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Abstract

Environmental considerations and corresponding legislation cause a shift from waste management to ma-

terials management, requiring efficient collection of these flows. This paper develops a model for building

tactical waste collection schemes in which a set of capacitated vehicles visits a set of customers during a given

time period. Each vehicle must visit the disposal facility to discharge the waste after each customer visit.

This is motivated by the fact that the waste of each customer has to be weighed at the disposal facility. The

goal is to find a set of routes for each vehicle that satisfy both the demand and the frequency constraints

and minimize the total cost. Since a state-of-the-art solver could not find a solution with a reasonable gap

within an acceptable time limit, a column generation and a mixed integer programming based heuristic are

proposed. While the mixed integer programming based heuristic outperforms the column generation heuris-

tic in terms of solution quality, the lower bound provided by column generation allows to prove the small

optimality gaps of the solutions obtained. Moreover, by applying both heuristics on instances derived from

real-life data, they proved to be capable of finding good quality solutions in small computation times.
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1. Introduction

Due to environmental awareness and corresponding legislation (see, e.g., the EU circular economy strategy

(European Commission, 2017)), attention is shifting from waste management to materials management. The

“EU revised legislative proposals on waste” set ambitious goals: a common EU target of 65 % and 75 % for

recycling municipal and packaging waste respectively by 2030. The focus on separate waste and material

flows will have an undeniable impact on efficient collection schemes.

This research was inspired by a real-life problem in the context of collecting municipal solid waste, and

hence a customer can be seen as a neighbourhood (sequence of streets), or even an entire municipal district,

borough, municipality or suburb. The model is generic, though, and is also applicable to other contexts; e.g.,

collection at companies or waste recycling centres which have several containers installed and where collection

time thus depends on the amount of waste. Strategic decisions like the location of vehicle depot and disposal

facility are assumed to be fixed. Also operational decisions like vehicle routing inside a neighbourhood

(customer) fall outside the scope of this paper.

The focus of this paper is thus on the design of a tactical collection scheme. The goal of a tactical collection

scheme is to assign to each vehicle for each day a set of customers to be visited. The objective is to minimize

the total cost of this allocation. A unique constraint is that each vehicle must visit the disposal facility

after each customer visit before continuing collection at other customers. The reason for this is that, due to

payment issues, the collected waste of each customer has to be weighed separately at the disposal facility

(and weighing is not possible during collection as vehicles do not have a weighing device).

Once the tactical schedule has been developed, each municipality can be divided in as many neighborhoods

(zones) as there are collection days in the schedule for the given municipality. An example is given in the

operational collection scheme in Figure 1. Each zone (green and blue) corresponds to a group of streets such

that the (estimated) total waste collected in these streets is equal to the waste that needs to be collected at

the given municipality on that specific day in the tactical schedule. In order to ensure that each municipality

can deal with this grouping problem, and to avoid that the number of collection days for a municipality is

impractically large, the number of zones needs to be kept sufficiently small. Likewise, in the context of waste

collection at companies or waste recycling centres it is reasonable to assume that collection is performed on

a limited number of days in the planning horizon. To this aim, we impose an upper bound on the number

of visits to a municipality in the given planning horizon.

In conclusion, the problem studied in this paper differs from a traditional vehicle routing problem (VRP)

in (a) the focus on tactical decision-making excluding the routing decision, and (b) the upper limit on the

number of visits to each customer, whereas traditional service level constraints normally impose a lower limit

on the number of visits per customer.

The main contributions of this paper are as follows:

• we model a real-life tactical waste collection problem;

• we develop a basic mixed integer programming (MIP) model;

• we propose two different heuristic approaches: a column generation (CG) approach and a MIP-based

(2 trip) heuristic;

• based on the CG approach, we propose two different ways of calculating strong lower bounds.
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Figure 1: Example of a tactical and an operational collection scheme. Design of the latter will not be considered in this paper.

The remainder of this text is organized as follows. Section 2 discusses related literature, while Section 3

states the problem. Section 4 presents the column generation and MIP-based heuristic solution approaches,

which is followed by a computational experiment and analysis of results in Section 5. Finally, Section 6

concludes this paper.

2. Literature review

Beliën et al. (2014) classify the literature on waste collection problems into different categories such as the

scope, objective, constraints and solution method. One conclusion is that heuristic approaches are more

common than exact approaches. Ghiani et al. (2014) provide an overview of the literature on strategic and

tactical issues in operations research models applied to solid waste management. The strategic decisions

comprise the choices on type, number and location of facilities (Mansini & Speranza, 1998) and global waste

flows towards them (Ghiani et al., 2014), while the tactical decisions concern vehicle fleet design, crew deci-

sions and solid waste collection zone definition (also known as sectoring or districting).

The literature on tactical models appears to be scarce. le Blanc et al. (2006) address tactical decisions related

to end-of-life product flows, while Gomes Salema et al. (2009) study closed loop supply chain design. The

latter develop a location-allocation model for forward and reverse flows over a planning horizon. However,

their focus is on a strategic-tactical level instead of the tactical level considered in our paper. Ignall et al.

(1972) model the assignment of crews to shifts and days in a way that costs and uncollected waste are

balanced. A planning horizon for a single district is considered. The contribution of Mansini & Speranza

(1998) is to evaluate separate waste collection at a tactical level. The decision variables are the amounts

of waste to collect on each day of the planning horizon. Their objective is to minimize the peak of waste,

i.e., the maximum amount that has to be collected on a given day. List et al. (2006) focus on fleet sizing

and equipment acquisition for disposition of radioactive wastes. In a two-phase robust optimization model,

they decide on the fleet size and equipment acquisition (first stage) and eventual waste flows and truck

use (second stage). Ghiani et al. (2013) consider a tactical planning problem in the waste management

sector in which vehicles and staff have to be allocated to tasks over a given planning horizon. Bish (2011)
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proposes a model designed for bus-based evacuation. The problem differs substantially from a traditional

VRP, and resembles planning at a tactical level. A heuristic algorithm is developed to solve the problem.

Also Hernandez et al. (2017) study a tactical problem, of which the solutions could be used as a blueprint for

a posteriori operational planning. In their paper, a variant to the periodic vehicle routing problem (PVRP)

is solved using two heuristics.

While these papers focus solely on the tactical level, other studies have integrated tactical with operational

decision levels. Angelelli & Speranza (2002) model three waste-collection systems to estimate operation costs.

A solution of their model consists of a set of routes, assigned to a vehicle on a certain day of the planning

horizon. Every collection point has to be visited according to a feasible collection scheme and at most one

time per day. le Blanc et al. (2006) optimize the collection of end-of-life vehicles using a VRP in which only

two customers can be visited in one tour. The problem is solved using a two-step heuristic. Andrea Arribas

et al. (2010) propose an efficient design for solid waste collection in which the fleet composition and dis-

tricting decisions are tackled using linear integer programming models and the routing decisions are handled

using a tabu search heuristic. Cortinhal et al. (2016) present a hill climbing and a tabu search heuristic

to simultaneously solve the districting problem, with the objective of balanced and connected sectors, and

the trip construction problem, with the objective of minimizing total traveling time. Similar objectives of

balancing workload at depots and minimizing the route distances are considered by Ramos & Oliveira (2011).

Motivated by a real-life commercial waste collection problem, Kim et al. (2006) incorporate time windows

in their problem setting. They propose an extended insertion algorithm and a clustering-based algorithm

for tackling the districting problem, after which a single vehicle trip is built for each cluster. The districting

problem’s objective is to maximize workload balance between the routes and proximity among the stops of

the same route, while the vehicle routing minimizes total traveling time. Constantino et al. (2015) propose

an exact method, based on a model that simultaneously designs sectors and builds routes, and a heuristic

solution method which sequentially solves the two problems in a real-world waste collection context. Their

districting objective is to minimize overlapping of vehicle routes, measured in terms of the number of nodes

that are common to the tasks of different routes. The resulting districts exhibit ‘nice’ characteristics, i.e.

maximal connectivity and compactness, for implementation in practice. Mourão et al. (2009) develop two

two-phase heuristics and one best insertion heuristic to integrate district definition and trip construction in

urban waste collection networks. The heuristics promote workload balance, compactness, and contiguity.

Similar to our problem, sectors are limited in workload time and the objective of the trip construction phase

is to minimize total duration of trips. The authors conclude that none of the heuristics is dominant if both

traveling distance and sector quality measures are considered.

The operational level concerns routing and scheduling problems (Mansini & Speranza, 1998). The related

literature on waste collection problems addresses many variants of the PVRP. In the PVRP with Balance

Constraints (PVRP-BC) one wants to maintain a balanced workload among the drivers (Jang et al., 2006).

A vehicle fleet based across a number of depots leads to the formulation of the Multi-Depot PVRP (MD-

PVRP) (Baldacci et al., 2011), where periodic deliveries are made using this fleet. Another variant is the

PVRP with Service Choice (PVRP-SC), introduced by Francis et al. (2006), in which the visit frequency is

considered as variable within the model. This decision is mostly subject to a hard constraint that ensures

an exact or a minimal number of visits. A recent overview on the research of PVRP and more of its variants

can be found in the review by Campbell & Wilson (2014), or in the work by Toth et al. (2014).
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Our study differs from these integrated or operational approaches in the fact that our collection trips do not

explicitly involve node or arc sequencing due to the constraint that after every node visit the collected waste

needs to be disposed at the drop-off location. Secondly, in contrast to studies mentioned above, we do not

assume that one district will be handled by one vehicle on a single day. Contrarily, our problem involves the

construction of a cyclic timetable that schedules the node visits subject to a maximum number of visits per

node constraint. In the context of municipal waste collection, the output of our approach, i.e. the number

of vehicles required, the scheduled visits to each municipality and the amounts to be collected during each

visit, will determine the input for the districting problem in which streets are grouped into districts such that

the amount of waste to be collected matches the amount prescribed in the collection schedule obtained. Our

problem thus focuses on the tactical level determining a fleet composition and a cyclic collection timetable

taking into account the required time and vehicle capacities for the collection task.

3. Problem statement

The problem consists of the design of a tactical collection scheme for a certain type of municipal solid waste.

