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Abstract

Design optimization of vibro-acoustic systems over a wide frequency band is challenging. It does not only require a
computationally efficient numerical prediction model of sufficient accuracy, but the optimization scheme itself should
also be computationally efficient and the design space should be limited by all relevant manufacturing and performance
constraints. In this paper, a methodology is presented for the shape optimization of components in a complex wall sys-
tem, with the aim of achieving an optimized sound insulation of the overall system across the entire building acoustics
frequency range. As an example, the cross-sectional shape of studs in a double-leaf wall is first parameterized and
subsequently optimized for broadband sound insulation with a gradient-based optimization scheme. A recently devel-
oped sound insulation prediction model that has the required balance between accuracy and computational efficiency
is adopted and validated for a range of plasterboard walls with acoustic studs. The model is further complemented
with a novel sensitivity analysis, such that the sensitivities of the predicted sound insulation to the cross-sectional
stud shape parameters can be obtained in a semi-analytic way. This approach reduces the computation cost related
to broadband acoustic design optimization significantly. Furthermore, inequality constraints that are necessary for
obtaining a feasible design in terms of material usage and manufacturing limitations are identified and incorporated
in the optimization procedure. The relevant constraints related to strength and stiffness of the wall are very mild
and therefore verified after optimization. As an example of the proposed methodology, the cross-sectional shape of
flexible metal studs in double-leaf plasterboard walls is optimized for the overall A-weighted sound reduction under
pink noise excitation. A range of combinations in stud depths and number of sheets is analyzed. Walls containing
the optimized studs have an airborne sound insulation that is close to that of walls with fully decoupled leafs. Their
sound insulation is on average 11.8 dB higher than when they would contain conventional C-shaped studs, and 5.1 dB
higher than when they would contain acoustic studs that are presently available.
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1. Introduction
Double-leaf walls are often employed in the construction, aerospace, marine, railway, and other industries since

they can achieve a high sound insulation with a relatively low weight. The leafs are usually coupled to a common
frame to reduce the total wall thickness and to ensure a sufficient lateral stiffness, even if the wall is not load bearing.
However, by coupling the wall leafs to the common metal frame, a structural transmission path between both leafs is
created, therefore lowering the sound insulation (at least above mass-spring-mass resonance where the leafs vibrate
as rigid masses, compressing the cavity fluid). A typical example is that of a plasterboard wall where the leafs are
screwed into a metal stud frame. When plasterboard walls that are constructed with conventional C-shaped studs,
with existing acoustic studs (i.e., more flexible studs with a better acoustic performance), and with decoupled leafs
are compared with respect to sound insulation performance, the potential of optimizing the cross-sectional shape
of the studs becomes clear, as will be demonstrated in the present study (Section 2.3). Shape optimization is widely
applied in the automotive industry, e.g., for finding the optimal shape of steel panels with respect to stiffness, structural
vibration or radiated sound[1]. However, the numerical design optimization of sound insulation is most often limited
to a single frequency or a narrow frequency band when flexible structures are involved [2, 3, 4], while broadband
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optimization is performed for structures with a small number of eigenmodes in the frequency band of interest [5, 6].
Acoustic design optimization of complex structures over a wide frequency band remains very challenging for

computational reasons. The behavior of double-leaf walls with a flexible frame is complex since the cross-section of
the studs is highly deformable, many physical phenomena contribute to the diffuse airborne sound insulation in the
acoustic frequency range, and the walls exhibit a large number of structural modes in this frequency range. Until very
recently, one of the obstacles for broadband numerical design optimization has been that the quantitative prediction
of the airborne sound insulation of these types of walls was either prohibitively inaccurate or computationally expen-
sive. A recently developed sound insulation prediction model that has the required balance between accuracy and
computational efficiency [7] has been the first step in opening up the way for acoustic design optimization. However,
other issues remain, including the development of a computationally efficient framework for broadband vibro-acoustic
design optimization and the incorporation of relevant design constraints in the optimization process.

In the present work, these fundamental issues are resolved such that broadband acoustic design optimization is
achieved. A first contribution is that the general hybrid deterministic-statistical energy analysis (Det-SEA) sound
insulation prediction framework [8, 9, 10] is complemented with the derivation of the sensitivities of the coupling
loss factor and the airborne sound insulation to the system matrices. As a result, these sensitivities can be efficiently
evaluated and broadband optimization with a sensitivity-based approach becomes feasible for a wide range of systems.

Next, the optimization methodology is worked out in detail such that the cross-sectional shape of the studs in a
double-leaf wall can be optimized for the broadband airborne sound insulation. In shape optimization, the amount of
freedom that is allowed by the analyst - i.e., the amount of shape basis functions - may vary from a single parameter
to all nodes in the FE model [11]. The stud shape is discretized using a limited number of points where the steel can
possibly be folded. The coordinates of these points are taken to be the design variables. To quantify the broadband
acoustic performance of the wall in an unambiguous way, the broadband sound insulation is rated with a standardized
single-number rating [12], that serves as objective function in the optimization procedure. The sensitivities of the
objective function with respect to the design variables are obtained by means of a semi-analytical approach [13]: the
sensitivity of the transmission loss with respect to the system matrices is computed analytically, while the sensitivity
of the system matrices with respect to the shape parameters is computed on element level by means of the finite
difference method. A similar approach has been followed previously in a different context for optimizing the shape
of the cellular cores in a sandwich structure for minimum sound radiation [14] yet for a much stiffer structure. To
increase the computational efficiency, the resulting sensitivities are rearranged as the product of terms that only depend
on the state of the system and the sensitivities of the system matrices, such that the sensitivities of the sound insulation
can be obtained in a computationally efficient way. Although the focus in this work is on the shape optimization of a
specific single number sound insulation quantity and on studs with a symmetric cross-sectional shape, the proposed
methodology can also be applied to other performance indicators and connector parameterizations.

The incorporation of geometric manufacturing constraints into the broadband acoustic shape optimization process
is a third contribution. Inequality constraints are placed on the maximal amount of material used and on the minimal
rolling angle between the web elements during optimization to ensure the manufacturability of the metal studs. The
relevant constraints related to strength and stiffness of the wall are very mild and therefore verified after optimization.

Subsequently, a range of walls, comprising different combinations in stud depths and number of sheets, are opti-
mized using the proposed framework. The performance of each wall with optimized studs is compared against walls
with conventional C-shaped studs and acoustic studs that are presently available. It is found that the optimized walls
have a substantially higher broadband sound insulation, close to that of walls with fully decoupled leafs.

The sound insulation prediction model that is employed in the optimization procedure has been validated on a wide
range of plasterboard wall systems with conventional C-shaped studs [7]. In the present paper, additional validations
on walls with acoustic studs are presented. They confirm the accuracy of the prediction model also for walls with very
flexible studs and therefore provide confidence in the validity of the optimization results.

