1	Intratracheal Budesonide/Surfactant attenuates <u>hyperoxia-induced lung</u>						
2	<u>injury</u> in preterm rabbits						
3							
4	André G Gie ^{1*} , Yannick Regin ^{1*} , Thomas Salaets ¹ , Costanza Casiraghi ² , Fabrizio						
5	Salomone ² , Jan Deprest ^{1, 4} , Jeroen Vanoirbeek ³ , Jaan Toelen ¹						
6							
7	Author affiliations						
8	¹ Department of Development and Regeneration, KU Leuven, Leuven, Belgium						
9	² Chiesi Farmaceutici, R&D Department, Parma, Italy						
10	³ Centre for Environment and Health, Department of Public Health and Primary						
11	Care, KU Leuven, Leuven, Belgium						
12	⁴ Institute for Women's Health, University College London Hospital, London,						
13	United Kingdom						
14	* These authors contributed equally to this work.						
15							
16	Running head: Intratracheal Budesonide/Surfactant prevents BPD						
17							
18	Key words: respiratory therapy, hyperoxia, bronchopulmonary dysplasia,						
19	surfactant, experimental animal model						
20							
21	Corresponding Author:						
22	Jaan Toelen Phone: +321634380 Fax: Fax +32-16-343842						
23	E-mail: jaan.toelen@kuleuven.be						
24	Department of Development and Regeneration						

25 O&N 4, Herestraat 49

26 3000 Leuven

27

28	Author contributions: AG, YR, TS, JD, JT designed the experiments. AG, YR
29	performed the intratracheal budesonide/surfactant experiments, functional
30	testing, histological evaluation, collected the data and made the figures. AG, YR
31	analyzed and interpreted the intratracheal budesonide/surfactant data. AG, YR,
32	TS, CC, FS, JT, JV, JT all contributed to the writing of the manuscript.
33	
34	

Recent clinical trials have shown improvements in neonatal outcomes after 38 39 intratracheal administration of combination budesonide/surfactant (ITBS) in 40 infants at risk of bronchopulmonary dysplasia. However, the effect of ITBS on lung function and alveolar structure is not known. We aimed to determine the effect of 41 42 ITBS on lung function, parenchymal structure and inflammatory cytokine expression in a relevant preterm animal model for bronchopulmonary dysplasia. 43 44 Premature neonatal rabbits were administered a single dose of ITBS on the day of 45 delivery and exposed to 95% oxygen. Following seven days of hyperoxia, in vivo 46 forced oscillation and pressure-volume maneuvers were performed to examine 47 pulmonary function. Histological and molecular analysis was performed to assess 48 alveolar and extracellular matrix (ECM) morphology, along with gene expression 49 of connective tissue growth factor (CTGF), IL-8 and CCL-2. ITBS attenuated the 50 functional effect of hyperoxia-induced lung injury and limited the change to 51 respiratory system impedance, measured using the forced oscillation technique. 52 Treatment effects were most obvious in the small airways, with significant effects 53 on small airway resistance and reactance. Additionally, ITBS mitigated the 54 decrease of inspiratory capacity and static compliance. ITBS restricted alveolar 55 septal thickening without altering the mean linear intercept and mitigated 56 hyperoxia-induced remodeling of the ECM. These structural changes were associated with improved inspiratory capacity and lung compliance. Gene 57 58 expression of CTGF IL-8 and CCL-2 were significantly down regulated in the lung. 59 Treatment with ITBS shortly after delivery attenuated the functional and

- 60 structural consequences of hyperoxia-induced lung injury to day 7 of life in the
- 61 <u>preterm rabbit.</u>

- -

69 Introduction

Prematurity along with lung inflammation are central to the development of bronchopulmonary dysplasia (BPD) (2, 23, 24). Premature infants are born prior to the functional maturation of the respiratory system and regularly develop respiratory distress. These infants frequently require supplemental oxygen and mechanical ventilation, both of which can increase lung inflammation and the risk of BPD (17).

76

77 Treatment options to prevent the development of BPD are limited (26). While high dose systemic steroids can decrease lung inflammation and the risk of BPD, 78 79 increased risk of neurocognitive injury and systemic side effects have limited their 80 use (11). Intratracheal steroid therapy is an emerging therapy that can be 81 combined with exogenous surfactant administration to directly target the lung 82 and avoid systemic effects (22). Intra-tracheal surfactant supplementation is 83 commonly used in preterm infants with respiratory distress and provides an 84 opportunity to use surfactant as a vehicle to deliver steroids to the peripheral lung. 85 Budesonide combined with surfactant can modify or prevent pulmonary 86 inflammation (3, 14, 15, 19, 20). Budesonide does not alter the biophysical 87 properties of surfactant and has the additional benefits of prolonged pulmonary 88 effect and rapid clearance of systemically absorbed drug (6, 19, 25).

89

Data on effectiveness of intratracheal steroid therapy to decrease the rate of BPD
 are sparse. Clinical studies are limited to a single randomized control trial and a
 single observational study examining intratracheal budesonide combined with
 surfactant. These studies have demonstrated the combination of intratracheal

94 budesonide (0.25mg/kg) and surfactant (100mg/kg) to decrease the incidence 95 and severity of BPD in mechanically ventilated children (21, 37). Supporting 96 evidence of the pulmonary benefits of intratracheal budesonide/surfactant (ITBS) 97 has come from animal models. ITBS has been found to acutely improve gas 98 exchange and limit lung and systemic inflammation (20, 27). However, due to 99 limited lung function and structure data, the effect of ITBS on the preterm lung is 100 not yet fully understood. Whether the acute changes seen with ITBS have a lasting 101 effect on lung function and structure is yet to be determined.

