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Abstract. Fundamentally, many problems in Machine Learning are un-
derstood as some form of function approximation; given a dataset D,
learn a function fX→Y . However, this overlooks the ubiquitous prob-
lem of missing data. E.g., if afterwards an unseen instance has missing
input variables, we actually need a function fX′→Y with X ′ ⊂X to pre-
dict its label. Strategies to deal with missing data come in three kinds:
naive, probabilistic and iterative. The naive case replaces missing val-
ues with a fixed value (e.g. the mean), then uses fX→Y as if nothing
was ever missing. The probabilistic case has a generative model M of
D and uses probabilistic inference to find the most likely value of Y ,
given values for any subset of X. The iterative approach consists of a
loop: according to some model M, fill in all the missing values based
on the given ones, retrain M on the completed data and redo your pre-
dictions, until these converge. MissForest is a well-known realization of
this idea using Random Forests. In this work, we establish the connec-
tion between MissForest and MERCS (a multi-directional generalization
of Random Forests). We go on to show that under certain (realistic) con-
ditions where the retraining step in MissForest becomes a bottleneck,
MERCS (which is trained only once) offers at-par predictive performance
at a fraction of the time cost.

Keywords: Missing value imputation · Ensemble methods ·Multi-directional
models · decision trees

1 Introduction

Many machine learning methods assume there are no missing values in the data,
or missing values are relatively infrequent. Under this assumption, a variety of
techniques has been proposed to handle missing data. It is useful to maintain
a clear distinction between two cases: missing values at training time (relevant
during learning) and missing values at prediction time (making a prediction, us-
ing a given model, for an instance that lacks certain information needed by the

? Code available at github.com/eliavw/missmercs
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model). First, when missing values occur at training time, the learning proce-
dure may deal with them by ignoring all instances with missing values, ignoring
attributes that have missing values, guessing the missing value (imputation) be-
fore proceeding with the computations, or using other techniques. The second
case, missing values at prediction time, is quite a different problem: a model is
given, but the model needs information that is not available. Nevertheless, some
techniques for handling missing values during prediction resemble those for the
training phase, e.g. imputation can be used, if some model for imputation is
available.

In this paper, we focus specifically on missing values at prediction time.
There are contexts where missing values at prediction time may be much more
frequent, and possibly also more systematic, than typically assumed by many
learners. To illustrate, consider two practical examples;

– First, machine learning in industrial contexts often depends on sen-
sor data. Consider an AI-system (e.g. a predictive maintenance application)
which makes automatic decisions based upon input information coming from
sensors. When a single sensor breaks down and no longer provides infor-
mation, the AI-system needs to carry on and perform as well as possible,
although less input information is now available.

– Second, consider a common spreadsheet. Suppose a user filling in data in
a spreadsheet or a web form: ML methods exist to assist users by predicting
information to be inserted in certain cells. Ideally, these predictions use as
much as possible information filled in elsewhere, regardless of exactly which
cells are already filled in and which ones are not. So, at prediction time,
robustness with regard to missing input information is crucial.

In both cases, at prediction time we need a model M that can predict some
output variable(s) Y from input variable(s) X, so we can regard M as a func-
tion from X to Y . However, the actual input that is available for a particular
prediction often consists of values for a strict subset X ′ ⊂X. In the first exam-
ple, this is caused by malfunctioning sensors, in the second one by empty cells
in the spreadsheet. Thus, handling missing values at prediction time boils down
to the task of deriving from M : X → Y another function M′ : X ′ → Y with
X ′ ⊂X which still makes maximally accurate predictions.

In a nutshell, we propose to solve this problem as follows: use a tree-based ap-
proach such as MissForest[17], but avoid its multiple training iterations. Given
some robust prediction strategies, so-called MERCS models[20] could do just that.
So, our proposal decomposes into two research questions:

Q1 Can a MERCS model be made robust to missing values at prediction time?
Q2 How does MERCS compare against MissForest, a well-established tree-based

technique to deal with missing data?

