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ABSTRACT
With the rise of distributed energy resources, photovoltaic-battery systems are needed to maintain voltages
within limits, and balance between demand and supply. These systems can be exploited more by controlling
them to provide multiple, stacked services. In this paper, we propose a novel control methodology
for photovoltaic-battery systems to provide simultaneously distributed voltage control and frequency
containment reserve. The control methodology is structured in two phases. In the day-ahead phase, the
control problem is formulated as a robust optimization problem. The aims of this optimization problem are to
allocate fractions of the energy and power capacity of each battery energy storage system to the two services,
minimize the expected cost of reactive power compensation and batteries degradation, maximize profits
from frequency control, and compute a set of linear control policies. The optimization problem also aims to
immunize against service unavailability, and violating operational limits. This immunity is accomplished by
considering the uncertainty in the households’ active power consumption, photovoltaic power generation,
and grid frequency. In the real time phase, the linear policies are applied to regulate voltage profiles, and
keep energy contents of batteries within limits while providing frequency control. A 120-node low voltage
network is used as a case study. Simulations over 104 scenarios are used to demonstrate the robustness of
the proposed control methodology.

INDEX TERMS Battery energy storage system, smart inverter, distributed voltage control, frequency
containment reserve, value stacking, linear policies, robust optimization.

I. INTRODUCTION

Solar photovoltaic (PV) has experienced exponential growth
in recent years, with global installed capacity increasing
tenfold from 2010 to 2019 [1]. It is also predicted that the
global PV capacity will continue to grow by 9% every year
in the next 50 years [2]. The market for battery energy
storage systems is expected to grow at a compound annual
growth rate of approximately 50% during the period 2020-
2025 [3]. This transition towards distributed energy resources
(DERs) is impacting the operation of distribution networks
[4]. Distribution networks were originally designed as pas-
sive networks, containing mainly loads. Therefore, a high
penetration of DERs leads to several technical challenges in
controlling distribution networks. One of the main problems
is voltage rise issue due to the feed-in power from DERs

[5]. Furthermore, intermittent and unpredictable nature of PV
systems increases the complexity of balancing the grid.

Smart PV-battery systems with advanced grid support
mechanisms and data communication capabilities are being
deployed to tackle the negative impact of increased DERs
penetration on grid voltage and frequency [6]. These systems
have the ability to absorb (or inject) reactive power, curtail
PV power, charge battery energy storage systems (BESSs)
during PV peak period and discharge BESSs during demand
peak period. Additionally, their energy output can be con-
trolled in response to frequency deviations.

Since frequency control has been identified as one of
the highest value services for PV-battery systems [7], many
researchers are interested in using these systems to provide
frequency control service to the grid. These systems can
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be exploited more by controlling them to provide multiple,
stacked services along with the frequency control service.
Optimizing the deployment of PV-battery systems to get the
most possible value out of them has attracted increasing
attention recently [8]. Different control methodologies have
been proposed in literature that allow PV-battery systems to
combine frequency control with different services, such as
increasing self-consumption and peak shaving.

Providing frequency control (along with other services)
with PV-battery systems connected to the low voltage dis-
tribution grid can lead to voltage issues [9]. In order to
mitigate these issues, part of the reserve capacity of the PV-
battery systems should be dedicated to solve voltage prob-
lems caused by their services. In the opinion of the authors,
grid operators should require frequency control providers
(with PV-battery systems located in distribution networks)
to provide frequency control simultaneously with voltage
control.

There is no study that has actually been carried out to de-
sign and optimize controllers that allow PV-battery systems
to combine frequency control with voltage control; this is the
literature gap that our study seeks to fill and the motivation
of this paper.

To enable PV-battery systems to actively participate in
voltage regulation, various voltage control strategies of dif-
ferent complexity and data transfer needs have been proposed
in literature. One of the effective control strategies that en-
ables smart inverters of the PV-battery systems to regulate
grid voltage is distributed coordinated voltage control (Dis-
CVC) [10]. In DisCVC, smart inverters communicate with
each other in a peer-to-peer (P2P) fashion to solve a voltage
control problem in a distributed way without relying on a
central decision-making controller.

The main contributions of this paper are:

• We propose an optimized controller that allows PV-
battery systems to provide simultaneously DisCVC and
frequency containment reserve (FCR).

• We propose upward and downward energy management
policies that regulate energy content of BESSs within
limits while providing FCR.

• We propose a novel DisCVC system enabled by reactive
and active power policies.

• We propose a new design for the upward and downward
reserve capacity profiles.

The remainder of the paper is organised as follows: section
II presents a background on provision of FCR with BESSs.
Related literature is reviewed in section III. Section IV
presents a general overview of the proposed control system.
The optimization problem treated in this paper is formulated
in section V. Results that validate the proposed mathematical
optimization problem are presented in section VI. Finally, the
paper is concluded in section VII and some suggestions for
future work are given.

II. PROVISION OF FREQUENCY CONTAINMENT
RESERVE WITH A BESS
The objective of the FCR is to maintain active power balance
between consumption and generation, within a synchronous
area, at a frequency close to the nominal frequency fnom.
FCR reserve capacity is activated automatically in response
to the grid frequency deviations from the nominal frequency.
FCR is the fastest reserve procured by transmission system
operators (TSOs); providers are required to reach their full
committed reserve capacity within 30 seconds. In many
countries, TSOs procure their FCR capacity via a periodic
auctions in which third parties, such as aggregators, can bid
a certain amount of reserve capacity at a certain price. When
accepted, the committed FCR capacity should be provided
continuously with 100% availability during the contracted
period [11]. Until the middle of 2019, FCR auctions in
Europe were put out on a weekly basis. From July of 2019,
the contracted period was reduced from one week to one
day. This shortened period will help FCR providers to design
their control systems in a more robust way, as uncertainty is
considered for only one day [12].

The FCR power p(k)
FCR

of a certain asset, participating in
frequency control, should be adjusted proportional to the
relative grid frequency deviations, as shown in (1a) 1.

p(k)
FCR

= r∆f (k), (1a)

∆f (k) =


f(k)−fnom

∆f
if ∆fdb <| f (k) − fnom |< ∆f,

1 if f (k) − fnom ≥ ∆f,

−1 if f (k) − fnom ≤ −∆f,

0 otherwise.
(1b)

Here, k is the time step of the frequency control, ∆f is
the frequency deviation at which maximum FCR capacity r
needs to be activated, and ∆fdb is the frequency deadband in
which no FCR reaction is required. In the Continental Europe
(CE) synchronous area, ∆f = 200 mHz and ∆fdb = 10
mHz.

Non-delivery or non-availability of a committed FCR re-
serve capacity will result in penalties charged by the TSO.
Providers can lose all revenues made from FCR in case
of not meeting the FCR requirements, or can be excluded
from further participation in the market in case delivery is
consistently not available or insufficient.

As BESSs have proven great potential in providing FCR
[9], many TSOs opened their networks for BESSs and re-
leased new FCR regulations for assets with limited energy
reservoirs [13]. BESSs are expected to entirely take over
the role of FCR providers from thermal power plants. Nev-
ertheless, designing a control system that enables BESSs
to provide FCR is not straightforward. Due to the limited
capacity of batteries, ensuring the FCR reserve capacity r is

1The convention in this paper is that the power is positive when it is
consumed (e.g., charging power of the BESS) and negative when it is
injected (e.g., discharging power of the BESS).
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Fig. 1: Energy content of the 13.5 kWh battery over 730 frequency scenarios. Battery
parameters: maximum power= 7 kW, initial charge= 6.5 kWh, charge/discharge effi-
ciency=

√
0.9. The energy content E is calculated based on: E(k+1) = E(k) +

∆t

(
ηch
i

[
p(k)

FCR

]+
− 1

ηdis
i

[
−p(k)

FCR

]+)
, where ηch

i and ηdis
i are, respectively, the

charge and discharge efficiencies , ∆t is the time step duration (1 minute) and
[·]+ ≡ max(·, 0).

available during the contracted period is not possible without
a management strategy that keeps energy content of BESSs
within limits. This is because the frequency signal has a non-
zero energy content over short time periods, and efficiency
losses of batteries decrease their energy content when being
charged or discharged. Fig. 1 demonstrates the fact that a
BESS cannot be used to provide FCR without an energy man-
agement strategy. In Fig. 1, a 13.5 kWh residential battery is
used to provide FCR based on (1a). Two years of frequency
data (2017-2018) with 1 minute resolution, from the CE
synchronous region [14], are used to study the energy content
of the 13.5 kWh battery while providing FCR. One can
clearly notice the violation of the maximum and minimum
energy content limits. Hence, an energy management strategy
is a must.

The German TSOs have defined control strategies [15],
also referred to as degrees of freedom (Dof), which can be
utilized to keep energy content of batteries within operational
range during FCR provision. These strategies presume that
BESSs can deviate slightly from the required FCR Power.
These strategies are: 1) overdelivery: providers are allowed
to provide FCR power that is anywhere between 100% and
120% of the instantaneous FCR requirement, 2) deadband
utilization: usually FCR assets are not obliged to activate
their reserve capacity within the range ±10 mHz around
the nominal frequency, a battery can use this deadband for
charging and discharging by using a power within the range[
0, p(k)

FCR

]
in case of charging, or within the range

[
−p(k)

FCR
, 0
]

in
case of discharging. A comparison of these control strategies
is made in [15], in which authors conclude that overdelivery
and deadband utilization are not sufficient to regulate the
energy contents of BESSs within limits while providing FCR.
Providers, who wish to use these strategies, should combine
them with an additional management strategy, or use a single
battery management strategy that can regulate energy content
of batteries within limits while providing FCR.

