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Abstract. The theory of von Neumann algebras was initiated by Murray and von Neu-
mann and has deep connections to several areas of mathematics, in particular group
theory and ergodic theory. Amenable von Neumann algebras were completely classified
by Connes and Haagerup, while numerous classification theorems in the non amenable
case were obtained within Popa’s deformation/rigidity theory. This survey article pro-
vides an introduction to von Neumann algebras, written for non specialists and with the
dichotomy between amenability and non amenability as our guide.
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1. Banach-Tarski paradox, amenable groups, free groups

In 1924, Banach and Tarski proved the “obviously false” theorem saying that a
massive ball B with radius 1 can be partitioned into finitely many subsets B =
B U---U B, in such a way that two massive balls with radius 1 can be obtained
by rotating and translating these pieces. Although called a paradox, this is a true
theorem saying in particular that there is no finitely additive measure on R3 that
is translation and rotation invariant and that gives a finite nonzero measure to the
unit ball B.

In dimension two, the situation is drastically different. There do exist finitely
additive, translation and rotation invariant measures on R? that give measure 1 to
the unit disc. So, there is no two dimensional Banach-Tarski paradox. A conceptual
explanation was discovered by John von Neumann in [vN29] who proved that the
group of motions of R?, viewed as a discrete group, is non amenable, while the
group of motions of R? is amenable.

More precisely, a discrete group I' is called amenable if there exists a finitely
additive probability measure m defined on all subsets of I' such that m(gif) = m(U)
forall g € I' and & C I'. When an amenable group I' acts on a set X, the invariant
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mean m on I’ can be used to construct a I'-invariant mean on X. So, since the
group of motions of R? is amenable, there is no two dimensional Banach-Tarski
paradox.

In dimension three, the rotation group SO(3) is non amenable. Two generically
chosen rotations a,b € SO(3) generate a copy of the so-called free group Fo. We
call reduced word any concatenation of the letters a,a™',b,b~! in which a is never
preceded or followed by a~! and b is never preceded or followed by b~!. Freeness of
a and b means that a reduced word with the letters a,a!,b, b~ never defines the
identity rotation. The free group Fo admits a paradozical decomposition: denoting
by W(a) C Fy the set of words that start with the letter a, and similarly defining
W(a™1), W(b) and W (b~!), we find that

Fo={e}UW(@UW(@Huw®muwom!),
Fo=W(a)UaW(a™') and Fo=W(O)UW(b!).

It follows that Fy is non amenable. Whenever Fy acts freely on a set X, the above
paradoxical decomposition of 5 can be transferred to a paradoxical decomposition
of X. Of course, this does not literally apply to the action of Fo < SO(3) on the
unit ball of R3, but this is nevertheless the main idea to prove the Banach-Tarski
theorem.

All finite groups and all abelian groups are amenable. Also, amenability passes
to subgroups and direct limits, and is stable under extensions. One deduces that
the group of motions of R? is amenable. Beyond these basic properties, it can be
very hard to decide whether a given group I' is amenable. Most notably, it is not
known whether Thompson’s group F' is amenable. This group can be defined as
the group of piecewise linear bijections f : [0,1] — [0,1] with f(0) =0, f(1) =1,
having all break points at dyadic rationals and all slopes being a power of 2.

2. Von Neumann algebras and amenability

The dichotomy between amenability and non amenability is most notable in the
theory of von Neumann algebras, introduced by Murray and von Neumann in
[MvN36]. As we will see, von Neumann algebras arise naturally from groups and
from actions of groups on measure spaces. In this way, they reflect some of the most
intriguing analytic and ergodic theoretic properties of groups and group actions.

Given a Hilbert space H with scalar product (£, 7), we denote by B(H) the
space of all bounded linear operators on H. Every bounded operator T' € B(H)
has an Hermitian adjoint 7% € B(H) characterized by (T¢,n) = (£,T*n). A net
of operators Ty, € B(H) is said to converge weakly to T € B(H) if limy(Ti€,n) =
(T¢,m) for all £,n € H.

Definition 2.1. A von Neumann algebra is a weakly closed unital *-subalgebra
of B(H).

Whenever M C B(H), we denote by M’ C B(H) the commutant of M defined
as M’ ={T € B(H) | ST =TS for all S € M}. The fundamental bicommutant
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theorem of von Neumann says that a unital x-subalgebra M C B(H) is weakly
closed if and only if M = M". This result illustrates very well a common theme
in the theory of von Neumann algebras, where functional analytic aspects are very
tightly connected to algebraic aspects of the theory. As another illustration, we
mention that both the operator norm and the weak topology on the unit ball of M
are completely determined by the x-algebra structure of M, so that purely alge-
braic bijective *-isomorphisms between von Neumann algebras are automatically
isometric and weakly continuous on the unit ball.

2.1. Group von Neumann algebras. Some of the easiest to define and at the
same time, the least understood von Neumann algebras are those associated in
[MvN43] to a countable group I'. Define the Hilbert space H = ¢*(I') with its
canonical orthonormal basis (04)ger. The left reqular representation X : T' — U(H)
is defined by Ay, = dgp, for all g,h € I'. The group von Neumann algebra L(T")
is the von Neumann algebra generated by the unitary operators Ay, g € I'. As we
will see below, many of the natural questions that one can ask about these group
von Neumann algebras L(T") are important open problems, the most tantalizing
one being the free group factors isomorphism problem [Ka67]: is L(F,,) = L(F,,)
when n # m and n,m > 27

2.2. Factors of different types. Since von Neumann algebras are closed un-
der Borel functional calculus, they contain plenty of projections (i.e. self adjoint
idempotents). Therefore, a von Neumann algebra M can be decomposed in a non
trivial way as a direct sum M = M; & M, if and only if the center Z(M) of the
algebra differs from C1. Von Neumann algebras with trivial center, Z(M) = C1,
are called factors. Every von Neumann algebra has a canonical decomposition as
a generalized direct sum (called direct integral) of factors. The group von Neu-
mann algebra L(T') is a factor if and only if T’ has infinite conjugacy classes (icc),
meaning that {ghg~! | g € I'} is an infinite set for every h # e.