The remainder of this paper is structured as follows. A concise overview of the prediction model for the airborne
sound insulation of finite sized double-leaf walls with a flexible frame is provided in section 2. This section also
contains a validation of the prediction model for a range of walls with existing acoustic studs as well as a demonstration
of the further optimization potential. In section 3, the optimization problem is stated and the manufacturing constraints
and the sensitivity of the diffuse sound insulation are elaborated. The results of the optimization are discussed in
section 4 and a physical interpretation is provided in section 5. The conclusions and final remarks are listed in section
6. The derivation of the sensitivities of the coupling loss factor is elaborated in the appendix.
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2. Sound insulation of double-leaf walls with a common stud frame

2.1. Diffuse sound insulation prediction
The diffuse sound insulation of finite sized, double-leaf walls coupled to a common frame is predicted using the

model that was proposed in [7]. The wall is modeled deterministically to capture its vibration behavior in full detail.
The sound field in the sending is taken to be diffuse such that the diffuse sound insulation of the wall is obtained. The
fundamentals of the diffuse sound transmission model are briefly recalled in the following Sections. For a detailed
elaboration of the equations, the reader is referred to [7].

2.1.1. Wall model

The considered wall consists of two leafs separated by an air cavity and coupled with a common stud frame. In
the first instance, the leafs, the cavity and the individual studs are decoupled from each other. The assumed-modes
method [15] is then used for approximating the vibration field of the two wall leafs, ul1 and ul2, the sound pressure
field within the cavity, pcav, and the vibration field of the stud number l, ust,l, at spatial location x and frequency ω,
using a finite set of basis functions φ, that satisfy the boundary conditions. Subsequently, the interaction between the
components is achieved by introducing coupling loads between the cavity and the leafs and by constraining the leaf
and stud displacements to be equal at the connection locations. This results in a system of equations that couples the
generalized degrees of freedom (DOFs) of the wall components. Since the external loading on the wall by the sound
pressure in the adjoining rooms is only applied at the leafs, the equations of motion of the wall can be elaborated in
terms of the interface DOFs, q`1 and q`2 of respectively wall leaf 1 and 2, as follows

D′dq
′ = f ′, (1)

where D′d is the dynamic stiffness matrix of the wall in terms of the interface DOFs q′ =
[
qT
`1 qT

`2

]T
and f ′ are the

forces on these DOFs due to the sound pressure field in the adjoining rooms. The dynamic stiffness matrix in Eq. (1)
can be split up into three terms: the contribution of the decoupled wall leafs, the contribution of the cavity through the
Fluid-Structure Interaction (FSI) with the wall leafs, and the contribution of the studs through structural coupling to
the wall leafs:

D′d =

[
D`1 0
0 D`2

]
+ D′fsi + D′st, (2)

with D`1 and D`2 the dynamic stiffness matrices of respectively wall leaf 1 and 2, D′fsi the fluid-structure interaction
matrix that takes into account the acoustic coupling between the wall leafs through the cavity and D′st the matrix that
takes into account the structural coupling between the wall leafs through the common metal stud frame.

The thin plates can be fairly accurately modeled as simply supported Kirchoff-Love plates [16]. The leaf may
consist of a single thin plate, or of multiple plates on top of each other. In the latter case, it is reasonable to assume that
there are no shear connections between the plates, such that perfect slip conditions exist at the plate-plate interfaces
[17]. At frequency ω, the elements of the diagonal matrix D`j read

D`j,kk = −ω2 + ω2
`j,k(1 + iη`j,k), ω`j,k =

√
D`j

m′′`j

((
qkπ

Lx

)2

+

(
rkπ

Ly

)2
)
, D`j =

npl,j∑
n=1

En,jt
3
n,j

12(1− ν2
n,j)

,

(3)
where i =

√
−1 is the imaginary unit, m′′`j denotes the surface mass of leaf j, npl,j are the number of plates in leaf

j, Lx and Ly denote its planar dimensions in the x and y coordinate directions, respectively, qk, rk ∈ N0 denote
the number of half wavelengths in those directions and η`i,k denotes the damping loss factor of mode k. En,j is the
Young’s modulus of plate n in leaf j, νn,j its Poisson’s ratio, and tn,j its thickness.

The sound field in the cavity satisfies the homogeneous Helmholtz equation. The interaction between the sound
field in the cavity and the studs is neglected, i.e., the studs are assumed to be acoustically transparent, such that
the cavity has a rectangular cuboid shape. The walls that are considered in this paper contain mineral wool inside the
cavity. The Delany-Bazley-Miki equivalent fluid model [18] is used to model this soft porous material. The interaction
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between the wall leafs and the cavity accounted for by considering the loading by the displacement fields of the wall
leafs onto the cavity pressure field and vice versa:

D′fsi = −ρaω
2

[
Lf1

Lf2

]
D−1

cav

[
LT

f1 LT
f2

]
, (4)

where Dcav is the diagonal dynamic stiffness matrix of the cavity in therms of its hard-walled modal DOFs

Dcav,kk = −ω2 + ω2
cav,k(1 + iηcav,k), ωcav,k = c

√(
mkπ

Lx

)2

+

(
nkπ

Ly

)2

+

(
pkπ

tcav

)2

, (5)

mk, nk, pk ∈ N denote the number of half wavelengths in the x, y and z coordinate directions, z1 = 0, z2 = tcav, c
denotes the speed of sound in air, ρa is the density of air, tcav is the cavity depth and ttot is the total leaf thickness.
Lfi,kl is the fluid structure interaction matrix between the k-th DOF of wall leaf i and the j-th DOF of the cavity

Lfi,kl =
−2alLxLy

π2
√

ttotm′′`i
cos

(
pπzi
tcav

)
b (qk,ml) b (rk, nl) , (6)

al =
cγ(ml)γ(nl)γ(pl)√

LxLytcav

, γ(s) =

{√
2 if s = 0

1 if s 6= 0
, b (α, β) =

{
β cos(απ) cos(βπ)−β+α sin(απ) sin(βπ)

α2−β2 forα 6= β

0 forα = β
.

(7)

The studs are modeled numerically, using the finite element method [19], with structural shell elements. Pinned
boundary conditions are assumed at the ends of each stud; they are implemented by restraining all nodal displacements
(but not the rotations) at one flange at the bottom and at the opposite flange at the top. The stud-leaf connections are
modeled by rigidly coupling the out of plane displacements at the screw locations. Since thin metal studs themselves
are a lot more flexible than the plate-stud connections by the screws, the assumption of rigid connections is accurate.
The structural coupling is taken into account by constraining the displacements of the wall leafs and the studs to be
equal at the screw locations. As a result the matrix D′st which appears in (2) is comprised of the dynamic stiffness
matrix Dst of the stud in terms if its generalized, decoupled modal DOFs, and a series of coupling matrices:

D′st =

[
CT
`1

CT
`2

]( nst∑
k=1

CkD
−1
st CT

k

)[
C`1 C`2

]
, (8)

Dst,kk = −ω2 + ω2
st,k(1 + iηst,k), (9)

where C`1 and C`2 are coupling matrices for wall leafs 1 and 2, Ck is a coupling matrix for stud k and nst denotes
the total number of studs in the double-leaf wall. The precise definition of the coupling matrices can be found in [7].