Such a collection scheme is a cyclic schedule that prescribes the amount of waste to collect per day at each

municipality. The model developed in this paper is only applicable to materials that can be let for collection

for a certain period (number of days) which is the case for paper and carton, and plastic, metal and drink

cartons (PMD), but for instance not for dangerous waste that needs to be collected the same day as it is

generated. Additionally, our model only holds for settings in which it must be allowed to pick-up only part of

the waste of a given municipality at a certain day. Note that this does not mean that for a given municipality

a part of the waste, that is put outside for collection, is not collected the same day. In our setting, each

household will only have one fixed, periodic day on which waste is collected. To clarify this: if the tactical

collection scheme prescribes that, for instance, 30% of the total waste of municipality x, is collected on

Tuesday and 70% on Thursday, it means that a total number of streets representing 30% of municipality x’s

waste is collected on Tuesday, while the remaining 70% of the streets (households) are served on Thursday.

Note that each household in municipality x will have only one fixed day (= periodic pick-up day) in the

cycle (in which the cycle is one or two weeks). Starting from a tactical schedule, operational schedules could

be built (see Figure 1). An operational waste collection scheme defines, within a customer area, the vehicle

routes in much more detail (e.g., on street level).

Efficient tactical collection schemes can substantially decrease the costs, which comprise vehicle costs and

collection costs (or route costs). The vehicle costs can be minimized by using a minimal number of vehicles.

The collection costs are driven by the durations of the different vehicle routes, which impact the fuel costs

and person-hour costs, respectively.

The following constraints are considered:

1. vehicle capacity restrictions: the amount of waste collected could never exceed a vehicle’s capacity. If

capacity is reached, a trip to the disposal facility should be performed.

2. an upper bound on the number of working hours: since a daily schedule of a vehicle should be performed

by a single crew, there is a limit on the number of working hours. The working hours depend on the

travel times and on the amounts of waste collected at the customers.

3. an upper bound on the maximal number of different collection days: during the planning horizon, there

is a maximum limit on the number of days on which collection can take place at each customer. The

reason for this is explained in Section 1.

5



4. covering restrictions: the demand constraints state that the customer’s demand should be satisfied,

i.e., all waste of each customer should be collected in the given cycle period.

Input data consist of a set of customers, each with a location and a given demand (waste to be collected),

a depot location and a disposal facility location. Contrary to an operational collection scheme, vehicles

cannot travel between customers (see Section 1). However, a vehicle can make several trips per day and

a distinction is made between type 1 and type 2 trips. In a type 1 trip the vehicle starts at the depot to

visit a customer. When the waste is collected, the vehicle drives to the disposal facility. In a type 2 trip, a

vehicle starts at the disposal facility, visits a customer to collect waste, and then drives back to the disposal

facility. The reason for this distinction between type 1 and type 2 trips is that they have a different travel

time and hence a different cost. The costs for both trips are equal to a fixed cost per hour (which covers

both expenses for fuel and personnel) multiplied by the travel time of the respective trip. At the end of the

day, the vehicle travels from the disposal facility back to the depot. The required travel time of this end of

the day trip is added to the traveling duration (and hence cost) of a type 1 trip. Note that this is possible

because we assume only one disposal facility and one depot. Hence, each type 1 trip automatically leads to

a journey from the disposal facility to the vehicle depot at the end of the day (directly or after 1 or more

type 2 trips). When combining one type 1 trip with a number of type 2 trips, one can construct a route. A

route is a combination of trips and hence prescribes which customers a vehicle has to visit on a particular day.

Figure 1 depicts an example of two vehicles each performing two routes (one per day). The first (green)

vehicle starts the first day with a visit to customer A and delivers at the disposal facility which is (the first

part of) a type 1 trip. Afterwards, it collects at customer B before returning to the disposal facility (type 2

trip). Finally, it visits customer C (type 2 trip) before it returns to the depot (final part of type 1 trip). On

the first day the second (blue) vehicle only performs a type 1 trip to customer E, unloads at the disposal

facility and returns to the vehicle depot. On the second day the green vehicle only performs a type 1 trip to

customer F, whereas the blue vehicle visits D with a type 1 trip and B with a type 2 trip.

We assume identical vehicles and days as well as symmetric travel times of the type 2 trips, i.e., back and

forth are assumed identical. Although workload balancing among the different vehicles is not incorporated,

it is still possible to strive for balanced workloads when assigning crews to vehicles at a later stage.

The problem under study can be formulated as a MIP, with sets and indices:

m ∈M customers

d ∈ D days in the planning horizon

v ∈ V vehicles

The parameters are [units of measurement]:
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tdepm travel time between vehicle depot and customer m [hour]

tdispm travel time between disposal facility and customer m [hour]

tdisp,dep travel time between disposal facility and vehicle depot [hour]

tunl time of unloading at disposal facility, independent of the amounts collected [hour]

t1m time for a type 1 trip to customer m (exclusive of the collection time at the customer): t1m =

tdepm + tdispm + tdisp,dep + tunl [hour]

t2m time for a type 2 trip to customer m (exclusive of the collection time at the customer): t2m =

2 · tdispm + tunl [hour]

Qm demand to be collected at customer m, assumed > 0 [tonne]

sm collection speed at customer m [hour/tonne]

ch travel/unloading cost per hour (including wages, fuel, etc.) [euro/hour]

cveh depreciation cost of a vehicle for the considered period (purchase, maintenance, assurance, etc.)

[euro]

T maximal number of hours available per day per vehicle [hour]

L maximal load of a vehicle [tonne]

N “Big M” (note that M itself is already in use) [-]

Wm maximal number of visits to customer m in the given planning horizon [-]

The decision variables are:

y1
vmd = 1 if vehicle v is used to serve customer m on day d on a type 1 trip, 0 otherwise

y2
vmd number of type 2 trips by vehicle v to customer m on day d

x1
vmd total load collected by vehicle v at customer m on day d on type 1 trip [tonne]

x2
vmd total load collected by vehicle v at customer m on day d on all type 2 trips [tonne]

z = total number of vehicles needed

wmd = 1 if customer m is visited on day d, 0 otherwise

The tactical waste collection problem (TWCP) can be formulated as follows:

(F1) minimize cvehz +
∑
v∈V

∑
m∈M

∑
d∈D

(
ch(t1my

1
vmd + t2my

2
vmd)

)
(1)
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subject to

x1
vmd ≤ L · y1

vmd v ∈ V,m ∈M,d ∈ D (2)

x2
vmd ≤ L · y2

vmd v ∈ V,m ∈M,d ∈ D (3)∑
v∈V

∑
d∈D

(x1
vmd + x2

vmd) = Qm m ∈M (4)∑
m∈M

(sm(x1
vmd + x2

vmd) + t1my
1
vmd + t2my

2
vmd) ≤ T v ∈ V, d ∈ D (5)∑

m∈M

y1
vmd ≤ 1 v ∈ V, d ∈ D (6)

N
∑

m′∈M

y1
vm′d ≥ y2

vmd v ∈ V,m ∈M,d ∈ D (7)

z ≥
∑
v∈V

∑
m∈M

y1
vmd d ∈ D (8)

wmd ≥ y1
vmd v ∈ V,m ∈M,d ∈ D (9)

Nwmd ≥ y2
vmd v ∈ V,m ∈M,d ∈ D (10)∑

d∈D

wmd ≤Wm m ∈M (11)

y1
vmd ∈ {0, 1} v ∈ V,m ∈M,d ∈ D (12)

y2
vmd ∈ {0, 1, 2, . . .} v ∈ V,m ∈M,d ∈ D (13)

x1
vmd, x

2
vmd ≥ 0 v ∈ V,m ∈M,d ∈ D (14)

wmd ∈ {0, 1} m ∈M,d ∈ D (15)

z ∈ {0, 1, 2, . . .} (16)

Objective function (1) minimizes the sum of the vehicle depreciation costs and the total route costs, incurred

by performing type 1 and type 2 trips. Constraints (2) and constraints (3) model the vehicle capacity

restrictions during type 1 and type 2 trips, respectively. Constraints (4) make sure that the demand of each

customer is met. Constraints (5) restrict the number of working hours per vehicle per day. Constraint set

(6) ensures that each vehicle can perform at most one type 1 trip per day. Constraint set (7) makes sure

that type 2 trips of vehicle v on day d can only be performed if there is a type 1 trip for vehicle v on day

d. This constraint implies that every vehicle must start and end at the depot. Constraint (8) calculates z

to equal the maximal number of type 1 trips per day. This is the number of vehicles that will be required.

Constraint sets (9)-(10) ensure that if a vehicle visits customer m on day d the corresponding wmd variable

is forced to have value 1. Subsequently, constraints (11) together with constraints (9)-(10) ensure that a

customer can be visited at most Wm times during the planning horizon. Finally, constraints (12)-(16) define

the domains of the decision variables. To guarantee that a feasible solution will be found, the number of

available vehicles |V | should be large enough. We make |V | equal to the minimal number of vehicles needed

if all collection would be performed using only type 1 trips. This fleet size is found by a small IP given in

Appendix A.

Proposition 1. TWCP is strongly NP-hard.

Proof: Our proof is based on reduction from the bin packing decision problem, which is known to be strongly

NP-complete. Consider an instance in which all vehicles are identical and with the following parameters: a
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one-day planning horizon (index d is dropped), the capacity of a vehicle is infinite, cveh = 1 and all other

costs are equal to zero. All vehicles have the same properties (homogeneous fleet) and the maximal time

available for each vehicle on the considered day equals T . Given a planning horizon of one day, the constraint

on the maximally allowed number of visits per customer has become redundant. Furthermore, we assume

the vehicle depot and disposal facility are on the same location, hence the travelling times for type 1 and

type 2 trips are equal and have values between 0 and T : 0 < t1m = t2m < T for all m. Moreover, the sum

of all travelling times must equal
∑

m t1m =
∑

m t2m = Z · T in which Z is an integer > 1. The required

collection times at the customers to collect all the waste are zero, i.e., sm = 0 for all m. In the TWCP

decision problem we need to determine whether there exists a feasible allocation of customers to vehicles

such that all the waste is collected and the total cost is at most Z, i.e., the number of vehicles used is Z.

