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Special Section: Using Simulation to Convey Statistical Concepts
Tutorial

Over recent years, psychological research has increasingly 
focused on investigating how complex psychological pro-
cesses evolve dynamically across time within single indi-
viduals. To this end, researchers use intensive longitudinal 
(IL) designs and data-collection methods, such as the 
experience-sampling method (ESM; Myin-Germeys et al., 
2009, 2018), in which individuals are repeatedly measured. 

The repeated measurements allow researchers to study 
dynamic aspects of psychological functioning within 
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Abstract
In recent years, the popularity of procedures for collecting intensive longitudinal data, such as the experience-sampling 
method, has increased greatly. The data collected using such designs allow researchers to study the dynamics of 
psychological functioning and how these dynamics differ across individuals. To this end, the data are often modeled 
with multilevel regression models. An important question that arises when researchers design intensive longitudinal 
studies is how to determine the number of participants needed to test specific hypotheses regarding the parameters of 
these models with sufficient power. Power calculations for intensive longitudinal studies are challenging because of the 
hierarchical data structure in which repeated observations are nested within the individuals and because of the serial 
dependence that is typically present in these data. We therefore present a user-friendly application and step-by-step 
tutorial for performing simulation-based power analyses for a set of models that are popular in intensive longitudinal 
research. Because many studies use the same sampling protocol (i.e., a fixed number of at least approximately equidistant 
observations) within individuals, we assume that this protocol is fixed and focus on the number of participants. All 
included models explicitly account for the temporal dependencies in the data by assuming serially correlated errors or 
including autoregressive effects.
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individuals and individual differences in these dynamics. 
Examples of such dynamics are emotional variability and 
stability and emotional inertia (Kuppens & Verduyn, 
2015). Individual differences in these dynamics have been 
consistently linked to individual differences in well-being 
and health (e.g., Brose et al., 2015; Dejonckheere et al., 
2018; Kuppens et al., 2010).

Given the increased focus on dynamic psychological 
processes within individuals, it is no surprise that the 
recent debate on the reproducibility and transparency 
of psychological research (Munafò et al., 2017) has led 
to the development of guidelines for conducting IL 
research (Trull & Ebner-Priemer, 2020) and the promo-
tion of open-science practices in IL research (Kirtley 
et al., in press). Here, we aim to continue along this path 
and focus on sample-size planning for IL designs. A fixed 
sampling schedule within individuals is common prac-
tice in IL studies not only for the reasons outlined in the 
previous paragraph, but also because of its feasibility 
and because it reduces the participants’ burden. There-
fore, we focus on assessing the number of participants 
needed while assuming a fixed number of (at least 
approximately) equidistant observations within individu-
als. Adequate sample-size planning allows control of the 
accuracy and power of statistical testing and modeling 
and is therefore of crucial importance for the replicabil-
ity of empirical findings (see Ioannidis, 2005; Szucs & 
Ioannidis, 2017).

Although power analyses are often used to inform 
sample-size planning in general (Cohen, 1988), they are 
not yet well established in IL research. One reason for this 
is that performing power calculations to select the number 
of participants in the context of IL studies is challenging 
because of the intricacies of the data (Bolger, 2011; De 
Jong et al., 2010). First, IL data have a multilevel structure, 
in that repeated observations are nested within individuals. 
Second, observations are closer in time in comparison with 
traditional longitudinal designs. This likely leads to con-
siderable temporal dependencies between data measured 
at adjacent observations. As we noted earlier, it is often 
the very purpose of an IL study to capture such temporal 
dependencies, as they reflect psychological dynamics that 
are often of inherent interest.

But not only the data structure is complicated; the 
applied statistical models are as well, as they should 
capture such dynamics and individual differences 
therein. First, the models have to distinguish interindi-
vidual differences from intra-individual changes (e.g., 
Hamaker et al., 2015; Molenaar, 2004). Multilevel regres-
sion approaches offer an established way of doing this. 
Second, models should also take temporal dependencies 
into account, either to control for them or to quantify 
and model them. This requires that one includes either 
serially correlated errors or the lagged outcome variable 

as a predictor in the multilevel models. Although there 
are several resources available to help researchers per-
form power analyses for multilevel models (e.g., Arend 
& Schäfer, 2019; Browne et al., 2009; Cools et al., 2008; 
Green & MacLeod, 2016; Hedeker et al., 1999; Landau 
& Stahl, 2013; Lane & Hennes, 2018; Mathieu et al., 2012; 
Raudenbush, 1997; Raudenbush & Liu, 2001; Snijders & 
Bosker, 1993; Zhang, 2014; Zhang & Wang, 2009), these 
do not account for the temporal dependencies that char-
acterize IL data.

We therefore present a user-friendly application for 
performing simulation-based power analyses for IL stud-
ies. The obtained power results can inform sample-size 
planning by shedding light on the number of partici-
pants needed to obtain accurate and significant param-
eter estimates. The application was developed in R  
(R Core Team, 2020) using the shiny package (Chang 
et al., 2019). It covers a set of models that are widely used 
to study individual differences in IL studies and properly 
account for the temporal dependency.

In this article, we first briefly review existing approaches 
to computing power in multilevel models and then dis-
cuss the multilevel models that are covered by our appli-
cation. Next, we introduce the Shiny app and discuss 
how it can be used for sample-size planning. Using an 
already published data set, we illustrate how to perform 
sample-size planning with the app. We conclude the 
article with a general discussion of additional consider-
ations and possible extensions.

Disclosures

The R code for the Shiny application is available via a 
Git repository hosted on GitHub at https://github.com/
ginettelafit/PowerAnalysisIL and via OSF at https://osf 
.io/vguey/. The OSF project also includes the R Mark-
down document used in the illustrations.

Power Analyses in Intensive 
Longitudinal Studies

We use statistical power as the criterion for estimating 
the number of participants needed in an IL study. High 
power is desirable because it improves the reproduc-
ibility of research findings and prevents the overestima-
tion of effect sizes (see Ioannidis, 2005; Szucs & Ioannidis, 
2017). Formally, power is defined as the probability of 
correctly rejecting the null hypothesis when the alterna-
tive hypothesis is true in the population under study 
(Cohen, 1988). The power to detect an effect is therefore 
determined by the size of the effect in the population, 
the predetermined Type I error rate (i.e., the significance 
level), and the standard error of the test statistic used. 
Power is higher if the population effect is larger, the Type 
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I error rate is higher, and the standard error of the test 
statistic is smaller. The standard error, in turn, is related 
to sample size, in that larger sample sizes lead to smaller 
standard errors. The latter point explains why power 
analysis can inform sample-size planning.