First, section 2 pinpoints the current gap in knowledge, and thus provides
further context and motivation for our solution strategy (i.e. Q1 and Q2). On
one hand, we find MissForest[17]: a powerful tree-based approach for missing
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data, which is iterative and thus ill-suited for missing values at prediction time.
On the other hand, we find MERCS[20]: a somewhat similar, but non-iterative,
tree-based model, which currently lacks prediction strategies to deal with missing
data effectively.

Section 3 outlines our proposal to answer Q1 (how to extend the MERCS

framework with robust prediction strategies) which constitutes our algorithmic
contribution. Two key ideas matter here. First, attribute importance: this quan-
tifies the relevance of trees for a given prediction task. Second: chaining : inspired
by MissForest, MERCS can be made to use outputs of some trees as inputs for
others.

Lastly, sections 4 and 5 contain experimental evaluations of Q1 and Q2 re-
spectively. Ultimately, the answer to both Q1 and Q2 is positive: when dealing
with missing input values at prediction time, MERCS models are a viable alterna-
tive to MissForest.

2 Related Work and Background

We focus on missing value handling at prediction time: given a model M that
represents a function M : X → Y and a query-instance xq which has only val-
ues for a strict subset X ′ ⊂X, how can we still useM to predict the value of Y ?

The discussion of related work is organized into four parts, each covering
a specific approach for missing value handling. First, we consider naive ap-
proaches for handling missing values. Second, we discuss probabilistic graphical
models, which handle unobserved values so naturally that the term “missing
values handling” is typically not even used in that context. Third, we discuss
iterative approaches in general, and MissForest in particular. MissForest is
a popular tree-based technique for missing value imputation at training time.
Lastly, we discuss MERCS, another tree-based framework in some ways similar to
MissForest, but which could be more suitable in the specific case of missing
values at prediction time.

2.1 Naive Methods

A generally applicable approach is what we call naive methods: guess the missing
values. Concretely, this comes down to a one-size-fits-all strategy: simply fill in
the mean, median or mode of the variable. We call this “naive”, as it just fills
in the same value for all instances.

The advantage of this technique is its low cost, both in time and memory.
The obvious disadvantage is the limited accuracy of a naive approach. In our
context, i.e. where predictive accuracy matters, naive methods can still serve as
a baseline to compare other methods to, but nothing more.
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2.2 Probabilistic Methods

Probabilistic graphical models (PGMs), such as Bayesian networks or Markov
random fields[8, 12, 13], model the probability distribution PX over all variables.
From this distribution, any marginal distribution PX′ with X ′ ⊂ X can be
computed, as well as any conditional distribution PY |X′ with X ′,Y ⊆ X. As
the joint distribution uniquely defines all marginal and conditional distributions,
the target variable Y can be predicted from any subset X ′ that is equal to the
set of all known variables.

Their versatility is the main advantage of probabilistic methods. In a sense,
the “problem of missing values” simply does not even exist in this context: the
optimal way of handling them follows naturally from the probabilistic model
itself.

The disadvantage are the computational costs involved. Explicitly deriving
the marginal/conditional probabilities in a PGM is NP-hard in the general case.
Performing probabilistic inference in the original PGM is NP-hard too. In prac-
tice, approximate inference in the original PGM is used at prediction time, but
even that can be costly. Another issue are data-types: in practice, PGMs work
best on nominal data. Numeric data or mixtures of nominal/numeric data can
be challenging for probabilistic approaches.

2.3 Iterative Approaches

Iterative approaches[5, 18] gradually refine their imputations by means of a sim-
ple loop. First, for each variable in your dataset, you learn a predictive model,
using the other variables of the dataset as inputs. Second, you use that model to
fill in any missing values of that variable. This too, is repeated for each variable
in the dataset. Third, you repeat this entire process (both training and predic-
tion) until you reach a stopping criterion which indicates when no more progress
is being made.

MissForest[17] is a specific implementation of the aforementioned idea. In
MissForest, the underlying predictive models are Random Forests. The stopping
criterion is dual; the loop is stopped when the resulting change from iteration
i to iteration i + 1 is less then a user-defined parameter γ or when a certain
maximum number of iterations n is exceeded.

The advantages of MissForest are twofold. First, Random Forests are non-
parametric and make relatively few assumptions about the underlying data dis-
tributions. Second, they work well on both numeric and nominal data, or on
mixtures of the two. This versatility with regard to data-types is often high-
lighted[21] as the “killer-feature” which makes MissForest such an attractive
option in real-world scenarios.