Group von Neumann algebras M = L(I') are equipped with the canonical
functional 7: M — C: 7(x) = (x0,, ). One checks that 7(1) =1 and 7(\y) =0
for all g # e, so that T(AgAn) = T(ApAg) and thus 7(zy) = 7(yx) for all z,y € M.
We say that 7 is a trace. Moreover, T is a state! that is faithful®> and normal?.
Factors admitting such a normal tracial state are said to be of type II;, except
when they are finite dimensional, and thus isomorphic to M, (C), in which case
they are said to be of type I.

A factor M is said to be of type I, when M can be viewed as infinite matrices
over a II; factor. In more technical terms, this means that M is isomorphic to
the tensor product M = N ® B(K) of a II; factor N and the bounded operators
on an infinite dimensional Hilbert space . The factors that are not of type I, I}
or Il are said to be of type III. This type classification was already developed in
[MvN36].

LA state is a functional ¢ : M — C such that (1) = 1 and @(z*z) > 0 for all z € M.
2A state ¢ is called faithful if p(z*z) > 0 for all z # 0.
3A functional is called normal if it is weakly continuous on the unit ball.
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Type II; factors really are the basic building blocks of arbitrary von Neu-
mann algebras. Above, we already mentioned the reduction to factors and the
way to view Il factors as infinite amplifications of II; factors. When M is an
arbitrary von Neumann algebra and ¢ : M — C is a faithful normal state, the
trace property ¢(xy) = ¢(yz) need not hold. However, by a fundamental dis-
covery of Tomita and Takesaki [Ta70], the trace property can be replaced by the
formula o(zy) = ¢(o¥ (y)z). Here (0] )icr is a canonical 1-parameter group of au-
tomorphisms of M, called the modular automorphism group of ¢, and o7 (y) is its
analytic continuation, which is only well defined on a canonical dense subalgebra
of M. By an equally striking discovery of Connes [Co72], the modular automor-
phism group (o} )ser is essentially independent of the choice of the state ¢. This
allowed Connes and Takesaki in [Co72, Ta73] to canonically decompose a type III
von Neumann algebra as a crossed product of a von Neumann algebra N of type
11 and a trace scaling 1-parameter group of automorphisms of N. Depending on
how large the center of N is, type III factors can then be further classified into
factors of type III with A € [0, 1], see [CoT2].

2.3. The hyperfinite II; factor. Define Ay = My (C) and view Ay — Apiq
by z — (29). We equip A; with the normalized trace 7 = 27%Tr. These
traces are compatible with the inclusions. Passing to the direct limit, we find a
x-algebra A and a positive tracial functional 7 : A — C. Using the inner product
(x,y) = T(xy*), we complete A to a Hilbert space H on which A is represented by
left multiplication operators. The weak closure of A inside B(H) is the hyperfinite
I factor R of Murray and von Neumann [MvN43]. This is the most basic example
of a II; factor, in particular because every I1; factor M contains many copies of R
as a von Neumann subalgebra R C M.

In general, a factor M is said to be hyperfinite if it contains an increasing
sequence of finite dimensional *-subalgebras A;, C M such that |J, Ay is weakly
dense in M. Already Murray and von Neumann proved in [MvN43| the striking
classification theorem saying that all hyperfinite II; factors are isomorphic.

2.4. Connes’ classification of amenable factors. A von Neumann algebra
M C B(H) is said to be amenable if the correct analog of an invariant mean
exists: a linear map E : B(H) — M that is positive, in the sense that E(T) > 0
for every T' > 0, unital and that satisfies E(2Ty) = ¢ E(T)y for all T € B(H) and
z,y € M. We say that F is a conditional expectation of B(H) onto M. Note that
we do not assume any weak continuity for E.

One checks that a group von Neumann algebra L(I") is amenable if and only if
the group I' is amenable. So, for all amenable icc groups I', we get that L(T") is an
amenable II; factor. The following theorem of Connes is thus a big surprise.

Theorem 2.2 (Connes [Co75]). All amenable II; factors are hyperfinite and thus,
isomorphic with the hyperfinite I, factor R of Murray and von Neumann.

In [Co75], Connes proved the general result that all amenable factors acting
on a separable Hilbert space are hyperfinite. Using the Tomita-Takesaki-Connes
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decomposition theory discussed above, Connes could then show that for every
A € (0,1), there is a unique amenable factor of type III, and that the amenable
factors of type Iy are completely classified by an ergodic, non transitive flow. The
uniqueness of the hyperfinite III; factor remained open and was ultimately proved
by Haagerup in [Ha85].