102

This paper demonstrates that a single prophylactic treatment with ITBS has
 <u>beneficial</u> effects on the preterm lung exposed to hyperoxia. <u>ITBS attenuated the</u>
 <u>functional and structural consequences of hyperoxia-induced lung injury and</u>
 <u>limited lung inflammation to day 7 of life.</u>

107

108 Material & Methods

Experiments were approved by the Ethics committee for Animal Experimentation
of KU Leuven (P081/2017) and performed in agreement with *Directive 2010/63*/EU concerning the protection of animals used for scientific purposes and
the Declaration of Helsinki on animal use in biomedical research. An overview of
the study design is given in figure 1.

114

<u>Animal protocols:</u> Time mated New Zealand White-Dendermonde hybrid rabbits
were provided by the KU Leuven animal facility and housed in a temperaturecontrolled environment. Pups were delivered via Caesarean section on day 28 of
gestation (term of 31 days) and placed in hyperoxia (95% O₂) for the first hour of

119 life. Surviving pups were randomized to normoxia (21% O₂, N), hyperoxia (95% 120 O₂, H) or hyperoxia plus intratracheal budesonide/surfactant (ITBS) and housed 121 in a custom humidity- and temperature-controlled incubator (Okolab, Pozzuoli, 122 Italy). Pups were manually fed twice daily via an orogastric tube with stepwise 123 increased volumes of milk (Day One®, Protein 30%, Fat 50%; FoxValley, Illinois, 124 US) supplemented with probiotics (Bio-Lapis®; Probiotics International Ltd, 125 Somerser, UK) and immunoglobulins (Col-o-Cat®, SanoBest, Hertogenbosch, Netherlands). Pups received a single dose of vitamin K1 (0.25 mg/kg BW, 126 127 Konakion pediatrique®; Roche, Basel, Switzerland) intramuscularly on day 2.

128 Intratracheal drug delivery: Intratracheal injections were performed as 129 previously described (30). Briefly, pups were anesthetized with isoflurane (2.5%; 130 ISO-VET; EuroVet, Heusden-Zolder, Belgium) and the trachea transcutaneously 131 cannulated with a 26 gauge catheter. Movement of fluid in the catheter with 132 spontaneous respiration confirmed intratracheal placement, and an intratracheal 133 injection with 1.25 ml/kg porcine derived surfactant (poractant alfa, Curosurf[®], 134 Chiesi Farmaceutici, Parma, Italy) mixed with 0.25 mg/kg budesonide 135 (Pulmicort[®] 0.25 mg/ml, AstraZeneca, Cambridge, UK) performed. Following 136 intratracheal injection, pups were returned to hyperoxia.

Pulmonary function testing (PFT): *In vivo* PFT was performed on day 7 using the FlexiVent system with FlexiVent module 2 (FlexiVent 8.0; SCIREQ, Montreal, Canada) as previously described (28). Pups were ventilated at a rate of 120 breaths/min, tidal volume 8ml/kg, with a PEEP 3cmH20. Pressure volume and forced oscillation PFT were performed following a recruitment maneuver to ensure lungs were fully inflated at the time of testing. A series of PFT were performed as follows, inspiratory capacity, single frequency oscillation (Snapshot 144 150: a single frequency measurement at 2.5 Hz), broadband oscillation maneuver 145 (Primewave 8: measuring respiratory impedance from 0.5 Hz to 19.5 Hz) and a 146 pressure-volume-maneuver (PVr-P: continuous increase of airway pressure to 10 147 cmH₂O). Small airway resistance and reactance was calculated as the difference in 148 resistance between the lowest and highest frequencies tested in the primewave 8 149 broadband forced oscillation maneuver (Z_R0.5- Z_R19.5, Z_x0.5- Z_x19.5 respectively) 150 (13). PFT maneuvers were repeated in triplicate and the mean calculated. PFT with a coefficient of determination <90% were excluded and the maneuver 151 152 repeated following a recruitment maneuver.

153 <u>Alveolar morphology:</u> Following lung function testing, lungs were excised *en-bloc* 154 and pressure-fixed with 4% paraformaldehyde at 25 cmH₂O hydrostatic pressure 155 as previously described (28). Paraffin sections of 5µm thickness were stained with 156 hematoxylin and eosin and scanned using a high-throughput slidescanner (Axio 157 Scan[®] Slide Scanner, Zen Zeiss, Oberkochen, Germany). An in-house programmed 158 ImageJ algorithm was used to select 20 random fields (500µmx500µm) per lung 159 and calculate mean linear intercept (Lm), mean linear intercept of the alveolar 160 airspace (Lma, reflecting size of the airspace) and mean transactional wall length 161 (Lmw, reflecting alveolar septal thickness) semi-automatically (29). Radial 162 alveolar count (RAC) was performed 20 times per lung (8). Parenchymal tissue 163 and collagen content was assessed using digital image analysis on Sirius Red 164 stained slides examining 20 random fields (500µmx500µm) per lung (32). A single 165 blinded observer performed all histological evaluation.

166

167 <u>Quantitative Real-Time PCR:</u> Expression of CCL-2, IL-8, <u>connective tissue growth</u>
 168 <u>factor (CTGF)</u> mRNA was performed <u>on whole lung homogenate</u> and corrected to

169 the <u>house-keeping gene HPRT</u> as described previously (32). <u>Male sex was</u>

170 <u>identified by detection of the SYR-gene (34).</u> Primer sequences can be found in

171 supplementary table (https://figshare.com/s/398690bae2239e4ea497).