The disadvantage of MissForest (or any iterative approach for that mat-
ter) is that, essentially by definition, it is geared towards missing data at training
time: this is not the problem we set out to solve. Indeed, the training phase at
each step of the iteration involves significant costs in time (i.e. you need several
training rounds) and memory (i.e. you always need to have data to train on).
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When an incomplete dataset is given, iterative approaches are perfectly equipped
to fill in the gaps introduced by the missing data. But at prediction time, when
unseen, incomplete query-instances xq come in one by one and need a predic-
tion for Y right away, this double cost of keeping a training set in memory and
retraining your model each time a new query-instance pops up, quickly becomes
a bottleneck.

2.4 MERCS

MERCS[20] is a method for learning multi-directional ensembles of decision trees.
This as opposed to classical ensembles of decision trees, which are uni-directional :
a single function fX→Y is learned that predicts some output variable(s) Y from
input variable(s) X, and it is known at training time what X and Y are. Bag-
ging[3], Random Forests[4] and Gradient Boosted Trees[7] are all examples of
methods that learn such uni-directional ensembles. In a multi-directional en-
semble, a single tree may have multiple target variables (so-called multi-target
trees), and different trees may have different sets of target variables. Such en-
sembles can be learned using a method that is quasi identical to the learning
algorithm for Random Forests: the only difference is that for each new tree
T iXi→Y i that is learned, a new set of target variables Y i is chosen. Learning
methods for MERCS models differ mostly in terms of how they choose Y i for each
tree. For instance, using one target variable per tree often gives slightly higher
accuracy for individual trees, but having many target variables in one tree can
reduce the size of the ensemble without reducing the number of trees available
for predicting a given variable. Cf. Van Wolputte et al.[20] for more details.

What is interesting here is that MERCS is somewhat similar to MissForest:
both are multi-directional ensembles of decision trees, where any variable of
the dataset can be predicted by at least one tree of the ensemble. But whereas
MissForest was originally conceived to do missing value imputation in a given
dataset, MERCS was not. MERCS originated as a fast, tree-based alternative to
PGMs: learn a model M from dataset D.

This begs the question: could MERCS, like MissForest, become a powerful tool
for missing value imputation? We believe it does. The advantages of MERCS

in this context are twofold. First, like probabilistic approaches, MERCS learns
a model M from training data D. Afterwards, there is no need to keep this
training data around, all the necessary knowledge is encoded in the model itself.
As a consequence, MERCS would be particularly interesting for missing value
imputation at prediction time, a regime where iterative approaches struggle.
Second, like MissForest, MERCS is a tree-based approach, which means a.o. that
MERCS can also deal with (mixtures of) nominal and numeric variables.

At this point, the main disadvantage is that it remains unclear whether
MERCS can handle missing values effectively. In order to be proficient in such a
regime, MERCS needs a prediction strategy which is robust to missing data: given
an unseen instance xq, MERCS should still able to do a high quality prediction for
the value of Y , even if xq has some missing values. How to achieve this will be
the topic of section 3.
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(a) A Random Forest (Eq. 1)[4]. The in-
put attributes Xi of the component trees
T i
Xi→Y are random subsets of A \ Y .
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(b) MERCS (Eq. 2) [20]. MERCS generalizes
Random Forests and also selects output
attributes Y i at random.

Fig. 1: Random Forests and MERCS. Attributes Aj ∈ A are depicted as lines
annotated with their respective indices j. A decision tree,T iXi→Y i , is depicted
as a box connecting its input (Xi) to its output (Y i) attributes.

3 Robust Prediction Strategies for MERCS

This section outlines our answer to research question Q1: how to make the MERCS
framework robust to missing values at prediction time. The motivation behind
this approach is explained in section 2, whereas the experimental evaluation
happens in section 4.

In the following, we use T i (i = 1 . . . k) to denote the different trees in the
modelM. Xi refers to the set of input attributes used by tree T i, and Y i to the
set of output (or target) attributes of T i. Similarly, we use qI→O to denote a
particular prediction task or query, where I denotes the set of attributes whose
value is given (i.e. input attributes of qI→O) and O the set of attributes to be
predicted (i.e. output attributes of qI→O). Furthermore, A simply refers to the
set of all the attributes of a given dataset D.