2.1.2. Sound transmission model

Within the hybrid Det-SEA framework [8, 20, 21], a transmission suite (room-wall-room) model has been de-
veloped for predicting the diffuse sound transmission loss of finite-sized walls of arbitrary complexity [9, 22, 10].
The sending and receiving room are modeled as diffuse (SEA) subsystems, while the detailed model of the wall is
deterministic. In the context of a sound transmission analysis, the quantity of interest is the so-called coupling loss
factor, η12, between both rooms. This coupling loss factor relates directly to the diffuse sound transmission coefficient
τ . The relationship at frequency ω reads [23]

τ =
4V1ω

LxLyc
η12, (10)

where V1 denotes the volume of the sending room. The sound insulation of the wall then immediately follows from

R(ω) = 10 log
1

τ
= 10 log

LxLyc

4V1ωη12
. (11)
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Figure 1: Dimensions of the cross sectional shape of (a) a C-shaped stud, (b) a Σ-shaped stud and (c) an M-shaped stud, all dimensions are given
in mm.

With the hybrid Det-SEA framework, the coupling loss factor can be rigorously obtained from [8]

η12 =
2

πωn1

∑
r,s

Im (D′dir2)rs
(
D−1

totIm (D′dir1)D−H
tot

)
rs
, (12)

where
Dtot = D′d + D′dir1 + D′dir2. (13)

D′d denotes the reduced dynamic stiffness matrix of the wall as defined in Eq. (1), D′dir1 and D′dir2 are the direct field
acoustic dynamic stiffness matrices of the rooms expressed in terms of the generalized wall DOFs related to q′ and n1

is the modal density in the first transmission room. The direct field response of a room is the sound field that would
occur if the room would be of infinite extent, in other words, if the room would behave as an acoustic half-space as
seen from the room-wall interface when that interface is embedded in an infinite planar baffle. The related acoustic
dynamic stiffness matrix is then termed the direct field dynamic stiffness matrix Ddir of the room. For room 1 for
example, the direct field dynamic stiffness matrix Ddir1 describes the relationship between the displacements and
forces at the interface with the first wall leaf

Ddir1u`1 = fdir1, (14)

where the components of fdir1 denote the forces acting on the DOFs of the first wall leaf u`1 due to the pressure field
in the acoustic half-space. In the present work, Ddir1 and Ddir2 are computed using a wavelet approach [24]. In this
way, the cross-modal coupling of the wall modes by the acoustic fluid is accounted for [10].

2.2. Validation of the prediction model for walls with acoustic studs
The diffuse sound insulation prediction model has been validated on a range of plasterboard walls with conven-

tional C-shaped studs [7]. In the present work, the prediction model is employed for the analysis and optimization of
walls with very flexible, acoustic studs. Therefore, an additional validation is presented here for a set of nine different
plasterboard walls with acoustic studs that have been tested in the transmission suite of the KU Leuven Acoustics
Laboratory.

The transmission opening has a width of 3.25 m and a height of 2.95 m. All walls contain seven studs in total,
two of which are placed against the vertical edges of the opening, and five in between. The center to center distance
between two adjoining studs equals 400 mm at the left and right hand side of the test opening and 600 mm in between.
In order to connect a plasterboard plate to a metal stud, twelve screws are used along the vertical plate edge. Screws
start at 100 mm from the bottom edge and end at 100 mm from the top edge of a plate. The vertical distance between
two screws is 250 mm. The studs are either Σ-shaped (Fig. 1.b) or M-shaped (Fig. 1.c). They have a thickness of
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0.6 mm. Plasterboard plates with a density of 1008 kg/m3 and a Young’s modulus of 3.15 GPa have been used
in conjunction with the Σ-shaped studs, while for the walls with M-shaped studs, the values are 1060 kg/m3 and
5.4 GPa, respectively. The densities have been determined by weighing, and the Young’s moduli by modal testing on
small plate samples [25, 26]. The leafs of each wall can consist of one, two or three plasterboard sheets of 12.5 mm
thickness each. The cavity depth is either 50, 75 or 100 mm. The cavity is filled with mineral wool. Each of the tested
wall is labeled by the combination of the number of sheets constituting one leaf, the thickness of a single sheet in mm,
the cavity depth in mm, the cavity filling, and the stud type. For example, the wall labeled as 2x12.5/75 mw (Σ) has
leafs with double plasterboard sheet at each side, an individual sheet thickness of 12.5 mm, a cavity with a depth of
75 mm and mineral wool filling, and Σ-shaped studs.

In the simulations, the assumed material properties for the galvanized steel studs are: a Young’s modulus of 210
GPa, a density of 7800 kg/m3, a Poisson’s ratio of 0.25, a damping loss factor of 0.02 and a yield strength of 210
MPa. The damping loss factor of the plates is taken to be 0.03, as in [7]. Their Poisson’s is chosen to match the
experimental coincidence frequency in one of the sound transmission tests. This results in a Poisson’s ratio of 0.15
and 0.10 for the plates that are used in conjunction with the Σ-shaped and M-shaped studs, respectively. The density
and sound speed of air are taken as 1.21 kg/m3 and 340 m/s, respectively. The flow resistivity of the mineral wool,
used as sound absorbent in the cavity, is estimated at 5000 N/sm4 [7].

The measured and predicted transmission loss curves as a function of frequency are displayed in Fig. 2. The single
number ratings according to ISO 717 - 1 [12] are listed in Table 1. A good agreement between the model predictions
and the experimental results can be observed. The ISO 12999-1 standard [27] defines an average experimental re-
producibility for the single number ratings Rw, Rw + C and Rw + Ctr as respectively 2.0, 2.1 and 2.4 dB for a
95 % confidence interval. From Table 1, it can be concluded that for nearly all walls, the predicted single-number
ratings differ from the experimental values by 0 to 2 dB which is close to the average reproducibility with a coverage
probability of 95 % for experiments.

Wall type RW(C; Ctr)exp dB RW(C; Ctr)model dB
1x12.5/50 mw (Σ) 45(-5;-13) 43(-4;-11)
2x12.5/50 mw (Σ) 58(-6;-13) 56(-5;-14)
3x12.5/50 mw (Σ) 62(-3;-9) 62(-4;-11)
1x12.5/75 mw (Σ) 50(-6;-14) 48(-7;-16)
2x12.5/75 mw (Σ) 61(-4;-11) 60(-4;-12)
3x12.5/75 mw (Σ) 65(-2;-7) 66(-4;-10)
1x12.5/75 mw (M) 49(-4;-11) 49(-5;-13)
2x12.5/75 mw (M) 60(-3;-10) 61(-3;-8))

2x12.5/100 mw (M) 61(-3;-8) 61(-2;-6)

Table 1: Comparison of the experimental results and predictions of the single number ratings for 9 double leaf plasterboard walls with acoustic
studs.