Therefore, the customers need to be divided into Z subsets. Each such subset consists of customers that

will be visited by a certain vehicle such that the total travel time of the vehicle does not exceed T . This

is equivalent to the bin packing decision problem in which each bin has capacity T . It can be verified that

the minimum number of bins equals Z if and only if the minimal cost of this TWCP equals Z. Hence, bin

packing is a special case of TWCP and TWCP is strongly NP-hard. �

4. Solution approach

Since we consider identical vehicles and days, (F1) can be extended by symmetry breaking constraints

(SBCs) to strengthen the Linear Programming (LP) relaxation. We experimented with adding various

classes of SBCs to reduce the symmetry in vehicle-customer combinations and in customer-day allocations.

We also added valid inequalities that enforce that a type 1 trip is performed to a customer that is relatively

closer to the depot than to the disposal facility, as compared to other customers visited by vehicle v on

day d on type 2 trips. Unfortunately, applying MIP model (F1) both with and without symmetry breaking

constraints and valid inequalities on two realistic problem instances using state-of-the-art software (IBM

ILOG CPLEX Optimization Studio, Version 12.6) could not solve the problems to optimality or even did

not result into a solution with an acceptable gap within a reasonable time limit. For more details on these

SBCs and other valid inequalities, including computational results, we refer to Van Engeland (2019). In

what follows, we develop a decomposition approach solved by column generation (Section 4.1) as well as a

MIP-based heuristic (Section 4.4) which are successful in finding high-quality solutions within reasonably

small computational efforts.

4.1. Heuristic column generation approach

Column generation (CG) is an iterative approach to solve linear programs for which the number of variables

is so large that it is intractable to consider them all explicitly. Based on the premise that only a small

number of variables will have a positive value in an optimal solution anyway, only a small subset of variables

is considered explicitly. To apply CG, the original problem is split into two problems: a master problem and

a subproblem. The master problem is a reformulation of the original problem in which some constraints are

omitted and the original variables are aggregated in subsets that form new decision variables (or columns).

Through these columns the omitted constraints are implicitly satisfied. After solving the restricted master

LP, the optimal dual values can be used to find one or more new columns to be added to the master LP.

The latter is done through solving a subproblem, called the pricing problem, of which the objective is to find

a new column with (most) negative reduced cost (if the master LP’s objective is minimization). Dantzig-

Wolfe decomposition is a popular technique to decompose the original problem into a master-subproblem
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decomposition. For more information on CG and Dantzig-Wolfe decomposition we refer to Desaulniers et al.

(2005) and Lübbecke (2011). CG is a popular solution method for the VRP and its variants (Costa et al.,

2019). For instance, a vehicle and crew scheduling problem is solved by Bartodziej et al. (2009) using a CG

approach and a local search meta-heuristic.

In formulation (F1), most of the constraints are formulated for vehicle-day combinations. With Dantzig-

Wolfe decomposition on the variables with indices v and d, these constraints can already be satisfied outside

the master MIP, when generating the columns. Each column thus represents a feasible one-day schedule for a

vehicle, which will be called a ‘route’ and consists of exactly one type 1 and a certain number of type 2 trips.

These columns satisfy constraints (2)-(3), (5)-(7) and (9)-(10). The demand constraints (4), the constraints

determining the number of vehicles needed (8) and the constraints limiting the number of times a customer

is visited (11) remain in the master problem. Since all vehicles are identical, it suffices to generate columns

for a day regardless of the vehicle. Hence, a route defines a combination of customers for a particular day.

The following extra notation is needed for the column generation approach:

k ∈ K, K̂ routes (columns). Note that K̂ denotes the restricted column set.

This set contains all start columns (see Section 4.2) and all routes generated so far.

It is a subset of the set of all possible routes: K̂ ⊂ K.

pk total cost for route k

akm total load (tonnes) collected at customer m in route k

gkmd =1 if customer m is visited on day d in route k; 0 otherwise

hkd =1 if route k is a day d route; 0 otherwise

rvk variable indicating if route k is selected for a vehicle v

We then obtain the restricted master of the column generation model (M1).

(M1) minimize cveh · z +
∑
v∈V

∑
k∈K̂

pk · rvk (17)

10



subject to

[λm]
∑
v∈V

∑
k∈K̂

akm · rvk ≥ Qm m ∈M (18)

[γmd]
∑
v∈V

∑
k∈K̂

gkmd · rvk ≤ N · wmd m ∈M,d ∈ D (19)

∑
d∈D

wmd ≤Wm m ∈M (20)

[τvd]
∑
k∈K̂

hkd · rvk ≤ 1 v ∈ V, d ∈ D (21)

[ηd]
∑
v∈V

∑
k∈K̂

hkd · rvk ≤ z d ∈ D (22)

0 ≤ rvk ≤ 1 v ∈ V, k ∈ K̂ (23)

0 ≤ wmd ≤ 1 m ∈M,d ∈ D (24)

0 ≤ z (25)

Objective (17) minimizes the vehicle and route costs. Constraint set (18) models the demand constraints.

Constraints (19) relate the wmd and route variables. Constraint set (20) imposes the maximal number of

visits per customer. Additionally, a vehicle can only perform one route per day, as is ensured by constraints

(21). Constraints (22) force z to equal the minimal number of vehicles needed. Finally, constraints (23)-(25)

define the domains of the decision variables. The duals associated with constraints (18), (19), (21) and (22)

are given between square brackets. These duals serve as input for the pricing problem (P1).

The parameters pk, akm, gkmd and hkd obtain their values from the solution of the subproblem (P1), in

which the following decision variables are used:

gmd =1 if customer m is visited on day d; 0 otherwise

hd =1 if route is used on day d; 0 otherwise

y1
m =1 if type 1 trip is to customer m; 0 otherwise

y2
m number of type 2 trips to customer m

q2
m = 1 if customer m is visited by at least one type 2 trip, 0 otherwise [-]

x1
m total load of type 1 trips to customer m [tonne]

x2
m total load of type 2 trips to customer m [tonne]

Moreover, ch · t1m and ch · t2m are represented by c1m and c2m, respectively. The subproblem (P1) to price out

a new column is as follows:

(P1) minimize
∑
m∈M

(c1m · y1
m + c2m · y2

m)−
∑
m∈M

λm · (x1
m + x2

m)

−
∑
m∈M

∑
d∈D

γmd · gmd −
∑
v∈V

∑
d∈D

τvd · hd −
∑
d∈D

ηd · hd (26)
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subject to

x1
m ≤ L · y1

m m ∈M (27)

x2
m ≤ L · y2

m m ∈M (28)

x1
m + x2

m ≤ Qm m ∈M (29)∑
m∈M

(
sm · (x1

m + x2
m) + t1m · y1

m + t2m · y2
m

)
≤ T (30)∑

m∈M

y1
m = 1 (31)∑

d∈D

hd = 1 (32)

gmd + 1 ≥ y1
m + hd m ∈M,d ∈ D (33)

N · gmd + 1 ≥ y2
m + hd m ∈M,d ∈ D (34)

gmd ≤ hd m ∈M,d ∈ D (35)

gmd ≤ y1
m + y2

m m ∈M,d ∈ D (36)

(tdepm − tdispm )−N · (1− y1
m) ≤ (tdepm′ − tdispm′ ) +N · (1− q2

m′) m,m′ ∈M (37)

N · q2
m ≥ y2

m m ∈M (38)

q2
m ≤ y2

m m ∈M (39)

y1
m ∈ {0, 1} m ∈M (40)

y2
m ∈ {0, 1, 2, . . .} m ∈M (41)

q2
m ∈ {0, 1} m ∈M (42)

x1
m, x

2
m ≥ 0 m ∈M (43)

gmd ∈ {0, 1} m ∈M,d ∈ D (44)

hd ∈ {0, 1} d ∈ D (45)

The objective (26) minimizes the reduced cost. It consists of the real monetary cost of a route, corrected

by the terms with the master’s dual variables λm, γmd and ηd. The first two sets of constraints (27)-(28)

ensure that the amount collected during a trip does not exceed the capacity of a vehicle, while constraints

(29) make sure that collected amounts do not exceed a customer’s demand. Constraint (30) restricts the

duration of the route. Constraints (31) and (32) impose that the route contains exactly one type 1 trip and

is designed for one specific day. Additionally, constraints (33)-(36) enforce that if a customer m is visited

on day d by this route, its corresponding gmd-variable is forced to 1. Constraints (37) make sure that the

type 1 trip is performed to a customer that is relatively closer to the depot than to the disposal facility,

as compared to other customers visited by vehicle v on day d on type 2 trips. This constraint is a valid

inequality (Van Engeland, 2019). Constraints (38)-(39) make sure that the q2-variables obtain correct values.

Finally, constraints (40)-(45) define the domains of the decision variables.

The result of this pricing problem can be translated into a new column k by copying the solution values to

the corresponding parameters in the master problem:

12



∑
m∈M (c1my

1
m + c2my

2
m) → pk

(x1
m + x2

m) → akm m ∈M
gmd → gkmd m ∈M,d ∈ D
hd → hkd d ∈ D

Columns are added as long as they have a negative reduced cost. When the pricing problem results in a non-

negative reduced cost, an optimal LP solution is found and CG ends. To find an optimal integral solution,

the CG procedure should be complemented with a branch-and-bound search giving rise to a branch-and-price

algorithm. A possible branching scheme works as follows. If the column variable associated to route k′ for

day d obtains a fractional value in the final master, there must be another route k” for day d which differs

at least for one municipality m in the waste to be collected, i.e. ak′m 6= ak”m. In the master we can use a

binary branching scheme in which we exclude all routes k for day d having akm ≤ ak′m while in the right

branch we exclude all routes k for day d having akm ≥ ak′m + ε. In the pricing problem it suffices to add the

corresponding constraints on x1
m +x2

m if the route is generated for day d. Unfortunately, branching may lead

to a large number of nodes where each node requires a CG procedure to find its optimal LP relaxation as new

columns might price out after branching. Since the real-life problem entails tactical decision-making and our

objective is already an approximation in which the routing component is ignored, finding an optimal solution

does not warrant the extra computational effort. Therefore, we obtain an integral (heuristic) solution by

solving the master with added integrality constraints (IM1) including only those columns generated during

the CG phase of the root node.