In general, two approaches can be used for performing 
power analysis: the analytic approach and the simulation-
based approach. In the analytic approach, power is 
determined by using formulas for the standard errors of 
the estimated effects, expressing them as a function of the 
parameters of the multilevel model under study and the 
sample size. Using these formulas, it is possible to esti-
mate the sample size that allows reaching a predeter-
mined value of power (see, e.g., Cohen, 1988; Hedeker 
et al., 1999; Moerbeek & Maas, 2005; Moerbeek et al., 
2000, 2001; Raudenbush, 1997; Raudenbush & Liu, 2001; 
Snijders & Bosker, 1993; C. Wang et al., 2015). However, 
as is true for many other complex models, so far no 
analytic formulas have been derived for multilevel mod-
els that include temporal dependencies (see Arend & 
Schäfer, 2019). Also, the analytic approach usually relies 
on asymptotic estimation theory and might, therefore, be 
inaccurate in practice when dealing with small numbers 
of participants and measurements per participant. For 
example, Snijders and Bosker (1993) determined the opti-
mal sample sizes for two-level linear models by using 
normal approximations for the distribution of the esti-
mated coefficients. However, in small samples, the distri-
bution of the estimator can be nonnormal and is potentially 
heavy-tailed, which results in unreliable standard error 
estimates.

The simulation-based approach uses the hypothe-
sized population model and concrete specifications of 
the associated parameters to generate a large number of 
data sets. Each of these data sets is then analyzed with 
the model under study and the parameters of interest 
are tested for significance. Because the data have been 
randomly generated, the parameter estimates and the 
test results will vary across the data sets. Hence, one can 
compute the power as the proportion of simulated data 
sets for which the null hypothesis about the parameters 
of interest has been rejected (see, e.g., Arend & Schäfer, 
2019; Astivia et al., 2019; Bolger, 2011; Browne et al., 
2009; Cools et al., 2008; Green & MacLeod, 2016; Landau 
& Stahl, 2013; Lane & Hennes, 2018; Maas & Hox, 2005; 
Mathieu et al., 2012; Zhang, 2014; Zhang & Wang, 2009). 
Performing these calculations while varying the number 
of participants allows one to determine the number of 
participants necessary to reach a predetermined level of 
power (e.g., 80%). The simulation-based approach is a 
good alternative when analytic formulations are not 
available or too difficult to derive. Therefore, we adopt 
this approach in this article, given the complexity of IL 
data and associated modeling questions.

Population Models of Interest

We focus on a set of research questions regarding IL 
data that can be addressed using specific multilevel 
regression models (Raudenbush & Bryk, 2002). Figure 
1 provides a graphical representation of the different 
models. These models correspond to a hypothetical data 
set that we use for illustration purposes and are covered 
by the application we introduce in the next main section. 
Table 1 shows a few rows of this data set involving 
individuals diagnosed with major depressive disorder 
(MDD) and healthy control individuals. The participants 
responded to momentary questionnaires at six equidis-
tant time points. The first column contains the partici-
pants’ identification numbers, and the second column 
the observation numbers. The third and fourth columns 
contain the data for the Level 1, or time-varying, vari-
ables: affect (for negative affect) and anhedonia, which 
were measured at every observation. The final two col-
umns contain the data for two Level 2, or time-invariant, 
variables. The depression variable refers to the sum score 
on a continuous self-report instrument assessing the 
experience of depressive symptoms at baseline. Finally, 
diagnosis is a binary variable that equals 1 for partici-
pants diagnosed with MDD and 0 otherwise. Formulas 
for the models in Figure 1 are given in Table 2, and Table 
3 provides an overview of the effects of interest.

Group differences in mean level

Model 1 in Figure 1 estimates differences between the 
two groups of individuals in the mean of the outcome 
variable affect (e.g., Heininga et al., 2019; Myin-Germeys 
et al., 2001, 2003). This model includes the affectit value 
as the outcome variable for the ith individual at the tth 
observation and a Level 2 dummy variable that indicates 
the diagnosis group (i.e., diagnosisi). For participants in 
the reference group (healthy control participants), the 
mean level of affect equals β00; for individuals diagnosed 
with MDD, the mean level of affect is given by β00 + β01. 
Within both diagnosis groups, interindividual differences 
in affect are modeled by the random intercept γ0i. The 
random intercept expresses the deviation of each par-
ticipant’s affect level from the group-specific mean level. 
It is normally distributed, and the standard deviation is 
denoted by σv0

. To account for the likely temporal 
dependencies in IL data, we allow for serially correlated 
errors. Therefore, we assume that the Level 1 errors εit 
follow a first-order autoregressive (AR(1)) process 
(Goldstein et  al., 1994); the correlation between two 
consecutive errors is denoted by ρε, and σε is the stan-
dard deviation of the Level 1 errors.1 To guarantee that 
the model is stationary (Hamilton, 1994), the autocor-
relation ρε should range between −1 and 1. In Model 1, 
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Fig. 1. (continued on next page)

the main effect of interest is β01 (i.e., the size of the 
average group difference), and we test whether it is 
statistically different from zero. As for all tests that we 
discuss, the hypothesis test is two-sided, and significance 
is evaluated with a Wald-type test statistic using a t dis-
tribution (Snijders & Bosker, 2011).

Effect of a Level 2 continuous predictor 
on the mean level

Model 2 in Figure 1 focuses on the effect of a continu-
ous Level 2 predictor on the outcome of interest.2 For 
the hypothetical data set, we investigate whether the 
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Fig. 1. Graphical representation of the population models of interest.

individual-specific depression level, depressioni, predicts 
individual differences in the mean level of affectit as 
captured by the random intercept γ0i. These random inter-
cepts are assumed to be normally distributed with mean 
β00 + β01depressioni and standard deviation σv0

. We again 

assume an AR(1) structure for the Level 1 errors εit. When 
testing the effect of interest, β01, we can grand-mean-
center the Level 2 predictor to obtain a meaningful zero 
point for this predictor to render the intercept interpre-
table (Enders & Tofighi, 2007; Raudenbush & Bryk, 2002).
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Effect of a Level 1 continuous predictor

Next, we focus on the effect of a continuous Level 1 
predictor on the outcome, through Models 3 and 4 in 
Figure 1. For example, we might be interested in the 
extent to which anhedoniait predicts affectit in individu-
als diagnosed with MDD. Model 3 specifies a corre-
sponding multilevel model with AR(1) Level 1 errors. 
The mean slope of anhedoniait is denoted by β10, which 
is the parameter of interest. This model captures inter-
individual differences by including a random intercept 
γ0i and a random slope γ1i. These random effects are 
bivariate normally distributed. β00 then indicates the 
mean of the random intercepts, and β10 the mean of the 
random slopes. Their standard deviations are denoted 
by σv0

 and σv1
, respectively. The correlation between the 

random effects is given by ρv01 (and the covariance 
between the random effects is denoted by σv01

). Model 4, 

on the other hand, assumes that the slope of anhedoniai 
does not vary across participants. In both models, person-
mean centering the Level 1 predictor is recommended 
because the fixed slope β10 then provides an estimate 
that reflects only the (average) within-person association 
between the predictor and outcome (Enders & Tofighi, 
2007; Raudenbush & Bryk, 2002).