For A € (0, 1), the unique amenable factor of type III is the Powers factor Ry,
which can be constructed as follows. Consider the same inclusions Ay < Aj41 of
Ay, = M5 (C) as in Section 2.3. Inductively define the states ¢y on Ay, given by

a b 1 A
= — —_ fi 11 A .
P41 (c d) 1 +)\<pk(a) + T +)\<pk(d) or all a,b,c,d € Ay

Denote by A the inductive limit *-algebra with the inductive limit state . We
complete A into a Hilbert space H by using the scalar product (a,b) = p(b*a).
Again, left multiplication defines a representation of A on H and R) is defined as
the weak closure of A C B(H).

3. Popa’s deformation/rigidity theory and non amenability

Rigidity phenomena coming from non amenability already appeared early in the de-
velopment of von Neumann algebras, notably in proving that the free group factors
L(F,,) are not isomorphic to the hyperfinite IT; factor [MvN43], or in constructing
uncountably many non isomorphic II; factors [Mc69]. Nevertheless, most of the
natural isomorphism and classification problems for families of non amenable II;
factors remained wide open. This changed dramatically in the early 2000’s, when
Popa introduced his deformation/rigidity theory in [Po0O1]. Since the develop-
ments in deformation/rigidity theory in the period 2001-2012 have been surveyed
in [Po06, Val0, Iol2al, I focus here on a sample of results that illustrate best the
dichotomy between amenability and non amenability, as well as on a few of the
most recent developments.

3.1. Group measure space II; factors. Let (P,7) be a von Neumann algebra
equipped with a faithful normal tracial state and let I' ~® (P, 7) be an action of a
countable group I' by trace preserving automorphisms (ag)ger of (P, 7). Most of
the time, we will take P = L°°(X), where (X, u) is a standard probability space,
7(F) = [y F(x)dp(z) and T ~* L*(X) is induced from a probability measure
preserving (pmp) action I' ~ (X, p) via (ay(F))(x) = F(g~! - z).

The crossed product M = P x T' is the unique von Neumann algebra with
faithful normal tracial state 7 : M — C satisfying the following.

e M contains P as a unital x-subalgebra and contains a copy of I' as unitary
operators (ug)ger.

e We have uyup = ugp and ugruy = ay(x) for all g,h € T, z € P.

e The finite sums >
of M.

ger Lglig With zg € P form a weakly dense *-subalgebra
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o We have T(der Tug) = 7(ze).

For a pmp action I' ~ (X, ), two natural properties emerge. The abelian subalge-
bra L>°(X) C L*(X) x I' is mazimal abelian if and only if the action I" ~ (X, u)
is essentially free, meaning that {x € X | g- 2 = z} has measure zero for every
g # e. Under this freeness assumption, we find that L>°(X) x T' is a factor if
and only if the action I' ~ (X, u) is ergodic, meaning that the only I'-invariant
functions in L>°(X) are the constant functions. So, for all free ergodic pmp actions
I' ~ (X, 1), we conclude that L*°(X) xI"is a IT; factor. This is the group measure
space construction of [MvN36].

The group measure construction L (X) x I' can be defined for non singular
actions I' ~ (X, ), meaning that u(g-U) = 0 for all Borel sets 4 C X with
uw(U) =0 and all g € T. For a free, ergodic, non singular action I' ~ (X, u), we
still get that M = L°°(X) x T is a factor. The type of M is determined as follows
by the dynamics of the action: M is of type I if and only if p is concentrated on a
single orbit; M is of type II; if and only if there exists a I'-invariant, non atomic
probability measure in the same measure class as p (which is the case discussed
above); M is of type Il if and only if there exists an infinite, o-finite, I'-invariant,
non atomic measure in the same measure class as u; and in all other cases, M is
of type III.

3.2. Classifying group measure space II; factors. The basic question is:
when are two given group measure space 1I; factors isomorphic? By Connes’
Theorem 2.2, for all free ergodic pmp actions of an amenable group I', we have
L>(X)xT = R. But what happens for concrete actions of various natural groups
such as the free groups F,, or the groups SL(n,Z)? Until the advent of Popa’s
deformation/rigidity theory, most of such questions were out of reach.

Assume that 7 : L®°(X) x I' = L*(Y) x A is an isomorphism. In [Po01],
Popa proved that if A has the Haagerup property (a deformation property that
I introduce below), while I' ~ (X, ) is a rigid action (meaning that L*°(X) is
a subalgebra having the relative property (T)), then there must exist a unitary
operator u such that the new isomorphism (Adw) o 7 maps L™ (X) onto L*>(Y).
By Singer’s theorem, this implies that the actions I’ ~ (X, ) and A ~ (Y, v) are
orbit equivalent, meaning that there exists a measure preserving Borel bijection
A : X =Y such that A(T' - ) = A - A(x) for almost every z € X.

So, Popa’s theorem reduced for the first time in a specific setting the isomor-
phism problem of group measure space II; factors to the isomorphism problem of
the associated orbit equivalence relations. That is a question in measured group
theory that we do not discuss further here, see [Gal0, Full]. We mention how-
ever that the L2-Betti numbers of a countable group I' are preserved under orbit
equivalence (see [Ga01]) and thus become an invariant for the class of II; factors
introduced by Popa in [Po01].