4.2. Start columns

We initialize the set of start columns with one route for each customer. This route consists of a type 1

trip to the customer, which collects as much waste as possible. It respects the capacity, demand (i.e., no

more waste than available at that customer is loaded) and working time constraint. However, the limited

number of vehicles available might imply that there is no feasible schedule using only these routes. To

guarantee feasibility, a “super column” is added that collects all waste of all customers. Of course this route

is infeasible with respect to both capacity and work time constraints, hence a very high cost is assigned to

it. In summary, the set of start columns contains |M |+ 1 columns or routes.

4.3. Lower bound

To evaluate the quality of the solutions retrieved in the heuristic column generation procedure, two calculation

methods for a lower bound are proposed.

Since the last master LP (M1) is a relaxation of (IM1), its solution value can be used as a lower bound. This

is the first lower bound, LB A.

The second lower bound can be obtained as follows. First, the objective function (17) in the column

generation approach is changed in order to only minimize the number of vehicles, regardless of the cost of

the routes.

(M1a) minimize z

subject to (18)-(25). Also the pricing problem (P1) is changed: the first term in (26) (
∑

m∈M (c1m · y1
m +

c2m · y2
m)) is removed. The objective of the last master LP (M1a) provides a fractional lower bound on the

number of trucks needed. Note that solving the last master (M1a) with added integrality constraints on

13



the column variables would lead to a heuristic solution and can, therefore, not be used as an LB. Instead,

the obtained (fractional) solution is rounded to the upper integer to obtain the minimal number of vehicles

needed. Afterwards, this is multiplied with the vehicle cost cveh to obtain the minimal truck cost.

Second, the costs of the routes in the column generation process need to be minimized, regardless of the

number of vehicles needed. Again the objective function (17) is altered:

(M1b) minimize
∑
v∈V

∑
k∈K̂

pk · rvk

subject to (18)-(25). The pricing problem (P1) remains unchanged, but |V | should be sufficiently high as

was described in Section 3. Again, the objective of the last master LP (M1b) provides a lower bound on

the route cost. The lower bound B (LB B) is obtained by adding this (fractional) route cost to the minimal

truck cost.

4.4. A reduced variables MIP-based heuristic: the two trip heuristic

For the test instances, all heuristic solutions of the column generation approach consist of routes with at

most one type 2 trip (see Section 5.1). This was the inspiration for the two trip heuristic. All combinations

with one or two trips (i.e., one type 1 and none or one type 2 trip) are constructed. Routes consisting solely

out of one type 1 trip collect as much waste as possible from the visited customer, considering L, T and Qm.

This amount is calculated as:

x̄1
m = min

(
Qm;L;

T − t1m
sm

)
m ∈M

In the routes composed of two trips, the type 1 trip is made to the customer m which is relatively closest

to the depot. The type 2 trip visits the customer m′ relatively closer to the disposal facility. For each

such combination, two variants of the route are made: one route which collects as much waste as possible

(considering L, T and Qm) on the type 1 trip and uses the remaining time to collect the waste on the type

2 trip:

x̄1
m = min

(
Qm;L;

T − t1m − t2m′

sm

)
m,m′ ∈M : (tdepm − tdispm ) ≤ (tdepm′ − tdispm′ ) && m′ ≥ m

x̄2
m′ = min

(
Qm′ ;L;

T − t1m − t2m′ − x̄1
m · sm

sm′

)
m,m′ ∈M : (tdepm − tdispm ) ≤ (tdepm′ − tdispm′ ) && m′ ≥ m

The other variant of the route collects as much waste as possible (considering L, T and Qm) on the type 2

trip and uses the remaining time to collect the waste on the type 1 trip:

x̄2
m′ = min

(
Qm′ ;L;

T − t1m − t2m′

sm′

)
m,m′ ∈M : (tdepm − tdispm ) ≤ (tdepm′ − tdispm′ ) && m′ ≥ m

x̄1
m = min

(
Qm;L;

T − t1m − t2m′ − x̄2
m′ · sm

sm′

)
m,m′ ∈M : (tdepm − tdispm ) ≤ (tdepm′ − tdispm′ ) && m′ ≥ m

Hence, a total of |M |+ |M | · (|M |+ 1) routes are generated. After route construction, a MIP model similar

to (IM1) decides on the day-route combinations. Note that this two trip heuristic (T1) is a simplification of

the original problem (only two trips per route) and hence serves as a heuristic. The lower bounds of Section

4.3 will be used to evaluate the solutions.
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Table 1: Parameters of the instances. Note that the available number of vehicles (|V |) was obtained as described in Section 3.

instance 1 instance 2
type of waste plastic, metal, paper and

drink cartons (PMDa) cardboard (PCa)
vehicle capacity (L) 2.0 tonnes 8.8 tonnes
available vehicles (|V |) 8 15
avg. demand per customer 10 tonnes 83 tonnes
# customers (M) 13 29
available time (T ) 7.5 hours 7.5 hours
avg. duration t1m 1.3 hours 1.8 hours
avg. duration t2m 1.0 hours 1.4 hours
avg. collection speed 2.11 h/tonne 0.45 h/tonne
avg. unloading time 0.25 h 0.25 h
planning horizon (D) 10 days 20 days
maximum number of visits (Wm) 3 3
variable cost (ch) 10 10
fixed cost (cveh) 100 100
cost ratio (cveh/ch) 10 10

5. Computational Results

In this section the CG approach (Section 4.1) and the two trip heuristic (Section 4.4) are applied to realistic

test instances. The first instance concerns PMD collected every two weeks, i.e., a cycle period of 10 working

days. The 13 customers represent 13 Flemish municipalities, which are located around a rather centralized

positioned depot and disposal facility (see Figure 2). Instance 2 is about monthly (i.e., a cycle period of

20 working days) paper and cardboard (PC) collection in 29 Flemish municipalities. The depot is located

centrally while the disposal facility is situated in the upper end of the area (see Figure 3). In both cases,

an intermunicipal authority (IA) is responsible for collection of the waste flows. As required by the IAs,

for both instances customers can be visited at most 3 times during the considered planning horizon, i.e.,

Wm = 3. Details of these instances are given in Table 1. An entire overview of the instance parameters can

be found in Tables 6 and 7 in Appendix B. Additional test cases (labeled “a”, see Section 5.4) are generated

based on these two real-life instances. The results are discussed in the subsequent sections.

5.1. Results CG approach

Recall that each column is generated for a specific day. To find higher quality solutions upon solving the

final master (IM1) we added the day assignment again as a decision for each of the columns, i.e. each of

the generated columns could be used for each day d. This increased decision dimension, however, combined

with the complex min-max structure with respect to the number of vehicles (incorporated in the z-variables)

makes solving the final master (IM1) to optimality (too) computational expensive. Therefore, we stop solving

IM1 as soon as either a time limit of 120 seconds is reached or a solution within a MIP gap tolerance of

0.4 % is found.

For the first real-life instance (PMDa), the CG approach found a heuristic solution of 1561.12 euro within 2

minutes 14 seconds. The schedule is presented in Table 2 and consists of 13 routes with only type 1 trips,

and 9 routes with both a type 1 and a type 2 trip. Recall that routes define a combination of customers for

a certain day. In our case of identical vehicles, these routes can be assigned to one or more of the available

vehicles. The day with the largest number of routes will determine the number of vehicles needed. The last

column of Table 2 shows that a fleet of 6 vehicles is needed. Type 2 trips are performed to customers 1, 3,

10 and 11. These customers are located relatively close to the disposal facility. Lower bound A and B were

1459.98 and 1472.89, respectively, yielding gaps of circa 6.48 % and 5.65 %. Figure 2 gives an illustration of

this solution. Coloured customers are visited on a type 2 trip. Visiting a customer starting at the disposal
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facility (i.e., on a type 2 trip) can save driving hours. This is why these customers are more or less situated

near the disposal facility.

Table 2: First instance, based on realistic data of PMD collection: schedule obtained with CG heuristic. A total of 6 vehicles
is needed.

day first second amount collected amount collected number of times
customer customer x1 [tonne] x2 [tonne] route is performed

1 6 2 3
12 10 0.67 2 2
10 2 1

2 13 2 2
9 2 1
4 3 0.84 2 3

3 12 10 0.67 2 3
12 3 0.93 2 3

4 10 2 2
2 2 4

5 2 2 6
6 7 2 3

13 2 3
7 4 11 0.87 2 6
8 4 2 1

4 1 0.88 2 4
5 1 2 1.11 1

9 6 2 1
13 3 0.71 2 2
5 3 0.94 2 3

10 8 2 4
9 2 2

For the second real-life instance (PCa), a solution was found in 6.5 minutes. The total cost amounts to

6440.83 euro for the 20 day period. The gap with respect to LB A (6134.63) was stronger than that with

respect to LB B (5941.10): 4.75 % versus 7.75 %. A total of 13 vehicles was needed to perform the schedule.

Customers visited on a type 2 trip were 1, 6, 9, 17, 19, 20 and 29, as indicated in Figure 3. Again, these

customers are roughly located in the vicinity of the disposal facility. Detailed results are given in Table 3.

5.2. Results two trip heuristic

This section discusses the results of the two trip heuristic (T1), as described in Section 4.4. Since the two

trip heuristic does not produce a lower bound that allows to calculate an optimality gap, we compare the

solutions to the lower bounds LB A and LB B obtained by the CG approach. The results for different time

limits are summarized in Table 4. A global time limit of 10 minutes, including time for the generation of

the routes, is acceptable and gives good results. For the PMD case, the two trip heuristic found a solution

of 1537.10 (gap of 4.36 % with respect to LB B of 1472.89). In the case of PC, the total cost was 6355.00

(gap of 3.47 % with respect to LB A of 6134.63).