III. RELATED WORK
A. BATTERIES PROVIDING MULTIPLE SERVICES
BESSs create value for prosumers and grid operators, but
leave significant untapped value on the table. Currently, most

BESSs are deployed for one of three single applications:
maximization of PV self-consumption, demand charge re-
duction, or backup power. This results in batteries sitting
unused for over half of their lifetime [16]. Hence, there is
a need for designing innovative control systems that enable
batteries to provide simultaneously multiple services (so-
called value stacking). The challenges of designing such a
control system are to decide how much of batteries’ energy
and power capacities to allocate to each service, minimize
the risk of service unavailability, and minimize the risk of
violating battery constraints.

A control framework is designed in [17] for a BESS
to provide simultaneously FCR and dispatch of the oper-
ation of an active distribution feeder. The work of [18]
presents a methodology for evaluating benefits of batteries
for multiple services, including balancing service, energy
arbitrage, distribution system equipment deferral, and power
outage mitigation. Model predictive control is used in [19]
to dynamically co-optimize the allocation of batteries energy
and power capacities over three services: FCR, minimiza-
tion of PV curtailment, and demand smoothing. A dynamic
programming approach is applied in [20] to co-optimize a
storage device for energy arbitrage and frequency regula-
tion. A joint optimization framework is proposed in [21]
for batteries to perform peak shaving and provide frequency
regulation service. Stochastic dual dynamic programming is
applied in [22] to implement a control system that enables
PV-battery systems to provide FCR, automatic frequency
restoration reserve (aFRR), and maximization of PV self-
consumption. A controller that allows batteries to be used
simultaneously for self-consumption and FCR is presented in
[23], stochastic and robust optimization techniques are used
to maximize the expected profit from combining these two
services, the controller also computes a linear management
policy that regulates battery energy content within limits
while providing FCR.

To the best of our knowledge, simultaneous provision of
voltage control and FCR by BESSs has not been discussed
in literature yet. The novel control system proposed in this
paper combines FCR with a policy-based distributed voltage
control system, to enable PV-battery systems to provide
simultaneously voltage and frequency control. Below, we
present a brief literature review on policy-based voltage
control techniques, that we extend to build a policy-based
distributed voltage control system.

B. POLICY-BASED DISTRIBUTED VOLTAGE CONTROL
Various approaches that combine local, centralized and dis-
tributed voltage control techniques have been proposed in
literature [24]. These techniques suffer from different prob-
lems; centralized voltage control incurs high computational
complexity; most of distributed voltage control techniques
require large number of iterations to converge; and local
voltage control has no performance guarantees. As a middle-
ground solution, a centralized coordinator can be run on
an offline basis (i.e. day-ahead) to compute voltage control
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policies. A distributed voltage control can then be applied
in real time enabled by the computed control policies. The
idea is to let PV-battery systems solve, each time step in
real time, a set of linear equations rather than solving a
complex optimization problem. In [25]–[28], different tech-
niques are used for computing linear voltage control policies:
chance constrained programming in [25]; distributionally
robust chance constraints in [26]; affinely adjustable robust
optimization in [27]; and conic robust optimization in [28].
The aforementioned control policies are designed for local
voltage control, they are not meant for coordinated voltage
control. The voltage control methodology developed in [29]
builds on the techniques presented in [25]–[28], but extends
the voltage control policies to be used for enabling real time
distributed voltage control. This paper extends the robust
optimization problem of [29] to combine policy-based dis-
tributed voltage control with frequency control.

IV. GENERAL OVERVIEW OF THE PROPOSED
CONTROL FRAMEWORK
We propose a robust optimization-based control framework
for PV-battery systems to simultaneously provide policy-
based DisCVC and FCR. General overview of the proposed
control framework is shown in Fig. 2. The control framework
consists of two phases. In the day-ahead phase, the combined
voltage and frequency control problem is formulated as a
robust optimization problem. The aims of this optimization
problem are to allocate fractions of the energy and power
capacity of each BESS to the two services, compute a set
of linear control policies (voltage control policies and bat-
tery management policies), minimize the expected cost of
reactive power compensation and batteries degradation cost,
and maximize profits from FCR. The robust optimization
problem also aims to immunize against service unavailability,
and violating batteries, inverters and voltage constraints. This
immunity is accomplished by considering the uncertainty
in the households’ active power consumption, PV power
generation, and grid frequency.

In the real time phase, the grid support functions of smart
PV-battery inverters apply the linear control policies to reg-
ulate voltage profiles, and keep energy content of BESSs
within limits while providing FCR service. Each battery is
divided into 3 virtual batteries: voltage control battery (VC
battery) that regulates grid voltage together with the inverter
reactive power; upward-FCR battery (R-UP battery) that
provides upward frequency regulation; and downward-FCR
battery (R-DN battery) that provides downward frequency
regulation. Each inverter contains two grid support functions,
grid voltage support function (GVSF) and frequency support
function (FSF). The GVSF hosts two voltage control policies:
reactive power policy that gives reactive power setpoints of
the inverter, and active power policy that gives setpoints of
the VC battery power. As designing a voltage control policy
based only on local information yields to a poor performance
[30], each voltage control policy is designed as a linear func-
tion of the local active powers of the household’s load and
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Fig. 2: General overview of the proposed control framework.

PV installation, and active powers of the households’ loads
and PV installations connected to the nodes participating in
voltage control (control nodes). Each GVSF needs to know
the sum of the households’ active power consumption and
PV power generation of the nodes participating in voltage
control, to be able to compute its own control actions. To
compute the sum of the households’ active power consump-
tion and PV power generation in a fast and efficient way, a
P2P-based push-sum gossip protocol is applied in this paper
[31]. The push-sum gossip protocol enables the PV-battery
inverters to perform a distributed summation with a moderate
communication overhead.

The FSF computes the upward-FCR power of the R-UP
battery, and the downward-FCR power of the R-DN battery.
The FSF hosts two linear management policies: an R-UP
battery management policy that maintains energy content of
the R-UP battery within limits while providing upward fre-
quency regulation; and an R-DN battery management policy
that maintains energy content of the R-DN battery within
limits while providing downward frequency regulation.

A. FCR RESERVE CAPACITY

In this work, we consider the case of end-prosumers, with
PV-battery systems, providing FCR service to the TSO,
possibly through an intermediary, for example an aggre-
gator. In distribution networks with high PV penetration,
the FCR capacity is affected by the magnitude of voltages,
the capability of the voltage control system, and inverters
capacity. Batteries located in a distribution network with a
voltage problem cannot commit to provide a fixed reserve
capacity over the entire contracted period; they can commit
to provide a variable reserve capacity. Moreover, they cannot
commit to provide the same reserve capacity for the upward-
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FCR and downward-FCR2. Hence, we propose a variable
FCR capacity profile. The FCR is proposed to be auctioned
daily in the form of 15 minutes products. The upward and
downward reserves are proposed to be procured indepen-
dently. Prosumers (or their aggregator) shall send day-ahead
two FCR profiles to the TSO: upward-FCR capacity profile;
and downward-FCR capacity profile. The example of Fig. 3
shows the reason why we propose a variable FCR capacity
for batteries located in distribution networks with voltage
problems.

Fig. 3a shows a voltage profile of a prosumer, with a
PV-battery system, located in a distribution network with
high feed-in power from PV installations; Fig 3b shows the
expected upward and downward reserve capacity profiles of
the prosumer’s battery that provide simultaneously voltage
and frequency control. If the amount of available reactive
power capacity is sufficient to solve the voltage rise prob-
lem (of Area 2 in Fig. 3a) without the need to charge the
VC battery, the R-UP battery can be discharged to provide
upward-FCR. In this case, the upward-FCR capacity depends
on the amount of remaining reactive power capacity that can
support the R-UP battery to inject more FCR power without
causing the network violating voltage operation limits. On
the other hand, if the amount of available reactive power
capacity is not sufficient to solve the voltage rise problem,
the controller will charge the VC battery. In this case, the R-
UP battery cannot be discharged to provide upward-FCR3,
as the battery4 cannot be charged and discharged at the same
time. Since there is no voltage rise problem in Area 1 and
Area 3, the R-UP battery can be discharged in these areas
to provide upward-FCR. The voltage in Area 1 is closer to
the maximum limit than the voltage in Area 3, therefore, the
upward-FCR capacity in Area 1 is expected to be less than
the upward-FCR capacity in Area 3.

As there is no voltage drop problem in the example of
Fig. 3, the R-DN battery can be charged in the three areas
to provide downward-FCR. The downward-FCR capacity
depends on the amount of reactive power capacity that can
support the R-DN battery to absorb more FCR power without
causing the network violating voltage operation limits. In
Area 2 of Fig. 3a, the downward-FCR capacity is expected
to be at minimum, since most of the inverter capacity is
expected to be occupied by the PV power and the reactive
power of the voltage control system. The downward-FCR
capacity in Area 3 is expected to be less than the downward-
FCR capacity in Area 1. This is because the voltage in Area
3 is closer to the minimum voltage limit than the voltage in
Area 1.

2In the upward-FCR, batteries are discharged in response to the negative
frequency deviation, whereas in the downward-FCR, batteries are charged in
response to the positive frequency deviation.

3It is worth to point out that the priority of the control system is to
solve voltage rise problems. This is to avoid inverters disconnection due to
overvoltage.

4In this paper, if the word “battery” is not preceded by the three abbrevi-
ations: VC; R-UP; and R-DN, then this word means the real battery and not
one of the three virtual batteries.

(a)

Upward reserve capacity
Downward reserve capacity

(b)
FIGURE 3: (a) Unregulated voltage profile of a prosumer in a network with high
PV penetration, (b) Expected upward and downward reserve capacity profile. In this
example, the inverter reactive power and the VC battery charging power are used to
solve the voltage rise problem, therefore, the upward reserve capacity is zero in Area 2.

For sake of simplicity, the power capacity reserved for the
energy management policy of the example of Fig. 3b is set to
a constant value of 1 kW. In the proposed optimization prob-
lem, the power capacity of the energy management policy is
considered as a variable capacity to compute the minimum
sufficient power capacity. It is clear from Fig. 3b that the
energy management policy will have to be designed carefully,
as more power capacity for the management policy will
mean that less FCR capacity can be sold to the TSO, while
on the other hand the power capacity for the management
policy should be sufficient to ensure the energy content of
the battery remains within limits.