A countable group A has the Haagerup approzimation property if there exists
a sequence of positive definite functions ¢, : A — C converging pointwise to 1
and with each ¢,, being a function that tends to 0 at infinity. This approximation
of the identity induces on a crossed product M = P x A a sequence of normal
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completely positive maps given by

U M — M : wn(z Tgug) = Z on(9) zgug

g g

satisfying lim,, ||t () — z||2 = 0 for every x € M, where ||z||2 = \/7(z*z). A von
Neumann subalgebra Q C M is called rigid [Po01] (or has the relative property (T))
if for any sequence of normal completely positive maps ¢, : M — M converging
pointwise to the identity, we have that |[¢,,(z) — x||2 tends to zero uniformly on
all z in the unit ball of Q). In a setting as in the previous paragraphs, having both
deformation and rigidity, one may uniquely localize the rigid subalgebra and then
use this as the crucial step in proving a classification theorem.

3.3. Bernoulli actions and W¥*-superrigidity. The Bernoulli action of a
countable group I' with base space (Xo, p9) is defined as

'~ (Xa ,U) = (X())uo)r : (g ! x)h = xgilh .

Some of the most striking rigidity phenomena in von Neumann algebras have been
found for Bernoulli actions of non amenable groups. They all originate from the
following result and the methods developed in [Po03, Po04].

Theorem 3.1 (Popa, [Po03, Po04]). LetT' ~ (X, p) and A ~ (Y, v) be free ergodic
pmp actions of icc groups T' and A. Assume that T has Kazhdan’s property (T) and
that A ~ (Y,v) is a Bernoulli action. If the crossed products are isomorphic, i.e.
LX) 1T 2 L®(Y)x A, thenT = A and the actions T ~ (X, p) and A ~ (Y, v)
are conjugate.

Recall here that free ergodic pmp actions I' ~ (X,u) and A ~ (Y,v) are
called conjugate if there exists an isomorphism of groups § : I' = A and a measure
preserving Borel bijection A : X — Y such that A(g - z) = d(g) - A(z) for all
g € I' and almost every = € X. Similarly, these actions are called W*-equivalent
if the associated group measure space II; factors are isomorphic: L™(X) x I’
L>(Y) x A.

The rigidity in Theorem 3.1 is given by property (T) groups such as SL(n,Z),
n > 3, or, more generally, lattices in higher rank simple Lie groups. The deforma-
tion in Theorem 3.1 is given by Popa’s malleability property of Bernoulli actions
A ~ (Y,v) : there exists a 1-parameter group of pmp transformations oy : Y XY —
Y x Y such that a; commutes with the diagonal action g (z,y) = (¢-x,g-y) and
such that ap = id and a4 (z,y) = (y, z).

Note that the hypotheses in Theorem 3.1 are asymmetric: there is an assump-
tion on the group I', while there is an assumption on the action of A. The most
extreme form of rigidity arises when the same conclusion holds by only making
assumptions on one side. This leads us to the following concept.

Definition 3.2. A free ergodic pmp action I' ~ (X, ) is said to be W*-superrigid
if any free ergodic pmp action that is W*-equivalent, must be conjugate.



8 Stefaan Vaes

In [Pe09], Peterson proved the existence of virtually W*-superrigid actions.
Here, virtual means that the conjugacy in the conclusion only holds after restricting
to finite index subgroups. Shortly afterwards, Popa and I proved in [PV09] that
for large classes of amalgamated free product groups, the Bernoulli actions are
W*-superrigid, while in [Io10], Ioana proved the same for property (T) groups.

Theorem 3.3. When I' is one of the following groups, any Bernoulli action I' ~
(Xo, o)t is W*-superrigid.

e (Popa-V, [PV09]) T is an amalgamated free product group of the form T' =
PSL(n,Z) *7, (T, x A), where n > 3, T,, < PSL(n,Z) is the subgroup of
upper triangular matrices and A is an arbitrary non trivial group.

e (loana, [I010]) T is an infinite property (T) group.

The method to prove Theorem 3.3 starts as follows!. Put M = L>°(X) x T’
and assume that M = B x A with B = L*°(Y) is another group measure space
decomposition of M. This “mysterious” group measure space decomposition of M
induces the injective x-homomorphism

A:rM—MEM:AN b)) = b, @, (3.1)
sEA sEA

called the dual coaction. Using now the structure of M as a Bernoulli crossed prod-
uct by a specific type of group, we can partially unravel how such an embedding
A: M — M ® M may look like. This ultimately allows to prove that L>°(X) and
B are unitarily conjugate in M. As discussed above, it follows that the actions
I ~ (X,pn) and A ~ (Y,v) are orbit equivalent. Using Popa’s orbit equivalence
superrigidity theorem of [Po05], it follows that the actions must be conjugate.

3.4. W*-superrigidity for group von Neumann algebras. How much in-
formation on a group I' can be recovered from the ambient group von Neumann
algebra L(T")? Several qualitative properties of the group I' turned out to actually
be properties of L(T'). This includes amenability, the Haagerup property, prop-
erty (T), etc. The more precise question when given groups I' and A give rise to
isomorphic group von Neumann algebras L(I') & L(A) remains wide open for most
natural families of groups.

We already mentioned the free group factor problem asking whether L(TF,,) is
isomorphic with L(F,,) when n,m > 2 and n # m. Equally wide open is Connes’
rigidity conjecture saying that lattices in higher rank simple Lie groups, or even
all property (T) groups are W*-superrigid in the following sense.

Definition 3.4. A countable group I' is said to be W*-superrigid if any group A
with L(T") & L(A) satisfies T' & A.