2.3. Optimization potential
To illustrate the optimization potential of the cross-sectional shape of the studs, the airborne sound insulation is

computed according to Eq. (11) for a double-leaf plasterboard wall with double sheet and a cavity of 75 mm filled
with mineral wool. Each sheet has a thickness of 12.5 mm. A wall with decoupled leafs is compared to walls with a
common frame that consists of either C-shaped studs, Σ-shaped studs or M-shaped studs. The cross-sectional shapes
of these studs are given in Fig. 1. The geometrical parameters of the wall and the material properties of the studs are
the same as in Section 2.2. All walls have conventional plasterboard plates, with a density of 720 kg/m3, a Young’s
modulus of 2.5 GPa, a Poisson’s ratio of 0.3 and a damping loss factor of 0.03 [7]. As a result, the considered walls
only differ in terms of the cross-sectional shape of the studs.

The computed sound insulation curves are displayed in Fig. 3. At around 63 Hz, a dip is observed for the walls
with a the most flexible, Σ-shaped and M-shaped studs and for the wall with decoupled leafs. The dip is caused by the
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Figure 2: Predicted versus measured airborne sound insulation for nine double leaf plasterboard walls with acoustic studs.
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so called mass-spring-mass resonance for double leaf walls. For an infinite double wall without studs, the leafs vibrate
as rigid masses and compress the cavity fluid. For a finite studded wall, the mass-spring-mass resonance cannot fully
develop due to restrained motion at the leaf edges and the presence of the studs, but the resulting sound insulation
dip is nevertheless observed. The least flexible, C-shaped studs, attenuate the mass-spring-mass resonance better
and therefore the sound insulation is higher for the corresponding wall around the resonance frequency. Above the
mass-spring-mass resonance though, the wall constructed with the C-shaped studs has a significantly lower airborne
sound insulation compared to the more flexible studs and the decoupled wall, due to the substantially higher structural
coupling of the wall leafs.

At high frequencies, a pronounced dip appears in all sound insulation curves (Fig. 3). This is the so-called coin-
cidence dip. It occurs at the critical frequency of a single plasterboard sheet, i.e., the lowest frequency at which the
free bending wavelength on an infinite leaf matches the projected free wavelength in air. The theoretical value of the
critical frequency is 2728 Hz for the plates considered here. The coincidence frequency does not change significantly
when a different stud type is employed.

When comparing the airborne sound insulation of the decoupled wall and the C-shaped studded wall, a difference
of up to 21 dB is observed for the 1/3-octave bands above the mass-spring-mass resonance. The difference in single
number rating RA is 11.6 dB. When comparing the airborne sound insulation of the wall with the decoupled leafs
and the wall constructed with a Σ-shaped stud frame, i.e. an experimentally optimized stud, a difference up to 16 dB
is observed for the 1/3-octave bands above the mass-spring-mass resonance. The difference in the broadband single
number rating Rw + C is 4.5 dB. This illustrates the potential for further numerical design optimization.
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Figure 3: A comparison of the airborne sound insulation of a double plasterboard wall with decoupled leafs and walls constructed with a Σ-shaped
stud frame, an M-shaped stud frame and a C-shaped stud frame.
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3. Optimization methodology
In this section, a methodology for optimizing the design of wall and floor systems for broadband airborne sound

insulation is developed. The methodology is illustrated in detail for the optimization of the cross-sectional shape of
metal studs in a double-leaf wall. It can be readily extended to other shape optimization cases.

3.1. Wall setup
The material and geometrical properties of the walls used in the optimization are the same as in Sec. 2.2. Walls

with a cavity depth of 50, 75, 100 and 150 mm, and with single, double and triple sheet are considered.

3.2. Parametrization
The cross-sectional shape of the metal studs is described by the design variables that are to be optimized. To

avoid infeasible shapes, piece-wise polynomial functions are often employed to describe a shape [28]. Metal studs
in plasterboard walls usually have an open cross-section consisting of a small number of straight line segments and
sometimes also a few curved segments. A piecewise linear shape is therefore considered here. This parametrization
scheme greatly reduces the number of design variables as in practice the number of line segments is often kept to
a minimum for reasons of production cost [29]. However, this parametrization could still lead to unfeasible, jagged
solutions. Therefore, geometric constraints are needed to reduce the risk of finding these unwanted designs.

The x-coordinates of the keypoints that define the piecewise linear shape (see Fig. 4), are used as design variables.
They are collected in the vector x. At half the depth of the cross-section of the stud, a symmetry plane is assumed.
The number of unknowns in the numerical design optimization is effectively halved in this way. The optimization is
performed for N = 7 keypoints. To prevent that screws, which typically have a length of 25 mm, can penetrate the web
of the stud when the wall is constructed, a minimal distance of 12.5 mm is kept between the protruding parts of the web
and the flanges of the stud. The keypoints are evenly spaced in the y-direction in the interval [12.5 mm, tcav/2 − d]
with tcav the depth of the cavity. The x-coordinates have lower and upper bounds of respectively 0 mm and W = 50
mm. This ensures that no web member lies outside the bounds defined by the flanges of the stud. An example of the
parametrization of the cross-sectional shape of a metal stud is displayed in Fig. 4.

Although the focus in this paper is on the shape optimization of studs with a symmetric cross section, the proposed
methodology can also be applied to other connectors, such as asymmetric or point-symmetric studs.

x

y

x
1

x
2

x
7

12.5 mm

W

tcav

d

Figure 4: Example of a parametrization of a symmetric stud. In this example 7 design variables are used with the keypoints spaced evenly by a
distance d in the y-direction. The stud has a width of W and a web height of tcav. An axis of symmetry is assumed at half the stud depth.
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3.3. Objective function
The sound insulation of a wall is a property that depends on the frequency, the wall setup and the rooms adjacent to

the wall, as shown in Eqs. (11)-(12). To quantify the broadband acoustic performance of the wall in an unambiguous
way, the sound insulation is reduced to a single number. For partitioning walls, the single number rating RW + C is
often used and is therefore taken as the objective function. This single number rating uses a correction which best
represents the performance of indoor walls. In the remainder of this paper, the single number rating RW + C will be
denoted as RA. The single number rating RA relates directly to the A-weighted sound pressure level difference across
a partition wall when the excitation signal in the sending room is pink noise in the frequency bands of 100-3150 Hz
and the absorption in the receiving room is the same in all frequency bands. It is defined as [12]:

RA = −10 log

 16∑
j=1

10(L1j−Xj)/10

 , (15)

where Xj is the mean airborne sound insulation in the j-th 1/3 octave band and L1j is the corresponding spectral
adaptation term. The values of L1j are listed in ISO 717-1 [12]. The airborne sound insulation in any 1/3 octave band
j is obtained as the energetic mean of the computed harmonic sound insulation values at frequencies ωj in band Ωj .
This results in the following expression for the averaged sound insulation in 1/3 octave bands in the frequency band j:

Xj = −10 log

 1

nf,j

∑
ωi∈Ωj

10−R(ωi)/10

 , (16)

where nf,j denotes the number of frequencies in Ωj . In this paper, the sound insulation is computed at the 1/24-octave
band center frequencies, therefore the number of frequencies in Ωj corresponds to 8.

