estimator [76, 26, 49] and the Minimum Covariance Determinant Estimator [60, 61].
The good bias behavior of the MVE makes the estimator suitable for outlier detection.
For this purpose, the MVE estimate of scatter is often multiplied by a finite-sample
correction factor such that the resulting robust distancesare appropriately scaled when
the observations come from a multivariate normal distribution (see [69] for details).
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Therefore, cutoff values of the usualχ2
p distribution can be used for the robust distances

based on the MVE.

MVE-based robust distances are often used to detect leverage points in linear regres-
sion [68]. Leverage points are outliers in the explanatory variables of the regression
model and have a high influence on the standard least squares regression (see e.g. [65]).
Detecting leverage points by examining the MVE-based robust distances of the ex-
planatory part of the observations was first proposed in the context of Least Median
of Squares (LMS) regression [60]. LMS or its generalization, the Least Quantile of
Squares (LQS) estimator [64], is a regression analog of the MVE. Consider a data set
Zn = {(x1, y1), . . . , (xn, yn)} and the multiple regression model

yi = θ1xi1 + · · · + θpxip + ǫi = x
t
iθ + ǫi; i = 1, . . . , n (13)

whereǫi are the errors centered at zero. The residuals corresponding to a fit θ are
denoted byri(θ) = yi − xt

iθ. The LQS looks for the fitθn that minimizes theh
smallest squared residualr2

i (θ)h:n whereh is usually chosen between[n/2]+1 andn.
From this definition it is clear that the LQS is determined by theh observations in the
data set that lie most concentrated around a hyperplane. Forthe choiceh = [n/2] + 1,
the LQS minimizes the median of the squared residuals which leads to the LMS. For
data sets in general position, the breakdown value of the LQSis given by

ε∗n(θn, Zn) =
min(n − h + 1, h − p + 1)

n
. (14)

It follows immediately that forn → ∞ the breakdown value of the LQS becomes
ε∗(θLQS) = min(α, 1 − α) whereα = h/n as before. Moreover, the LQS reaches
its maximal breakdown valueε∗n(θn, Zn) = ([(n − p)/2] + 1)/n ≈ 50% whenh =
[(n + p + 1)/2] (see [64] for details).

To detect regression outliers and leverage points simultaneously, a diagnostic plot was
introduced [68] which divides the observations into four categories:regular observa-
tions, vertical outliers, good leverage points,andbad leverage points. A vertical out-
lier is an observation whosexi is inlying but whose(xi, yi) doesn’t fit the linear trend
formed by the majority of the data. A leverage point is an observation with outlying
xi. It is called a good leverage point if its(xi, yi) fits the linear trend formed by the
majority of the data, and a bad leverage point when it doesn’t. Applications of LMS
with MVE-based detection of leverage points have been givenin several areas such as
chemometrics [12], management [73], and astronomy [55].

MVE-based robust distances were used in [75, 15, 28, 74] in the context of one-step
M-estimators with high breakdown value, in [52, 10] in the context of high-breakdown
rank regression, and in [8, 7] for high-breakdown estimators in heteroscedastic re-
gression models. The MVE can also be used for estimating location with dependent
data [30].

The MVE has also been used for outlier detection in many othermultivariate analysis
models such as principal component analysis [37, 11], discriminant analysis [13, 78],
factor analysis [14], multiplicative factor models [53], image segmentation [39], and
multivariate control charts [81, 82, 38]. Some textbooks also recommend using the
MVE for robust multivariate data analysis (see e.g. [29, p. 56-61]).
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Extensions

The MVE can be seen as a special case within the class of S-estimators [70]. Location-
scatter S-estimators [23, 65, 42] are defined as follows.

Definition 2 The S-estimators of multivariate location and scatter are the solution
(t0n,C0

n) which minimizes the determinant ofC under the constraint

1

n

n
∑

i=1

ρ0(

√

(xi − t)tC
−1(xi − t) ) ≤ b (15)

over all t ∈ R
p andC ∈ PDS(p).

Settingb = EF [ρ0(‖X)‖] assures consistency at the model distributionF , which
usually is taken to be multivariate normal. The choice of thediscontinuous func-
tion ρ0 = 1 − I(x ∈ [0, c]) andb = (n − h)/n yields the MVE estimators. It can
be shown that for suitable choices of continuously differentiable loss functionsρ0, S-
estimators have a high breakdown value and are asymptotically normal [23, 42]. A
standard choice for the loss functionρ0 is Tukey’s biweightρ-function, given by

ρ(x) =







x2

2 − x4

2c2 + x6

6c4 if |x| ≤ c

c2

6 if |x| ≥ c.
(16)

The constantc determines the breakdown value which is given byε∗ = 6b/c2, so S-
estimators can be tuned to have high breakdown value. S-estimators have a positive
efficiency at the multivariate normal distribution, but there exists a trade-off between
efficiency and breakdown value. The efficiency of high-breakdown S-estimators can
still be quite low, especially in lower dimensions, which makes them less suitable for
inference. Note that S-estimators of scatter can also be based on differences of the
observations, which yields a higher efficiency [59].