Group differences in the effect  
of a Level 1 continuous predictor

Models structured like Models 5 and 6 in Figure 1 cor-
respond to a class of multilevel models that are used to 
investigate differences between two groups of partici-
pants with respect to the association between a Level 1 
predictor and the outcome of interest (while assuming 
AR(1) errors). In our illustration, these models thus 
include the outcome affectit, the Level 1 predictor anhe-
doniait, the Level 2 variable diagnosisi, and a cross-level 
interaction (Raudenbush & Bryk, 2002) between the 
Level 1 and Level 2 predictors. β00 and β00 + β01 represent 
the mean intercept of all individuals in the reference 
(healthy) and MDD groups, respectively. The mean slope 
for the reference group is indicated by β10, and the mean 
slope for the MDD group amounts to β10 + β11. Therefore, 
the effect of interest is the difference between the two 
groups in the mean slope, β11. Model 5 includes random 
intercepts γ0i as well as random slopes γ1i. Model 6 is 
more restrictive and does not include random slopes.

Cross-level interaction between two 
continuous predictors

Models 7 and 8 in Figure 1 focus on a cross-level inter-
action between the continuous Level 2 predictor depres-
sioni and the continuous Level 1 predictor anhedoniait 

Table 1. Example Rows of the Hypothetical Data Set

PID Observation Affect Anhedonia Depression Diagnosis

1 1 28.8 42 12 1
1 2 26.0 30 12 1
1 3 27.4 22 12 1
1 4 21.4 33 12 1
1 5 14.4 23 12 1
1 6 26.6 18 12 1
2 1 16.0 19  4 0
2 2 13.2 23  4 0
2 3  9.6 12  4 0
2 4 14.4 18  4 0
2 5  8.6 10  4 0
2 6  9.2 15  4 0

Note: Affect (negative affect) and anhedonia are the Level 1 variables, 
and depression and diagnosis are the Level 2 variables. PID = 
participant identification number.

Table 2. Formulas for the Models in Figure 1 and Available in the PowerAnalysisIL Application

Level 2

Model Level 1 Random intercept Random slope

Model 1 affectit = γ0i + εit γ0i = β00 + β01diagnosisi + v0i —
Model 2 affectit = γ0i + εit γ0i = β00 + β01depressioni + v0i —
Model 3 affectit = γ0i + γ1i anhedoniait + εit γ0i = β00 + v0i γ1i = β10 + v1i

Model 4 affectit = γ0i + γ1i anhedoniait + εit γ0i = β00 + v0i —
Model 5 affectit = γ0i + γ1i anhedoniait + εit γ0i = β00 + β01diagnosisi + v0i γ1i = β10 + β11diagnosisi + v1i

Model 6 affectit = γ0i + γ1i anhedoniait + εit γ0i = β00 + β01diagnosisi + v0i —
Model 7 affectit = γ0i + γ1i anhedoniait + εit γ0i = β00 + β01depressioni + v0i γ1i = β10 + β11depressioni + v1i

Model 8 affectit = γ0i + γ1i anhedoniait + εit γ0i = β00 + β01depressioni + v0i —
Model 9 affectit = γ0i + γ1i affectit−1 + εit γ0i = β00 + v0i γ1i = β10 + v1i

Model 10 affectit = γ0i + γ1i affectit−1 + εit γ0i = β00 + β01diagnosisi + v0i γ1i = β10 + β11diagnosisi + v1i

Model 11 affectit = γ0i + γ1i affectit−1 + εit γ0i = β00 + β01depressioni + v0i γ1i = β10 + β11depressioni + v1i
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(e.g., Arend & Schäfer, 2019), to investigate whether the 
level of depression (as measured at baseline) moderates 
the effect of anhedonia on affect. Therefore, the effect 
of interest is again β11. As was the case for Models 5 and 
6, Model 7 includes both random intercepts and random 
slopes, whereas Model 8 assumes that the slope does 
not vary across participants.

Multilevel autoregressive models

Models 9 to 11 (see Fig. 1) are multilevel AR(1) autore-
gressive models (Hamaker & Grasman, 2015) that explic-
itly focus on the amount of temporal dependence in the 
outcome. In such models, the lagged outcome variable 
(i.e., the observed outcome at the previous measurement 
occasion) is included as the predictor of interest. Such 
autoregressive effects have been extensively studied, for 
example, in affective research (Kuppens et  al., 2010). 
Model 9 allows us to study the mean autoregressive 
effect across individuals as well as individual differences 
therein, through β10 and γ1i, respectively. To satisfy the 
stationarity assumption of the model, both effects have 
to range between −1 and 1. Given that temporal depen-
dence is now captured through the autoregressive effect, 
the residuals εit are assumed to be independent and 
normally distributed with mean 0 and standard deviation 
σε. Some researchers person-mean-center the lagged 
outcome variable, although Hamaker and Grasman 
(2015) showed in an extensive simulation study that this 
results in an underestimation of β10. The resulting bias 
will have an impact on power.

Model 10 extends Model 9 in that it allows us to esti-
mate the difference in the mean autoregressive effect 
between two groups of individuals (L. P. Wang et  al., 

2012). The mean autoregressive effect is β10 for the refer-
ence group (healthy control individuals) and β10 + β11 
for the MDD group. Therefore, the effect of interest is 
β11.

Finally, models structured like Model 11 are used to 
estimate a cross-level interaction effect between a con-
tinuous Level 2 predictor and the lagged outcome, to 
study if the Level 2 predictor moderates the autoregres-
sive effect (e.g., Brose et al., 2015; Koval et al., 2013). 
Consequently, β11 is the effect of interest. In this case, 
Hamaker and Grasman (2015) clearly recommended 
person-mean centering the lagged predictor.

A Shiny App to Perform Power Analysis

In this section, we present the Shiny app, PowerAnaly-
sisIL, that we developed to compute power as a function 
of the number of participants for the models described 
in the previous section. Figure 2 shows a screenshot of 
the opening page of the app, where users select the 
population model of interest, set the parameter values, 
and run their power analysis. The app was implemented 
using the R package shiny. It is available via a Git reposi-
tory hosted on GitHub at https://github.com/ginettelafit/
PowerAnalysisIL. Users can download the app and run 
it locally on their computer in R or RStudio (RStudio 
Team, 2015). In what follows, we describe how the app 
works.