Take a Random Forest (Fig. 1a),

RF (X,Y ) = {T iXi→Y |X
i ⊂ A \ Y }, (1)

and introduce randomness in the target attributes. In this way, RF (X,Y )
generalizes to a multi-directional ensemble of decision trees, or a MERCS model
(Fig. 1b),

M(A) = {T iXi→Y i |Xi,Y i ⊂ A, Xi ∩ Y i = ∅}. (2)

Now, to answer an arbitrary query qI→O a MERCS model needs a prediction
strategy. This has two reasons. First, note that qI→O is not known at training
time, and second, learning a dedicated decision tree for every possible qI→O is
simply not feasible. Thus, this prediction strategy decides how to optimally use
the available T i, present in the MERCS model (Eq. 2), to answer any incoming
qI→O as accurately as possible.

Rather than a single prediction strategy, we define a naive baseline and
three, increasingly complex, strategies. These subdivide into two groups. First,
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single-layer strategies, where attribute importance quantifies the relevance of
T i for a given prediction task qI→O. Second, multi-layer strategies that, like
MissForest, use chaining : take the prediction of one tree T i as the input for
another tree T j .

3.1 Attribute Importance and Single-Layer Prediction Strategies

Assume that for a given tree T i, only some of its input attributes Xi are known.
The more inputs are missing, the less accurate we expect the predictions of T i

to be. But not all attributes in Xi are equally important for the prediction. One
way to measure this is attribute importance[10]:

I(Aj , T
i) ∝

∑
{a(τ)=Aj}

p(τ)∆i(τ) (3)

where τ ranges over all nodes of the tree, p(τ) is the proportion of instances sorted
into τ , a(τ) is the attribute tested at τ , and ∆i(τ) is the expected reduction
of impurity achieved by that node. So, the attribute importance I(Aj , T

i) is
essentially the normalized sum of the impurity decreases achieved by splitting
on attribute Aj .

Consider a query qI→O, meaning that attributes I are given. The less im-
portant the missing input attributes (Xi \I) of T i are, the more accurate T i

likely is. Therefore, we use the sum of importances of the known attributes (I)
to quantify the relevance of T i to make predictions in this context.

We call this sum the input relevance of T i for a set of given attributes I:

IR(T i, I) =
∑

Aj∈Xi∩I

I(Aj , T
i). (4)

Now that we have established the notion of input relevance, we define our two
single-layer strategies. We distinguish between a naive Random Forest baseline
(RF-prediction) and MRAI-prediction which does exploit input relevance.

Random Forest (baseline) The most basic strategy is as follows: each T i that
predicts some attributes in O, that is, Yi∩O 6= ∅, is regarded as equally relevant.
M’s prediction of an individual target attribute is obtained by aggregating the
predictions of all T i in M that predict that attribute. A standard aggregation
(majority vote, mean, . . .) is used, without taking input relevance into account.
(Fig. 2a)

MRAI-prediction A second strategy, MRAI-prediction3, does take input rel-
evance into account. T i is considered relevant if Yi ∩O 6= ∅ and IR(T i, I) ≥ θ,
for some threshold θ. That is, trees that rely too strongly on attributes whose
values are missing are not included in the set of predictors. (Fig. 2b)

3 MRAI stands for most relevant attribute importance.
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(a) RF-prediction. Selects all T i
Xi→Y i
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(b) MRAI-prediction. Selects only the
most relevant trees, based on their input
relevance (Eq. 4), which takes into ac-
count attribute importance (Eq. 3).

Fig. 2: RF-prediction (baseline) and MRAI-prediction build an ad hoc ensemble
of relevant trees. A naive fallback procedure (depicted as red triangle) takes care
of missing inputs if necessary. Attribute importances are indicated in gray.

MRAI-prediction can be understood as a refinement of the MA-prediction
strategy introduced in Van Wolputte et al.[20] This MA-prediction essentially is
MRAI-prediction minus attribute importance: each attribute is deemed equally
important. Preliminary experiments revealed MRAI-prediction to consistently
outperform MA-prediction. Therefore, the old MA-prediction strategy is omitted
from subsequent experiments in favor of its superior cousin: the novel MRAI-
prediction strategy.