MM-estimators are an extension of S-estimators that have high efficiency at the mul-
tivariate normal distribution and at the same time a high breakdown value [77, 71].
Location-scatter MM-estimators are defined as follows.

Definition 3 let (t0n,C0
n) be multivariate S-estimators as given by Definition 2. De-

note sn := det(C0
n)1/(2p). Then the multivariate MM-estimators for location and

shape(t1n,V 1
n) minimize

1

n

n
∑

i=1

ρ1

(

[(xi − t)t
G

−1(xi − t)]
1

2 /sn

)

among allt ∈ R
p andG ∈ PDS(p) for which det(G)=1. The MM-estimator for the

scatter matrix isC1
n := s2

nV
1
n.
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MM-estimators are thus two-step estimators. In the first step a robust high-breakdown
estimatorsn of the scale of the distribution is obtained. This preliminary estimate
of scale is then used to calculate M-estimators of locationt

1
n and shapeV 1

n. It can
be shown that the loss functionρ0 used to calculate the initial S-estimator determines
the breakdown value of the estimatorst

1
n,V 1

n, andC
1
n while the loss functionρ1 can

be tuned to obtain a high efficiency, e.g.95% efficiency for the location estimator
t
1
n when the data come from a multivariate normal distribution (see [77, 71] for de-

tails). Related classes of multivariate location and scatter estimators that can attain
high breakdown value and high efficiency at the same time are the CM-estimators [40]
andτ -estimators [43].

Note that although these highly efficient estimators also attain a high breakdown value,
there is a robustness cost in terms of the maxbias of these estimators for fractions of
contamination below the breakdown value [50]. The higher bias of these estimators
makes them somewhat less suitable when the main goal is outlier detection. On the
other hand, their high efficiency makes them more appropriate for inference purposes.
Inference can be derived from the asymptotic normal distribution of the estimators, or
the bootstrap approach can be used. However, note that a standard application of the
bootstrap to robust estimators poses two problems. First, the high computation time of
robust estimators causes practical limitations because recalculating robust estimates a
large number of times becomes very time consuming. Second, the fraction of outliers
varies among bootstrap samples. Therefore, the estimator may break down in some
bootstrap samples even though the fraction of outliers in the original sample does not
exceed the breakdown value of the estimator. To solve both problems simultaneously,
we can calculate a one-step approximation for the robust estimate in each bootstrap
sample, starting from the solution in the original sample. It has been shown that when
a linear correction is used, this fast bootstrap procedure is robust and consistent in
the sense that the bootstrap distribution converges weaklyto the distribution of the
estimators (see [71, 72, 80] for details).

The MVE estimator of multivariate location and scatter discussed here is also re-
lated to the Minimum Covariance Determinant Estimator (MCD) that was introduced
in [60, 61]. The MCD looks for theh observations whose sample covariance matrix has
the smallest possible determinant. The MCD estimates of location and scatter are then
the sample mean and sample covariance matrix (multiplied bya consistency factor) of
that optimal subset ofh observations where, as before,h is usually chosen between
[n/2]+1 andn. The MCD estimators of location and scatter have the same breakdown
value as the MVE estimators (see e.g. [4]). The MCD has the additional advantage
that it converges to a normal distribution at the regularn−1/2 rate [9]. Its efficiency
is generally low, but can be much increased by one-step reweighting [67, 18, 45]. For
many years, the MVE was preferred over the MCD because of its slightly better com-
putational efficiency when using a resampling algorithm. However, in 1999 a much
faster MCD algorithm was developed [67] and since then many users prefer the MCD
as robust estimator of location and scatter.

Projection estimators of multivariate location and scatter can combine a high break-
down value with a small maxbias that does not depend on the dimensionp [48, 79, 1,
85, 87, 88, 86]. However, these estimators are substantially harder to compute, espe-
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cially in higher dimensions. Finally, we note that the MVE has also been extended to a
class of maximum trimmed likelihood estimators [31].

Conclusion

We have reviewed the Minimum Volume Ellipsoid estimator of multivariate lo-
cation and scatter. An overview of the main properties of the MVE has been
given, including its affine equivariance, breakdown value and efficiency. The
finite-sample efficiency can easily be improved by reweighting the initial MVE
estimator. We discussed computation of the MVE using a resampling algorithm
based on (p + 1)-subsets. Several researchers have focused on the develop-
ment of efficient algorithms to calculate approximate MVE solutions. However,
it seems to us that there is still room for improvement. Moreover, many of the
already proposed improvements are not available in most statistical software
packages, in contrast with the standard resampling algorithm. The high break-
down value and low maxbias of the MVE estimators makes them very useful
for outlier detection in multivariate data sets, as illustrated in this paper. This
property is often used in regression to detect leverage points. An overview of
applications of MVE has been given as well as some extensions of MVE to
larger classes of robust estimators with useful properties. Note that an exten-
sive overview of high-breakdown robust multivariate methods has been given
in [36].

A challenging problem for future research is the development of robust estima-
tors of multivariate location and scatter for very high-dimensional data, espe-
cially when the sample size is small compared to the dimension. A discussion
on robustness in very high dimensions is provided in [5].
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