5.3. Results basic MIP with N=1

As the 2 trip heuristic only allows routes of at most 2 trips, a similar performance could be expected from

the basic MIP approach in which we allow for at most 2 municipalities visited per day per truck. To find out,

we set the big-M (N) to 1 in constraint (7) of the basic MIP formulation F1 and test the instances PMDa

and PKa. We stop the solver after 8000 seconds and compare with the results of the 2 trip heuristic (600

seconds) and CG algorithm (400 seconds). Table 5 reports the results.

For the smaller instance, PMDa, we see that the approach of solving the basic MIP with N=1 succeeds in

finding a better solution, although the reported gap from MIP solving is still large (11.56%). The solutions

obtained by the 2 trip heuristic and CG approach are slightly worse, but the gaps obtained from LB A and

LB B are much tighter than the MIP gap obtained by CPLEX in applying the basic MIP with N=1.
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Figure 2: Schedule of first instance: coloured customers (1, 3, 10, 11) are visited on a type 2 trip.
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Figure 3: Schedule of second instance: customers 1, 6, 9, 17, 19, 20 and 29 are visited on a type 2 trip.
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Table 3: Second instance, based on realistic data of paper and cardboard collection: schedule obtained with CG heuristic. A
total of 13 vehicles was needed.

day first second amount collected amount collected number of times

customer customer x1 [tonne] x2 [tonne] route is performed

1 2 8.8 1
19 8.8 1
21 17 8.8 6.41 1
26 17 8.8 3.96 2
9 19 8.8 3.69 8

2 12 8.8 1
29 8.8 10
29 29 8.8 2.92 2

3 5 8.8 3
26 17 8.8 3.96 10

4 4 6 8.8 4.63 2
6 8.8 1
6 8.8 10

5 7 8.8 3
19 8.8 2
29 8.8 1
9 19 8.8 3.69 7

6 13 8.8 2
8 8.8 1
8 8.8 10

7 7 8.8 3
10 8.8 4
22 8.8 6

8 14 8.8 5
22 8.8 2
27 8.8 1
21 9 8.8 6.87 3
21 1 5.78 8.8 2

9 5 8.8 2
11 8.8 7
25 8.8 4

10 16 8.8 2
23 8.8 8
27 8.8 3

11 16 8.8 3
6 8.8 10

12 8 8.8 7
18 8.8 6

13 20 8.8 10
20 8.8 3

14 2 8.8 1
16 8.8 6
6 1 3.99 8.8 4
4 6 8.8 4.63 1
4 20 8.8 4.17 1

15 15 8.8 8
24 8.8 5

16 13 8.8 3
21 19 8.8 5 2
4 19 8.8 3.83 8

17 3 8.8 8
8 8.8 5

18 12 8.8 10
13 8.8 1
25 8.8 2

19 26 8.8 10
26 8.8 3

20 12 8.8 1
14 8.8 4
28 8.8 8

Table 4: Overview of the results.
instance 1 (PMDa) instance 2 (PCa)

LB A [euro] 1459.98 6134.63
LB B [euro] 1472.89 5941.10
CG solutions [euro] 1561.12 6440.83
CG # routes generated [-] 36 52
best gap CG [%] 5.65 4.75
2 trip MIP solutions (3 min) [euro] 1537.10 6358.17
2 trip MIP solutions (10 min) [euro] 1537.10 6355.00
2 trip MIP solutions (60 min) [euro] 1537.10 6355.00
best gap 2 trip MIP (10 min) [%] 4.36 3.47

Table 5: Comparison basic MIP with N=1.
Basic MIP (N=1) 2 trip CG

Best obj. value (MIP gap) Best obj. Value (gap, LB) Best obj. Value (gap, LB)
PMDa 1515.3305 (11.56%) 1537.10 (4.36%, LB B) 1561.12 (5.65%, LB B)
PKa 7616.0000 (25.47%) 6355.00 (3.47%, LB A) 6440.83 (4.75%, LB A)
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For the larger instance, PKa, although the solution space is much smaller now, the new MIP did not succeed

in finding the same quality solutions as the ones found by the 2 trip heuristic and CG approach. Note that

providing the trips as decision variables (as is done in the 2 trip heuristic and CG approach) instead of the

individual customer visits (as is done in the basic MIP formulation) leads to a formulation which achieves a

much tighter approximation of the integer convex hull. As a consequence the LP relaxations of the nodes in

the branch-and-bound tree are much tighter which enables a more efficient search as nodes can be pruned

in an earlier stage based on bound comparisons. For larger instances this has a significant impact.

5.4. Results other test instances

To generate additional test instances, we varied the waste volumes Qm (instances indicated with b, c and

d) and travel times tdepm , tdispm and tdisp,dep (instances indicated with .a, .b, .c and .d). Details on these

instances can be found in Appendix C. The results are summarized in Figure 4. All results are normalized

with respect to the best bound:

normalized result =
result

max(LBA,LBB)
(46)

The solutions presented in Figure 4 of the CG and two trip approach are of good quality when compared

to the strongest lower bound. For the first class of instances (PMD), the solutions obtained by CPLEX

are superior to the ones obtained by CG or the two trip heuristic. These are the smaller instances, with a

shorter planning horizon. Recall that the bounds obtained by CG are needed to evaluate the quality of these

solutions. The CG and two trip approach outperformed CPLEX in all the PC instances. For instance PC.d,

CPLEX did not even find a feasible solution within 2 hours. Additionally, the figure shows that the results

for the PC instances are better, i.e., they have lower gaps compared to those of the PMD instances. A first

explanation for this are the larger objective values. Another reason might be that the planning horizon for

the PC scenarios is longer, allowing for more flexibility and hence better results. As shown in Figure 4, for

most instances the two trip heuristic proved to be superior to the CG approach. However, the CG approach

was needed in order to obtain LB A and LB B.

Using a Friedman test with aligned ranks the results of the CG approach and the 2 trip heuristic for both

groups of instances (PMD and PK) were compared with the general purpose solver CPLEX given a time

limit of 2 hours. For the PMD instances, the null hypothesis that the two trip heuristic performs the same

as CPLEX in terms of solution quality could not be rejected at a significance level of 0.05. At the same

significance level, the test indicated that the CG approach differs from CPLEX on the PMD instances.

Although CG performs worse than CPLEX, CG was still necessary to provide the lower bounds. For the PC

instances, the statistical test revealed that both the CG and the two trip heuristic gave significant better

results than CPLEX at the 0.05 level.

6. Conclusion

This paper proposes two heuristic solution procedure to obtain tactical waste collection schemes. The goal

is to find a set of routes for each vehicle that satisfy both the demand and the frequency constraints and

minimize the sum of the costs of all routes. After every customer, the central disposal facility has to be

visited to weigh and discharge the waste. Each day of the planning horizon vehicles start and end their route

at a depot. We only consider one depot and one disposal facility. Moreover, it was assumed that all vehicles
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Figure 4: Overview of the solutions of the CG and two trip heuristics. All results are normalized with respect to the best
bound. PMDa and PCa represent the initial cases discussed in the previous sections.

and days were identical.

A state-of-the-art solver could not solve the standard MIP formulation of two test problems to optimality,

nor find a solution with an acceptable gap within a reasonable time limit. For this reason a heuristic column

generation approach was proposed. This solution strategy yielded good solutions in an acceptable compu-

tation time. Type 2 trips proved to be useful and were implemented in all test instances. These trips are

preferably made to customers closely located to the disposal facility. The 2 trip heuristic was inspired by the

fact that the CG approach only generated routes with at most one type 2 trip. Moreover, the CG approach

allowed to compute two lower bounds that proved to be much better than the LP relaxation bounds provided

by a commercial MIP solver.

Our computational experiments reveal that the CG approach and the 2 trip heuristic outperform the basic

MIP approach in terms of solution quality (at the significance level of 0.05) for large instances. For small

instances, the basic MIP performs better, but the quality guarantee (measured as the MIP gap) is much

worse than the quality guarantee provided by the two lower bounds based on CG. For all test instances,

the combination of the 2 trip heuristic with the lower bounds of the column generation approach proved

successful: good quality solution were obtained in acceptable computation time.

As an extension for future research, the solution strategy of the column generation approach could be

improved by branching after each column generation phase. This would yield a branch-and-price algorithm

which would give an optimal integer solution. A second direction could involve the possibility for working

overtime. In this paper, the test instances were based on realistic data, and presume a constant number of

working hours per day. Nevertheless, when the available time per day rises, more trips per route might be

feasible, reducing total cost. Preliminary tests indicated that this is indeed the case. Hence, a direction for

future research is the incorporation of overtime. This would introduce the option to work longer on one day

and stop earlier on another. Finally, the consideration of external costs could be a fruitful avenue for future

research. Not only the monetary costs of collection, but also external costs like, e.g. air pollution or noise,

could be incorporated in the objective function.
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Appendix A: IP model to find fleet size

The following IP is solved to obtain the maximal fleet size |V | used throughout the paper. It minimizes the

number of vehicles needed, if collection was performed using only type 1 trips. The model was able to find

an optimal solution for all test instances within seconds.

(F2) minimize z

subject to

x1
vmd ≤ L · y1

vmd v ∈ V,m ∈M,d ∈ D∑
v∈V

∑
d∈D

x1
vmd = Qm m ∈M∑

m∈M

(sm(x1
vmd) + t1my

1
vmd) ≤ T v ∈ V, d ∈ D∑

m∈M

y1
vmd ≤ 1 v ∈ V, d ∈ D

z ≥
∑
v∈V

∑
m∈M

y1
vmd d ∈ D

wmd ≥ y1
vmd v ∈ V,m ∈M,d ∈ D∑

d∈D

wmd ≤Wm m ∈M

y1
vmd ∈ {0, 1} v ∈ V,m ∈M,d ∈ D

x1
vmd ≥ 0 v ∈ V,m ∈M,d ∈ D

wmd ∈ {0, 1} m ∈M,d ∈ D

z ∈ {0, 1, 2, . . .}

For the interpretation of the constraints, we refer to Section 3.
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Appendix B: Initial instances

This appendix presents the data on the initial instances (Table 6 and Table 7). Note that t1m represents time

for a type 1 trip to a given customer, excluding the time to perform collection at this customer. This time

thus represents the aggregated time to drive from the depot to the customer, from the the customer to the

disposal facility, the time to unload the waste and the time to drive from the disposal facility to the depot

(at the end of the day). This should be multiplied with ch to obtain the cost of a type 1 trip. Similarly, t2m

represents the time needed for a type 2 trip to a given customer. The total time of such a type 2 trip is the

time to drive from the disposal facility to the customer and back, and the time to unload the waste.