3.2 Chaining and Multi-Layer Prediction Strategies

Assume Y i ∩ O 6= ∅ for some tree T i, but IR(T i, I) < θ. Now, if more input
attributes of T i had been known, IR(T i, I) might have met the threshold θ. In
fact, this can readily be achieved. After all, a MERCS model is multi-directional
and thus contains at least one predictor for each attribute. Concretely, we can
make T i meet this threshold θ by predicting some of its missing input attributes
(Xi \ I), using other trees T j with Y j ∩ (Xi \ I). Afterwards, we treat these
predictions of T j as known values. To decide which T j to use, we can use exactly
the same criterion as we did before: T j is a suitable predictor if it predicts some
of the missing input attributes of T i and if IR(T j , I) > θ. If some of T j ’s input
attributes are missing, the same procedure can be repeated.

This principle is known as chaining [14]. In our multi-layer algorithms, chain-
ing is exploited in two different manners: bottom-up and top-down. Conse-
quently, we distinguish between BU-prediction and TD-prediction respectively.

BU-prediction The BU-prediction strategy is a recursive application of MRAI-
prediction. It works in a bottom-up fashion: we keep a set of known attributes
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(b) TD-prediction. Builds a chain of
relevant T i, the probability of includ-
ing a model (Eq. 6) is proportional to
IR(T i, I). Repeated application of this
idea yields an ensemble of chains to pre-
dict O.

Fig. 3: BU-prediction and TD-prediction use chaining.

K, whose initial value is I. For each T i with IR(T i,K) > θ, add the variables
in Y i to K. That concludes one step. Repeat this until O ⊆K. (Fig. 3a)

If, at a given step, the threshold θ is set too high, there may not be any trees
with a sufficiently high input relevance. This means no progress is made and the
procedure ends with O 6⊆K. In order to make progress, simply repeat that step
with a lower value for θ, and proceed.

TD-prediction TD-prediction exploits the MRAI-principle in a top-down man-
ner. Rather than extending a set of known attributes K until it covers O (as
BD-prediction does), TD-prediction starts from the output attributes O instead.

First, we define a set of unknown attributes of interest U , whose initial value
is O. Then, take the subset of trees which predict at least one attribute in U ,

C = {T iXi→Y i |Y i ∩U 6= ∅} (5)

and continue by defining a probability distribution,

p(i) =
IR(T i, I)∑

T i∈C IR(T i, I)
, (6)

which assigns to each T i ∈ C a probability proportional to IR(T i, I). Using p,
we can randomly choose a tree T j such that more suitable trees are more likely
to get chosen. This concludes one step.
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For the next step, first adjust U accordingly, i.e. U = Xj \ I. That means
that U now contains the missing input attributes of the tree T j selected in the
previous step. Repeat the procedure from the definition of C on. (Fig. 3b)

Essentially, this procedure does a random walk through the random forest.
Starting from U = O, it randomly chooses a tree T i that predicts (part of) O;
more suitable trees are more likely to get chosen. If that tree has missing inputs,
choose a tree that predicts some of those inputs. Keep repeating this up to some
maximum depth or until there are no missing inputs left. As the TD-procedure
is randomized, it can be repeated multiple times. Each time, a different path
through the random forest is followed.

It is instructive to compare BU-prediction and TD-prediction by viewing
them as searches through a graph. Let G be a bipartite graph with nodes being
attributes and trees; trees have incoming edges from their input attributes and
outgoing edges to their output attributes. BU constructs a subgraph of G that
connects I to O using only tree nodes whose IR is above some threshold. TD is
a randomized search for paths that end in O but may begin at any point, and
tends to contain tree nodes with high IR. Neither BU nor TD entirely avoid the
use of external procedures for missing value imputation. BU only avoids them
when θ = 1 leads to a solution. TD only avoids them on paths where each tree
happens to predict all the missing inputs of the tree that comes behind it in the
path.