172Statistical Analysis: Analysis was performed using GraphPad Prism 8.0 software173(La Jolla, California, USA). Groups were compared by 1-way ANOVA with Dunnett's174post hoc test (normoxia v hyperoxia; hyperoxia v hyperoxia plus intratracheal175budesonide/Surfactant), unless stated otherwise. Gene expression analysis was176performed using the $\Delta\Delta$ CT method, with statistical analysis performed on $\Delta\Delta$ CT177and fold change used for visualization. A p-value <0.05 was considered significant.</td>

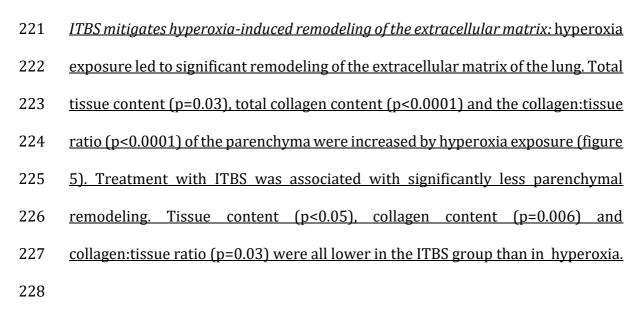
178

179 **Results**

Hyperoxia exposure leads to growth restriction: the mean birth weight of pups was 180 181 34.8g with no statistically significant difference in birth weight between groups. 182 Hyperoxia exposure restricted growth and by day 7 of life pups reared in 183 hyperoxia had significantly lower body weight (p<0.001) and proportional 184 supplementary 2 growth (p<0.001)(see data table https://figshare.com/s/c17ddc435a4483aebb2c). ITBS pup had significantly 185 186 higher body weight by D7 of life compared to hyperoxia (p<0.05). Survival was 187 similar in all groups.

188

189 *ITBS limits hyperoxia-induced decline of lung function*: hyperoxia exposure led to a 190 significant decline in lung function (table 1, figure 2,3). Forced oscillation (FOT) 191 PFT demonstrated hyperoxia to significantly alter both the resistance (p=0.0001) 192 and reactance (p<0.0001) of the lung (figure 2). Of note, small airway resistance 193 (Z_R0.5- Z_R19.5) and reactance (Z_x0.5- Z_x19.5) were both significantly altered by hyperoxia. Pressure-volume (PV) PFT showed hyperoxia exposure decreased
inspiratory capacity (p<0.0001) and static compliance (p<0.0001), while static
elastance was increased (p<0.0001) (figure 3). PV curves were flattened, and
hysteresis significantly decreased by hyperoxia (p<0.0001).


198

A single dose of ITBS mitigated the hyperoxia-associated lung function decline in both FOT-PFT and PV-PFT (table 1, figures 2,3). FOT based tests demonstrated both respiratory system resistance (p<0.001) and reactance (p<0.001) to benefit from ITBS. Additionally, hyperoxia associated disruption of small airway resistance and small airway reactance was mitigated by ITBS (p<0.001). Inspiratory capacity (p<0.05) and static elastance (p<0.05) were significantly increased compared to hyperoxia.

206

207 ITBS attenuates hyperoxia-induced alveolar injury: To evaluate the influence of 208 hyperoxia on lung development we examined alveolar morphology. Hyperoxia 209 exposure increased both the mean linear intercept, representing alveolar size (Lm)(p<0.05), and mean transectional wall length, representing alveolar wall 210 211 (figure thickness (Lmw) (p<0.0001) supplementary table 3 4, 212 https://figshare.com/s/c17ddc435a4483aebb2c). Additionally the RAC was decreased by hyperoxia (p=0.004)(supplementary data, table 3). The mean 213 214 alveolar airspace (Lma) was not affected by hyperoxia. These findings indicate 215 hyperoxia-exposure to increase the alveolar size by thickening the alveolar wall 216 and not by increasing the alveolar airspace. The increase in Lmw and decrease in 217 <u>RAC</u> was <u>tempered</u> by ITBS (p<0.01, <u>p=0.01</u> respectively)(figure 4, supplementary data, table 3). Overall alveolar size (p=0.63) and alveolar airspace (p>0.99) were
unaffected by ITBS.

220

229 <u>ITBS minimizes hyperoxia-associated induction of acute phase response genes</u>: to 230 evaluate the <u>acute phase</u> response of the lung to hyperoxia we analyzed the gene 231 expression of <u>CTGF</u>, CCL-2 and IL-8 in the lung. Hyperoxia led to a significant 232 increase of gene expression of <u>CTGF (p<0.05)</u>, CCL-2 (p<0.0001) and IL-8 233 (p<0.001) on day 7 of life. ITBS blunted the expression of <u>CTGF (p<0.05)</u>, CCL-2 234 (p<0.001) and IL-8 (p<0.01) on day 7 (figure 4, <u>5</u>).

235

236 **Discussion**:

We demonstrate intratracheal budesonide/surfactant (ITBS) to limit hyperoxiaassociated lung injury in a preterm model of bronchopulmonary dysplasia. <u>ITBS</u>
<u>mitigated hyperoxia-induced loss of lung function, attenuated the disruption of</u>
parenchymal structure and limited the mRNA expression of CTGF, CCL-2 and IL-8
to day 7 of life.

243 To evaluate the effect of hyperoxia and ITBS on lung function we performed both 244 forced oscillation (FOT) and pressure-volume (PV)-based pulmonary function 245 tests (PFT). Hyperoxia significantly altered small airway function along with distal 246 tissue mechanics, while central airway function was unaffected. PV-PFT 247 demonstrate that hyperoxia exposure results in restrictive lungs. <u>A single dose of</u> ITBS limited the hyperoxia-associated loss of lung function. FOT-PFT revealed 248 249 ITBS to significantly improve small airway function, decreasing small airway resistance and increasing small airway reactance. The improvement in small 250 251 airway function by ITBS has not previously been described. Additionally, tissue 252 mechanics of the peripheral lung, inspiratory capacity, static elastance and PV-253 <u>curves</u> were significantly improved.

254

Short-term animal experiments have previously demonstrated ITBS to improve *ex vivo* lung compliance, respiratory physiology and decrease lung injury (20, 27).
However, there are no other data on the effect of ITBS on *in vivo* lung functions in
either animal or human clinical trials. Whether the improvements in small airway
function and inspiratory capacity by ITBS leads to improvement in the obstructive
and restrictive lung disease of BPD survivors remains to be seen (33).