4The method as we describe it here was developed in [Io10], but the dual coaction in (3.1)
was already a crucial ingredient in [PV09].
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In [IPV10], the first W*-superrigidity theorem for group von Neumann algebras
was proved, for groups G of the following form. Starting with an action of a
countable group I" on a countable set I (typically, I = I'/T'y for a subgroup I'y < T'),
define H := (Z/2Z)") as the direct sum of copies of the group with two elements
and let T act by automorphisms of H given by the (generalized) Bernoulli action:
(g-x); = 241 forall g € I', x € H, i € I. Then define G as the semidirect
product

Z \ (1)
G = QZ) xT.
In [IPV10], we proved that for well chosen I' ~ I, this group G is W*-superrigid.

The method to prove this results starts again as follows. Given another decom-
position L(G) = L(A) as a group von Neumann algebra, we consider the injective
s-homomorphism A : L(A) — L(A) ® L(A) given by A(v,s) = v, Q@ v, for all s € A
and called the comultiplication on L(A). Viewing L(G) as the generalized Bernoulli
crossed product

L(G) = L™ ({o, 1}’) %D,

we can determine how A must look like and then prove that A & G.

In [BV14], these methods were further refined and we could prove that for the
left-right translation action I' x I' ~ T" of the free groups I' = F,,, n > 2, the
semidirect product group (Z/2Z)1) x (' x I') is W*-superrigid.

3.5. Uniqueness of Cartan subalgebras. As explained in Section 3.3, proving
W+-superrigidity of a free ergodic pmp action I' ~ (X, 1) proceeds in two steps.
Write A = L®(X) and M = AxT. If M = B x A is another group measure
space decomposition of M, induced by a free ergodic pmp action A ~ (Y,v) and
writing B = L*°(Y'), the first step consists in proving that A and B are unitarily
conjugate subalgebras of M, i.e. there exists a unitary operator u € U(M) such
that B = uAu*. It then follows that the actions I' ~ (X, ) and A ~ (Y,v) are
orbit equivalent, so that the second step consists in proving the orbit equivalence
superrigidity of I' ~ (X, ).

The subalgebra A C M is a Cartan subalgebra: a maximal abelian subalgebra
whose normalizer

Ny (A) = {ueU(M) | uAu* = A}

generates M as a von Neumann algebra. When a Cartan subalgebra A C M
arises from a group measure space decomposition M = L°(X) x T', where ' ~
(X, p) is a free ergodic pmp action, we call A a group measure space (gms) Cartan
subalgebra. Not all Cartan subalgebras of a II; factor are of group measure space
type. Indeed, by Feldman and Moore’s theorem [FMT75], a Cartan inclusion A C M
is always of the form L*°(X) C Lqo(R), where (X, ) is a standard probability
space, R is a Borel equivalence relation on X with countable equivalence classes,
R is “preserving” the probability measure p and €2 is a 2-cocycle on R. There are
two gaps between this general setup and a group measure space decomposition.
The first issue is that R need not be the orbit equivalence relation R = {(z,g-z) |
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xz € X,g € T} of a free pmp action I' ~ (X, u). Secondly, even if R is such an
orbit equivalence relation, the 2-cocycle 2 can be non trivial.

The first step in proving W*-superrigidity can now be formulated as follows: is
L*>°(X) the unique gms Cartan subalgebra of L>°(X) xT" up to unitary conjugacy?
Clearly, the more natural question to ask is whether L>°(X) simply is the unique
Cartan subalgebra up to unitary conjugacy. That type of question turned out to
be much harder to solve because a dual coaction as in (3.1) is no longer available.

Ounly in [OPO07], the first II; factor with a unique Cartan subalgebra up to
unitary conjugacy was discovered. They proved that whenever I' = F,, is a free
group with n > 2 and 'y, < I' is a decreasing sequence of finite index normal
subgroups with (), I'x = {e}, then the profinite action I' ~ X = limI'/T";, gives rise
to a II; factor M = L™ (X) x I" in which L*°(X) is the unique Cartan subalgebra
up to unitary conjugacy. In [CS11], this uniqueness theorem was generalized to 11y
factors given by profinite actions of arbitrary non elementary hyperbolic groups.

In both cases, the crucial ingredient is the weak amenability of profinite crossed
products M = L*®°(X) x I' by a weakly amenable group I'. This provides a se-
quence of finite rank, normal, completely bounded maps v,, : M — M such that
lim,, ||¢n(z) — z||2 = 0 for all x € M and such that limsup,, |||l < co. Here,
||| is defined as the supremum of all norms ||id®y : Mi(C)@M — M (C)M||,
k € N, and a map 1 is called completely bounded if ||]|cp < co. Whenever B C M
is an amenable von Neumann subalgebra (e.g. another Cartan subalgebra), the
formula pi, (b ® ¢°P) = 7(1,(b)c) gives rise to a sequence of normal functionals p,
on B ® B°P satisfying limsup,, ||pn|| < oco. This sequence u, turns out to have
remarkable asymptotic invariance properties under a natural action of the normal-
izer Ny (B). In this way, it is proved in [OP07] that whenever B is amenable and
diffuse®, then the normalizer N/ (B)” stays amenable.

When T is still weakly amenable but T' ~ (X, u) is an arbitrary free ergodic
pmp action, the crossed product L (X) x I" need not be weakly amenable (this is
the case whenever I' is non amenable and I" ~ (X, i) is a Bernoulli action [OP07]).
Nevertheless in [PV11, PV12], we construct a natural von Neumann algebra that
replaces B ® B°P and that admits a sequence of normal functionals pu,, with the
appropriate asymptotic invariance properties. This then leads to the following
result.