Table 6: Instance 1 (PMDa): data.
customer t

dep
m t

disp
m t

disp,dep
m tunl

m t1m t2m sm Qm
1 0.43 0.26 0.30 0.25 1.24 0.77 1.97 9.04
2 0.24 0.49 0.30 0.25 1.28 1.22 2.22 19.23
3 0.62 0.47 0.30 0.25 1.63 1.18 1.80 21.54
4 0.20 0.22 0.30 0.25 0.97 0.69 2.07 13.27
5 0.27 0.27 0.30 0.25 1.09 0.80 1.73 4.54
6 0.33 0.41 0.30 0.25 1.30 1.08 2.68 6.35
7 0.50 0.43 0.30 0.25 1.48 1.10 2.17 5.73
8 0.33 0.35 0.30 0.25 1.23 0.95 2.30 6.38
9 0.33 0.51 0.30 0.25 1.39 1.26 2.26 4.88
10 0.45 0.37 0.30 0.25 1.37 0.98 2.16 15.08
11 0.50 0.33 0.30 0.25 1.38 0.92 1.90 11.38
12 0.07 0.26 0.30 0.25 0.88 0.77 1.98 5.62
13 0.25 0.38 0.30 0.25 1.18 1.02 2.15 11.31

Table 7: Instance 2 (PCa): data.
customer t

dep
m t

disp
m t

disp,dep
m tunl

m t1m t2m sm Qm
1 0.65 0.55 0.48 0.25 1.93 1.35 0.35 44.17
2 0.97 1.05 0.48 0.25 2.75 2.35 0.52 13.75
3 0.47 0.37 0.48 0.25 1.57 0.98 0.48 67.92
4 0.62 0.78 0.48 0.25 2.13 1.82 0.28 98.33
5 0.43 0.42 0.48 0.25 1.58 1.08 0.48 42.50
6 0.23 0.32 0.48 0.25 1.28 0.88 0.44 214.17
7 0.45 0.60 0.48 0.25 1.78 1.45 0.47 45.83
8 0.60 0.67 0.48 0.25 2.00 1.58 0.39 198.33
9 0.28 0.40 0.48 0.25 1.42 1.05 0.37 152.50
10 0.35 0.50 0.48 0.25 1.58 1.25 0.52 31.33
11 0.45 0.48 0.48 0.25 1.67 1.22 0.65 59.83
12 0.92 1.05 0.48 0.25 2.70 2.35 0.50 100.83
13 0.47 0.60 0.48 0.25 1.80 1.45 0.47 49.17
14 0.28 0.53 0.48 0.25 1.55 1.32 0.52 75.00
15 0.27 0.33 0.48 0.25 1.33 0.92 0.49 64.67
16 0.50 0.85 0.48 0.25 2.08 1.95 0.43 89.17
17 0.27 0.12 0.48 0.25 1.12 0.48 0.45 53.33
18 0.67 0.75 0.48 0.25 2.15 1.75 0.47 48.58
19 0.45 0.22 0.48 0.25 1.40 0.68 0.58 122.00
20 0.48 0.53 0.48 0.25 1.75 1.32 0.38 117.92
21 0.13 0.48 0.48 0.25 1.35 1.22 0.29 62.50
22 0.60 0.60 0.48 0.25 1.93 1.45 0.41 69.17
23 0.73 1.05 0.48 0.25 2.52 2.35 0.51 68.83
24 0.48 0.43 0.48 0.25 1.65 1.12 0.54 40.00
25 0.77 0.90 0.48 0.25 2.40 2.05 0.40 44.17
26 0.55 0.78 0.48 0.25 2.07 1.82 0.34 216.67
27 0.42 0.65 0.48 0.25 1.80 1.55 0.37 27.92
28 0.52 0.72 0.48 0.25 1.97 1.68 0.37 69.17
29 0.22 0.37 0.48 0.25 1.32 0.98 0.44 117.50

Appendix C: other test instances

This section presents the data on the other test instances (Tables 8 to 21). Note that T 1
i represents the time

for a type 1 trip to a given customer, excluding the time to perform collection at this customer. This time

thus represents the aggregated time to drive from the depot to the customer, from the the customer to the

disposal facility, the time to unload the waste and the time to drive from the disposal facility to the depot

(at the end of the day). This should be multiplied with Chour to obtain the cost of a type 1 trip. Similarly,

T 2
i represents the time needed for a type 2 trip to a given customer. The total time of such a type 2 trip is

the time to drive from the disposal facility to the customer and back, and the time to unload the waste.
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Additional instances (suffixes .a, b, .b, c, .c, d and .d) were generated based on the initial cases (suffixes

a). We varied the waste volumes Qi (instances indicated with b, c and d) and travel times T dep
i , T disp

i and

T disp,dep (instances indicated with .a, .b, .c and .d).

Table 8: Instance PMDb: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.43 0.26 0.30 0.25 1.24 0.77 1.97 10.96
2 0.24 0.30 0.30 0.25 1.09 0.86 2.22 8.21
3 0.62 0.47 0.30 0.25 1.63 1.18 1.80 18.90
4 0.20 0.22 0.30 0.25 0.97 0.69 2.07 3.30
5 0.27 0.27 0.30 0.25 1.09 0.80 1.73 2.30
6 0.33 0.41 0.30 0.25 1.30 1.08 2.68 17.37
7 0.50 0.43 0.30 0.25 1.48 1.10 2.17 8.40
8 0.33 0.35 0.30 0.25 1.23 0.95 2.30 3.06
9 0.33 0.32 0.30 0.25 1.20 0.88 2.26 6.46
10 0.45 0.37 0.30 0.25 1.37 0.98 2.16 8.12
11 0.50 0.33 0.30 0.25 1.38 0.92 1.90 19.39
12 0.07 0.26 0.30 0.25 0.88 0.77 1.98 13.64
13 0.25 0.38 0.30 0.25 1.18 1.02 2.15 6.48

Table 9: Instance PMDc: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.43 0.26 0.30 0.25 1.24 0.77 1.97 21.28
2 0.24 0.30 0.30 0.25 1.09 0.86 2.22 7.26
3 0.62 0.47 0.30 0.25 1.63 1.18 1.80 10.14
4 0.20 0.22 0.30 0.25 0.97 0.69 2.07 19.45
5 0.27 0.27 0.30 0.25 1.09 0.80 1.73 9.48
6 0.33 0.41 0.30 0.25 1.30 1.08 2.68 15.14
7 0.50 0.43 0.30 0.25 1.48 1.10 2.17 14.02
8 0.33 0.35 0.30 0.25 1.23 0.95 2.30 11.62
9 0.33 0.32 0.30 0.25 1.20 0.88 2.26 21.74
10 0.45 0.37 0.30 0.25 1.37 0.98 2.16 7.35
11 0.50 0.33 0.30 0.25 1.38 0.92 1.90 6.15
12 0.07 0.26 0.30 0.25 0.88 0.77 1.98 18.80
13 0.25 0.38 0.30 0.25 1.18 1.02 2.15 13.90

Table 10: Instance PMDd: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.43 0.26 0.30 0.25 1.24 0.77 1.97 11.82
2 0.24 0.30 0.30 0.25 1.09 0.86 2.22 5.73
3 0.62 0.47 0.30 0.25 1.63 1.18 1.80 17.07
4 0.20 0.22 0.30 0.25 0.97 0.69 2.07 14.19
5 0.27 0.27 0.30 0.25 1.09 0.80 1.73 10.21
6 0.33 0.41 0.30 0.25 1.30 1.08 2.68 20.12
7 0.50 0.43 0.30 0.25 1.48 1.10 2.17 2.29
8 0.33 0.35 0.30 0.25 1.23 0.95 2.30 10.12
9 0.33 0.32 0.30 0.25 1.20 0.88 2.26 4.51
10 0.45 0.37 0.30 0.25 1.37 0.98 2.16 14.30
11 0.50 0.33 0.30 0.25 1.38 0.92 1.90 20.40
12 0.07 0.26 0.30 0.25 0.88 0.77 1.98 21.54
13 0.25 0.38 0.30 0.25 1.18 1.02 2.15 0.33
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Table 11: Instance PMD.a: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.45 0.63 0.25 0.25 1.59 1.52 1.97 9.04
2 0.54 0.49 0.25 0.25 1.53 1.23 2.22 19.23
3 0.54 0.39 0.25 0.25 1.43 1.02 1.80 21.54
4 0.45 0.31 0.25 0.25 1.26 0.88 2.07 13.27
5 0.64 0.48 0.25 0.25 1.62 1.20 1.73 4.54
6 0.46 0.50 0.25 0.25 1.46 1.25 2.68 6.35
7 0.31 0.08 0.25 0.25 0.89 0.42 2.17 5.73
8 0.44 0.47 0.25 0.25 1.41 1.19 2.30 6.38
9 0.28 0.05 0.25 0.25 0.83 0.34 2.26 4.88
10 0.59 0.70 0.25 0.25 1.79 1.65 2.16 15.08
11 0.44 0.45 0.25 0.25 1.39 1.14 1.90 11.38
12 0.05 0.30 0.25 0.25 0.85 0.85 1.98 5.62
13 0.45 0.51 0.25 0.25 1.46 1.27 2.15 11.31