261

The FOT-PFT findings are especially relevant to modern neonatology. Forced oscillation lung function testing is becoming available for clinical use in neonates and can discriminate between healthy infants and those with pulmonary conditions such as transient tachypnea of the neonate (18). While not readily available, infant FOT would allow clinicians to evaluate the response of infants to respiratory therapy and identify those in need of additional treatment.

Similar to the disruption of lung function, hyperoxia exposure significantly 269 270 disrupted the structure of the lung parenchyma. Alveolar structure, total lung 271 tissue, lung collagen and collagen:tissue ratio were significantly altered. These 272 structural changes led to functional consequences, such as decreased static lung 273 compliance. Hyperoxia-associated parenchymal disruption and altered alveolar 274 morphometry has been described in infants who demised from BPD as well as in animal models (9, 16, 28). However, to our knowledge this is the first correlation 275 276 of <u>altered</u> alveolar structural to disrupted lung function in BPD.

277

278 ITBS administration minimized the disruption of hyperoxia-associated structural 279 remodeling of the parenchyma. Following ITBS, pups exposed to hyperoxia had 280 significantly less disruption of alveolar development and remodeling of the 281 extracellular matrix. Additionally, we could correlate the limited disruption of 282 lung development with improved lung function. Interruptions of alveolar 283 development and lung fibrosis are key findings in BPD and therapy that minimizes 284 disruption of normal parenchymal development is critically important. Early 285 prophylactic therapy with prolonged structural effect on the lung could allow BPD 286 survivors to reach their full lung function potential and prevent a premature 287 decline in lung function.

288

Though the pathophysiology of BPD and preterm lung injury is not fully
 understood, inflammation plays a central role in disrupting lung development and
 the development of BPD (24). Prior transcriptome analysis of the hyperoxia
 preterm rabbit model of BPD has identified CCL-2 and IL-8 to be the key

inflammatory mediators (31). Similar to our findings, human and animal studies
 have described elevated CCL-2 and IL-8 to be associated with the development
 and severity of BPD and found intratracheal budesonide plus surfactant to
 decrease IL-8 in the lung (19, 24, 35, 37).

297

We speculate that the benefit of ITBS is potentially related to the attenuation of 298 299 hyperoxia-associated CTGF gene expression in the lung. Hyperoxia induces CTFG 300 gene expression leading to parenchymal remodeling and loss of lung function. By 301 attenuating the induction of CTGF expression, ITBS tempers the functional and 302 structural consequences of hyperoxia exposure. Similar to our findings, increased 303 CTFG expression has been linked to disrupted lung development, remodeling of 304 the ECM, and induction of lung inflammation and IL-8 production(5, 7, 36, 38). 305 Furthermore, increased CTGF expression has been found in the lungs of neonates 306 with BPD (1). However the beneficial effect of ITBS may not be universal, as ITBS 307 did not alter CTGF or IL-8 expression in acute ventilator associated lung injury in 308 fetal lambs (20).

309

310 The decrease of CTGF, IL-8, and CCL-2 gene expression to day 7 of life is likely due 311 to the pulmonary pharmacokinetics of budesonide. Budesonide is conjugated to 312 intracellular fatty acid esters, in the airway which are gradually hydrolysed and 313 then slowly released as free budesonide, extending the effect of a single 314 administration (25). The extended suppression of lung inflammation by ITBS has 315 been demonstrated in preterm infants (37). However there are contrasting 316 results on the extended availability of budesonide esters in the lung. Despite 317 significant improvement in lung function and decreased lung inflammation 318 relatively little budesonide esters were found in the lungs of preterm lambs 6
319 hours after intratracheal the administration of intratracheal budesonide320 surfactant (14). Although the mechanism of the prolonged effect of intratracheal
321 budesonide remains uncertain, it's effect is attractive for the treatment of ill
322 neonates, as a single dose can have a lasting effect avoiding the need for repeated
323 airway manipulation.

324

Our study was able to combine prematurity with extensive *in vivo* lung function 325 326 testing and alveolar structure evaluation. Additionally, we were able to evaluate 327 the effect of ITBS beyond the acute response following administration. Limitations 328 of the model include the single duration and concentration of oxygen used and the 329 limited molecular and mechanistic insights possible in the rabbit. To limit the 330 animals used we chose not to include groups treated with surfactant-alone or 331 budesonide-alone nor did we examine the effect of ITBS in the absence of 332 hyperoxia exposure.

333

334 Effective therapy to prevent the development of BPD following preterm birth is 335 required. Once established, there is limited therapy for treatment or evidence to 336 guide the management of BPD (12). Infants with BPD fail to reach their full lung 337 function potential, and have diminished lung function throughout life potentially 338 resulting in the early onset of COPD (4, 10). Treatment that improves small airway 339 function may have lifelong advantages and limit the development of COPD. Targeted steroid delivery to the lung via intratracheal administration potentially 340 341 limits or prevents the off-target side effects of systemic steroids while maintaining 342 its advantageous effect on the lung. The co-administration of budesonide with

343 surfactant to preterm infants with respiratory failure is an attractive treatment 344 strategy to prevent the development of BPD in these high-risk infants. Our study 345 demonstrates that ITBS attenuated hyperoxia induced lung injury in the absence 346 of mechanical ventilation and indicates that premature infants exposed to 347 supplemental oxygen may benefit from ITBS. It remains unclear whether ITBS offers benefit in moderate levels of hyperoxia or in normoxic conditions. Future 348 349 animal studies examining the effect of ITBS in moderate levels of hyperoxia, and clinical studies of premature infants exposed to supplemental oxygen and non-350 351 invasive ventilation will be of great interest in the search for interventions to limit 352 the development of BPD.