Theorem 3.5 (Popa-V, [PV11, PV12]). Let T be the free group F,,, n > 2, or any
non elementary hyperbolic group. For any free ergodic pmp action T' ~ (X, ),
we have that L>°(X) is the unique Cartan subalgebra of L°(X) x T up to unitary
conjugacy.

Rather than directly proving Theorem 3.5, we prove in [PV11, PV12] a general
dichotomy theorem for arbitrary tracial crossed products M = P x I' and von
Neumann subalgebras Q C M that are amenable relative to P. This theorem
says that either ) can essentially be unitarily conjugated into P or the normalizer

5A von Neumann algebra B is called diffuse if it has no minimal projections. This is equivalent
to saying that B cannot be written as B = B(K) @ B; for some finite or infinite dimensional
Hilbert space K.
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N (Q)” stays amenable relative to P. I do not elaborate this further here, but
it is important to note that this general result has lead to further uniqueness
theorems for Cartan subalgebras, in particular Ioana’s theorem [lo12b] saying that
uniqueness holds for arbitrary crossed products of free product groups I' =T'; %'y
with |I'y] > 3 and |T'2| > 2. The starting point of [Io12b] is that any crossed
product M = L*°(X) x I" by such a free product group I' admits a family of
embeddings

0p: M — L=(X) x (T1 % Z)x (D% Z)) = P x Fy

so that the general dichotomy theorem of [PV11] can be applied to 6:(L>° (X)) C
P x IFQ.

Note that combining Theorem 3.5 with the invariance of L2-Betti numbers
under orbit equivalence (see [Ga0l]), we obtain the following.

Corollary 3.6 ([PV11]). If F, ~ (X, u) and F,, ~ (Y, v) are free ergodic pmp
actions and L>®(X) x F,, 2 L>*(Y) x F,,, then n = m.

3.6. II; factors with exactly two group measure space decompositions.
Crossed product II; factors M need not have a unique Cartan subalgebra, not
even up to conjugacy by an automorphism of M. This can for instance be seen in
the following example of Ozawa and Popa. Consider the semidirect product group
I' = Z2 x SL(2,7Z) and the probability space Zf), where Z,, is the compact group of
p-adic integers equipped with its Haar probability measure. The translation action
72 ~ Zf, and the “linear” action SL(2,Z) ~ Zf, combine into a free ergodic pmp
action I' ~ Zf,. Inside the crossed product

M = L>(Z3) x (Z* x SL(2,Z)) ,

we not only have the canonical Cartan subalgebra L>° (ZIQ,), but also the group von
Neumann algebra L(Z?) C M is a Cartan subalgebra. These Cartan subalgebras
are not conjugate by an automorphism of M.

It is an open problem to decide whether L>°(Z2) and L(Z?) are the only Car-
tan subalgebras of M up to unitary conjugacy. Actually, it is an open problem
to construct any II; factor with precisely two Cartan subalgebras up to unitary
conjugacy. Even more, it is an open problem to construct a II; factor M with
more than one Cartan subalgebra but such that all these Cartan subalgebras can
be exhaustively determined.

Nevertheless in [KV15], we could solve these questions when restricting to group
measure space (gms) Cartan subalgebras.

Theorem 3.7 (Krogager-V, [KV15]). For every integer n > 1, we construct

e I} factors M having exactly n gms Cartan subalgebras up to conjugacy by
an automorphism of M,

e I} factors M having exactly 2" gms Cartan subalgebras up to unitary con-
Jugacy.



12 Stefaan Vaes

The IT; factors M in Theorem 3.7 are constructed as follows. Denote by (Rg, 70)
the hyperfinite II; factor with its tracial state. Let I' = F, and denote by (R, 7)
the infinite tensor product (R,7) = ®ger(Ro,70). For every k € T', we denote by
7+ Ry — R the embedding as the k’th tensor factor. Given any trace preserving
action I' ~? Ry, we define the action I' x ' A® R given by

gy (Tk(2)) = Tgrn—1(Bn()) -

We define M as the crossed product II; factor M = R x (I’ x T'). The obvious

Cartan subalgebras B C M are the ones of the form B = B?F where By C Ry is
a Cartan subalgebra that is invariant under 3, meaning that 3,(By) = By for all
h € T'. The obvious gms decompositions of M are the ones of the form

M = (By x Ag)®" x (T x T) = BF' » (AY x (D' x I))

where Ry = By XAy is a gms decomposition of Ry that is globally invariant under 5.
We could not prove that all Cartan subalgebras of M are unitarily conjugate to an
obvious one, but we could prove that M only has the obvious gms decompositions.
The above result leaves a complete freedom in the choice of Foy ~? Ry. For
specific choices of 8, all B-invariant gms decompositions of Ry can be determined
and this leads to a proof of Theorem 3.7. All this entirely relies on the dual coaction
(3.1) induced by another gms decomposition of M. To prove the same result for
arbitrary Cartan subalgebras, a conceptually new technique has to be found.