3.4. Constraints
To ensure the manufacturability of the metal studs, constraints are imposed on the maximum amount of material

used and on the minimal rolling angle between the web elements. Metal studs are usually produced using a technique
called roll forming. The studs are formed into the desired shape by passing a metal sheet through a series of rollers.
Each of these rollers deforms the sheet into its final shape. This results in a process that is suited for mass production
of studs of a single shape. Small acute angles between web elements add more forming passes to the roll forming
process, making the stud more expensive [29]. Therefore, the minimum absolute value of the bending angle between
two web elements formed by three consecutive keypoints should be constrained. As the sheet can be bent in two
directions (positive and negative rolling angle) the constraint is defined in terms of the cosine of the rolling angle θ as

cos(θj) =
aj · aj−1

||aj || ||aj−1||
≤ cos(θmin) ∀j ∈ [1,N] (17)

with aj =
[
xj − xj−1, yj − yj−1

]T
the vector between keypoints j − 1 and j, and [x−1, y−1] = [0 mm, 0 mm]. The

minimal angle between three sequential keypoints is constrained to θmin = 90◦. This prevents any acute angles in the
design.

In order to limit the volume of sheet metal needed when producing a stud, the following constraint is imposed
on the developed length of the stud’s section. The length needed to form the end flanges and the lips (indicated with
the thick black line in Fig. 4) is not included in the amount of material as it remains constant during the optimization
process. The amount of material is computed and constrained as

L(x) =

N∑
j=0

√
(xj+1 − xj)2 + (yj+1 − yj)2 ≤ Lmax, (18)

with [x0, y0] = [0 mm, 12.5 mm] the coordinates of the starting point and [xN+1, yN+1] = [xN, tcav/2] the coordi-
nates where the web crosses at half the stud depth. The material use is constrained by Lmax, in this work a value of
Lmax = tcav+6W

2 is adopted, yet other choices are perfectly possible.
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Figure 5: The relative error between the analytical and numerical sensitivity shows convergence up to a finite difference step of 5x10−8 mm when
the numerical approximation starts to diverge due to instabilities.

The metal profiles also need to comply with the relevant structural constraints. The dedicated standard EN
14353 [30] enforces tolerances on the straightness and dimensions of the profile, and requires that the stud must not
buckle or deform permanently when placed onto two roller supports and loaded under its own weight. Furthermore,
the standard ASTM C 754 [31] requires that the deflection of the wall under a lateral load of 240 Pa must not exceed a
lateral displacement of Ly/240. These three mild structural constraints are verified after the optimization as they often
did not limit the design space for the cross sectional shapes of the studs during optimization.

3.5. Optimization problem
The single number rating RA, as defined in Eq. (15), is used as the objective function in the optimization, as it a

suitable descriptor of the broadband sound insulation of indoor walls. The design is constrained by a minimal rolling
angle and a maximal amount of material, as detailed in the previous section. This results in the following problem

max
x

RA(x) (19)

s.t. L(x)/Lmax − 1 ≤ 0 (20)
cos(θj(x))− cos(θmin) ≤ 0 ∀j ∈ [1,N] (21)
0 ≤ xj ≤W (22)

where x ∈ RN is the vector containing the design variables i.e., the horizontal coordinates of the keypoints of Fig. 4.
In what follows, the optimization is performed for walls with single, double and triple sheet with a cavity depth of
50, 75, 100 or 150 mm. Gradient-based optimization is used to solve the optimization problem in Eq. (19). The
sequential quadratic programming method with non-linear constraints is chosen as the optimization algorithm. An
implementation in the Matlab optimization toolbox, fmincon, has been used. A multi-start approach is followed. The
initial designs are chosen to be the C-shaped, Σ-shaped and M-shaped studs as shown in Fig. 1.a-c. Additionally, a
fourth initial design consists of a Σ-shaped stud with an increased indentation depth of 50 mm instead of 25 mm.

The sensitivity of the objective function with respect to the design variables is elaborated in Section 3.6. The
derivation of the sensitivities of the constraints with respect to the design variables is straightforward and therefore
not detailed here.
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3.6. Sensitivity analysis
The sensitivity of the single number rating RA follows from Eq. (15) and is equal to

∂RA

∂xk
=

∑16
j=1 10(Lj1−Xj)/10 ∂Xj

∂xk∑16
j=1 10(Lj1−Xj)/10

, (23)

where the sensitivity of the sound insulation in 1/3 octave bands, ∂Xj

∂xk
, follows from Eq. (16)

∂Xj

∂xk
=

∑
ωi∈Ωj

10R(ωi)/10 ∂R(ωi)
∂xk∑

ωi∈Ωj
10R(ωi)10

. (24)

The sensitivity of the harmonic sound insulationR(ω) with respect to the design variable xk follows from Eq. (11)
and is equal to

∂R

∂xk
=

−10

ln(10)η12

∂η12

∂xk
. (25)

The sensitivity of the coupling loss factor η12 with respect to the design variables is obtained by means of a
semi-analytical approach [13]: the sensitivity of the transmission loss with respect to the system matrices is computed
analytically (using a direct approach) and the sensitivity of the system matrices with respect to the shape parameters
is computed at element level by means of the finite difference method. The derivation of the sensitivities can be found
in Appendix A. As the direct field dynamic stiffness matrices D′dir1 and D′dir2 do not depend on the design variables
x in the case of the optimization of the cross-sectional shape of the metal studs in a double-leaf wall with a common
frame, the result of this derivation reads

∂η12

∂xk
=

4

πωn1

∑
r,s

Re

((
−D−T

tot ACT
)
rs

(
∂D′d
∂xk

)
rs

)
, (26)

with

A = Im (D′dir2) and C =
(
D−1

tot

)
Im (D′dir1)

(
D−1

tot

)H
. (27)

The sensitivity of the coupling loss factor, as computed from the above expression, has been compared against
a finite difference computation for the x1-variable in a 2x12.5/75 wall with C-shaped studs and at a frequency of
100 Hz as displayed in Fig 1.a, where x1 refers to the horizontal coordinate of the keypoint with coordinates [3 mm, 8
mm]. The absolute value of the relative error between the analytical formulation of Eq. (26) and the finite difference
computation is displayed in Fig. 5 for a step ranging from 0.1 to 10−10 mm. The relative error decreases for decreasing
step size up to a step of 5x10−8 mm when the finite difference method becomes numerically unstable.