353

354 **Conclusion**:

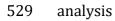
Intratracheal budesonide-surfactant on the day of birth limits hyperoxiaassociated disruption of lung function and structure in a preterm model of BPD. A
single dose of budesonide-surfactant <u>attenuated the functional and structural</u>
<u>consequences of hyperoxia-induced lung injury.</u>

359

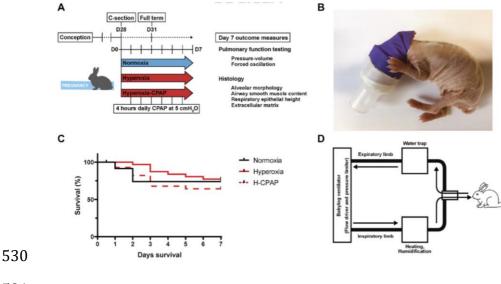
Statement of financial support: This research was supported by a C2 grant from
KU Leuven (C24/18/101) and a research grant from the Research Foundation –
Flanders (FWO G0C4419N). AG is supported by the Erasmus+ Programme of the
European Commission (2013–0040). YR is holder of an FWO-SB fellowship
(Research Foundation - Flanders, 1S71619N). JD is partly funded by the Great
Ormond Street Hospital Charity Fund.

367	Confl	ict of interest statement: FS and CC are employees of Chiesi Farmaceutici
368	S.p.A.	The animal-derived surfactant Poractant alfa (Curosurf, 80 mg/ml) was
369	suppl	ied by Chiesi Farmaceutici S.p.A., which is the employer of authors FS and CC.
370	None	of the funding bodies was involved in the design of the study and in the
371	collec	tion, analysis, and interpretation of data. AG, YR, TS, JV, JD, JT have no conflict
372	of inte	erest to declare.
373		
374		
375		
376		ences:
377	1.	Alapati D, Rong M, Chen S, Hehre D, Rodriguez MM, Lipson KE, Wu S.
378		Connective tissue growth factor antibody therapy attenuates hyperoxia-
379		induced lung injury in neonatal rats. <i>Am J Respir Cell Mol Biol</i> 45: 1169–
380		1177, 2011.
381	2.	Balany J, Bhandari V. Understanding the impact of infection,
382		inflammation, and their persistence in the pathogenesis of
383		bronchopulmonary dysplasia. <i>Front. Med.</i> 2: 1–10, 2015.
384	3.	Barrette AM, Roberts JK, Chapin C, Egan EA, Segal MR, Oses-Prieto JA,
385		Chand S, Burlingame AL, Ballard PL. Antiinflammatory effects of
386		Budesonide in human fetal lung. <i>Am J Respir Cell Mol Biol</i> 55: 623–632,
387		2016.
388	4.	Bolton CE, Bush A, Hurst JR, Kotecha S, McGarvey L. Lung consequences
389		in adults born prematurely. <i>Postgrad. Med. J.</i> 91: 712–718, 2015.
390	5.	Chen C, Wang L, Chou H, Lang Y, Lai Y. Up-regulation of Connective
391	-	Tissue Growth Factor in Hyperoxia-Induced Lung Fibrosis. <i>Pediatr Res</i> 62:
392		128–133, 2007.
393	6.	Chen CM, Chang CH, Chao CH, Wang MH, Yeh TF . Biophysical and
394	•	chemical stability of surfactant/budesonide and the pulmonary
395		distribution following intra-tracheal administration. <i>Drug Deliv</i> 26: 604–
396		611, 2019.
397	7.	Chen S, Rong M, Platteau A, Hehre D, Smith H, Ruiz P, Whitsett J,
398	<i>,</i> .	Bancalari E, Wu S . CTGF disrupts alveolarization and induces pulmonary
399		hypertension in neonatal mice: Implication in the pathogenesis of severe
400		bronchopulmonary dysplasia. <i>Am J Physiol - Lung Cell Mol Physiol</i> 300,
401		2011.
402	8.	Cooney TP , Thurlbeck WM . The radial alveolar count method of Emery
403	0.	and Mithal: a reappraisal 2intrauterine and early postnatal lung growth.
403		Thorax 37: 580 LP – 583, 1982.
405	9.	Dolma K, Freeman AE, Rezonzew G, Payne GA, Xu X, Jilling T, Blalock
405	<i>)</i> .	JE, Gaggar A, Ambalavanan N, Lal CV. Effects of Hyperoxia on Alveolar
400		and Pulmonary Vascular Development in Germ Free Mice. Am J Physiol
707		and runnonary vascular Development in Gerni Free Mice. Am j Physiol