3.7. Non commutative Bernoulli actions. The general dichotomy theorem
of [PV11, PV12] discussed at the end of Section 3.5 can also be used to prove clas-
sification results for crossed product factors of type III. A particularly interesting
class of type III factors arises from non commutative Bernoulli actions, see [CoT4].
Whenever (Py, @) is a factor equipped with a faithful normal state and I' is a
countably infinite group, the Bernoulli action « of I' with base (Pp, o) is defined
as follows. First denote by (P, ¢) = Qger(Fo, po) the infinite tensor product and
by 7, : Py — P the embedding as the h’th tensor factor. Then define the state
preserving action I' n* P by a4(mp,(z)) = mgn(x) for all g,h € T, x € Fy. We still
denote by ¢ the natural extension of ¢ to a faithful normal state on M = P x T

In the entirely amenable case, when P, is an amenable factor, Py # CI1, and
I" is an infinite amenable group, we have that M = P x I' is an amenable factor
and is thus classified as follows by [Co75, Ha85]. Denote by (0;°)icr the modular
automorphism group of the faithful normal state g, see Section 2.2. Then there
are exactly three possibilities:

o if 0/° = id for all ¢ € R, then ¢q is a tracial state and M is the unique

hyperfinite II; factor R (see Section 2.3),
e if 67° is periodic with period 27/|log A| and A € (0, 1), then M is the unique
hyperfinite IIT, factor Ry (see Section 2.4),

e if 0/° is not periodic, then M is the unique hyperfinite I1I; factor.
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When the group I' is non amenable, the classification of the crossed product
factors M = P x I changes drastically. We still assume that P, is a non trivial
amenable factor and we also assume that the state g is almost periodic®. Then
M is an almost periodic full factor in the sense of [Co74] and the corresponding
invariant Sd(M) of [Co74] equals the subgroup Sd(y¢o) of R* generated by the
eigenvalues of ¢o. This applies in particular to Py = My (C) and ¢o = Tr(Ag )
where Ay € M;(C) is a non singular, positive matrix of trace 1. In that case,
Sd(po) equals the subgroup of R* generated by the ratios between the eigenvalues
of Ag. In this way, we thus obtain many non isomorphic factors of type IIIy,
distinguished by their Sd invariant.

When T is a free group, the Sd invariant together with the group I' form a
complete invariant in the following precise way.

Theorem 3.8 (V-Verraedt, [VV14]). The family of factors of the form

{(P ) F n > 2 and (Po, vo) s an amenable non trivial factor}
0+%0 " | with an almost periodic faithful normal state

is exactly classified, up to isomorphism, by the integer n and the subgroup Sd (o)
of R generated by the eigenvalues of @q.

The main steps in the proof of Theorem 3.8 are the following. If two factors
as in Theorem 3.8, associated to Bernoulli actions of F,, and F,,, are isomorphic,
they obviously must have the same Sd invariant. Using the dichotomy theorem
of [PV11], we also prove that these Bernoulli actions of F,, and F,, are cocycle
conjugate, which in particular means that F,, = F,, and thus n = m. To prove
the converse implication, i.e. the isomorphism of two Bernoulli crossed products
of F,, having the same Sd invariant, we rely on Ocneanu’s classification theorem
up to cocycle conjugacy [Oc85] for outer actions of amenable groups (in this case,
Z x Sd) on the hyperfinite 11, factor.

3.8. Free Araki-Woods factors. A natural way to construct hyperfinite factors
of type III is through the canonical anticommutation relations (CAR) and the
quasi-free states. In [Sh96], Shlyakhtenko discovered a free probability analog of
the CAR algebras and their quasi-free states, using Voiculescu’s free Gaussian
functor. More concretely, to any orthogonal representation (U)tcr of R on a real
Hilbert space Hp is associated the free Araki-Woods factor I'(Hg, U)” and the free
quasi-free state .

This construction goes as follows. Denote by H = Hr+iHr the complexification
of Hgr and by

}'(H)z(CQ@é(H®~-~®H)
n=1

n-fold

6A faithful normal state ¢ on a von Neumann algebra M is called almost periodic if the
eigenvectors of ¢ span a weakly dense x-subalgebra of M. Here, x € M is called an eigenvector
of ¢ if there exists a A > 0 such that ¢(zy) = Ap(yz) for all y € M. This last condition is
equivalent with the condition that of (z) = itz for all ¢ € R.
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the full Fock space. Here, 2 is a unit vector, called the vacuum vector. For every
& € H, denote by £(£) the left creation operator defined by

N =¢ and L(E)(E®  ®E&)=E(ERH® - RE, .

The complexification of (Uy;)ser is still denoted in the same way and is a unitary
representation of R on H. So we can define the non singular, positive, self adjoint
operator A on H such that A* = U,. Define the anti-unitary operator J : H — H
given by J(& +in) = & —in for all £,n € Hg and put S = JAY2 Writing
Kr ={¢ € D(S) | S(§) = &}, we have found a new real Hilbert subspace Kg C H
with the properties that Kg Nikg = {0} and Kg + iKg C H is dense. Every such
pair g C H arises in this way from an orthogonal representation.

Definition 3.9 (Shlyakhtenko, [Sh96]). The free Araki-Woods factor associated
with (Hg,U) is defined as

D(Hz, U)" = {L(&) + L&) | § € K} = {£(&) +£(S(£)" | £ € D(S)}" .

The vector state p(z) = (x2, Q) given by the vacuum vector €2 is a faithful normal
state on T'(Hg, U)"” called the free quasi-free state.

Except in the trivial case where Hp is one dimensional and U; = id, the von
Neumann algebra M = T'(Hg,U)"” is indeed a factor. When U, = id for all
t € R, we get that M is a II; factor that is isomorphic to the free group factor
L(Fqimg (#z))- When U is periodic with period 27/|log A] and A € (0,1), then M is
a factor of type III,. In all other cases (and thus almost always), M is a factor of
type III;. Together with the observation that the functor I'( - )" transforms direct
sums of orthogonal representations into free products of von Neumann algebras
(with respect to the free quasi-free states), we see that the free Araki-Woods factors
can be viewed as type III analogs of the free group factors.