App input

First, the user indicates which multilevel model (i.e., 
Model 1–Model 11) will be used to estimate the effect of 
interest and specifies plausible values for all model 

Table 3. Overview of the Effects of Interest for the Models in Figure 1 and Available in the 
PowerAnalysisIL Application

Model

Time-varying  
Level 1 predictor

Time-invariant  
Level 2 predictor

Random 
intercept

Random 
slope

Cross-level 
interaction 

effect
Continuous 

variable

Lagged 
dependent 
variable

Dummy 
variable

Continuous 
variable

Model 1 — — X — X — X
Model 2 — — — X X — X
Model 3 X — — — X X —
Model 4 X — — — X — —
Model 5 X — X — X X X
Model 6 X — X — X — X
Model 7 X — — X X X X
Model 8 X — — X X — X
Model 9 — X — — X X —
Model 10 — X X — X X X
Model 11 — X — X X X X

https://github.com/ginettelafit/PowerAnalysisIL
https://github.com/ginettelafit/PowerAnalysisIL
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Fig. 2. Screenshot of the opening page of PowerAnalysisIL, a Shiny app to perform power analysis to select the 
number of participants in intensive longitudinal studies.
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parameters. For instance, if one wants to focus on dif-
ferences in mean affect between individuals diagnosed 
with MDD and healthy control individuals, one selects 
Model 1. Next, the sample sizes that should be consid-
ered in the power computations have to be provided. In 
the case of Model 1, one has to set a range of values for 
the number of participants in the reference (healthy) 
group and the number of participants diagnosed with 
MDD. Using this information, the software will create a 
Level 2 dummy predictor indicating group membership 
for each group size. For instance, possible sample sizes 
for the healthy control and MDD groups could amount 
to 20, 30, 40, and 80 and 15, 20, 25, and 30, respectively. 
Then, one sets the expected number of completed equi-
distant observations per individual (e.g., 60). If the 
selected model includes continuous Level 1 or Level 2 
predictors, their mean and standard deviation have to 
be provided, assuming that they are normally distributed. 
For Level 1 continuous predictors, one indicates whether 
they should be grand-mean or person-mean centered. 
Finally, one sets the estimation method (i.e., maximum 
likelihood [ML] or restricted maximum likelihood [REML] 
estimation3), the desired significance level (α), and the 
number of Monte Carlo replicates in the power simula-
tions (e.g., 1,000). For Models 1 through 8, the app also 
allows estimating multilevel models with independent 
errors (i.e., assuming ρε = 0). Comparing the power of 
models with and without AR(1) errors makes it possible 
to assess the impact of temporal dependence.

Simulation

On the basis of this input, the app repeatedly simulates 
the data for each indicated sample size. For the multilevel 
AR models (i.e., Models 9–11), simply sampling the ran-
dom effects from a normal distribution might yield data 
that are not stationary (i.e., the normal distribution does 
not restrict the random autoregressive effects to belong 
to the interval [−1,1]). To guarantee stationarity, without 
changing the specified mean and standard deviation of 
the random slopes, we draw the random slopes from a 
beta distribution and linearly transform them so that they 
fall into the interval (−1,1).4 For each simulated data set, 
the multilevel model is fitted by means of the lme func-
tion from the nlme package (Pinheiro et al., 2019), and 
the effect of interest is tested (i.e., two-sided Wald test). 
In case of convergence problems, the app shows a warn-
ing message signaling the total number of replicates that 
failed to converge. Convergence issues in multilevel mod-
els arise when the estimated covariance matrix of the 
random effects is singular (see Bates et al., 2015) and 
might be caused by not having enough observations 
within participants, by having a small number of partici-
pants, or by scaling issues (see, e.g., Clark, 2020). If this 

happens, we recommend evaluating the following alter-
natives: increasing the number of participants, increasing 
the number of repeated measurements per person, cen-
tering predictors, or checking the specified values of the 
model parameters. Finally, we note that the simulation-
based approach is computationally intensive and there-
fore may demand a lot of computational time. Depending 
on the number of participants, the number of observa-
tions per participant, the number of Monte Carlo repli-
cates, the population model of interest, and the operating 
system, the simulation can run for multiple hours. There-
fore, while performing the power analysis, the app dis-
plays a message indicating the number of participants 
for which power is currently being computed. Moreover, 
users can estimate the expected number of hours neces-
sary to perform the simulation analysis by using the 
“Estimate Computational Time” option.5

App output

For the effect of interest as well as all other fixed effects 
included in the model, the app provides a power curve, 
which shows how the estimated power varies as a func-
tion of sample size (i.e., the number of participants). 
The estimated power is computed as the proportion of 
Monte Carlo replicates in which the effect was significant 
(at the specified α level). Furthermore, the app presents 
a summary of the results for each sample size. This sum-
mary includes power and measures to evaluate the esti-
mation performance (see Morris et al., 2019): the average 
of the estimates of each fixed effect; the bias (i.e., the 
difference between the average of the estimates and the 
true value); the standard error; and the (1 − α)% cover-
age proportion, computed as the proportion of Monte 
Carlo replicates for which the (1 − α)% confidence inter-
val includes the true value. Moreover, summary statistics 
are provided for the variance components of the within-
individual errors (i.e., ρε in the AR(1) error in Models 
1–8 and σε in Models 1–11) and for the random effects 
(i.e., standard deviations σv0

 and σv1
 and the correlation 

between the random effects, ρv01
). Finally, for the largest 

sample size considered, density plots and boxplots of 
the distributions of the estimated parameters are given.

Illustrations

In this section, we illustrate how the app can be used to 
perform a power analysis to decide on the number of 
participants needed to test three different research 
hypotheses. For all models, the values of a large number 
of model parameters have to be specified. We recommend 
choosing these values on the basis of data from a pilot 
study or existing IL studies with similar measures and 
designs (see, e.g., Lane & Hennes, 2018). To this end, we 
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use information from a clinical data set reported on by 
Heininga et al. (2019).

Data set

The data set includes 38 individuals who have been 
diagnosed with MDD (score of 1 on the diagnosis vari-
able) and 40 control participants (score of 0). They all 
participated in a 7-day ESM study, in which they were 
asked to repeatedly fill in a questionnaire containing 27 
items measuring various constructs, including negative 
affect (i.e., affect; five items; responses were averaged) 
and anhedonia (one item). Participants answered these 
items on a sliding scale ranging from not at all on the 
left (0) to very much on the right (100). The questions 
were semirandomly presented 10 times a day between 
9:30 a.m. and 9:30 p.m. within intervals of 66 min. There-
fore, the design included 70 measurement occasions per 
participant. Depressive symptoms (depression) were 
measured before the ESM testing period using the sum 
score on the Quick Inventory of Depressive Symptom-
atology (Rush et al., 2003).

Illustration 1: power to estimate  
the effect of a Level 2 predictor

Suppose we are planning a study to test the hypothesis 
that depression is positively related to negative affect 
and thus want to run Model 2 (see Fig. 1). The data will 
be collected using an IL design, including 70 measure-
ment occasions per individual. How many participants 
do we need to involve?