V. PROBLEM FORMULATION
In this section, we design the models needed to build the
problem the offline controller solves on a day-ahead basis.
The uncertainty model (that will be discussed in subsection
V-A) is used to handle uncertainties in demand, PV gener-
ation and grid frequency. The models of batteries, inverters
and branch flow (that will be discussed in subsections V-D,
V-E and V-F) are used to define the operational limits of
the PV-battery systems and grid voltage. The power and
energy allocation models (that will be designed in subsection
V-C) are used to allocate fractions of the energy and power
capacity of each BESS to the voltage and frequency control
services. The logic constraints (that will be formulated in
subsection V-G) are used to avoid conflict between voltage
and frequency control (i.e., charging and discharging a bat-
tery at the same time). The objective function (that will be
formulated in subsection V-H) is used to minimize the ex-
pected cost of operating the voltage control system and max-
imize profits from FCR. The robust optimization problem
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(that will be formulated in subsection V-I) is designed based
on the aforementioned models; it computes the coefficients of
the linear control policies (that will be designed in subsection
V-B) and the upward/downward reserve capacity profiles.

The time horizon of the optimization problem is one day,
discretized into nt time steps of duration ∆t. The time steps
belong to the set K = {1, · · · , nt}.

We consider two types of network’s nodes: control nodes
where the PV-battery inverters and households’ loads are
connected; and passive nodes with only households’ loads.
Control nodes belong to the set I = {1, · · · , nc}, passive
nodes belong to the set J , and network’s nodes belong to
the set N = {1, · · · , nnodes}. nc is the number of control
nodes, and nnodes is the number of network’s nodes. A tilde
sign (∼) is used in this paper to indicate a variable subject to
uncertainty.

A. UNCERTAINTY MODEL
The sources of uncertainty in the control problem of the of-
fline controller include households’ active and reactive power
consumption, PV power generation, and the grid frequency.
The uncertain household’s active power consumption p̃

(k)
lx

,
and the uncertain PV power generation p̃(k)

pvi can be bounded
as:

0 ≤ p̃(k)
lx
≤ p(k)

lx

p
(k)
lx

= p
(k)
lx

+ ∆p
(k)
lx

}
∀x ∈ N ,∀k ∈ K (2)

0 ≤ p̃(k)
pvi
≤ p(k)

pvi

p(k)
pvi

= p(k)
pvi

+ ∆p(k)
pvi

}
∀i ∈ I,∀k ∈ K (3)

Where p(k)
lx

and p(k)
pvi are, respectively, the maximum uncer-

tain household’s active power consumption, and the maxi-
mum uncertain PV power generation. p(k)

lx
is defined in (2) as

the sum of the forecasted household’s active power consump-
tion p

(k)
lx
∈ R≥0 and the maximum deviation ∆p

(k)
lx

from
the forecast of the household’s active power consumption. In
(3), p(k)

pvi is defined as the sum of the forecasted PV power
generation p(k)

pvi ∈ R≥0 and the maximum deviation ∆p
(k)
pvi

from the PV forecast. ∆p
(k)
lx

and ∆p
(k)
pvi can be approximated

based on historical data of forecast error.
The uncertain household’s reactive power consumption

q̃
(k)
lx

can be defined as function of p̃(k)
lx

and a power factor
(PF):

q̃
(k)
lx

= tan (acos (PF)) p̃
(k)
lx

,∀x ∈ N , ∀k ∈ K (4)

A normalized positive frequency deviation ∆̃f
(k)

R-DN (re-
lated to the downward-FCR), and normalized negative fre-

quency deviation ∆̃f
(k)

R-UP (related to the upward-FCR) can
be bounded as:

0 ≤ ∆̃f
(k)

R-DN ≤ ∆f
(k)

R-DN,∀k ∈ K (5a)

∆f (k)

R-UP
≤ ∆̃f

(k)

R-UP ≤ 0,∀k ∈ K (5b)

Fig. 4: Normalized positive and negative frequency deviation ∆f of 730 days of his-
torical frequency data (2017-2018). The dotted lines show the maximum and minimum
normalized frequency deviation. ∆f is calculated based on (1b). The frequency data
are from the CE synchronous region [14].

Here, ∆f
(k)

R-DN and ∆f (k)

R-UP
are the maximum normalized

frequency deviation and minimum normalized frequency de-
viation at time step k, respectively. In this paper, ∆f

(k)

R-DN and
∆f (k)

R-UP
are set based on historical frequency data. One can

set ∆f
(k)

R-DN to 1, and ∆f (k)

R-UP
to−1 ∀k ∈ K, which is correct.

However, from our experience, this will lead to conservative
solutions, e.g., low contracted reserve capacity. As shown in
Fig. 4, the historical maximum normalized frequency devi-
ation can be much less than 1, and the historical minimum
normalized frequency deviation can be much higher than−1.

For given historical frequency measurements with nf

measurements per time step k, ∆f
(k)

R-DN and ∆f (k)

R-UP
can be

calculated as:(
∆f (k)

)(κ)

= (6)
(f(k))(κ)−fnom

∆f
if ∆fdb <| (f (k))(κ) − fnom |< ∆f,

1 if (f (k))(κ) − fnom ≥ ∆f,

−1 if (f (k))(κ) − fnom ≤ −∆f,

0 otherwise.

κ = 1, · · · , nf ,

∆f
(k)

R-DN = max

([(
∆f (k)

)(1)
]+

, · · · ,
[(

∆f (k)
)(nf )

]+
)
,

∆f (k)

R-UP
= min

([(
∆f (k)

)(1)
]−

, · · · ,
[(

∆f (k)
)(nf )

]−)

Here,
(
∆f (k)

)(κ)
is the normalized frequency deviation

number κ related to the frequency measurement number κ
(f (k))(κ) at time step k. The operator [·]+ ≡ max(·, 0), and
[·]− ≡ min(·, 0).

To get immunity against service unavailability, and vio-
lating operational constraints, we look for solutions which
are feasible for any realization of the uncertain data in a
predefined uncertainty set U . In this paper, we consider a
polyhedral model of the uncertainty set of the form:

U = {ζ ≥ 0 : Hζ ≤ h} , (7)

H ∈ R2nζ×nζ and h ∈ R2nζ can be defined to represent
the constraints (2)-(5b), where nζ = nt(2 + nc + nnodes)
is the number of uncertain variables for nt times steps. The

6
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vector ζ ∈ Rnζ includes the uncertain households’ active
power consumption, PV power generation, normalized posi-
tive frequency deviations, and normalized negative frequency
deviations for nt time steps:

ζ =
[
P̃

(1)

l , · · · , P̃ (nt)

l , P̃
(1)

pv , · · · , P̃
(nt)

pv , (8a)

∆̃f
(1)

R-DN, · · · , ∆̃f
(nt)

R-DN, ∆̃f
(1)

R-UP, · · · , ∆̃f
(nt)

R-UP

]T
P̃

(k)

l =
[
p̃

(k)
l1
, · · · , p̃(k)

lnnodes

]
,∀k ∈ K (8b)

P̃
(k)

pv =
[
p̃(k)

pv1
, · · · , p̃(k)

pvnc

]
,∀k ∈ K (8c)

In subsection V-I, we present the robust counterpart formu-
lation of uncertain linear constraints. The robust counterpart
formulation is derived based on the uncertainty set U defined
in (7).

The convention in this paper is that the power is positive
when it is consumed and negative when it is injected. In (3),
p̃

(k)
pvi and p(k)

pvi are defined as positive values. Hence, a minus
sign will be introduced in front of p̃(k)

pvi and p(k)
pvi .

B. LINEAR CONTROL POLICIES
Robust optimization is a technique to solve mathematical
optimization problems in which the data are uncertain and
are only known to belong to some uncertainty set. The goal
of robust optimization is to find solutions that are immune to
uncertainty. In static robust optimization, decisions must be
made before the realization of the uncertain data. Ben-Tal et
al. extended the robust optimization framework to dynamic
settings by proposing the adjustable robust optimization
(ARO) technique [32], in which some decision variables are
allowed to be computed after the realization of the uncertain
data, thus leading to better objective value and less con-
servative solutions. This performance is achieved at higher
computational burden, as ARO is usually NP-hard to solve.
Ben-Tal et al. proposed the method of affinely adjustable
robust optimization (AARO) to construct a tractable opti-
mization problem. In AARO, decision variables are restricted
to be affine functions of the uncertain data [33]. Accordingly,
control policies proposed in this paper are designed as linear
functions of the uncertain data.

As has been discussed in section IV, we consider four
linear control policies for each PV-battery system: reactive
power policy that gives reactive power setpoints; active
power policy that gives charge/discharge power setpoints of
the VC battery; R-UP battery management policy that gives
charge power setpoints needed to maintain the energy content
of the R-UP battery within limits while providing upward-
FCR; and R-DN battery management policy that gives dis-
charge power setpoints needed to maintain the energy content
of the R-DN battery within limits while providing downward-
FCR.