When U is almost periodic, we denote by Sd(U) the subgroup of R generated
by the eigenvalues of U, i.e. the positive real numbers A > 0 for which there
exists a non zero vector ¢ € H satisfying Uy (€) = ¢ for all t € R. When U is
almost periodic, the free quasi-free state is almost periodic as well and Connes’ Sd
invariant of I'(Hg, U)"” (see [Co74]) equals Sd(U).

In [Sh96], Shlyakhtenko proved the fundamental result that the Sd invariant
is a complete invariant for the almost periodic free Araki-Woods factors. As al-
ways, we say that two von Neumann algebras M and N are isomorphic if there
exists a bijective #-isomorphism between M and N. So even when M and N are
equipped with canonical states (e.g. the free quasi-free states), we do not assume
that isomorphisms are state preserving.

Theorem 3.10 (Shlyakhtenko, [Sh96]). The free Araki-Woods factors T'(Hg,U)"”
with U almost periodic and non trivial are completely classified, up to isomorphism,
by the subgroup SA(U) C R*..

In particular, for every A € (0, 1), there is a unique free Araki-Woods factor of
type III,, denoted as T and realized by any periodic orthogonal representation
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with period 27/|log A|. The factor T is the free probability analog of the Powers
factor Ry (see Section 2.4).

For non almost periodic representations U, the classification of the free Araki-
Woods factors is an outstanding open problem. However, in the recent article
[HSV16], we obtained the first such classification theorem for a quite large family
of non almost periodic representations U.

To formulate this result, recall that orthogonal representations of R are fully
classified by their spectral invariants. More concretely, let 1 be a symmetric prob-
ability measure on the Borel sets of R and let m : R — NU {+00} be a symmetric
Borel function (called the multiplicity function) that we always assume to satisfy
m(z) > 1 for p-a.e. € R. The orthogonal representation (Hg, U) associated with
(e, m) is defined as follows. For all n € NU {400}, define the symmetric Borel set
X, C R given by X,, = {x € R | m(z) = n}. Then define

Hr = @ @ Hy

neNU{+oo} k=1
with HR = {6 € L*(X,,p) | Vo € X, : €(—x) = E(x)}
and (U€)(z) = exp(itx) &(x) .

Every orthogonal representation of R on a separable real Hilbert space is orthog-
onally equivalent with the representation associated with a pair (i, m) as above.
And the representations associated with (p;,m;), i = 1,2, are orthogonally equiv-
alent if and only if p1 ~ p2 (meaning that p1 and ug belong to the same measure
class, i.e. have the same Borel sets of measure zero) and my(z) = mo(z) for u;-a.e.
x € R. For all (u,m), we denote by I'(u,m)” the free Araki-Woods factor asso-
ciated with the above orthogonal representation of R. Every free Araki-Woods
factor arises in this way.

Observe that the almost periodic case corresponds to the case where u is an
atomic measure. For an arbitrary Borel measure p on R, we denote by = g + e
its unique decomposition as the sum of an atomic and a continuous measure. We
denote by A(u,) C R the subgroup of (R,+) generated by the atoms of p,. So,
when p is atomic, we get that SA(U) = exp(A(p)) and Theorem 3.10 can be
reinterpreted as saying that the free Araki-Woods factors I'(u, m)” with p atomic
are completely classified by the subgroup A(p) C R. In particular, they do not
depend on the multiplicity function m.

In [HSV16], we consider the class S(R) of symmetric probability measures u
satisfying the following two properties: p has at least one atom different from 0 and
Lhe* e = e, meaning that the convolution product p * . is absolutely continuous
w.r.t. p.. We then prove the following result.

Theorem 3.11 (Houdayer-Shlyakhtenko-V, [HSV16]). The free Araki-Woods fac-
tors T'(u, m)” with p € S(R) are completely classified by the subgroup A(p,) C R
and the measure class of pic * dp(u,), where d5(,,) denotes any atomic probability
measure whose set of atoms equals A(ug).

~

The key step to prove Theorem 3.11 is the following: whenever T'(u,m)” =
I'(v,n)” and v has at least one atom different from 0, then there also exists an
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isomorphism preserving the free quasi-free states. That result is in turn based
on the following intrinsic characterization of the free quasi-free state proved in
[HSV16]: up to conjugacy by a partial isometry and “taking corners”, the free
quasi-free state ¢ on an arbitrary free Araki-Woods factor M = T'(u, m)"” with p
having at least one atom different from 0 is the only faithful normal state v whose
centralizer” MY is non amenable.

So again, we have obtained a classification theorem for von Neumann algebras
that is based on the dichotomy between amenability and non amenability. This
connects very well with another wide open problem on type III factors posed by
Connes [Co80]: does every type II1; factor M (acting on a separable Hilbert space)
have a trivial bicentralizer®? By [Ha85], this problem is equivalent to the question
whether M admits a faithful normal state 1 such that (M%) N M = C1.

Another result of [HSV16], along the same lines as the above mentioned char-
acterization of the free quasi-free state, says that if p is a continuous measure,
then all faithful normal states ¢ on M = I'(, m)” have an amenable centralizer
M¥. This is an optimal result: although the centralizer of the free quasi-free state
equals C1, by [Ho08], M satisfies Connes’ bicentralizer problem and thus admits
a faithful normal state @ such that MY is an irreducible subfactor of M.
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