400		
408	4.0	Lung Cell Mol Physiol 318: 421–428, 2020.
409	10.	Doyle LW, Adams AM, Robertson C, Ranganathan S, Davis NM, Lee KJ,
410		Cheong JL, Anderson P, Burnett A, Callanan C, Carse E, Charlton MP,
411		Duff J, Hutchinson E, Hayes M, Kelly E, McDonald M, Opie G, Roberts G,
412		Watkins A, Williamson A, Woods H. Increasing airway obstruction from
413		8 to 18 years in extremely preterm/low-birthweight survivors born in the
414		surfactant era. <i>Thorax</i> 72: 712–719, 2017.
415	11.	Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Early (< 8 days)
416		systemic postnatal corticosteroids for prevention of bronchopulmonary
417		dysplasia in preterm infants. Cochrane Database Syst Rev 2017, 2017.
418	12.	Duijts L, van Meel ER, Moschino L, Baraldi E, Barnhoorn M, Bramer
419		WM, Bolton CE, Boyd J, Buchvald F, del Cerro MJ, Colin AA, Ersu R,
420		Greenough A, Gremmen C, Halvorsen T, Kamphuis J, Kotecha S,
421		Rooney-Otero K, Schulzke S, Wilson A, Rigau D, Morgan RL, Tonia T,
422		Roehr CC, Pijnenburg MW. European Respiratory Society guideline on
423		long-term management of children with bronchopulmonary dysplasia. <i>Eur</i>
424		Respir J 55, 2020.
425	13.	Goldman MD, Saadeh C, Ross D. Clinical applications of forced oscillation
426		to assess peripheral airway function. <i>Respir Physiol Neurobiol</i> 148: 179–
427		194, 2005.
428	14.	Hillman NH, Abugisisa L, Royse E, Fee E, Kemp MW, Hillman NH,
429		Abugisisa L, Royse E, Fee E, Kemp MW. Dose of budesonide with
430		surfactant affects lung and systemic inflammation after normal and
431		injurious ventilation in preterm lambs. <i>Pediatr. Res.</i> (2020). doi:
432		10.1038/s41390-020-0809-6.
433	15.	Hillman NH, Brett Kothe T, Schmidt AF, Kemp MW, Royse E, Fee E,
434		Salomone F, Clarke MW, Musk GC, Jobe AH. Surfactant plus budesonide
435		decreases lung and systemic responses to injurious ventilation in preterm
436		sheep. Am J Physiol - Lung Cell Mol Physiol 318: L41–L48, 2020.
437	16.	Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar
438		development in postsurfactant bronchopulmonary dysplasia. <i>Hum Pathol</i>
439		29: 710–717, 1998.
440	17.	Jobe AH. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia.
441		<i>Am. J. Perinatol.</i> 33: 1076–1078, 2016.
442	18.	Klinger AP, Travers CP, Martin A, Kuo HC, Alishlash AS, Harris WT,
443		Carlo WA , Ambalavanan N . Non-invasive forced oscillometry to quantify
444		respiratory mechanics in term neonates. <i>Pediatr Res</i> : 1–7, 2020.
445	19.	Kothe BT, Kemp MW, Schmidt A, Royse E, Salomone F, Clarke MW,
446		Musk GC, Jobe AH, Hillman NH. Surfactant plus budesonide decreases
447		lung and systemic inflammation in mechanically ventilated preterm sheep.
448		Am J Physiol - Lung Cell Mol Physiol 316: L888–L893, 2019.
449	20.	Kothe TB, Royse E, Kemp MW, Schmidt A, Salomone F, Saito M, Usuda
450	20.	H, Watanabe S, Musk GC, Jobe AH, Hillman NH. Effects of budesonide
451		and surfactant in preterm fetal sheep. Am J Physiol - Lung Cell Mol Physiol
452		315: L193–L201, 2018.
452	21.	Kothe TB, Sadiq FH, Burleyson N, Williams HL, Anderson C, Hillman
453 454	41.	NH . Surfactant and budesonide for respiratory distress syndrome: an
454		observational study. <i>Pediatr Res</i> : 1–6, 2019.
456	22.	Kuo HT, Lin HC, Tsai CH, Chouc IC, Yeh TF . A Follow-up Study of Preterm
150	<i>44</i> .	Ruo III, III IIG, I Sui GII, GIOUCIG, I CH II. M POHOW-up Study of I Peterill


457		Infants Given Budesonide Using Surfactant as a Vehicle to Prevent Chronic
458		Lung Disease in Preterm Infants. <i>J Pediatr</i> 156: 537–541, 2010.
459	23.	Lapcharoensap W, Gage SC, Kan P, Profit J, Shaw GM, Gould JB,
460		Stevenson DK, O'Brodovich H, Lee HC. Hospital Variation and Risk
461		Factors for Bronchopulmonary Dysplasia in a Population-Based Cohort.
462		JAMA Pediatr 169: e143676-e143676, 2015.
463	24.	Leroy S, Caumette E, Waddington C, Hébert A, Brant R, Lavoie PM. A
464		Time-Based Analysis of Inflammation in Infants at Risk of
465		Bronchopulmonary Dysplasia. J Pediatr 192: 60-65.e1, 2018.
466	25.	Miller-Larsson A, Mattsson H, Hjertberg E, Dahlbäck M, Tunek A,
467		Brattsand R. Reversible fatty acid conjugation of budesonide: Novel
468		mechanism for prolonged retention of topically applied steroid in airway
469		tissue. Drug Metab Dispos 26: 623–630, 1998.
470	26.	Poets CF, Lorenz L. Prevention of bronchopulmonary dysplasia in
471		extremely low gestational age neonates: current evidence. Arch. Dis. Child.
472		Fetal Neonatal Ed. 103: F285–F291, 2018.
473	27.	Ricci F, Catozzi C, Ravanetti F, Murgia X, D'Aló F, Macchidani N, Sgarbi
474		E, Di Lallo V, Saccani F, Pertile M, Cacchioli A, Catinella S, Villetti G,
475		Civelli M, Amadei F, Stellari FF, Pioselli B, Salomone F. In vitro and in
476		vivo characterization of poractant alfa supplemented with budesonide for
477		safe and effective intratracheal administration. <i>Pediatr Res</i> 82: 1056–1063,
478		2017.
479	28.	Richter J, Toelen J, Vanoirbeek J, Kakigano A, Dekoninck P, Verbeken
480		E , Deprest J . Functional assessment of hyperoxia-induced lung injury after
481		preterm birth in the rabbit. Am J Physiol Lung Cell Mol Physiol 306: L277-
482		83, 2014.
483	29.	Roubliova XI, Deprest JA, Biard JM, Ophalvens L, Gallot D, Jani JC, Ven
484		De Van CP, Tibboel D, Verbeken EK. Morphologic changes and
485		methodological issues in the rabbit experimental model for diaphragmatic
486		hernia. <i>Histol Histopathol</i> 25: 1105–1116, 2010.
487	30.	Salaets T, Gie A, Jimenez J, Aertgeerts M, Gheysens O, Velde G Vande,
488		Koole M, Murgia X, Casiraghi C, Ricci F, Salomone F, Villetti G,
489		Allegaert K, Deprest J, Toelen J. Local pulmonary drug delivery in the
490		preterm rabbit: Feasibility and efficacy of daily intratracheal injections. Am
491		J Physiol - Lung Cell Mol Physiol 316: L589–L597, 2019.
492	31.	Salaets T, Richter J, Brady P, Jimenez J, Nagatomo T, Deprest J, Toelen
493		J. Transcriptome analysis of the preterm rabbit lung after seven days of
494		hyperoxic exposure. <i>PLoS One</i> 10: 1–15, 2015.
495	32.	Salaets T, Tack B, Jimenez J, Gie A, Lesage F, de Winter D, Berghen N,
496		Allegaert K, Deprest J, Toelen J. Simvastatin attenuates lung functional
497		and vascular effects of hyperoxia in preterm rabbits. <i>Pediatr. Res.</i> (
498		December 9, 2019). doi: 10.1038/s41390-019-0711-2.
499	33.	Thunqvist P, Gustafsson P, Norman M, Wickman M, Hallberg J. Lung
500		function at 6 and 18 months after preterm birth in relation to severity of
501		bronchopulmonary dysplasia. <i>Pediatr Pulmonol</i> 50: 978–986, 2015.
502	34.	van der Merwe J, van der Veeken L, Ferraris S, Gsell W, Himmelreich
503		U, Toelen J, Ourselin S, Melbourne A, Vercauteren T, Deprest J. Early
504		neuropathological and neurobehavioral consequences of preterm birth in
505		a rabbit model. <i>Sci Rep</i> 9: 1–11, 2019.