4 Comparison of Prediction Strategies in MERCS

This experiment is set up to answer our first research question Q1: how to
make the MERCS framework robust to missing values at prediction time? Here,
we compare all the prediction strategies for MERCS we introduced in section 3,
across different degrees of missing data. This allows us to see which prediction
strategies are actually robust to missing data at prediction time. As an external
baseline, we also add a PGM.

Datasets Our experiments use a standard benchmark suite4 of 28 real-world
datasets. Our focus on multi-directionality requires adequate datasets in the
sense that it should be possible to think of several potentially interesting pre-
diction tasks. Prior appearance in studies on structure learning[9], make this
benchmark a natural fit for our current setting. Lastly, PGMs are less flexible
with regard to data-types (cf. section 2), but in this benchmark, that will not
be an issue, since all variables in these datasets are binary.

Methodology For each dataset, we train both a MERCS model and a PGM.
For PGMs, we rely on the SMILE-engine5 for structure learning and inference.

4 Cf. github.com/UCLA-StarAI/Density-Estimation-Datasets and [1, 11, 19]
5 The SMILE-engine is a part of the powerful and widely used BayesFusion system, cf.
bayesfusion.com/publications.
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For structure learning, we use the greedy thick thinning algorithm. For inference,
we use the approximate EPIS-sampling algorithm. In MERCS, trees are randomly
assigned 60% of attributes as inputs, 2 output attributes and are limited to a
maximum depth of 16. We ensure each attribute occurs 4 times as an output
attribute, meaning we have 2m trees in total, m being the amount of attributes
in the dataset. The Random Forest baseline, essentially MERCS with a trivial
prediction strategy, uses the exact same trees to ensure consistency.

To see the effect of missing input attributes on performance, we consider an
extensive set of queries qI→O. For each dataset, we randomly pick 10 output
attributes. For each of those, we build a series of 10 increasingly difficult queries;
the first one has no missing input attributes, and in each consecutive query of
the series, we omit (at random) an additional 10% of its input attributes. In the
end, this amounts to 2800 distinct prediction tasks.

Evaluation Criteria For predictive performance, we look at F1-score[6, 15] on
a test set. The random selection of output attributes (O) in our queries qI→O

means we cannot exclude very unbalanced targets. For these, high predictive
accuracy is meaningless. F1-score is not susceptible to this kind of effect[16] and
therefore more suitable for our needs. For runtime, we report prediction times,
relative to the PGM-baseline.

Results BU-prediction is the most robust prediction strategy in MERCS (Fig. 4a).
When less than half of the inputs is missing, PGMs exhibit lower predictive
performance than MERCS. MRAI-prediction outperforms the naive Random For-
est baseline (RF), indicating that input relevance (Eq. 4) works, and conse-
quently that attribute importance (Eq. 3) is a useful heuristic. In its turn,
BU-prediction improves upon MRAI, showing that chaining indeed improves
robustness. However, TD-prediction does not, and additionally is much slower
than BU-prediction (Fig. 4b), which indicates that bottom-up chaining is rec-
ommended.

In terms of runtime, note that roughly speaking, all prediction strategies in
MERCS do offer order(s) of magnitude of speedup over PGMs (Fig. 4b) across the
board. PGMs rely on probabilistic inference. This makes them very robust to
missing values, but also comes at a significant overhead in prediction time.

5 MERCS vs. MissForest

This experiment is set up to answer the second research question Q2: how does
MERCS compare to MissForest? Concretely, we try to evaluate whether MERCS

can succeed where MissForest struggles, namely when missing values are only
introduced at prediction time. We expect MissForest to experience a bottleneck,
since it its iterative nature requires retraining for each new query-instance qk.
The question is whether MERCS, can offer similar predictive performance, without
the need to retrain.
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Fig. 4: Avg. F1-scores, and relative prediction times of all prediction strategies.
When at least half the inputs are given and prediction time matters, MERCS (and
in particular, BU-prediction) works.

Datasets This experiment uses a curated benchmark suite of classification
problems, known as OpenML-CC18[2]. Here, we are interested not so much in
the multi-directional aspect (as in section 4), but really on our core problem:
handling missing values at prediction time. Therefore, this benchmark, with
well-defined (categorical) target variables, is ideally suited.