4. Optimization results

4.1. 50 mm cavity depth
The results for a wall with a cavity depth of 50 mm are presented in this Section. Fig. 6 and Fig. 7 show the

convergence history of the objective function and the history of the maximum constraint violation for the four starting
points during the optimization. Violation of the nonlinear constraints (20-21) is possible during the optimization as
they are accounted for with the Lagrange multiplier technique. The maximum constraint violation is simply the largest
error on each of the N + 1 nonlinear constraints. From the history plots, it can be concluded that the performances
of the four optimized studs (corresponding to the four different starting values) is similar for double sheet while the
differences are larger for single and triple sheet.

The optimized stud shapes for single, double and triple sheet are displayed in Fig. 8 together with their respec-
tive sound insulation curves. The computed sound insulation curves for walls constructed with existing stud types
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Figure 6: Convergence history of the objective function for the multistart shape optimization of the studs in a 1x12.5/50 (dotted lines), a 2x12.5/50
(solid lines) and a 3x12.5/50 wall (dashed lines).
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Figure 7: The maximum constraint violation for the multistart shape optimization of the studs in (a) a 1x12.5/50 (dotted lines), (b) a 2x12.5/50
(solid lines) and (c) a 3x12.5/50 wall (dashed lines).

(C-shaped, Σ-shaped and M-shaped studs as displayed in Fig. 1) and for the decoupled wall leafs are plotted for
comparison. The related single number ratings are provided in the legend.

The optimized cross-sectional stud shape for a wall with single sheet resembles a C-shaped stud with four shallow
indentations and one slightly deeper indentation (Fig. 8.a). This stud is a bit more flexible than the C-shaped stud
due to the indentations, but is more rigid than the existing acoustic studs. This stud will better attenuate the mass-
spring-mass resonance compared to a wall with decoupled wall leafs or more flexible studs. Above mass-spring-mass
resonance, in the frequency range 250-500 Hz, the stud decouples the two wall leafs better than a C-shaped stud. The
theoretical value of the mass-spring-mass resonance of this wall is 171 Hz and has therefore a large influence on the
single number rating. This stud is optimal as it makes a trade-off between the suppression of the mass-spring-mass
resonance and decoupling the wall leafs. The single number rating of this wall (37.7 dB) is therefore higher than for
both the walls with a C-shaped stud frame (37.4 dB) and the decoupled leafs (35.4 dB).

The cross-sectional shape of the optimized studs for double and triple sheet are similar with respect to one another
and display two deep indentations (Fig. 8.b-c). The resulting studs are more flexible compared to the existing stud
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Figure 8: Optimized stud shape and corresponding sound insulation curve for (a) a 1x12.5/50 wall, (b) a 2x12.5/50 wall and (c) a 3x12.5/50 wall.
The sound insulation of a wall with decoupled leafs and with C-shaped, Σ-shaped and M-shaped studs is also displayed.

shapes. Around mass-spring-mass resonance, the optimized studs have a performance similar to the decoupled wall
and the acoustic studs while the C-shaped stud has a higher sound insulation due to the attenuation of the resonance.
The single number rating for these walls is mainly determined by the sound insulation at frequencies above the mass-
spring-mass resonance. The main increase in sound insulation compared to the existing studs is found above 1000 Hz.
The resulting single number rating of the walls with the optimized studs (49.6 and 58.7 dB) exceeds that of the wall
with decoupled leafs (48.7 and 58.5 dB) since the sound insulation in the frequency range of 100-1000 Hz is slightly
higher. When compared to the currently available studs, the single number rating for the walls with the optimized stud
is 6.1 and 11.7 dB higher than the C-shaped stud frame with respectively double and triple sheet, and 5.6 and 3.3 dB
higher than the walls constructed with the acoustic studs with double and triple sheet.

4.2. 75 mm cavity depth
Just as for the walls with a cavity depth of 50 mm, the convergence history and the history of the maximum

constraint violation have been carefully inspected. A similar convergence was found, and therefore the resulting
plots are not reproduced here. The optimized stud shapes for single, double and triple sheet are displayed in Fig. 9
together with their respective sound insulation curves. The computed sound insulation curves for walls constructed
with existing regular and acoustic stud types and for the decoupled wall leafs are plotted for comparison. The related
single number ratings are provided in the legend.

The cross-sectional shape of the optimized studs for single and triple sheet are similar with respect to one another
and display three deep indentations (Fig. 9.a and c). The cross-sectional shape of the optimized stud for double
sheet displays two indentations similar to wall 3x12.5/50 (Fig. 9.b). The optimized shape for double sheet is more
jagged compared to the optimal shape for wall 3x12.5/50. The main increase in sound insulation, for all three setups,
compared to the existing studs can be found above 500 Hz. Similar to the walls 2x12.5/50 and 3x12.5/50, the single
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Figure 9: Optimized stud shape and corresponding sound insulation curve for (a) a 1x12.5/75 wall, (b) a 2x12.5/75 wall and (c) a 3x12.5/75 wall.
The sound insulation of a wall with decoupled leafs and with C-shaped, Σ-shaped and M-shaped studs is also displayed.

number rating for the walls with the optimized stud exceeds even that of the decoupled wall for single and double
sheet, the difference being 2.5 and 0.7 dB, respectively. For triple sheet, the single number rating is 1.2 dB lower than
the wall with decoupled wall leafs. Furthermore, the single number rating for the walls with the optimized stud is 3.3,
12.3 and 15.1 dB higher than for the C-shaped studs with respectively single, double and triple sheet, and 3.5, 4.2 and
4.7 dB higher than for the existing acoustic studs.

4.3. 100 mm cavity depth
The optimized stud shapes for single, double and triple sheet are displayed in Fig. 10 together with their respec-

tive sound insulation curves. The computed sound insulation curves for walls constructed with existing regular and
acoustic stud types and for the decoupled wall leafs are plotted for comparison. The related single number ratings are
provided in the legend. Conversion of the optimization has been confirmed from convergence history and maximum
constraint violation plots (not reproduced here).

The optimized cross-sectional shape of a metal stud for a wall with single sheet has two widely-spaced indentations
(Fig. 10.a). The single number rating of the wall with single sheet (45.6 dB) exceeds that of the decoupled double wall
(43.8 dB). The better performance relates to the 1/3 octave band of 100 Hz, where the sound insulation of the wall with
the optimized stud is 5.8 dB higher than for the decoupled wall. The cross-sectional shapes of the optimized studs for
double and triple sheet are similar with respect to one another and feature two wide, jagged indentations (Fig. 10.b-c).
The main gain in sound insulation, when compared to the available acoustic studs, is found in the frequency range
above 315 Hz. The single number rating for the walls with the optimized stud is 7.6, 15.2 and 18.8 dB higher than the
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Figure 10: Optimized stud shape and corresponding sound insulation curve for (a) a 1x12.5/100 wall, (b) a 2x12.5/100 wall and (c) a 3x12.5/100
wall. The sound insulation of a wall with decoupled leafs and with C-shaped, Σ-shaped and M-shaped studs is also displayed.