Active and Reactive Power Policies
To regulate voltage profiles, each PV-battery system adjusts
its reactive power and VC battery power linearly as function

of control nodes’ active power consumption and PV power
generation, and normalized frequency deviations. Given the
possibility that the frequency deviation can be either posi-
tive or negative for each time step, we propose two types
of reactive power policy: reactive power policy that takes
into account the effect of responding to positive frequency
deviations; and reactive power policy that takes into account
the effect of responding to negative frequency deviations:

∀i ∈ I,∀k ∈ K :

q̃
(k)
R-DN, invi

= β(k)
pi

∑
i∈I

(
p̃

(k)
li
− p̃(k)

pvi

)
+ β

(k)
R-DNi∆̃f

(k)

R-DN (9a)

q̃
(k)
R-UP, invi

= β(k)
pi

∑
i∈I

(
p̃

(k)
li
− p̃(k)

pvi

)
+ β

(k)
R-UPi∆̃f

(k)

R-UP (9b)

where q̃
(k)
R-DN, invi

and q̃
(k)
R-UP, invi

are the uncertain reactive
powers of inverter i (at time step k) that take into account
the effect of downward-FCR and upward-FCR, respectively,
on mitigating voltage problem. β(k)

pi is the coefficient of the
reactive power policy (of inverter i at time step k) related to
the active powers of households’ loads and PV installations
connected to the control nodes. β(k)

R-DNi and β(k)
R-UPi are, respec-

tively, the coefficients of the reactive power policy related to
the positive and negative normalized frequency deviations at
time step k. The two types of the reactive power policy can
be defined in a vectorized form as:

∀i ∈ I :

Q̃R-DN, invi =
[
q̃

(1)
R-DN, invi

, · · · , q̃(nt)
R-DN, invi

]T
= βpi

ξ∆p + βR-DNiξR-DN (10a)

Q̃R-UP, invi =
[
q̃

(1)
R-UP, invi

, · · · , q̃(nt)
R-UP, invi

]T
= βpi

ξ∆p + βR-UPiξR-UP (10b)

ξ∆p =

[∑
i∈I

(
p̃

(1)
li
− p̃(1)

pvi

)
, · · · ,

∑
i∈I

(
p̃

(nt)
li
− p̃(nt)

pvi

)]T
,

ξR-DN =

[
∆̃f

(1)

R-DN, · · · , ∆̃f
(nt)

R-DN

]T
,

ξR-UP =

[
∆̃f

(1)

R-UP, · · · , ∆̃f
(nt)

R-UP

]T
where βpi

, βR-DNi and βR-UPi are diagonal matrices ∈
Rnt×nt with the β(k)

pi , β(k)
R-DNi and β(k)

R-UPi coefficients (∀k ∈
K) contained in their diagonal elements, respectively. When
the frequency deviation is positive, the real time controller
uses the reactive power policy (9a), whereas when the fre-
quency deviation is negative, the real time controller uses the
reactive power policy (9b). The two policies are equal when
the frequency deviation is zero, or within the deadband

The active power policy that is responsible for charging

7
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and discharging VC batteries can be defined as:

P̃ VC, bati =
[
p̃

(1)
VC, bati

, · · · , p̃(nt)
VC, bati

]T
= Zpiξ∆p,∀i ∈ I

(11)
where p̃(k)

VC, bati
is the uncertain active power of the VC battery

i at time step k. Zpi is a diagonal matrix ∈ Rnt×nt , with
z

(k)
pi (∀k ∈ K) the coefficients of the active power policy

contained in its diagonal elements.
For each time step k, the coefficients of the reactive and ac-

tive power policies are calculated considering the following
cases:

1) In the case the offline controller predicts a voltage rise
problem:

a) If VC batteries are predicted not to be charged,
the offline controller sets z

(k)
pi to zero, and

maximizes the upward-FCR capacity (r(k)
UPi ) and

downward-FCR capacity (r(k)
DNi ) considering lim-

its of batteries, inverters and voltages. β
(k)
pi ,

β
(k)
R-DNi and β(k)

R-UPi are calculated considering the
following cases:

i) Negative frequency deviation case (upward-
FCR): β(k)

pi is calculated to solve the voltage
rise problem predicted to be caused by reverse
power flow from PV units, whereas β(k)

R-UPi is
calculated to solve the voltage rise problem
that may arise from discharging R-UP batter-
ies.

ii) Positive frequency deviation case (downward-
FCR): β(k)

pi is calculated to solve the voltage
rise problem taking into account the effect of
charging R-DN batteries on mitigating volt-
age rise. β(k)

R-DNi is included in the calculation
of reactive power to let the real time controller
be aware that charging R-DN batteries helps
in mitigating voltage rise problem and less
reactive power is needed.

b) If VC batteries are predicted to be charged:

i) Negative frequency deviation case: the offline
controller sets the upward-FCR capacity to
zero, as it is impossible to charge and dis-
charge the real battery at the same time. Logic
constraints (presented in subsection V-G) are
used to set the upward-FCR capacity at time
step k and β(k)

R-UPi to zero. β(k)
pi is calculated to

solve the predicted voltage rise problem con-
sidering the help from VC batteries (z(k)

pi <
0).

ii) Positive frequency deviation case: the offline
controller maximizes the downward-FCR ca-
pacity considering limits of batteries, invert-
ers and voltages. β(k)

pi and z
(k)
pi are calcu-

lated to solve the voltage rise problem taking
into account the effect of charging the R-DN

batteries on mitigating voltage rise (which is
included in β(k)

R-DNi ).
2) In the case the offline controller predicts a voltage drop

problem: the same logic is applied.
3) In the case the offline controller predicts no voltage

problem: the upward-FCR and downward-FCR capac-
ities are maximized considering constraints related to
batteries, inverters and voltages. The offline controller
sets β(k)

pi and z(k)
pi to zero. β(k)

R-UPi is calculated to avoid
any voltage rise problem that may arise from discharg-
ing R-UP batteries, whereas β(k)

R-DNi is calculated to
avoid any voltage drop problem that may arise from
charging R-DN batteries.

It is worth to point out that to reduce the measurements
and communication overhead of the real time controller, the
reactive and active power policies are designed as linear func-
tions of only the households’ active power consumption and
PV power of control nodes. In real time, the control policies
do not consider the households’ active power consumption
of passive nodes, but we do consider the effect of passive
nodes’ active power consumption on voltages in the branch
flow model of the offline optimization, as will be shown in
subsection V-F.

Energy Management Policies
In [23], a linear energy management policy to regulate
the state of charge of a battery while providing FCR is
presented. For each time step k, the power of this en-
ergy management policy is designed as a linear function
of normalized frequency deviations that belong to the set{

∆̃f
(1)
, · · · , ∆̃f

(k−1)
}

. In this paper, we adapt this policy

to be used for regulating the energy content of R-UP batteries
and R-DN batteries. For each time step k, the power of the
R-UP battery management policy p̃(k)

m-UP, bati
is expressed as a

linear function of negative frequency deviations that belong

to the set
{

∆̃f
(1)

R-UP, · · · , ∆̃f
(k−1)

R-UP

}
, whereas power of the

R-DN battery management policy p̃(k)
m-DN, bati

is expressed as
a linear function of positive frequency deviations that belong

to the set
{

∆̃f
(1)

R-DN, · · · , ∆̃f
(k−1)

R-DN

}
:

p̃
(k)
m-DN, bati

=
k−1∑
κ=1

(
m

(κ)
R-DNi

)(k)

∆̃f
(κ)

R-DN,∀i ∈ I,∀k ∈ K

P̃
(k)

m-DN, bati =
[
p̃

(1)
m-DN, bati

, · · · , p̃(nt)
m-DN, bati

]T
= MR-DNiξR-DN,∀i ∈ I (12)

with
(
m

(κ)
R-DNi

)(k)

, κ = 1, · · · , k − 1 (∀k ∈ K), the coeffi-
cients of the R-DN battery management policy i, contained
in the lower triangular matrix MR-DNi ∈ Rnt×nt with zeros
on the diagonal.

With
(
m

(κ)
R-UPi

)(k)

, κ = 1, · · · , k − 1 (∀k ∈ K), as

8
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the coefficients of the R-UP battery management policy i,
contained in the lower triangular matrix MR-UPi ∈ Rnt×nt
with zeros on the diagonal, the power of the R-UP battery
management policy p̃(k)

m-UP, bati
(∀k ∈ K) can be defined as:

P̃
(k)

m-UP, bati =
[
p̃

(1)
m-UP, bati

, · · · , p̃(nt)
m-UP, bati

]T
= MR-UPiξR-UP,∀i ∈ I (13)

C. ALLOCATION OF BESS CAPACITY
As shown in Fig. 5, the offline controller allocates fractions
of the energy and power capacity of each BESS to the
voltage and frequency control services. For each time step
k, the energy content of each battery is divided into three
parts that provide upward-FCR, downward-FCR, and voltage
control. The constraints (14a)-(14h) allocate the maximum,
minimum, and initial energy capacity for each part:

∀k ∈ K,∀i ∈ I
Stochastic constraints:

e
(k)
VC, bati

6 Ẽ
(k)
VC, bati

6 e
(k)
VC, bati

(14a)

e
(k)
R-UP, bati

6 Ẽ
(k)
R-UP, bati

6 e
(k)
R-UP, bati

(14b)

e
(k)
R-DN, bati

6 Ẽ
(k)
R-DN, bati

6 e
(k)
R-DN, bati

(14c)

Other constraints:

e
(k)
VC, bati

≥ 0, e
(k)
R-UP, bati

≥ 0, e
(k)
R-DN, bati

≥ 0 (14d)

e
(k)
VC, bati

≥ 0, e
(k)
R-UP, bati

≥ 0, e
(k)
R-DN, bati

≥ 0 (14e)

e
(k)
VC, bati

+ e
(k)
R-UP, bati

+ e
(k)
R-DN, bati

≥ e bati (14f)

e
(k)
VC, bati

+ e
(k)
R-UP, bati

+ e
(k)
R-DN, bati

≤ e bati (14g)

E0
VC, bati + E0

R-UP, bati + E0
R-DN, bati ≤ E

0
bati (14h)

Here, Ẽ(k)
VC, bati

, Ẽ(k)
R-UP, bati

and Ẽ
(k)
R-DN, bati

are, respectively,
the uncertain energy contents of the VC battery i, R-UP
battery i, and R-DN battery i at time step k. The model of
the uncertain energy contents of the virtual batteries is pre-
sented in subsection V-D. e bati and e bati denote, respectively,
the maximum and minimum energy capacity of battery i.
e

(k)
VC, bati

, e(k)
R-UP, bati

and e
(k)
R-DN, bati

denote maximum energy
capacities of the VC battery i, R-UP battery i, and R-DN
battery i at time step k. e(k)

VC, bati
, e(k)

R-UP, bati
and e

(k)
R-DN, bati

denote minimum energy capacities of the VC battery i, R-UP
battery i, and R-DN battery i at time step k. E0

bati , E
0
VC, bati

,
E0

R-UP, bati
andE0

R-DN, bati
denote the initial energy contents of

the battery i, VC battery i, R-UP battery i, and R-DN battery
i, respectively.