To perform the simulation-based power analysis, we 
need to specify the parameter values of the model of 
interest. Pilot data or the results from previous studies 
examining the same hypothesis can be used to obtain 
appropriate values. Here, we use the clinical data set 
and apply Model 2 to get estimates of these parameters. 
The continuous Level 2 predictor, depression, is centered 
using the grand mean. Table 4 shows the estimated 
parameter values. Note that estimation of this model is 
not part of the app (i.e., this step has to be conducted 
separately). In our OSF project page (https://osf.io/
vguey/), we show how to obtain the parameter values 
of Model 2 using the clinical data set.

Step 1: app input. We select Model 2 and fill in the val-
ues of the model parameters (see Figs. 3a and 3b). We 
indicate that we want to consider the following values for 
the number of participants: 15, 30, 45, 60, 80, and 100. We 
set the number of measurements within each participant 
to 70. We specify the fixed effects: The fixed intercept β00 
is set to 43.01, and the effect of the Level 2 continuous 

variable β01 is set to 1.50. Next, we set the standard devia-
tion, σε, and autocorrelation, ρε, of the within-individual 
errors as 12.62 and .46, respectively. The standard devia-
tion of the random intercept, σv0

, is set to 12.90. We fix the 
value of the mean for depression to 15.70 and the stan-
dard deviation to 5.00. We select the options “Center the 
level-2 variable W” and “Estimate AR(1) correlated errors 
εit.” In this and the following illustrations, we set the Type 
I error, α, to .05 and the number of Monte Carlo replicates 
to 1,000, and we choose the “Maximizing the restricted 
log-likelihood” option when specifying the estimation 
method. Finally, we click on “Compute Power.” Given the 
computationally intensive nature of a simulation-based 
power analysis, it takes multiple hours to obtain the com-
bined results for the three illustrations presented in this 
article.

Step 2: app output. The app provides power curves 
showing power as a function of the indicated sample 
sizes. Figure 3c shows the estimated power curve for Illus-
tration 1. We observe that when the number of partici-
pants is 15, the power for the effect of interest (i.e., β01 = 
1.50) is 53.8%. This result implies that in only 538 out of 
the 1,000 simulated data sets, the null hypothesis that 
depression does not have a significant effect on negative 
affect was rejected. We observe that when the number of 
participants increases, the power increases as well. Spe-
cifically, power greater than 80% is achieved when the 
number of participants is greater than 30.

The app also provides information about the distribu-
tion of the estimates of the fixed and random effects 
across the Monte Carlo replicates. Table 5 shows the 
summary statistics for the fixed effects. For instance, the 

Table 4. Illustration 1: Estimated Parameters Using the 
Clinical Data Set to Estimate the Effect of Depressive 
Symptoms on Negative Affect in Individuals With Major 
Depressive Disorder

Parameter Notation
Model 

estimate

Number of participants N 38
Number of time points 70
Mean of the Level 2 continuous 

variable (depression)
µW 15.70

Standard deviation of the Level 2 
continuous variable (depression)

σW 5.00

Fixed intercept β00 43.01
Effect of the Level 2 continuous 

variable on the Level 1 intercept
β01 1.50

Standard deviation of the Level 1 error σε 12.62
Autocorrelation of the Level 1 error ρε .46
Standard deviation of the random 

intercept

σv0 12.90

https://osf.io/vguey/
https://osf.io/vguey/
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Fig. 3. (continued on next page)
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Fig. 3. Illustration 1: the effect of depression on negative affect in individuals with major depressive disorder. These screenshots of 
the PowerAnalysisIL app show (a) the window in which Model 2 has been selected and the sample size has been set, (b) the values 
to which the parameters of the model have been set, and (c) the power curve for estimating the effect of interest.

coverage rate for β01 is close to 95%, which indicates a 
satisfactory estimation of the 95% confidence interval. 
The app also calculates the power for the fixed intercept, 
although this is of little interest here.

Illustration 2: power to detect the effect 
of a Level 1 predictor

Now we turn to the effect of a Level 1 predictor, anhe-
donia, on negative affect for individuals diagnosed with 
MDD, and thus to Model 3. To set the values of the 
model parameters, we again analyzed the clinical data 
set, and we obtained the results shown in Table 6.

Step 1: app input. We select Model 3 and set the sam-
ple size to the following numbers of participants: 15, 20, 
30, 40, 60, and 100, restricting the number of measure-
ments within participants to 70 (see Fig. 4a). Subsequently, 
we specify the associated parameter values (see Fig. 4b). 

The fixed intercept β00 is 42.90, and the fixed slope β10 is 
0.13. The standard deviation of the Level 1 errors is 12.00, 
and the autocorrelation is .43. The standard deviations of 
the random intercept and random slope are 15.00 and 
0.12, respectively. The correlation between the random 
effects is .003. The mean and standard deviation of the 
Level 1 variable are 51.70 and 23.70, respectively. To guar-
antee that the fixed slope reflects the (average) within-
person association between anhedonia and negative 
affect, we select the option to person-mean-center the 
Level 1 variable. Finally, to account for temporal depen-
dencies, we choose the option to estimate the AR(1) cor-
related errors.

Step 2: app output. From the power curve in Figure 4c, 
we conclude that power is greater than 99% when there 
are more than 15 participants. Summary statistics of the 
fixed effects can be found in Table 7. Table 8 shows the 
summary statistics of the estimated standard deviation and 
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autocorrelation of the Level 1 errors, the standard devia-
tions of the random effects, and the correlation between 
the random effects. We observe that when the number of 
participants increases, the bias of the estimates of σv0

, σv1
, 

and ρv01  diminishes. Figure 5 shows the distributions of the 
estimated parameters across the Monte Carlo replicates 
when the number of participants is 100. We observe that 
when the number of participants is 100, the estimates of 
σv0

 and σv1
 are slightly negatively biased.

Illustration 3: power to detect the 
differences in the autoregressive effects 
between two groups

Finally, we focus on whether the autoregressive effect 
of negative affect differs between individuals diagnosed 

with MDD and control participants, and thus on Model 
10. As in the previous examples, we use the clinical data 
set to obtain estimates of the parameter values, shown 
in Table 9.