Table 12: Instance PMD.b: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.27 0.41 0.17 0.25 1.09 1.06 1.97 10.96
2 0.48 0.46 0.17 0.25 1.35 1.17 2.22 8.21
3 0.54 0.58 0.17 0.25 1.53 1.41 1.80 18.90
4 0.64 0.56 0.17 0.25 1.61 1.36 2.07 3.30
5 0.07 0.16 0.17 0.25 0.65 0.57 1.73 2.30
6 0.41 0.34 0.17 0.25 1.17 0.94 2.68 17.37
7 0.39 0.48 0.17 0.25 1.29 1.20 2.17 8.40
8 0.13 0.05 0.17 0.25 0.60 0.35 2.30 3.06
9 0.39 0.37 0.17 0.25 1.17 0.98 2.26 6.46
10 0.41 0.47 0.17 0.25 1.30 1.20 2.16 8.12
11 0.24 0.19 0.17 0.25 0.85 0.64 1.90 19.39
12 0.26 0.15 0.17 0.25 0.83 0.55 1.98 13.64
13 0.50 0.37 0.17 0.25 1.28 0.99 2.15 6.48

Table 13: Instance PMD.c: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.29 0.31 0.20 0.25 1.05 0.88 1.97 21.28
2 0.62 0.67 0.20 0.25 1.74 1.59 2.22 7.26
3 0.36 0.34 0.20 0.25 1.14 0.92 1.80 10.14
4 0.47 0.53 0.20 0.25 1.44 1.30 2.07 19.45
5 0.31 0.39 0.20 0.25 1.15 1.04 1.73 9.48
6 0.44 0.41 0.20 0.25 1.30 1.07 2.68 15.14
7 0.14 0.27 0.20 0.25 0.86 0.79 2.17 14.02
8 0.12 0.11 0.20 0.25 0.68 0.47 2.30 11.62
9 0.59 0.41 0.20 0.25 1.45 1.07 2.26 21.74
10 0.07 0.22 0.20 0.25 0.74 0.69 2.16 7.35
11 0.63 0.76 0.20 0.25 1.85 1.78 1.90 6.15
12 0.42 0.27 0.20 0.25 1.14 0.79 1.98 18.80
13 0.33 0.52 0.20 0.25 1.30 1.29 2.15 13.90

Table 14: Instance PMD.d: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.20 0.28 0.30 0.25 1.04 0.82 1.97 11.82
2 0.60 0.60 0.30 0.25 1.75 1.46 2.22 5.73
3 0.51 0.33 0.30 0.25 1.39 0.90 1.80 17.07
4 0.03 0.31 0.30 0.25 0.89 0.87 2.07 14.19
5 0.50 0.54 0.30 0.25 1.60 1.34 1.73 10.21
6 0.62 0.61 0.30 0.25 1.79 1.48 2.68 20.12
7 0.41 0.15 0.30 0.25 1.11 0.56 2.17 2.29
8 0.60 0.51 0.30 0.25 1.65 1.26 2.30 10.12
9 0.03 0.29 0.30 0.25 0.86 0.83 2.26 4.51
10 0.03 0.29 0.30 0.25 0.87 0.84 2.16 14.30
11 0.33 0.41 0.30 0.25 1.29 1.07 1.90 20.40
12 0.28 0.35 0.30 0.25 1.18 0.95 1.98 21.54
13 0.43 0.25 0.30 0.25 1.23 0.76 2.15 0.33

Table 15: Instance PCb: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.65 0.55 0.48 0.25 1.93 1.35 0.35 161.28
2 0.97 1.05 0.48 0.25 2.75 2.35 0.52 69.68
3 0.47 0.37 0.48 0.25 1.57 0.98 0.48 113.91
4 0.62 0.78 0.48 0.25 2.13 1.82 0.28 57.52
5 0.43 0.42 0.48 0.25 1.58 1.08 0.48 146.30
6 0.23 0.32 0.48 0.25 1.28 0.88 0.44 138.68
7 0.45 0.60 0.48 0.25 1.78 1.45 0.47 51.15
8 0.60 0.67 0.48 0.25 2.00 1.58 0.39 178.64
9 0.28 0.40 0.48 0.25 1.42 1.05 0.37 189.70
10 0.35 0.50 0.48 0.25 1.58 1.25 0.52 185.27
11 0.45 0.48 0.48 0.25 1.67 1.22 0.65 34.25
12 0.92 1.05 0.48 0.25 2.70 2.35 0.50 69.95
13 0.47 0.60 0.48 0.25 1.80 1.45 0.47 92.86
14 0.28 0.53 0.48 0.25 1.55 1.32 0.52 153.04
15 0.27 0.33 0.48 0.25 1.33 0.92 0.49 179.86
16 0.50 0.85 0.48 0.25 2.08 1.95 0.43 46.65
17 0.27 0.22 0.48 0.25 1.22 0.68 0.45 113.16
18 0.67 0.75 0.48 0.25 2.15 1.75 0.47 136.24
19 0.45 0.22 0.48 0.25 1.40 0.68 0.58 58.05
20 0.48 0.53 0.48 0.25 1.75 1.32 0.38 53.52
21 0.13 0.48 0.48 0.25 1.35 1.22 0.29 43.90
22 0.60 0.60 0.48 0.25 1.93 1.45 0.41 76.92
23 0.73 1.05 0.48 0.25 2.52 2.35 0.51 150.57
24 0.48 0.43 0.48 0.25 1.65 1.12 0.54 124.50
25 0.77 0.90 0.48 0.25 2.40 2.05 0.40 166.73
26 0.55 0.78 0.48 0.25 2.07 1.82 0.34 179.86
27 0.42 0.65 0.48 0.25 1.80 1.55 0.37 174.82
28 0.52 0.72 0.48 0.25 1.97 1.68 0.37 105.76
29 0.22 0.37 0.48 0.25 1.32 0.98 0.44 32.69
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Table 16: Instance PCc: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.65 0.55 0.48 0.25 1.93 1.35 0.35 22.24
2 0.97 1.05 0.48 0.25 2.75 2.35 0.52 152.27
3 0.47 0.37 0.48 0.25 1.57 0.98 0.48 134.61
4 0.62 0.78 0.48 0.25 2.13 1.82 0.28 86.95
5 0.43 0.42 0.48 0.25 1.58 1.08 0.48 58.43
6 0.23 0.32 0.48 0.25 1.28 0.88 0.44 129.81
7 0.45 0.60 0.48 0.25 1.78 1.45 0.47 165.75
8 0.60 0.67 0.48 0.25 2.00 1.58 0.39 44.86
9 0.28 0.40 0.48 0.25 1.42 1.05 0.37 120.58
10 0.35 0.50 0.48 0.25 1.58 1.25 0.52 114.98
11 0.45 0.48 0.48 0.25 1.67 1.22 0.65 49.64
12 0.92 1.05 0.48 0.25 2.70 2.35 0.50 163.95
13 0.47 0.60 0.48 0.25 1.80 1.45 0.47 33.61
14 0.28 0.53 0.48 0.25 1.55 1.32 0.52 123.57
15 0.27 0.33 0.48 0.25 1.33 0.92 0.49 127.08
16 0.50 0.85 0.48 0.25 2.08 1.95 0.43 156.95
17 0.27 0.22 0.48 0.25 1.22 0.68 0.45 97.96
18 0.67 0.75 0.48 0.25 2.15 1.75 0.47 74.46
19 0.45 0.22 0.48 0.25 1.40 0.68 0.58 33.64
20 0.48 0.53 0.48 0.25 1.75 1.32 0.38 50.16
21 0.13 0.48 0.48 0.25 1.35 1.22 0.29 95.24
22 0.60 0.60 0.48 0.25 1.93 1.45 0.41 36.73
23 0.73 1.05 0.48 0.25 2.52 2.35 0.51 36.53
24 0.48 0.43 0.48 0.25 1.65 1.12 0.54 144.58
25 0.77 0.90 0.48 0.25 2.40 2.05 0.40 156.40
26 0.55 0.78 0.48 0.25 2.07 1.82 0.34 83.29
27 0.42 0.65 0.48 0.25 1.80 1.55 0.37 114.22
28 0.52 0.72 0.48 0.25 1.97 1.68 0.37 155.14
29 0.22 0.37 0.48 0.25 1.32 0.98 0.44 85.84

Table 17: Instance PCd: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.65 0.55 0.48 0.25 1.93 1.35 0.35 22.98
2 0.97 1.05 0.48 0.25 2.75 2.35 0.52 70.40
3 0.47 0.37 0.48 0.25 1.57 0.98 0.48 11.06
4 0.62 0.78 0.48 0.25 2.13 1.82 0.28 158.58
5 0.43 0.42 0.48 0.25 1.58 1.08 0.48 119.06
6 0.23 0.32 0.48 0.25 1.28 0.88 0.44 33.85
7 0.45 0.60 0.48 0.25 1.78 1.45 0.47 107.36
8 0.60 0.67 0.48 0.25 2.00 1.58 0.39 134.50
9 0.28 0.40 0.48 0.25 1.42 1.05 0.37 77.68
10 0.35 0.50 0.48 0.25 1.58 1.25 0.52 28.19
11 0.45 0.48 0.48 0.25 1.67 1.22 0.65 154.24
12 0.92 1.05 0.48 0.25 2.70 2.35 0.50 16.32
13 0.47 0.60 0.48 0.25 1.80 1.45 0.47 133.37
14 0.28 0.53 0.48 0.25 1.55 1.32 0.52 29.73
15 0.27 0.33 0.48 0.25 1.33 0.92 0.49 156.24
16 0.50 0.85 0.48 0.25 2.08 1.95 0.43 52.52
17 0.27 0.22 0.48 0.25 1.22 0.68 0.45 105.25
18 0.67 0.75 0.48 0.25 2.15 1.75 0.47 115.45
19 0.45 0.22 0.48 0.25 1.40 0.68 0.58 14.68
20 0.48 0.53 0.48 0.25 1.75 1.32 0.38 109.37
21 0.13 0.48 0.48 0.25 1.35 1.22 0.29 136.36
22 0.60 0.60 0.48 0.25 1.93 1.45 0.41 64.28
23 0.73 1.05 0.48 0.25 2.52 2.35 0.51 26.02
24 0.48 0.43 0.48 0.25 1.65 1.12 0.54 102.81
25 0.77 0.90 0.48 0.25 2.40 2.05 0.40 16.59
26 0.55 0.78 0.48 0.25 2.07 1.82 0.34 48.20
27 0.42 0.65 0.48 0.25 1.80 1.55 0.37 144.03
28 0.52 0.72 0.48 0.25 1.97 1.68 0.37 92.28
29 0.22 0.37 0.48 0.25 1.32 0.98 0.44 36.33