To operate the control system sustainably, the energy con-
tents of the BESSs at the end of the day need to be close
to that of the start of the day. To this end, we define the
following constraint to force the maximum energy at the end
of the day to be less than or equal the initial energy content.

e
(nt)
VC, bati

+ e
(nt)
R-UP, bati

+ e
(nt)
R-DN, bati

≤ E0
bati (15)

For each time step k, the maximum charge power capacity

0

C
h

ar
g
e 

p
o

w
er

D
is

ch
ar

g
e 

p
o

w
er

r
DNi

(k)

r
UPi

(k)

pm-DN, bati

p
VC, bati

p
m-UP, bati

p
VC, bati

Upward-FCR

Voltage drop

Voltage rise

R-UP management policy

R-DN management policy

e R-DN, bat i R-DN, bat i
e

e R-UP, bat i R-UP, bat i
e

eVC, bat i VC, bat i
e

e bat i

e bat i

Upward-FCR

Voltage drop

Voltage rise

R-UP management policy

R-DN management policy

(k)

(k)

(k)

(k)

(k) (k)

(k) (k)

(k) (k)

Downward-FCR Downward-FCR

Power capacity allocation Energy capacity allocationpbat i

p
bati

Fig. 5: Illustration of energy and power capacity allocation of battery i.

pbati of battery i is divided into 3 parts: downward-FCR
capacity r(k)

DNi ; power capacity p(k)
m-UP, bati

of the R-UP battery
management policy; and power capacity p(k)

VC, bati
of the volt-

age rise control. The maximum discharge power capacity (or
minimum power capacity) of battery i p

bati
is divided, for

each time step k, into 3 parts: upward-FCR capacity r
(k)
UPi ;

power capacity p(k)
m-DN, bati

of the R-DN battery management
policy; and power capacity p(k)

VC, bati
of the voltage drop con-

trol. The constraints (16a)-(16f) allocate the power capacity
for each part:

∀k ∈ K,∀i ∈ I
Stochastic constraints:

p(k)
VC, bati

6 p̃
(k)
VC, bati

6 p
(k)
VC, bati

(16a)

0 6 p̃
(k)
m-UP, bati

6 p
(k)
m-UP, bati

(16b)

p(k)
m-DN, bati

6 p̃
(k)
m-DN, bati

6 0 (16c)

Other constraints:

r
(k)
UPi ≥ 0, r

(k)
DNi ≥ 0 (16d)

p(k)
VC, bati

− r(k)
UPi + p(k)

m-DN, bati
≥ p

bati
(16e)

p
(k)
VC, bati

+ r
(k)
DNi + p

(k)
m-UP, bati

≤ pbati (16f)

The power of the R-UP management policy is defined as a
charge power in (16b), to avoid discharging the R-UP battery
to less than its minimum energy capacity while providing
upward-FCR. The power of the R-DN management policy
is defined as a discharge power in (16c), to avoid charging
the R-DN battery to more than its maximum energy capacity
while providing donward-FCR. In (16a), the power of the VC
battery varies between negative power capacity p(k)

VC, bati
(dis-

charge power), and positive power capacity p(k)
VC, bati

(charge
power). The VC battery can be charged to reduce the reverse
power flow from PV installations during PV peak period,
which helps mitigate voltage rise. During load peak period,
the VC battery can be discharged to feed a local load, which
helps mitigate voltage drop.

9
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D. BATTERY MODEL
We consider a simple discrete battery model for the three
virtual batteries:

Ẽ
(k+1)
VC, bati

= Ẽ
(k)
VC, bati

+ ∆t

(
ηch
i

[
p̃

(k)
VC, bati

]+
− 1

ηdis
i

[
−p̃(k)

VC, bati

]+)
(17a)

Ẽ
(k+1)
R-DN, bati

= Ẽ
(k)
R-DN, bati

+ ∆t

(
ηch
i p̃

(k)
R-DNi +

1

ηdis
i

p̃
(k)
m-DN, bati

)
,

p̃
(k)
R-DNi = r

(k)
DNi∆̃f

(k)

R-DN (17b)

Ẽ
(k+1)
R-UP, bati

= Ẽ
(k)
R-UP, bati

+ ∆t

(
ηch
i p̃

(k)
m-UP, bati

+
1

ηdis
i

p̃
(k)
R-UPi

)
,

p̃
(k)
R-UPi = r

(k)
UPi∆̃f

(k)

R-UP (17c)

Here, ηch
i and ηdis

i are, respectively, the charge and discharge
efficiencies of battery i. p̃(k)

R-DNi and p̃(k)
R-UPi are, respectively,

the uncertain downward-FCR power and upward-FCR power
at time step k. In (17a), the operator [·]+ ≡ max(·, 0)
introduces integer variables to the stochastic constraint (14a),
which results in a mixed integer stochastic constraint. As
mixed integer stochastic constraints lead to a high computa-
tional complexity, a heuristic approach is proposed in [23] to
get rid of integer variables of a battery model providing FCR.
In this paper, we adapt the heuristic approach to be used for
a battery model providing voltage control:

Ẽ
(k+1)
VC, bati

= Ẽ
(k)
VC, bati

+ ∆t

([(
p̃

(k)
VC, bati

)
η(k)

]+

− (18)[
−
(
p̃

(k)
VC, bati

)
η(k)

]+)
,

Ẽ
(k+1)
VC, bati

= Ẽ
(k)
VC, bati

+ ∆t
(
p̃

(k)
VC, bati

)
η(k)

,

(
p̃

(k)
VC, bati

)
η(k)

=

{
η

ch
i p̃

(k)
VC, bati

if p(k)
li

6 p
(k)
pvi

1
ηdis
i
p̃

(k)
VC, bati

if p(k)
li

> p
(k)
pvi

The if condition in (18) is based on the fact that the
controller tends to discharge the battery when the load is
higher than the PV generation (to mitigate voltage drop) and
charge the battery when the PV generation is higher than
the load (to mitigate voltage rise). Our simulation results
show that this heuristic approach does not lead to violation
of the constraint (14a). In fact, (18) is the same as (17a)
if sign

(
p

(k)
li,meas − p

(k)
pvi,meas

)
= −sign

(
p

(k)
bati

)
, where p(k)

li,meas

and p(k)
pvi,meas are, respectively, the real time measured active

power consumption and PV power generation at time step k.

Degradation Cost
The per-kWh battery degradation cost proposed in [34] is
applied in this paper:

cpi =
creplacementi

Ncycle life × DoD× 2ebati
(19)

Here, cpi is the battery degradation cost per kWh (cent/kWh),
creplacementi is the battery replacement cost, Ncycle life is the
battery cycle life, and DoD is the depth-of-discharge. The
denominator of (19) gives the charging and discharging kWh
the real battery can tolerate over its serviceable life.

E. INVERTER MODEL

The active and reactive power passing through inverter i is
limited by its apparent power capacity:

√
(p̃

(k)
R-DN, invi

)2 + (q̃
(k)
R-DN, invi

)2 6 sinvi ,∀i ∈ I,∀k ∈ K,

p̃
(k)
R-DN, invi

= −p̃(k)
pvi

+
(
p̃

(k)
R-DNi

)
+ p̃

(k)
VC, bati

+

p̃
(k)
m-DN, bati

+ p̃
(k)
m-UP, bati

(20a)√
(p̃

(k)
R-UP, invi

)2 + (q̃
(k)
R-UP, invi

)2 6 sinvi ,∀i ∈ I,∀k ∈ K,

p̃
(k)
R-UP, invi

= −p̃(k)
pvi

+
(
p̃

(k)
R-UPi

)
+ p̃

(k)
VC, bati

+

p̃
(k)
m-DN, bati

+ p̃
(k)
m-UP, bati

(20b)

The stochastic constraint (20a) considers the possibility of
a positive frequency deviation case, whereas the stochastic
constraint (20b) considers the possibility of a negative fre-
quency deviation case. The two constraints are equal if the
frequency deviation is zero, or within the deadband. sinvi is
the maximum magnitude of apparent power of inverter i.
p̃

(k)
R-DN, invi

is the uncertain active power of inverter i at time
step k that considers the downward-FCR power, whereas
p̃

(k)
R-UP, invi

is the uncertain active power of inverter i at time
step k that considers the upward-FCR power. p̃(k)

R-DNi and
p̃

(k)
R-UPi cannot be included in one equation, as both r(k)

DNi and
r

(k)
UPi can be greater than zero, but only one of them is applied

in real time. This is because the frequency deviation in real
time can be either positive or negative.

As shown in [27], the conic stochastic constraints (20a)
and (20b) can be approximated by a number of linear stochas-
tic constraints n

S
with a relative error of 1− cos(π/2n

S
):

− sinvi 6 cos(ϑφ)p̃
(k)
R-DN, invi

+ sin(ϑφ)q̃
(k)
R-DN, invi

6 sinvi ,

− sinvi 6 cos(ϑφ)p̃
(k)
R-UP, invi

+ sin(ϑφ)q̃
(k)
R-UP, invi

6 sinvi ,

φ =
π

n
S

, ϑ = 1, · · · , n
S

(21)

Reactive Power Cost

The reactive power cost cqi (cent/kvarh), considered in this
paper, corresponds to the approximative compensation cost
of the additional inverter losses due to the reactive power
utilization and is provided by [35].

F. BRANCH FLOW MODEL

In this paper, a linear branch flow model is applied. The
model is based on the DistFlow method developed in [36].
According to [37], the linearized branch flow model tends

10
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to introduce a small relative error of 1-5% when used for
calculating power flows of real distribution networks.