Step 1: app input. We select “Model 10: Multilevel AR(1) 
model - Group differences in the autoregressive effects.” 
The number of participants in the reference group (i.e., 
healthy control group) and the number of participants in 
Group 1 (i.e., MDD group) are both set to 20, 40, 60, 80, 
100, 200, and 250, and the number of measurements 
within participants is set to 70 (see Fig. 6a). We specify the 
parameter values as follows (see Fig. 6b): The fixed inter-
cept (β00) is 10.20, and the difference in the fixed intercept 
between the two groups (β01) is 32.40. The autoregressive 
effect (β10) is 0.20. The difference in the autoregressive 

Table 5. Illustration 1: Summary of Fixed Effects in the Model of the Effect of 
Depression on Negative Affect in Individuals With Major Depressive Disorder

Effect and sample size
True 
value Mean SE Bias

(1 − α)% 
coverage 

proportion Power

Fixed intercept 
N = 15 43.01 43.0228 0.1089  0.0128 .890 1.000
N = 30 43.01 42.8869 0.0755 −0.1231 .902 1.000
N = 45 43.01 43.1233 0.0622  0.1133 .941 1.000
N = 60 43.01 42.9715 0.0551 −0.0385 .940 1.000
N = 80 43.01 43.0246 0.0460  0.0146 .948 1.000
N = 100 43.01 43.0340 0.0408  0.0240 .947 1.000

Effect of the Level 2 
continuous variable on 
the Level 1 intercept 

N = 15  1.50  1.5116 0.0229  0.0116 .922  .538
N = 30  1.50  1.5052 0.0159  0.0052 .904  .842
N = 45  1.50  1.4894 0.0133 −0.0106 .947  .922
N = 60  1.50  1.5095 0.0113  0.0095 .941  .981
N = 80  1.50  1.4923 0.0096 −0.0077 .946  .999
N = 100  1.50  1.5053 0.0086  0.0053 .946  .999

Note: This table summarizes results across 1,000 Monte Carlo replicates.

Table 6. Illustration 2: Estimated Parameters Using the Clinical Data Set to Estimate the 
Effect of Anhedonia on Negative Affect in Individuals With Major Depressive Disorder

Parameter Notation
Model 

estimate

Number of participants N 38
Number of time points 70
Mean of the Level 1 continuous variable (anhedonia) µX 51.70
Standard deviation of the Level 1 continuous variable (anhedonia) σX 23.70
Fixed intercept β00 42.90
Fixed Slope β01 0.13
Standard deviation of the Level 1 error σε 12.00
Autocorrelation of the Level 1 error ρε .43
Standard deviation of the random intercept σv0 15.00
Standard deviation of the random slope σv1 0.12
Correlation between the random intercept and the random slope ρv01 .003
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Fig. 4. (continued on next page)
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Fig. 4. Illustration 2: the effect of anhedonia on negative affect in individuals with major depressive disorder. These screenshots of 
the PowerAnalysisIL app show (a) the window in which Model 3 has been selected and the sample size has been set, (b) the values 
to which the parameters of the model have been set, and (c) the power curve for estimating the effect of interest.

Table 7. Illustration 2: Summary of Fixed Effects in the Model of the Effect of 
Anhedonia on Negative Affect in Individuals With Major Depressive Disorder

Effect and  
sample size

True 
value Mean SE Bias

(1 − α)% 
coverage 

proportion Power

Fixed intercept  
 N = 15 42.90 42.9502 0.1225  0.0502 .932 1.000
 N = 20 42.90 43.1270 0.1035  0.2270 .945 1.000
 N = 30 42.90 43.0137 0.0869  0.1137 .948 1.000
 N = 40 42.90 42.8967 0.0728 −0.0033 .955 1.000
 N = 60 42.90 42.9109 0.0621  0.0109 .949 1.000
 N = 100 42.90 42.9305 0.0480  0.0305 .943 1.000
Fixed slope  
 N = 15  0.13  0.1298 0.0011 −0.0002 .930  .962
 N = 20  0.13  0.1287 0.0009 −0.0013 .928  .986
 N = 30  0.13  0.1304 0.0008  0.0004 .935 1.000
 N = 40  0.13  0.1308 0.0007  0.0008 .937 1.000
 N = 60  0.13  0.1292 0.0005 −0.0008 .935 1.000
 N = 100  0.13  0.1293 0.0004 −0.0007 .939 1.000

Note: This table summarizes results across 1,000 Monte Carlo replicates.

effect between the two groups (β11) is 0.10. The standard 
deviation of the Level 1 errors is 8.80. The standard devia-
tions of the random intercept and random slope are 11.50 

and 0.16, respectively. The correlation between the random 
effects is .265. We person-mean-center the lagged out-
come variable.
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Step 2: app output. Figure 6c shows the estimated power 
curve. The power to test the difference in the autoregressive 
effect (β11) between the two groups is larger than 80% when 
there are 80 participants diagnosed with MDD and 80 
healthy control participants. As shown in Table 10, there is a 
downward bias in the estimated value of the fixed slope in 
the reference group (β10). Furthermore, when the number of 

participants increases, the 95% coverage proportion of the 
fixed slope diminishes. This is related to the bias in the esti-
mate of the fixed slope and the narrowing of confidence 
intervals (i.e., smaller standard errors) when the sample size 
increases. This result is in line with Hamaker and Grasman’s 
(2015) simulations for this model, which showed that the 
estimated fixed slope is negatively biased when the lagged 
dependent variable is person-mean centered.

Discussion

IL designs allow studying within-person psychological 
dynamics. When multiple participants are included in 
an IL study, multilevel models are a powerful approach 
to capture these within-person processes as well as inter-
individual differences therein. When planning IL studies, 
it is obviously essential to collect a sufficient amount of 
data to ensure reliable estimates and sufficient power. 
In this article, we have focused on the number of par-
ticipants who are needed to obtain sufficient statistical 
power for testing hypotheses about specific parameters 
of the multilevel models that are popular in IL studies. 
These power questions cannot be addressed by existing 
software for standard multilevel models, as standard 
models do not account for temporal dependencies in 
the outcome variable. Therefore, we have presented a 
Shiny app developed in R that uses simulation to com-
pute power for models with an AR(1) error structure or 
with the lagged outcome variable as a predictor. The 
app yields power curves that show how estimated power 
varies as a function of the number of participants. In the 
following, we discuss limitations of the current version 
of the Shiny app as well as potential extensions.

Accommodating uncertainty about the 
hypothesized model parameters

Using simulation-based power analysis for multilevel 
models is challenging, in that users have to specify all 
the parameter values of the population model of interest. 
Following Lane and Hennes (2018) and Maxwell et al. 
(2008), we recommend basing these values on a litera-
ture review, on data from a pilot study (as we did by 
means of the clinical data set), or on previously con-
ducted studies with similar measures and designs. Hav-
ing said that, we acknowledge that the second and third 
approaches may imply that data are used from a small 
or unrepresentative sample, which may produce biased 
estimates as input for the power analysis (e.g., Albers & 
Lakens, 2018). Therefore, a more robust power-calculation 
approach would account for uncertainty regarding the 
hypothesized model parameters. This can be achieved 
by performing a sensitivity analysis in which the values 
of the model parameters are varied to some extent (e.g., 
Lane & Hennes, 2018; Y. A. Wang & Rhemtulla, 2021). 