Methodology Each dataset is divided into a train set and a test set. This divi-
sion is already defined in the OpenML-CC18 itself, which enhances reproducibility.
Now, since we are interested in how MERCS and MissForest handle missing val-
ues at prediction time, we use the test set to generate query-instances xq. This
happens as follows: from the test set, take an instance x. From this instance
x, omit a fixed number input variables at random (i.e. make those missing).
This defines a query-instance xq. This is repeated 100 times, yielding 100 query-
instances per dataset. The pattern of which attributes are missing can vary from
instance to instance.

Both for MERCS and MissForest the goal is, given a query-instance xq, predict
the value of its output attribute Y .

In the case of MissForest, we add the query-instance xq to the entire training
set, and run the MissForest algorithm on all these instances. Since the target
variable of the query-instance is unknown and therefore missing, it will also be
imputed. For each query-instance, this loop has to be repeated in full.

In the case of MERCS, we can clearly distinguish between a training phase and
a testing phase. First, we train a MERCS model M on the training set. Second,
given a query-instance xq, we can askM to predict the target variable Y , from
the non-missing input variables. We can repeat this for all 100 query-instances,
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Fig. 5: MERCS vs. MissForest.

without the need of retraining. We use the BU-prediction strategy, since it is the
most robust to missing values (cf. section 3 and Fig. 4).

Evaluation Criteria Our primary interest here is to determine of either MERCS
or MissForest is clearly superior to its competitor, and if so, at which cost.
Since we are dealing with classification problems, a prediction for a single query-
instance is either correct or incorrect. Thus, if approach A is correct and approach
B is incorrect, that constitutes a win for approach A on that query-instance (and
vice-versa a loss for approach B). If both approaches are (in)correct, that con-
stitutes a draw. In terms of cost, we simply measure prediction times, averaged
across queries.

Results In terms of predictive performance, it is clear from the amount of
draws (Fig. 5a) that in the overwhelming majority of queries and datasets, it
really does not matter whether you choose MERCS or MissForest. Both predict
the same value in the large majority of cases, and when they differ, each is about
equally likely to win, taken over all datasets.

In terms of runtime, although the robust BU-prediction strategy in MERCS

is slower than the naive Random Forest baseline (Fig. 4b), it still entails a
significant speedup (up to 3 orders of magnitude in some cases) over MissForest
(Fig. 5b), across all datasets.

6 Conclusions

To conclude, let us simply answer our original two research questions, Q1 and
Q2.
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6.1 Q1: How to make MERCS robust to missing values at prediction
time?

In section 3, we extend the original MERCS framework with three new prediction
strategies: MRAI, BU and TD. All of these rely on attribute importance (Eq. 3)
to select the most relevant trees for the task at hand. Additionally, BU and
TD make use of chaining : the outputs of one decision tree can serve as inputs
for another one. In section 4, these proposed prediction strategies are compared
experimentally.

The answer to Q1 (and consequently, our contribution to the original MERCS-
framework[20]) is that both attribute importance and chaining can improve ro-
bustness, and BU-prediction is found to be the best strategy (Fig. 4a) for MERCS.
Additionally, the computational costs associated with the BU-prediction strat-
egy are acceptable. (Fig. 4b)

6.2 Q2: How does MERCS compare against MissForest?

In section 2, we made the argument that MERCS would make an interesting re-
placement for MissForest when dealing with missing values at prediction time.
The reason being that an iterative approach such as MissForest is really geared
towards dealing with the missing value problem at training time, since the iter-
ative procedure requires multiple training rounds. Of course, this first required
MERCS itself to be somewhat robust against missing values, which was dealt with
in research question Q1. What remains is to see whether MERCS can actually
improve upon MissForest.

The answer to Q2 is that, when query-instances xq come in one by one,
MERCS improves upon MissForest. In terms of predictive performance, both
approaches yield similar results (Fig. 5a). But, in terms of runtime, MERCS is
orders of magnitude faster than MissForest (Fig. 5b). The iterative nature of
MissForest makes it particularly ill-suited to tackle missing data at prediction
time: it needs to retrain for each query-instance. MERCS, which never needs to
retrain, is thus orders of magnitude faster when these query-instances come in
one by one. (Fig. 5b)
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