C-shaped stud frame with respectively single, double and triple sheet, and 3.1, 4.9 and 6.3 dB higher than the walls
constructed with the existing acoustic studs.

4.4. 150 mm cavity depth
The optimized stud shapes for single, double and triple sheet are displayed in Fig. 11 together with their respec-

tive sound insulation curves. The computed sound insulation curves for walls constructed with existing regular and
acoustic stud types and for the decoupled wall leafs are plotted for comparison. The related single number ratings are
provided in the legend. Conversion of the optimization has been confirmed from convergence history and maximum
constraint violation plots (not reproduced here).

The cross-sectional shape of the optimized studs for single, double and triple sheet exhibits two indentations
(Fig. 11), similar to the optimized studs for a 3x12.5/100 wall (Fig. 10.c). The single number rating for the walls with
the optimized stud is 11.6, 18.3 and 21.9 dB higher than the C-shaped stud frame with respectively single, double
and triple sheet, and 5.3, 8.4 and 10.4 dB higher than the walls constructed with existing acoustic studs. The very
substantial improvement with respect to the existing acoustic studs is due to a consistently higher performance in the
broad frequency range of 250-1250 Hz.
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Figure 11: Optimized stud shape and corresponding sound insulation curve for (a) a 1x12.5/150 wall, (b) a 2x12.5/150 wall and (c) a 3x12.5/150
wall. The sound insulation of a wall with decoupled leafs and with C-shaped, Σ-shaped and M-shaped studs is also displayed.
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Figure 12: Comparison of the single number rating RA for all 12 wall setups with 5 different stud frames.

5. Discussion
A comparison of the single number rating for all 12 wall types with a C-shaped stud frame, a M-shaped stud

frame, a Σ-shapes stud frame, the optimized stud frame and a wall with decoupled wall leafs is presented in Fig. 12.
The walls with an M-shaped stud frame and Σ-shaped stud frame have a very similar performance, as can be observed
from the blue and green curves in Fig. 12. The walls with the optimized studs have a similar performance compared
to walls with decoupled leafs as can be seen from the black and gray curves in Fig. 12. The gain in single number
rating, RA, when compared to a C-shaped stud frame is 11.8 dB on average, with a maximum of 21.9 dB for wall
3x12.5/150. Compared to the existing acoustic studs the gain is 5.1 dB on average, with a maximum of 10.4 dB for
wall 3x12.5/150. The C-shaped stud frame has the lowest single number rating RA for all setups except for 1x12.5/50
and 1x12.5/75, for which the mass-spring-mass resonance has a large influence on the single number rating. For
increasing cavity depth, the single number rating of the walls with a C-shaped stud frame remains almost constant.
This has also been observed in experimental studies such as the one by Vermeir and Gerretsen [? ].

Interestingly, the optimized studs in combination with double sheet outperform the existing acoustic studs with
triple sheet for the same total wall thickness. This can be observed for 2x12.5/75 (opt.) vs. 3x12.5/50 (Σ/M) and for
2x12.5/100 (opt.) vs. 3x12.5/75 (Σ/M). This indicates that a substantial weight (and cost) reduction could be achieved
without changing the wall thickness nor the sound insulation performance.

As discussed in section 3.4, the relevant structural constraints are very mild and therefore they are verified after
optimization. According to EN 14353 [30], a stud must not deform permanently or buckle under its own weight when
placed on two roller supports spaced at 1.5 m width. For each optimized stud, the maximal allowed stresses in the
stud under its own weight, σv,max, and the torsional buckling load, Pbuckling, have been computed in the Ansys finite
element software. The results are presented in Table 2. When compared to the yield strength, σyield, and the self
weight of the studs, Pself , none of the studs will plastically deform or buckle under their own weight when placed
onto the two supports. According to ASTM C 754 – 18 [31], the deflection of a non-load bearing wall under a uniform
lateral pressure of 240 Pa must not exceed Ly/240 with Ly the height of the wall (2.95 m in the present analysis). The
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Setup σv,max/σyield [%] Pself/Pbuckling [%] dmax/(Ly/240) [%]
1x12.5/50 7.0 1.2 42.2
2x12.5/50 22.5 3.5 48.1
3x12.5/50 22.9 3.6 40.1
1x12.5/75 24.0 4.0 35.1
2x12.5/75 24.6 3.6 29.6
3x12.5/75 30.8 4.7 28.0

1x12.5/100 18.7 4.8 46.1
2x12.5/100 22.3 4.9 23.4
3x12.5/100 26.1 4.7 34.6
1x12.5/150 31.5 9.3 46.9
2x12.5/150 24.9 8.4 31.6
3x12.5/150 22.6 8.3 28.9

Table 2: Maximal stress compared to the yield strength and self weight compared to the torsional buckling load for the optimized stud, placed on
two roller supports spaced 1.5 m apart, and maximal deflection of the wall subjected to a uniform lateral load of 240 Pa, compared to the maximum
allowed displacement.

maximal displacement under a static uniform load, dmax, is computed using the Ansys finite element software. The
deflections remain far below the maximum allowed (see Table 2).

6. Conclusions
The design optimization of vibro-acoustic systems over a large frequency band within the hybrid Det-SEA frame-

work has been considered. The sensitivities of the sound insulation to the cross-sectional stud shape parameters were
obtained in a semi-analytic way. To increase the computational efficiency, the resulting sensitivities were rearranged
as the product of terms that only depend on the state of the system and the sensitivities of the system matrices, such that
the sensitivities of the sound insulation can be obtained in a computationally efficient way. The sequential quadratic
programming method with non-linear constraints has been used for the optimization.

As an example of the proposed methodology, the cross-sectional shape of flexible metal studs in double-leaf
plasterboard walls has been optimized for the overall A-weighted sound reduction under pink noise excitation. In order
to obtain practically feasible designs in terms of material usage and manufacturing limitations, inequality constraints
have been incorporated in the optimization procedure. The relevant constraints related to strength and stiffness of
the wall are very mild and therefore verified after optimization. Although the focus in this paper is on the shape
optimization of the broadband sound insulation rating RA for symmetric studs, the approach can be readily generalized
to other performance indicators such as RW, other parametrization schemes and other wall types.

The sound insulation prediction model that has been employed in the optimization procedure has been validated
previously for plasterboard walls with conventional C-shaped studs. Additional validations on plasterboard walls with
acoustic studs have been performed in the present work. They confirm the accuracy of the prediction model also for
walls with very flexible studs and therefore provide confidence in the validity of the optimization results.