Table 8. Illustration 2: Summary of the Variance 
Components in the Model of the Effect of Anhedonia 
on Negative Affect in Individuals With Major Depressive 
Disorder

Parameter and 
sample size

True  
value Mean SE Bias

Standard deviation of 
the Level 1 error 

N = 15 12.00 12.0018 0.1225 0.0502
N = 20 12.00 12.0131 0.1035 0.2270
N = 30 12.00 12.0088 0.0869 0.1137
N = 40 12.00 12.0074 0.0728 −0.0033
N = 60 12.00 12.0002 0.0621 0.0109
N = 100 12.00 11.9978 0.0480 0.0305

Autocorrelation of 
the Level 1 error 

N = 15 .43 .4278 0.0009 −0.0022
N = 20 .43 .4291 0.0009 −0.0009
N = 30 .43 .4289 0.0007 −0.0011
N = 40 .43 .4289 0.0006 −0.0011
N = 60 .43 .4291 0.0005 −0.0009
N = 100 .43 .4294 0.0004 −0.0006

Standard deviation 
of the random 
intercept 

N = 15 15.00 14.8875 0.0926 −0.1125
N = 20 15.00 14.8981 0.0807 −0.1019
N = 30 15.00 14.9528 0.0623 −0.0472
N = 40 15.00 14.8096 0.0558 −0.1904
N = 60 15.00 14.9201 0.0455 −0.0799
N = 100 15.00 15.0089 0.0338 0.0089

Standard deviation of 
the random slope 

N = 15 0.12 0.1182 0.0008 −0.0018
N = 20 0.12 0.1166 0.0008 −0.0034
N = 30 0.12 0.1194 0.0006 −0.0006
N = 40 0.12 0.1185 0.0005 −0.0015
N = 60 0.12 0.1193 0.0004 −0.0007
N = 100 0.12 0.1195 0.0003 −0.0005

Correlation between 
the random intercept 
and the random slope

N = 15 .003 −.0134 0.0097 −0.0164
N = 20 .003 −.0103 0.0087 −0.0133
N = 30 .003 −.0064 0.0068 −0.0094
N = 40 .003 .0065 0.0058 0.0035
N = 60 .003 .0033 0.0048 0.0003
N = 100 .003 .0034 0.0035 0.0004

Note: This table summarizes results across 1,000 Monte Carlo replicates.
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Fig. 5. Illustration 2: the effect of anhedonia on negative affect in individuals with major depressive disorder. This 
 PowerAnalysisIL screenshot shows the distributions of the estimated parameters across 1,000 Monte Carlo replicates when 
the number of participants is 100. For each model parameter, a kernel density plot (upper plot) and a boxplot (lower 
plot) are presented. In the boxplots, the box extends from the 25th percentile to the 75th percentile, the solid vertical 
line represents the median, and the two lines outside the box extend to the minimum and maximum. The dashed vertical 
lines indicate the true model parameters.
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Table 9. Illustration 3: Estimated Parameters Using the Clinical Data Set to Estimate Differences 
in the Autoregressive Effect of Negative Affect Between Individuals With Major Depressive 
Disorder and Control Participants

Parameter Notation
Model 

estimate

Number of participants in Group 0 (i.e., reference group) N0 40
Number of participants in Group 1 N1 38
Number of time points 70
Fixed intercept β00 10.20
Difference in the fixed intercept between the reference group and Group 1 β01 32.40
Fixed slope (i.e., autoregressive effect) β10 0.20
Difference in the fixed slope between the reference group and Group 1 β11 0.10
Standard deviation of the Level 1 error σε 8.80
Standard deviation of the random intercept σv0 11.50
Standard deviation of the random slope σv1 0.16
Correlation between the random intercept and the random slope ρv10 .265

This way, one can assess whether and to what extent 
using different possible parameter values influences the 
obtained power results. We note, however, that the cur-
rent version of the app cannot display power curves as 
a function of sets of different plausible parameter values. 
Therefore, users have to perform a sensitivity analysis 
by conducting a separate power analysis for each set of 
parameter values.

Selecting the numbers of measurement 
occasions and persons

When multilevel modeling is applied to IL data, the 
obtained power is a function of both the number of 
measurement occasions and the number of participants. 
In this article, we have targeted the number of partici-
pants and kept the number and spacing of the measure-
ment occasions fixed. Although this worked well for the 
research questions that we considered (i.e., we consid-
ered a relatively large number of measurement occa-
sions), it is important to note that other research 
questions might call for increasing the number of mea-
surement occasions. It makes sense, for instance, that 
when interindividual differences in within-person effects 
are of interest, the number of measurement occasions 
should be large as well. Indeed, earlier work of de Haan-
Rietdijk et  al. (2017), Krone et  al. (2016), Liu (2017), 
Schultzberg and Muthén (2018), and Timmons and 
Preacher (2015) has demonstrated the effect that the 
number and spacing of the measurement occasions can 
have on estimation accuracy of multilevel approaches 
for IL data. Thus, how to best plan for adequate power 
depends on where power vulnerabilities are (see, e.g., 
Lane & Hennes, 2018).

What do users have to do when they are interested 
in studying not only how the number of participants 
affects power, but also how the number of measurement 

occasions affects power? Although one cannot get power 
curves for that from our app, a relatively simple solution 
consists of conducting repeated simulations with differ-
ent numbers of measurement occasions while keeping 
the vector of sample sizes fixed. However, adding more 
participants or more measurements per participant may 
come with additional costs for researchers and may also 
increase participants’ burden. Therefore, researchers 
designing IL studies might be interested in balancing the 
two sample-size components to optimize power and 
minimize costs and participants’ burden. One way to 
achieve this is to obtain a set of combinations (i.e., of 
the number of participants and the number of measure-
ment occasions per participant) that yield equal power 
and to select the combination that optimizes budgetary 
feasibility or other concerns. We note, however, that the 
current version of the app does not allow users to obtain 
such a set of combinations that produce equivalent 
power. We therefore recommend Brandmaier et  al. 
(2015), Moerbeek (2011), and von Oertzen (2010) for a 
broader discussion on this topic.

Other remarks and future extensions

In the current Tutorial, we have illustrated how to use 
the PowerAnalysisIL app to estimate the number of par-
ticipants needed for sufficient power to answer three 
specific research questions. For each research question, 
we focused on computing power for a single (fixed) 
effect. Yet the app also providespower curves for all 
other fixed effects included in a model. Therefore, in 
studies that involve testing multiple fixed effects, the 
number of participants should be large enough to detect 
all these effects with high power.