∀k ∈ K :

(ṽ(k))2
R-DN = RP̃

(k)

I +XQ̃
(k)

I + v2
o1nnodes (22a)

P̃
(k)

I =
[
P̃

(k)

R-DN, node; P̃
(k)

passive

]
, Q̃

(k)

I =
[
Q̃

(k)

R-DN, node; Q̃
(k)

passive

]
(ṽ(k))2

R-UP = RP̃
(k)

II +XQ̃
(k)

II + v2
o1nnodes (22b)

P̃
(k)

II =
[
P̃

(k)

R-UP, node; P̃
(k)

passive

]
, Q̃

(k)

II =
[
Q̃

(k)

R-UP, node; Q̃
(k)

passive

]
Here, vo is the substation voltage, which is consid-
ered constant. 1nnodes ∈ Rnnodes is a vector of all

ones. (ṽ
(k)

)2
R-DN =

[
(ṽ

(k)
1 )2

R-DN, · · · , (ṽ
(k)
nnodes)

2
R-DN

]T
and

(ṽ
(k)

)2
R-UP =

[
(ṽ

(k)
1 )2

R-UP, · · · , (ṽ
(k)
nnodes)

2
R-UP

]T
denote vec-

tors of squared nodal voltage magnitudes at time step k.
The effect of charging R-DN batteries on voltage pro-
files is included in (ṽ

(k)
)2

R-DN, whereas the effect of dis-
charging R-UP batteries on voltage profiles is included
in (ṽ

(k)
)2

R-UP. The two effects cannot be included in one
equation, as only one of them occurs in real time, but in
the offline computation, both of them can be non-zero at
time step k. For each time step, we consider the two ef-
fects in the offline optimization, to prepare the real time
controller for the two cases: positive frequency deviation;
and negative frequency deviation. The vectors P̃

(k)

R-DN, node

=
[
p̃

(k)
R-DN, node1

, · · · , p̃(k)
R-DN, nodenc

]T
and P̃

(k)

R-UP, node =[
p̃

(k)
R-UP, node1

, · · · , p̃(k)
R-UP, nodenc

]T
denote active powers of con-

trol nodes (at time step k) that consider, respectively, the
downward-FCR power and upward-FCR power. The vec-

tors Q̃
(k)

R-DN, node =
[
q̃

(k)
R-DN, node1

, · · · , q̃(k)
R-DN, nodenc

]T
and

Q̃
(k)

R-UP, node =
[
q̃

(k)
R-UP, node1

, · · · , q̃(k)
R-UP, nodenc

]T
denote reactive

powers of control nodes (at time step k) that consider, respec-
tively, the downward-FCR power and upward-FCR power.

The vectors P̃
(k)

passive =
[
p̃

(k)
passivenc+1

, · · · , p̃(k)
passivennodes

]T
and

Q̃
(k)

passive =
[
q̃

(k)
passivenc+1

, · · · , q̃(k)
passivennodes

]T
include, respec-

tively, active powers and reactive powers of passive nodes
at time step k. If i is a control node and j is a passive node,
then their active and reactive powers can be defined as:

p̃
(k)
R-DN, nodei

= p̃
(k)
li

+ p̃
(k)
R-DN, invi

q̃
(k)
R-DN, nodei

= q̃
(k)
li

+ q̃
(k)
R-DN, invi

p̃
(k)
R-UP, nodei

= p̃
(k)
li

+ p̃
(k)
R-UP, invi

q̃
(k)
R-UP, nodei

= q̃
(k)
li

+ q̃
(k)
R-UP, invi


∀i ∈ I (23)

p̃
(k)
passivej

= p̃
(k)
lj

q̃
(k)
passivej

= q̃
(k)
lj

∀j ∈ J (24)

The matrices R and X (∈ Rnnodes×nnodes ) depend, re-
spectively, on the resistance and reactance of the network’s

feeders. We ask the readers to refer to [28] for details about
the derivation of the above linearized branch flow model, and
the computation of the matricesR andX .

To maintain nodal voltage magnitudes within the maxi-
mum voltage limit v and the minimum voltage limit v, we
consider the following stochastic constraints:

v2 6 (ṽ(k))2
R-DN 6 v2,∀k ∈ K (25a)

v2 6 (ṽ(k))2
R-UP 6 v2,∀k ∈ K (25b)

G. LOGIC CONSTRAINTS
As has been discussed in subsection V-B, in the case VC
batteries are predicted to be charged at time step k (to help
in solving voltage rise problems), the offline controller sets
r

(k)
UPi and β(k)

R-UPi to zero. In the case VC batteries are expected
to be discharged at time step k (to help in solving voltage
drop problems), the offline controller sets r(k)

DNi and β
(k)
R-DNi

to zero. The following constraints are used to implement the
aforementioned settings:

If
(
p

(k)
VC, bati

> 0 and p(k)
VC, bati

= 0
)
, (26a)

then r
(k)
UPi = 0 and β(k)

R-UPi = 0

If
(
p

(k)
VC, bati

= 0 and p(k)
VC, bati

< 0
)
, (26b)

then r
(k)
DNi = 0 and β(k)

R-DNi = 0

The solver used in the case study (YALMIP) transforms the
above logic constraints into mixed integer linear constraints
using Big-M strategy [38].

H. OBJECTIVE FUNCTION
The objective function of the proposed optimization prob-
lem aims at minimizing the expected cost of operating the
voltage control system, and maximizing profits from FCR.
The expected cost of operating the voltage control system is
the sum of two costs: expected cost of the reactive power
compensation; and batteries degradation cost. This results in
the following objective function:

min E

[∑
i∈I

c2qi∆t
2

(
‖βpi

ξ∆p‖
2

2︸ ︷︷ ︸
1

+ ‖βR-DNiξR-DN‖
2

2︸ ︷︷ ︸
2

+

‖βR-UPiξR-UP‖
2

2︸ ︷︷ ︸
3

)
+ c2pi∆t

2

(
‖Zpiξ∆p‖

2

2︸ ︷︷ ︸
4

+

‖
(
MR-DNi + IRDNi

)
ξR-DN‖

2

2︸ ︷︷ ︸
5

+

‖
(
MR-UPi + IRUPi

)
ξR-UP‖

2

2︸ ︷︷ ︸
6

)]
−
∑
i∈I

(RUPi +RDNi)︸ ︷︷ ︸
7

(27)

Here, E[·] denotes the expected value operator, and ‖ · ‖2
is the second norm. Parts 1, 2 and 3 of the objective func-
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tion represent sum of quadratic uncertain reactive powers
of inverter i for nt time steps. Uncertain reactive powers
of parts 1, 2 and 3 are responsible for solving voltage
problems expected to be caused by the reverse power flow
from PV units, charging R-DN batteries, and discharging R-
UP batteries, respectively. Parts 4, 5 and 6 of the objective
function represent sum of quadratic uncertain active powers
of battery i for nt time steps. Uncertain active powers of
part 4 are the uncertain charging and discharging powers of
the VC battery i. Uncertain active powers of part 5 repre-
sent the uncertain charging powers of the downward-FCR
and uncertain discharging powers of the R-DN management
policy. Uncertain active powers of part 6 represent uncer-
tain discharging powers of the upward-FCR and uncertain
charging powers of the R-UP management policy. IRDNi

in
part 5 denotes a diagonal matrix ∈ Rnt×nt with the vector

of downward reserve capacities RDNi =
[
r

(1)
DNi , · · · , r

(nt)
DNi

]T
contained in its diagonal elements. IRUPi

in part 6 denotes a
diagonal matrix ∈ Rnt×nt with the vector of upward reserve

capacities RUPi =
[
r

(1)
UPi , · · · , r

(nt)
UPi

]T
contained in its diag-

onal elements. Part 7 is included in the objective function to
maximize the upward and downward reserve capacities.

It can be shown that the objective function (27) can be
written as:

min E
[
‖zζ‖2

2

]
−
∑
i∈I

(RUPi +RDNi) (28)

where z ∈ R6ncnt×nζ can be defined to represent the first six
parts of the objective function. A closed-form of the expected
value in (28) is not readily available. A second-order moment
matrix can be used to approximate the expected value, as
discussed in [39]. If M = E

[
ζζT

]
is a second-order

moment matrix of the random vector ζ, then:

E
[
‖zζ‖2

2

]
= E

[
Tr
(
zTzζζT

)]
= Tr

(
zTzM

)
(29)

where M ∈ Rnζ×nζ is assumed to be positive definite, and
can be computed based on the following formula:

M = µTζ µζ + cov (ζscen) (30)

Here, the matrix ζscen ∈ Rnscen×nζ contains nscen scenarios of
the random vector ζ. µ ∈ R1×nζ is the sample mean of ζscen,
and cov (ζscen) is the covariance matrix of ζscen.

I. ROBUST OPTIMIZATION

Based on the previous linear models, one can show that the
stochastic constraints (14a)-(14c), (16a)-(16c), (21), (25a),
and (25b) can be written as:

Aζ ≤ B, (31)

A ∈ R(2ncnt(6+2ns)+4nnodesnt)×nζ ,

B ∈ R(2ncnt(6+2ns)+4nnodesnt)

where the matrices A and B can be defined to represent the
stochastic constraints mentioned above. To find a solution

that remains feasible for any realization of ζ in the uncer-
tainty set U , we consider the following robust counterpart of
the stochastic constraint (31):

max
ζ∈U

Aζ 6 B (32)

Using standard duality techniques, it can be shown that the
constraint (32) with a polyhedral uncertainty set U can be
reformulated as the linear constraints (33b)-(33d). We ask the
readers to refer to lemma 2 in [40] for details about robust
counterpart of linear constraints with polyhedral uncertainty
set. Below is the complete optimization problem the offline
controller solves on a day-ahead basis:

min Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) (33a)

subject to:
Robust constraints :

πh ≤ B (33b)
πH ≥ A (33c)
π ≥ 0 (33d)
Logic constraints: (26a) and (26b) (33e)
Other constraints: (14d)-(14h), (15), (16d)-(16f) (33f)

The elements of the matrixπ ∈ R(2ncnt(6+2ns)+4nnodesnt)×2nζ

are auxiliary variables.
The proposed optimization problem (33a)-(33f) is sensi-

tive to the parameters of the uncertainty model U in (7),
elements of the matrix H and the vector h. Inappropriate
setting of these parameters could lead to a more conservative
solution or infeasible one. Hence, attention has to be paid to
the settings of the uncertainty model. One can test the setting
of the uncertainty model by running a numerical experiment
over many scenarios; tuning can then be applied if necessary.