Table 18: Instance PC.a: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.46 0.58 0.30 0.25 1.59 1.41 0.35 44.17
2 0.48 0.73 0.30 0.25 1.76 1.71 0.52 13.75
3 0.38 0.26 0.30 0.25 1.19 0.78 0.48 67.92
4 0.07 0.24 0.30 0.25 0.86 0.73 0.28 98.33
5 0.48 0.19 0.30 0.25 1.22 0.63 0.48 42.50
6 0.13 0.18 0.30 0.25 0.86 0.61 0.44 214.17
7 0.36 0.19 0.30 0.25 1.10 0.64 0.47 45.83
8 0.61 0.31 0.30 0.25 1.47 0.87 0.39 198.33
9 0.77 0.79 0.30 0.25 2.12 1.84 0.37 152.50
10 0.21 0.31 0.30 0.25 1.08 0.88 0.52 31.33
11 0.62 0.60 0.30 0.25 1.78 1.46 0.65 59.83
12 0.35 0.62 0.30 0.25 1.52 1.49 0.50 100.83
13 0.10 0.22 0.30 0.25 0.87 0.68 0.47 49.17
14 0.97 0.77 0.30 0.25 2.29 1.79 0.52 75.00
15 0.65 0.47 0.30 0.25 1.67 1.19 0.49 64.67
16 0.75 0.61 0.30 0.25 1.91 1.46 0.43 89.17
17 0.35 0.47 0.30 0.25 1.37 1.19 0.45 53.33
18 0.42 0.52 0.30 0.25 1.49 1.29 0.47 48.58
19 0.69 0.79 0.30 0.25 2.04 1.84 0.58 122.00
20 0.97 0.68 0.30 0.25 2.20 1.60 0.38 117.92
21 0.50 0.52 0.30 0.25 1.57 1.29 0.29 62.50
22 0.05 0.32 0.30 0.25 0.92 0.89 0.41 69.17
23 0.99 0.73 0.30 0.25 2.28 1.72 0.51 68.83
24 0.24 0.09 0.30 0.25 0.88 0.43 0.54 40.00
25 0.84 0.76 0.30 0.25 2.15 1.77 0.40 44.17
26 0.13 0.34 0.30 0.25 1.02 0.92 0.34 216.67
27 0.35 0.48 0.30 0.25 1.38 1.21 0.37 27.92
28 0.36 0.40 0.30 0.25 1.31 1.04 0.37 69.17
29 0.82 0.98 0.30 0.25 2.35 2.21 0.44 117.50
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Table 19: Instance PC.b: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.80 0.99 0.25 0.25 2.29 2.22 0.35 44.17
2 0.27 0.06 0.25 0.25 0.83 0.37 0.52 13.75
3 0.66 0.89 0.25 0.25 2.05 2.03 0.48 67.92
4 0.79 0.96 0.25 0.25 2.25 2.18 0.28 98.33
5 0.04 0.22 0.25 0.25 0.76 0.69 0.48 42.50
6 0.06 0.26 0.25 0.25 0.81 0.77 0.44 214.17
7 0.20 0.18 0.25 0.25 0.87 0.61 0.47 45.83
8 0.75 0.94 0.25 0.25 2.19 2.12 0.39 198.33
9 0.80 0.83 0.25 0.25 2.13 1.90 0.37 152.50
10 0.51 0.67 0.25 0.25 1.67 1.59 0.52 31.33
11 0.68 0.80 0.25 0.25 1.99 1.86 0.65 59.83
12 0.78 0.89 0.25 0.25 2.17 2.03 0.50 100.83
13 0.71 0.57 0.25 0.25 1.78 1.39 0.47 49.17
14 0.49 0.55 0.25 0.25 1.54 1.35 0.52 75.00
15 0.93 1.07 0.25 0.25 2.50 2.39 0.49 64.67
16 0.18 0.33 0.25 0.25 1.01 0.90 0.43 89.17
17 0.62 0.69 0.25 0.25 1.81 1.62 0.45 53.33
18 0.87 0.96 0.25 0.25 2.33 2.16 0.47 48.58
19 0.67 0.47 0.25 0.25 1.63 1.18 0.58 122.00
20 0.94 0.84 0.25 0.25 2.28 1.93 0.38 117.92
21 0.80 0.66 0.25 0.25 1.95 1.56 0.29 62.50
22 0.53 0.63 0.25 0.25 1.66 1.51 0.41 69.17
23 0.23 0.20 0.25 0.25 0.93 0.65 0.51 68.83
24 0.33 0.09 0.25 0.25 0.92 0.44 0.54 40.00
25 0.83 1.06 0.25 0.25 2.39 2.37 0.40 44.17
26 0.40 0.64 0.25 0.25 1.54 1.52 0.34 216.67
27 0.93 0.69 0.25 0.25 2.11 1.63 0.37 27.92
28 0.59 0.69 0.25 0.25 1.78 1.62 0.37 69.17
29 0.10 0.31 0.25 0.25 0.91 0.87 0.44 117.50

Table 20: Instance PC.c: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.52 0.53 0.50 0.25 1.81 1.32 0.35 44.17
2 0.23 0.41 0.50 0.25 1.39 1.06 0.52 13.75
3 0.08 0.45 0.50 0.25 1.29 1.15 0.48 67.92
4 0.79 1.06 0.50 0.25 2.60 2.36 0.28 98.33
5 0.58 0.08 0.50 0.25 1.41 0.41 0.48 42.50
6 0.97 0.81 0.50 0.25 2.52 1.86 0.44 214.17
7 0.83 1.19 0.50 0.25 2.78 2.64 0.47 45.83
8 0.98 0.97 0.50 0.25 2.71 2.20 0.39 198.33
9 0.88 1.11 0.50 0.25 2.75 2.48 0.37 152.50
10 0.56 0.85 0.50 0.25 2.17 1.96 0.52 31.33
11 0.88 0.44 0.50 0.25 2.07 1.14 0.65 59.83
12 0.82 0.61 0.50 0.25 2.19 1.48 0.50 100.83
13 0.90 0.86 0.50 0.25 2.52 1.98 0.47 49.17
14 0.61 0.57 0.50 0.25 1.93 1.38 0.52 75.00
15 0.46 0.67 0.50 0.25 1.89 1.59 0.49 64.67
16 0.44 0.89 0.50 0.25 2.08 2.04 0.43 89.17
17 0.85 0.44 0.50 0.25 2.04 1.14 0.45 53.33
18 0.83 1.01 0.50 0.25 2.58 2.26 0.47 48.58
19 0.24 0.72 0.50 0.25 1.71 1.69 0.58 122.00
20 0.20 0.31 0.50 0.25 1.26 0.87 0.38 117.92
21 0.69 1.03 0.50 0.25 2.48 2.31 0.29 62.50
22 0.12 0.41 0.50 0.25 1.27 1.06 0.41 69.17
23 0.08 0.48 0.50 0.25 1.31 1.21 0.51 68.83
24 0.68 0.19 0.50 0.25 1.62 0.63 0.54 40.00
25 0.38 0.36 0.50 0.25 1.49 0.96 0.40 44.17
26 0.85 0.44 0.50 0.25 2.04 1.13 0.34 216.67
27 0.29 0.77 0.50 0.25 1.81 1.79 0.37 27.92
28 0.78 0.65 0.50 0.25 2.17 1.55 0.37 69.17
29 0.15 0.39 0.50 0.25 1.29 1.03 0.44 117.50

Table 21: Instance PC.d: data.
customer T

dep
i

T
disp
i

T
disp,dep
i

Tunl
i T1

i T2
i Si Qi

1 0.94 0.83 1.00 0.25 3.01 1.90 0.35 44.17
2 0.93 0.48 1.00 0.25 2.66 1.21 0.52 13.75
3 0.42 1.38 1.00 0.25 3.05 3.00 0.48 67.92
4 0.43 1.06 1.00 0.25 2.74 2.38 0.28 98.33
5 0.96 0.61 1.00 0.25 2.82 1.47 0.48 42.50
6 0.83 1.67 1.00 0.25 3.76 3.60 0.44 214.17
7 0.07 1.06 1.00 0.25 2.38 2.36 0.47 45.83
8 0.18 1.13 1.00 0.25 2.56 2.52 0.39 198.33
9 0.32 1.16 1.00 0.25 2.73 2.57 0.37 152.50
10 0.14 1.10 1.00 0.25 2.48 2.44 0.52 31.33
11 0.38 0.76 1.00 0.25 2.39 1.77 0.65 59.83
12 0.96 1.52 1.00 0.25 3.73 3.29 0.50 100.83
13 0.78 0.34 1.00 0.25 2.36 0.92 0.47 49.17
14 0.83 0.34 1.00 0.25 2.42 0.93 0.52 75.00
15 0.10 1.06 1.00 0.25 2.41 2.37 0.49 64.67
16 0.71 1.69 1.00 0.25 3.65 3.62 0.43 89.17
17 0.49 1.40 1.00 0.25 3.14 3.05 0.45 53.33
18 0.27 0.88 1.00 0.25 2.39 2.00 0.47 48.58
19 0.06 1.01 1.00 0.25 2.32 2.28 0.58 122.00
20 0.09 1.02 1.00 0.25 2.36 2.29 0.38 117.92
21 0.16 0.90 1.00 0.25 2.31 2.05 0.29 62.50
22 0.28 1.18 1.00 0.25 2.71 2.62 0.41 69.17
23 0.20 1.10 1.00 0.25 2.55 2.45 0.51 68.83
24 0.98 0.33 1.00 0.25 2.55 0.91 0.54 40.00
25 0.13 0.93 1.00 0.25 2.31 2.10 0.40 44.17
26 0.14 1.13 1.00 0.25 2.52 2.51 0.34 216.67
27 0.42 0.60 1.00 0.25 2.27 1.45 0.37 27.92
28 0.38 1.12 1.00 0.25 2.75 2.50 0.37 69.17
29 0.91 0.33 1.00 0.25 2.49 0.91 0.44 117.50
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