Even though the app is already quite extensive and 
includes no fewer than 11 models, many additional models 
could be included. For instance, in many applications, 
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Fig. 6. (continued on next page)



20 Lafit et al.

Fig. 6. Illustration 3: differences between groups in the autoregressive effect of negative affect. These screenshots of the 
PowerAnalysisIL app show (a) the window in which Model 10 has been selected and the sample size has been set, (b) the values 
to which the parameters of the model have been set, and (c) the power curve for estimating the effect of interest.

the objective is to assess the significance of the random 
effects. This is not possible in the current version of the 
app. Also, we have focused on two-levels models in 
which repeated measurements are nested within indi-
viduals. In the future, the proposed approach could be 
extended to three-level models (i.e., occasions nested 
within days, which in turn are nested within individuals). 
Three-level models are especially relevant if the dynamics 
under study differ systematically across days. Ignoring 
these differences could affect the reliability of the esti-
mated results (de Haan-Rietdijk et al., 2016) and conse-
quently the power.

The app simulates and analyzes data under the assump-
tion that the measurement occasions are equally spaced 
and contain no missing data. In IL research, participants 
might not respond at some measurement occasions or 
during night breaks (e.g., Fuller-Tyszkiewicz et al., 2013; 
Santangelo et al., 2014; Stone et al., 2003). Whereas miss-
ingness might sometimes occur completely at random, in 
other cases it might be systematic (e.g., associated with 
certain affective states or certain times or contexts), which 
can lead to unreliable estimates (Courvoisier et al., 2012). 
To account for this, it would be useful to extend the simu-
lation approach to study the effect of different types of 
missing data and attrition on power. For instance, when 
data can be assumed to be missing completely at ran-
dom, users could simply specify the expected number 

of completed measurement occasions. Studying the 
effects of other mechanisms of missingness is more 
involved, however, because the mechanism has to be fully 
specified in order to simulate data.

Finally, we would like to highlight that power is not 
the only criterion to base sample-size selection on. Aside 
from maximizing the likelihood that a hypothesized 
effect in a population is detected, researchers might, for 
instance, be interested in increasing the precision of an 
estimate by controlling the width of the confidence inter-
val of interest (e.g., Maxwell et  al., 2008). Given that 
sample-size planning is important for the two related 
objectives of power and precision, our simulation-based 
approach could be extended in this direction, allowing 
users to additionally select the sample size that yields a 
targeted confidence-interval width.

Conclusion

This Tutorial has introduced a Shiny app for selecting 
the number of participants in IL designs. The application 
performs simulation-based power analysis for effects in 
multilevel models. We hope that the application contrib-
utes to good research practices by allowing rigorous 
sample-size planning for IL studies, which is of crucial 
importance to increase the reliability and replicability of 
psychological research.
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Table 10. Illustration 3: Summary of Fixed Effects in the Model of Differences Between 
Groups in the Autoregressive Effect of Negative Affect

Effect and group size
True 
value Mean SE Bias

(1 − α)% 
coverage 

proportion Power

Fixed intercept  
n = 20 per group 10.20 10.2638 0.0797 0.0638 .951 .979
n = 40 per group 10.20 10.2277 0.0580 0.0277 .941 .999
n = 60 per group 10.20 10.2293 0.0458 0.0293 .960 1.000
n = 80 per group 10.20 10.2027 0.0401 0.0027 .954 1.000
n = 100 per group 10.20 10.1838 0.0354 −0.0162 .960 1.000
n = 200 per group 10.20 10.1844 0.0250 −0.0156 .961 1.000
n = 250 per group 10.20 10.1978 0.0228 −0.0022 .951 1.000

Effect of the Level 2 
dummy variable on 
the intercept 

n = 20 per group 32.40 32.4069 0.1121 0.0069 .959 1.000
n = 40 per group 32.40 32.3521 0.0793 −0.0479 .962 1.000
n = 60 per group 32.40 32.3738 0.0633 −0.0262 .969 1.000
n = 80 per group 32.40 32.4743 0.0572 0.0743 .956 1.000
n = 100 per group 32.40 32.3583 0.0514 −0.0417 .948 1.000
n = 200 per group 32.40 32.3942 0.0348 −0.0058 .966 1.000
n = 250 per group 32.40 32.4214 0.0318 0.0214 .959 1.000

Fixed slope  
n = 20 per group 0.20 0.1795 0.0013 −0.0205 .925 .981
n = 40 per group 0.20 0.1776 0.0010 −0.0224 .885 1.000
n = 60 per group 0.20 0.1781 0.0008 −0.0219 .846 1.000
n = 80 per group 0.20 0.1781 0.0007 −0.0219 .816 1.000
n = 100 per group 0.20 0.1776 0.0006 −0.0224 .790 1.000
n = 200 per group 0.20 0.1778 0.0004 −0.0222 .622 1.000
n = 250 per group 0.20 0.1780 0.0004 −0.0220 .551 1.000

Effect of the Level 2 
dummy variable on 
the slope 

n = 20 per group 0.10 0.0948 0.0019 −0.0052 .953 .344
n = 40 per group 0.10 0.0974 0.0014 −0.0026 .944 .612
n = 60 per group 0.10 0.0967 0.0011 −0.0033 .942 .776
n = 80 per group 0.10 0.0965 0.0010 −0.0035 .939 .873
n = 100 per group 0.10 0.0958 0.0009 −0.0042 .933 .928
n = 200 per group 0.10 0.0975 0.0006 −0.0025 .956 .999
n = 250 per group 0.10 0.0971 0.0006 −0.0029 .944 1.000

Note: This table summarizes results across 1,000 Monte Carlo replicates.
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Notes

1. The first-order autoregressive process is defined as εit = ρεεit−1 + 
ωij, where ωij is assumed to be Gaussian white noise, N(0,σω). 
Under this model, the correlation between εit−1 and εit is given by 
ρε and σ σ ρε ω ε

2 2 21= −/( ).
2. Here and elsewhere, we use terms like effect and influence 
for brevity without implying that the associations being modeled 
are necessarily causal.
3. The methods differ in how they estimate the variance compo-
nents of the model. ML ignores the uncertainty in the estimates 
of the fixed effects when estimating the variance components. 
As a result, the estimates of the variance components are biased 
when the sample size is small. REML estimates unbiased variance 
components by taking into account the degrees of freedom of 
the fixed-effects estimates. Raudenbush and Bryk (2002) recom-
mended using REML when the number of participants is small.
4. For each individual, the random slope is generated as follows:  
First, we draw Bi from a beta distribution with con di tional mean  

E B i
E i

i
i|
|( ) = + ( )1
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1γ  and conditional variance Var |B i
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v1

2

2
 

Var |B i
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. The random slope of participant i is computed as γ1i =  

2Bi − 1, and the random intercept as γ σ ρ
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| , where Z is drawn from a standard normal 

distribution.
5. To estimate the computational time, the app conducts a power 
analysis using 10 replicates only. Next, the run time for 10 rep-
licates is used to estimate the run time for the total number of 
replicates.
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