J. OPTIMALITY GAP

In this subsection, we investigate the loss of optimality of the
robust optimization problem due to the use of linear control
policies.

Robust optimization involving adaptive decision rules
(control policies) is generally computationally intractable.
To reduce its complexity, in subsection V-B we restrict the
decision variables to be linear function of the uncertain data.
In [39], an efficient method is proposed to estimate the
approximation error introduced by this rather drastic means
of complexity reduction. We apply the technique presented
in [39] to estimate the optimality gap of the proposed robust
optimization problem (33a)-(33f).

To compute the optimality gap, one needs to compute a
lower and upper bounds on the optimal solution. The robust
optimization problem (33a)-(33f) provides an upper bound
(i.e., a conservative approximation) on the optimal solution,
since it is formulated by reducing the underlying feasible set.
The duality theorem can be used to obtain a lower bound on

12
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the optimal solution. The dual problem of the problem

min Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) (34a)

subject to:

Áζ + Θ (ζ) = 0 (34b)
Logic constraints: (26a) and (26b) (34c)
Other constraints: (14d)-(14h), (15), (16d)-(16f) (34d)

can be derived as follows:

min max
λ≥0

Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) +

E
[
λ (ζ)

T
(
Áζ + Θ (ζ)

)]
(35a)

subject to:
Θ (ζ) ≥ 0 (35b)
Logic constraints: (26a) and (26b) (35c)
Other constraints: (14d)-(14h), (15), (16d)-(16f) (35d)

where Áζ = Aζ −B. The elements of the vector Θ (ζ) are
auxiliary variables, and λ (ζ) is a vector of dual decisions.
The dual feasible set of the problem (35a)-(35d) can be
restricted to combine only linear dual decisions. To this
end, we require the dual decisions to be representable as
λ (ζ) = Λζ. Based on this, the objective function (35a) can
be reformulated as:

min max
Λ≥0

Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) +

E
[
ζTΛT

(
Áζ + Θ (ζ)

)]
(36a)

= min max
Λ≥0

Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) +

Tr
(
ΛTE

[(
Áζ + Θ (ζ)

)
ζT
])

(36b)

The maximization in (36b) can be carried out explicitly. This
yields to the following approximate problem.

min Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) (37a)

subject to:

E
[(
Áζ + Θ (ζ)

)
ζT
]

= 0 (37b)

Θ (ζ) ≥ 0 (37c)
Logic constraints: (26a) and (26b) (37d)
Other constraints: (14d)-(14h), (15), (16d)-(16f) (37e)

It is proved in [39] that the problem (37a)-(37e) provides a
lower bound on the optimal solution. It can be shown that
a tractable reformulation of this problem can be given as
follows:

min Tr
(
zTzM

)
−
∑
i∈I

(RUPi +RDNi) (38a)

subject to:

Á+ θ = 0 (38b)(
H − hoT1

)
MθT ≤ 0 (38c)

Logic constraints: (26a) and (26b) (38d)
Other constraints: (14d)-(14h), (15), (16d)-(16f) (38e)

Here, o1 denotes a vector whose first element is 1 while
all the others are 0. The matrix H and the vector h are
defined in subsection V-A to model the uncertainty set U .
The second-order moment matrix M defined in subsection
V-H is used to approximate the expected value in (37b).
This approximation should respect the constraint (38c). The
elements of the matrix θ are auxiliary variables that respect
the following relation:

θM = E
[
Θ (ζ) ζT

]
(39)

The optimality gap can be computed by comparing the solu-
tion of the problem (33a)-(33f) (upper bound) to the solution
of the problem (38a)-(38e) (lower bound). We ask the reader
to refer to [39] for an in-depth analysis of the sub-optimality
of robust optimization with linear decision rules.

VI. CASE STUDY
A. SIMULATED NETWORK
We demonstrate the robust performance of the proposed
control system on a low voltage 120-bus network (Fig. 6).
This three-phase semi-urban radial distribution network op-
erates with a nominal voltage of 230/400 V. All main feeder
cables are of type EAXVB 1 kV 4 × 150 mm2 (impedance:
0.206+j0.0778 Ω/km), except for the cable between node I
and node II, which is of type EAXVB 1 kV 4 × 95 mm2

(impedance: 0.320+j0.0778 Ω/km). The cables connecting
each household with the feeder are of type EXVB-Cu 1
kV 4 × 16 mm2, with a fixed length of 30 m (impedance:
1.15+j0.0828 Ω/km). The length of the cables II-III, II-IV,
IV-V and IV-VI is 100 m; the length of the cables IV-X and
VIII-IX is 200 m; the length of the cable IV-VII is 80 m.

The numbered nodes in the network are control nodes
(nc = 60) and the other nodes are passive nodes. The
households’ loads, inverters and batteries between II and III
in Fig. 6 belong to group G1, between II and IV belong to
group G2, between IV and V belong to group G3, between
IV and VI belong to group G3, between IV and VII belong
to group G4, between VIII and IX belong to group G4, and
between VIII and X belong to group G5. The parameters of
each group are listed in Table 1.

To comply with the European standard EN 50160 on
power quality [41], the voltage limits v and v are enforced
to be 10% of the nominal phase voltage 230 V, resulting in
v= 253 V and v = 207 V. The number of linear constraints ns
used to approximate the conic constraints (20a) and (20b) is
set to 5.

B. THE LOADS, PV AND FREQUENCY SCENARIOS
For a weekday in June, we generate 104 daily profiles of
households’ active power consumption and PV power gener-
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Fig. 6: Schematic diagram of the network used in this case study.

TABLE 1: Parameters of inverters, batteries and loads

G1 G2 G3 G4 G5
sinv (kVA) 5 8 10 12 15
ebat (kWh) 4.8 7.2 8.2 9.8 13.5
ebat (kWh) 0.96 1.44 1.64 1.96 2.7
E0

bat (kWh) 2.4 3.6 4.1 4.9 6.75
pbat (kW) 2 3 3.3 5 7
p

bat
(kW) -2 -3 -3.3 -5 -7

Ncycle life 3500 3500 3500 5000 5000
DoD (%) 80 80 80 80 80
creplacementi (e) 2400 3600 4100 4900 6750
cp (cent/kWh) 8.92 8.92 8.92 6.25 6.25
cq (cent/kvarh) 0.29 0.29 0.29 0.29 0.29
η

ch
i

√
0.9

√
0.9

√
0.9

√
0.9

√
0.9

η
dis
i

√
0.9

√
0.9

√
0.9

√
0.9

√
0.9

Load kW-peak 3.5 5.6 7 8.4 10.5
Power factor 0.85 0.85 0.85 0.85 0.85
PV kW-peak 4.8 7.68 9.6 11.52 13.44

ation, with one-minute resolution. We consider the mean of
the daily profiles as the forecasted households’ active power
consumption and PV power generation, and the maximum of
the generated profiles as the maximum uncertain households’
active power consumption and PV power generation. An
open-source CREST DEMAND MODEL [42] is used in this
paper to generate the households’ active power consumption
profiles. The daily PV profiles are generated based on the
model presented in [43]. We use locally measured frequency
data in the CE synchronous region with a resolution of 1
minute over a period of four years (2015-2018), to generate
104 daily frequency profiles.

C. SIMULATION SOFTWARE
The robust optimization problem (33a)-(33f) is solved using
YALMIP [44] toolbox with Mosek 9.0 [45]. The MAT-
POWER package 7.0 [46] for power flow analysis is used
to compute voltage profiles of network’s nodes with and
without the proposed control system. 15-minute time step

resolution is considered in Yalmip simulations. To have daily
profiles with 15-minute resolution, we take the average over
15 minutes for each one-minute resolution profile. One-
minute time step resolution is considered in MATPOWER
simulations, therefore, one active control policy, one reactive
control policy, one R-DN energy management policy, and
one R-UP energy management policy are considered for each
15 minutes simulation in MATPOWER. We select 5000 daily
profiles (of loads, PV and frequency) randomly as training
data (offline computation). All the generated profiles are
considered in the validation (MATPOWER simulations).

D. SIMULATION RESULTS
Fig. 7 shows aggregated power capacities of the 60 BESSs
reserved for the downward-FCR, upward-FCR, voltage rise,
voltage drop, energy management policies of R-DN and R-
UP batteries. The upward reserve capacity is defined as a
positive value in (16d); it is presented as a negative power
in Fig. 7 to compare it to the maximum discharging power.
One can notice that the upward reserve capacity is zero from
10:00 till 14:30, this is because VC batteries are expected to
be charged over this period. The downward reserve capacity
is zero between 20:00 and 24:00, this is because batteries
are expected to be discharged over this period to reach an
energy content at the end of the day close to that of the
start of the day, and to solve the voltage drop problem.
The negative power capacity between 20:00 and 24:00 rep-
resents the power capacity reserved for discharging the VC
batteries and the R-UP batteries. The highlighted positive
power area between 10:00 and 14:30 shows the aggregated
power capacity reserved for solving voltage rise problems.
The aggregated downward reserve capacity is at minimum
at 10:45, since most of the inverters capacity is occupied by
the PV power, VC batteries power, and reactive power. The
highlighted negative power area in Fig. 7 shows the aggre-
gated power capacity reserved for the management policy
of R-DN batteries. There is no power capacity reserved for
the management policy of R-DN batteries between 20:00
and 24:00. The highlighted positive area between 00:00 and
10:00 and between 14:30 and 24:00 shows the aggregated
power capacity reserved for the management policy of R-
UP batteries. There is no power capacity reserved for the
management policy of R-UP batteries between 10:00 and
14:30.