The optimized studs exhibit a significantly higher sound insulation than conventional C-shaped studs and existing
acoustic studs, with an average gain in single number rating RA of 11.8 dB and 5.1 dB, respectively. The optimized
designs are more flexible compared to existing studs which results in a weaker structural coupling, except for wall
setup 1x12.5/50. The exception occurs when the mass-spring-mass resonance greatly influences the single number
rating and this resonance is better attenuated by a less flexible stud.
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Appendix A. Sensitivity of the coupling loss factor
The coupling loss factor η12 between the SEA subsystems 1 and 2 is defined as [8]

η12 =
2

πωn1

∑
r,s

D̃′dir2,rs

(
D−1

totD̃
′
dir1D

−H
tot

)
rs
. (A.1)

with
D̃′dir1,rs := Im

(
D′dir1,rs

)
and D̃′dir2,rs := Im

(
D′dir2,rs

)
(A.2)

Taking the derivative of the coupling loss factor with respect to a variable xi gives
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=
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∂xj

)
1
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(
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)
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(
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(A.4)

with (
∂η12
∂xj

)
1
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(
∂η12
∂xj

)
2
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∂D̃′dir2,rs
∂xj

(
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dir1D
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(
∂η12
∂xj

)
3

:=
2
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∑
r,s

D̃′dir2,rs

(
D−1
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∂D̃′dir1
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D−H
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)
rs

. (A.7)

(A.8)

The derivative is split up into three terms. The first term,
(
∂η12
∂xj

)
1
, depends on the sensitivity of the total dynamic

stiffness matrix Dtot. The second term,
(
∂η12
∂xj

)
2
, depends on the direct field dynamic stiffness matrix of the second

SEA subsystem Ddir2 and the third term,
(
∂η12
∂xj

)
3
, depends on the direct field dynamic stiffness matrix of the first

SEA subsystem Ddir1. These three parts are elaborated separately in what follows. In this analysis it is assumed that
the direct field dynamic stiffness matrices Ddir1 and Ddir2 in terms of the physical coordinates of the deterministic
subsystem do not depend on the design variables x and that these design variables x only assume real values.

Appendix A.1. Properties of the element-wise product
Lemma:

The sum over all elements of the element-wise product of a matrix A and a matrix product BC is equal to the sum
over all elements of the element-wise product of the matrix product ACT and the matrix B.∑

r,s

Ars(BC)rs =
∑
r,s

(ACT)rsBrs (A.9)

The previous lemma holds for all matrices A of size [a,b], B of size [a,c] and C of size [c,b].
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Proof: ∑
r,s

(ACT)rsBrs =
∑
rsq

A(r, q)C(s, q)B(r, s) (A.10)

=
∑
rsq

A(r, q)B(r, s)C(s, q) (A.11)

=
∑
rq

Arq (BC)rq . (A.12)

Appendix A.2. Terms depending on the sensitivity of the total dynamic stiffness matrix
The first term of the derivative, i.e. the part that depends on the sensitivity ∂Dtot

∂xj
, can be elaborated using the

properties of the derivative of the inverse of a matrix [32] as(
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with

A := Im (D′dir2) , B := −D−1
tot
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and C := D−1
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This can be elaborated as (
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Using Property (A.9), the sensitivity becomes(
∂η12

∂xj

)
1

=
2

πωn1

∑
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(ACT)rsBrs + (AC)rsconj(B)rs. (A.20)

The conjugate transpose CH is equal to C since (D̃′dir1)H = D̃′dir1 because D′dir1 is a symmetric matrix.

CH =
(
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Using Property (A.21),the sensitivity becomes(
∂η12

∂xj

)
1

=
2

πωn1

∑
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(ACT)rsBrs + (ACH)rsconj(B)rs. (A.22)

21



By decomposing each term of these element wise products into a real and an imaginary part, this equation becomes(
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as

Re(ACH) = ARe(CH) = ARe(CT) = Re(ACT) (A.25)

Im(ACH) = AIm(CH) = −AIm(CT) = −Im(ACT). (A.26)

By grouping terms the final result becomes(
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or alternatively, using Property (A.9)(
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Appendix A.3. Terms depending on the sensitivity of the direct field dynamic stiffness ma-
trix of subsystem 2

The direct field dynamic stiffness matrix D′dir2 is defined as

D′dir2 = φT
2Ddir2φ2 (A.30)

with φ2 the eigenvectors, used as a modal basis to describe the vibration field of the deterministic subsystem, of the
part that is in contact with the second SEA subsystem; Ddir2 is the direct field dynamic stiffness matrix of the second
SEA subsystem in terms of the physical coordinates of the deterministic subsystem.

Assuming that the design variables x are real values, the derivative of the imaginary part can be written as(
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)
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This can be written as (
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with

E := Ddir2φ2 and F :=
∂φ2

∂xj
(A.35)

The imaginary part of the matrix product can be written as the product of the imaginary and real parts as(
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Using Property (A.9), the sensitivity becomes(
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Using Property (A.21), the sensitivity becomes(
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Or alternatively, with (A.35), (
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Appendix A.4. Terms depending on the sensitivity of the direct field dynamic stiffness ma-
trix of subsystem 1

The direct field dynamic stiffness matrix D′dir1 is defined as

D′dir1 = φT
1 Ddir1φ1 (A.46)

with φ1 the eigenvectors, used as a modal basis to describe the vibration field of the deterministic subsystem, of the
part that is in contact with the first SEA subsystem; Ddir1 is the direct field dynamic stiffness matrix of the first SEA
subsystem in terms of the physical coordinates of the deterministic subsystem.
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Assuming that the design variables x are real values, the derivative of the imaginary part can be written as(
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This can be written as (
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with
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(A.50)

Using Property (A.9), the sensitivity becomes(
∂η12

∂xj

)
3

=
2

πωn1

∑
r,s

(A(D−H
tot )T)rs

(
D−1

totIm
(
JTG + GTJ

))
rs

(A.51)

=
2

πωn1

∑
r,s

(D−H
tot A

T)rs

(
Im
(
JTG + GTJ

)T
(D−1

tot)
T
)
rs

(A.52)

=
2

πωn1

∑
r,s

(D−H
tot A

TD−1
tot)rs

(
Im
(
JTG + GTJ

)T)
rs

(A.53)

=
2

πωn1

∑
r,s

Krs

(
Im
(
JTG + GTJ

))
rs

(A.54)
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The imaginary part of the matrix product can be written as the product of the imaginary and real parts as(
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Using Property (A.9), the sensitivity becomes(
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Or alternatively, with (A.50), (
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Appendix A.5. Synthesis
The following expression is found for the derivative by combining the terms (A.29), (A.45) and (A.61)
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The sensitivity of the total dynamic stiffness matrix can be further elaborated as
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