506 35. Vento G, Capoluongo E, Matassa PG, Concolino P, Vendettuoli V, 507 Vaccarella C, Frezza S, Zuppi C, Romagnoli C, Ameglio F. Serum levels of 508 seven cytokines in premature ventilated newborns: Correlations with old 509 and new forms of bronchopulmonary dysplasia. Intensive Care Med 32: 510 723-730, 2006. 511 Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E. 36. 512 Conditional overexpression of connective tissue growth factor disrupts 513 postnatal lung development. Am J Respir Cell Mol Biol 42: 552–563, 2010. 514 37. Yeh TF, Chen CM, Wu SY, Husan Z, Li TC, Hsieh WS, Tsai CH, Lin HC. 515 Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am J Respir Crit Care Med 193: 86–95, 2016. 516 517 38. Zhou T, Yu Q, Lin H, Wang Z, Fu G, Lei L, Shi Y, Zhang L, Qin L, Liu Y. The 518 Role of CTGF in Inflammatory Responses Induced by Silica Particles in 519 Human Bronchial Epithelial Cells. Lung 197: 783–791, 2019. 520 521 522 **Figure legends:** 523 Figure 1: Study design. A C-section was performed on day 28 of gestation and 524 pups were randomized to normoxia, hyperoxia, hyperoxia plus intratracheal 525 budesonide-surfactant. Hyperoxia-exposed rabbits were either treated with


527 (hyperoxia). After seven days, pups were sacrificed and pulmonary function

intratracheal Budesonide/Surfactant (Hyperoxia-ITBS) or left untreated

528 testing was performed. Organs were harvested for histological and molecular

526

532 Figure 2: Intratracheal Budesonide/Surfactant mitigates hyperoxia-induced lung 533 function changes in premature rabbit pups exposed to hyperoxia particularly at 534 the level of the small airways on day 7. a) Respiratory impedance measured using 535 the forced oscillation technique with pseudo-random oscillations over a range of 536 0.5 to 19.5 Hz depicting the real (i.e. resistance) and imaginary (i.e. reactance) part 537 of the impedance; b) Small airway resistance and reactance determined by 538 subtraction of highest-frequency impedance (Z (19.5 Hz)) from lowest-frequency 539 impedance (Z (0.5 Hz)) measurement. Data are presented as mean ± SD, n=8-9 540 per group. N: normoxia; H: hyperoxia; H-BS: Hyperoxia + Budesonide/Surfactant. 541 ****: p<0.0001.

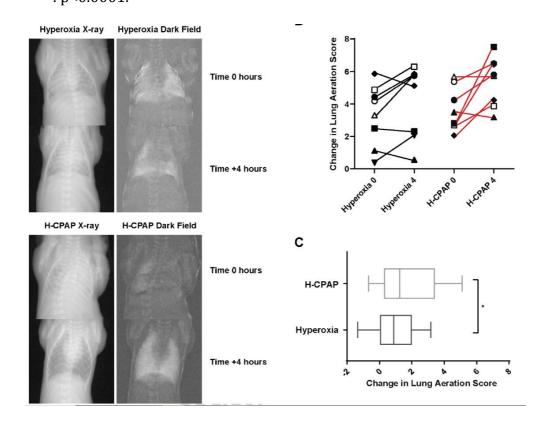
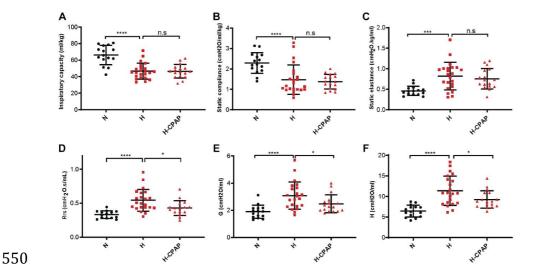



Figure 3: Intratracheal <u>Budesonide/Surfactant ameliorates pressure-volume-</u>
<u>based parameters after seven days of hyperoxia in preterm rabbits.</u> a) Pressurevolume loops; b) weight-corrected static compliance; c) weight-corrected
inspiratory capacity. Data are presented as mean ± SD, n=8–9 per group. N:

547 normoxia; H: hyperoxia; H-BS: hyperoxia + Budesonide/Surfactant; V_{Tr}: tracheal
548 volume; P_{Tr}: tracheal pressure; Cst: Static compliance (weight-corrected). *:
549 p<0.05; ****: p<0.0001

551 Figure 4: Intratracheal delivery of Budesonide/Surfactant mitigates hyperoxia-552 induced alveolar septal thickening and is associated with downregulation of 553 inflammatory cytokines. a) Mean linear intercept (Lm); b) Mean transsectional 554 wall length (Lmw); c) structure-function correlation (Pearson) between Lmw and 555 weight-corrected static compliance; d) representative images of H&E-stained lung 556 slides; e-f) Fold change in mRNA expression of e) CCL-2 and f) IL-8. Data are 557 presented as mean ± SD, n=7-9 per group. N: normoxia; H: hyperoxia; H-BS: 558 hyperoxia + Budesonide/Surfactant; Lm: mean linear intercept; Lmw: mean 559 transsectional wall length; Cst: static compliance (weight-corrected). Scale bar = 50 μm. sep: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.001; ****: p<0.0001. 560

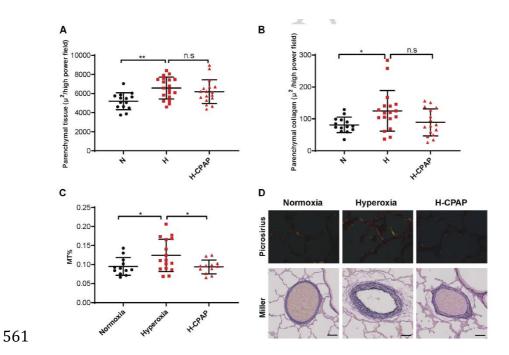


Figure 5: Intratracheal Budesonide/Surfactant limits hyperoxia-induced
parenchymal remodeling. a) Fold change of connective tissue growth factor is
tempered gene expression b) Total lung collagen content c) Lung collagen:tissue
ratio d) Representative images of Sirius Red stained lungs Data are presented as
mean ± SD, n=6-9 per group. N: normoxia; H: hyperoxia; H-BS: Hyperoxia +
Budesonide/Surfactant.*p<0.05 **p<0.01 ****: p<0.0001.

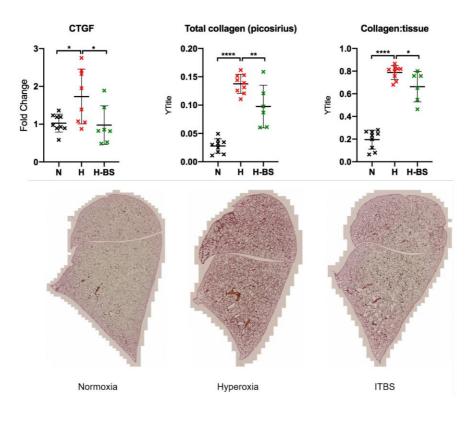


Table 1: Intratracheal Budesonide/Surfactant <u>attenuates hyperoxia-induced lung</u>
injury in preterm rabbits; Overview of lung function parameters. Data are
presented as mean ± SD, n=8–9 per group. Statistical analysis one-way ANOVA
with correction for multiple comparison (Dunnett's test) N: normoxia; H:
hyperoxia; ITBS: hyperoxia +budesonide/surfactant.

Table 1. E	Effect of hyperoxia	and CPAP on pulmonar	function tests in a hyp	peroxia preterm rabbit model of BPD
------------	---------------------	----------------------	-------------------------	-------------------------------------

	Normoxia	Hyperoxia	H vs. N P Value	H-CPAP	H-CPAP vs. H P Value
	Pressure-volume-ba	sed pulmonary functio	n tests		
Inspiratory capacity, mL/kg	66.15 ± 11.62	46.7 ± 9.58	P < 0.001	46.53 ± 8.16	P = 0.99
Static compliance, emH2O-mL-+kg-4	2.29 ± 0.51	1.47 ± 0.72	P < 0.001	1.37 ± 0.36	P = 0.83
Static elastance, cmH2O·mL-1·kg	0.46 ± 0.11	0.82 ± 0.33	P < 0.001	0.75 ± 0.25	P = 0.68
, - ₀	Forced oscillation-ba	used pulmonary function	on tests		
Tissue damping, cmH ₂ O/mL	1.90 ± 0.48	3.08 ± 1.01	P < 0.0001	2.48 ± 0.66	P = 0.04
Tissue elastance, cmH2O/mL	6.45 ± 1.44	11.4 ± 3.54	P < 0.0001	9.25 ± 2.11	P = 0.03
Central airway resistance, cmH2O·mL-1.s	0.12 ± 0.05	0.15 ± 0.05	P = 0.08	0.12 ± 0.04	P = 0.10
Respiratory system resistance, cmH2O·mL-1·s	0.33 ± 0.06	0.54 ± 0.16	P < 0.0001	0.43 ± 0.11	P = 0.02
Dynamic elastance, cmH2O/mL	6.34 ± 1.75	12.99 ± 4.57	P < 0.0001	10.48 ± 2.78	P = 0.06
Dynamic compliance, mL/cmH2O	0.16 ± 0.04	0.088 ± 0.03	P < 0.0001	0.10 ± 0.02	P = 0.3

Values are means \pm SD. Pressure-volume [normoxia (N), n = 15 pups; hyperoxia (H), n = 23 pups; hyperoxia plus continuous positive airway pressure (H-CPAP), n = 17 pups] and forced oscillation (normoxia, n = 15 pups; hyperoxia, n = 22 pups; H-CPAP, n = 17 pups) tests were performed on *day* 7 of life following preterm delivery. BPD, bronchopulmonary dysplasia. *P* values were adjusted for multiple comparisons (Sidak).

579		
580		
581		