Fig. 8 shows the power capacity reserved for charging the
VC battery 60 over the period 10:00-14:30, and discharging
the VC battery 60 over the period 20:00-24:00.

The aim of the results depicted in Fig. 7 and Fig. 8 is
to show how the proposed robust mathematical optimization
program allocates fractions of the PV-battery systems power
capacity to the voltage and frequency control services. Fig.
7 also illustrates the fact that PV-battery systems located in
distribution networks with voltage problems cannot commit
to provide a fixed reserve capacity (over the entire contracted
period) and cannot commit to provide the same reserve ca-
pacity for the upward-FCR and downward-FCR. Therefore,
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Aggregated downward reserve capacity
R-UP management policy
Aggregated upward reserve capacity
R-DN management policy
Aggregated power capacity of voltage rise

Fig. 7: Aggregated power capacities of the downward-FCR, upward-FCR, voltage rise,
energy management policies of R-DN and R-UP batteries.

Fig. 8: Power capacity reserved for charging/discharging the VC battery 60.

(a) (b)
Fig. 9: (a) Voltage profiles of control node 60 with no control, (b) Voltage profiles
of control node 60 with voltage and frequency control. The dotted lines show the
maximum and minimum voltage limits

it is recommended for TSOs to design a new FCR auction, in
which FCR capacity can be auctioned daily in the form of 15
minutes products. Additionally, the upward and downward
reserves are recommended to be procured independently.

Voltage profiles are computed for the 104 scenarios with-
out activating the control system. Fig. 9a shows voltage
profiles of control node 60 (phase to neutral voltage). One can
see that most of voltage profiles of different scenarios exceed

(a) (b)
Fig. 10: (a) Apparent power magnitude of inverter 60, (b) Energy content of battery 60.

the voltage limits. When linear voltage control policies are
applied, with frequency control enabled, it is noticed that
the existing violations of voltage limits are eliminated for
the 104 scenarios, which demonstrates the robustness of the
proposed voltage control policies. Fig. 9b shows voltage
profiles of control node 60 (at the end of the feeder VIII-
X) after applying voltage control policies, with frequency
control enabled.

Fig. 10a and Fig. 10b show, respectively, the apparent
power magnitude of inverter 60 and energy content of battery
60 for all the scenarios. One can see that the capacity limits
of the inverter and battery are respected for all the scenarios.
The R-UP and R-DN energy management policies succeed
in maintaining the energy content of battery 60 within limits
while providing downward-FCR and upward-FCR, which
demonstrates the robustness of the proposed energy manage-
ment policies. To operate the control system sustainably, the
control system starts to discharge the battery from 20:00 to
reach a state of charge at the end of the day close to that of
the start of the day.

The results presented in figures 9b, 10a and 10b validate
the effectiveness of the robust mathematical optimization
program to handle uncertainty. The constraints of the op-
timization problem are formulated based only on one sce-
nario for the demand, PV and frequency (forecasted load/PV
profiles and historical maximum/minimum frequency devi-
ations), and the uncertainty model (presented in subsection
V-A), nevertheless, the computed control policies are able
to maintain operational limits of PV-battery systems and
voltages for the 104 scenarios. This is one of the advantages
of using robust optimization. In robust optimization, one does
not need to formulate thousands of constraints for each time
step, as in stochastic optimization, to handle uncertainties.

The offline computation takes around 155.6 minutes to
solve the robust optimization problem (33a)-(33f). This is
based on a workstation with an Intel Core i7-7700HQ CPUs
(2.80 GHz) and 32 GB of RAM. This is an acceptable compu-
tation time, since the offline calculations run on a day-ahead
basis. We would like to point out that the proposed control
methodology is meant for a low voltage (LV) distribution
network. A single LV network can have up to 150 nodes.
Hence, we do not expect the proposed control methodology

15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3018086, IEEE Access

H. Almasalma, G. Deconinck: Simultaneous Provision of Voltage and Frequency Control by PV-Battery Systems

to have scalability issues in such networks.

E. OPTIMALITY GAP

We compute upper bounds on the optimal solutions of the
104 scenarios by solving the robust optimization problem
(33a)-(33f). We solve the dual problem (38a)-(38e) for the
104 scenarios to find the lower bounds. The optimality gaps
of the different scenarios are computed by comparing the
lower bounds to the upper bounds. Results show that the
optimality gap of the proposed robust control methodology
varies between 8% and 13% for the 104 scenarios, which
is an acceptable optimality gap. We would like to remind
the reader that obtaining an optimal solution is intractable.
Hence, we trade-off optimality for computational tractability.

VII. CONCLUSION
In this paper, we complement previous work on PV-battery
systems providing multiple services by designing a novel
control system for residential PV-battery systems to provide
simultaneously FCR service to their synchronous area and
distributed voltage control service to their distribution net-
work. Simulation results over 104 scenarios demonstrate the
ability of the proposed control system to effectively regulate
voltage profiles of the 120-node network and respond to the
frequency deviations according to the pre-scheduled upward
and downward reserve capacity profiles. Simulation results
also validate our claim that upward and downward reserve
capacity profiles of assets located in distribution networks
with voltage problems cannot be fixed over the entire con-
tracted period. Additionally, the results validate the proposed
uncertainty model and control policies; the operational limits
of voltages and PV-battery systems are respected for 104

realizations of the uncertain data.
We propose the following issues for future study:

• Robustness to communication failures and delays: Per-
formance of the proposed distributed voltage control
system depends on the availability and quality of the
P2P communication between agents. The paper tests
the performance of the proposed control system assum-
ing communication performs perfectly. It is essential
to quantify the impact of communication failures and
delays on the performance of the proposed control sys-
tem, and provide solutions to cope with communication
failures and delays. These issues are out of scope of this
paper, hence recommended for further research.

• Distribution networks with incomplete data: The prosed
control methodology requires perfect knowledge of
feeder characteristics, such as network topology and
line segment impedances. The information that grid
operators have about their networks is usually lim-
ited. Therefore, it is highly recommended for future
research to augment the proposed control system with
machine learning techniques to learn the topology and
impedances of distribution networks.
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[33] İ. Yanıkoğlu, B. L. Gorissen, and D. den Hertog, “A survey of adjustable
robust optimization,” European Journal of Operational Research, vol. 277,
no. 3, pp. 799–813, 2019.

[34] K. Abdulla, J. De Hoog, V. Muenzel, F. Suits, K. Steer, A. Wirth, and
S. Halgamuge, “Optimal operation of energy storage systems considering
forecasts and battery degradation,” IEEE Transactions on Smart Grid,
vol. 9, no. 3, pp. 2086–2096, 2016.

[35] N. Efkarpidis, T. De Rybel, and J. Driesen, “Optimization control scheme
utilizing small-scale distributed generators and OLTC distribution trans-
formers,” Sustainable Energy, Grids and Networks, vol. 8, pp. 74–84,
2016.

[36] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution
systems for loss reduction and load balancing,” IEEE Power Engineering
Review, vol. 9, no. 4, pp. 101–102, 1989.

[37] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics of local
voltage control in distribution systems,” in 52nd IEEE Conference on
Decision and Control. IEEE, 2013, pp. 4329–4334.

[38] J. Löfberg. Yalmip. Big-M and convex hulls.
https://yalmip.github.io/tutorial/bigmandconvexhulls/. Accessed: 13-
03-2020.

[39] D. Kuhn, W. Wiesemann, and A. Georghiou, “Primal and dual linear
decision rules in stochastic and robust optimization,” Mathematical Pro-
gramming, vol. 130, no. 1, pp. 177–209, 2011.

[40] D. Bertsimas and F. J. de Ruiter, “Duality in two-stage adaptive linear op-
timization: Faster computation and stronger bounds,” INFORMS Journal
on Computing, vol. 28, no. 3, pp. 500–511, 2016.

[41] Cenelec, “European standard EN 50160 on power quality: Voltage charac-
teristics of electricity supplied by public distribution networks,” 2007.

[42] I. Richardson, M. Thomson, D. Infield, and C. Clifford, “Domestic
electricity use: A high-resolution energy demand model,” Energy and
buildings, vol. 42, no. 10, pp. 1878–1887, 2010.

[43] J. Bright, C. Smith, P. Taylor, and R. Crook, “Stochastic generation
of synthetic minutely irradiance time series derived from mean hourly
weather observation data,” Solar Energy, vol. 115, pp. 229–242, 2015.

[44] J. Löfberg, “Yalmip: A toolbox for modeling and optimization in matlab,”
in Proceedings of the CACSD Conference, vol. 3. Taipei, Taiwan, 2004.

[45] Mosek, APS. The MOSEK optimization software, 2018 (Version 9.0)
[Software]. Available: https://www.mosek.com/.

[46] R. D. Zimmerman, C. E. Murillo-Sanchez (2019). MATPOWER (Version
7.0) [Software]. Available: https://matpower.org/.

HAMADA ALMASALMA earned the B.Sc. de-
gree in electrical engineering from Birzeit Univer-
sity, Palestine, in 2011, the M.Sc. degree in smart
grids from Grenoble Alps University, France, in
2015, and the Ph.D. degree in electrical engineer-
ing from the KU Leuven, Belgium, in 2020. He
is now working as a researcher at the Flemish
institute for technological research (VITO), Bel-
gium. His main research interests are modeling
and optimization applied to power system.

GEERT DECONINCK earned his M.Sc. degree
in electrical engineering and his Ph.D. degree in
engineering science from the KU Leuven, Bel-
gium, in 1991 and 1996, respectively. He is a full
professor at the KU Leuven and in the EnergyVille
research center. His research focuses on robust dis-
tributed coordination and control, specifically in
the context of smart electric-distribution networks.
He is a fellow of the Institute of Engineering
and Technology and cochair of the IEEE Systems,

Man, and Cybernetics Society Technical Committee on Infrastructure Sys-
tems and Services. He is a Senior Member of the IEEE.

17


