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Abstract. A rule set is a type of classifier that, given attributes X, pre-
dicts a target Y . Its main advantage over other types of classifiers is its
simplicity and interpretability. A practical challenge is that the end user
of a rule set does not always know in advance which target will need to be
predicted. One way to deal with this is to learn a multi-directional rule
set, which can predict any attribute from all others. An individual rule
in such a multi-directional rule set can have multiple targets in its head,
and thus be used to predict any one of these. Compared to the naive
approach of learning one rule set for each possible target and merging
them, a multi-directional rule set containing multi-target rules is poten-
tially smaller and more interpretable. Training a multi-directional rule
set involves two key steps: generating candidate rules and selecting rules.
However, the best way to tackle these steps remains an open question. In
this paper, we investigate the effect of using Random Forests as candidate
rule generators and propose two new approaches for selecting rules with
multi-target heads: MIDS, a generalization of the recent single-target
IDS approach, and RR, a new simple algorithm focusing only on predic-
tive performance. Our experiments indicate that (1) using multi-target
rules leads to smaller rule sets with a similar predictive performance,
(2) using Forest-derived rules instead of association rules leads to rule
sets of similar quality, and (3) RR outperforms MIDS, underlining the
usefulness of simple selection objectives.

Keywords: Rule learning· Multi-directional models· Association rule
mining· Decision trees

1 Introduction

Rule sets are classifiers predicting one target Y given attributes X. Their pop-
ularity stems from their simplicity and interpretability. A problem in practice
is that a rule set’s user might not know during training which attribute needs
to be predicted. Examples of such cases are missing value imputation, where
there are gaps in the data, or anomaly detection, where a value of a suspicious
instance might be compared with a value representative of the training data. In
such cases, the user would need to learn a separate rule set for each attribute.
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Learning one rule set per attribute negatively impacts the collective inter-
pretability, as the bodies of rules predicting correlated targets cannot be shared.
If rules could predict multiple targets, the rule sets (1) might be more inter-
pretable by using fewer rules (as a single rule can predict multiple targets at
once (Sec. 3.2)), and (2) might explicate correlations between different targets.

While using multi-target rules might help, current rule set algorithms se-
lecting a subset of rules Rsel out of a candidate rule set Rcand only work with
single-target rules. To work with multi-target rules, they would need to simul-
taneously optimize the predictive performance for multiple targets.

Another problem is that as the candidate rule set Rcand typically consists of
association rules, the user must set a confidence and support threshold in advance
without knowing what the size or quality of the resulting rule set will be. Too low
thresholds cause Rcand to become too large, potentially making both the rule
set generation and rule set selection intractable. Too high thresholds may result
in a small Rcand limiting the number of rules that can be selected, which might
result in an selected subset Rsel of lesser quality. As association rule mining is
often very sensitive to these thresholds, a small change in value might lead to
candidate sets of widely varying sizes.

In summary, current rule set methods based on selecting a subset of candidate
rules have the following problems: (1) they require the user to specify the target
in advance, (2) they cannot select multi-target rules, and (3) they often use
association rules, which are difficult to control in number and quality.

To address these problems, this paper investigates how to learn a multi-
directional rule set able to predict any attribute given all other attributes, thus
no longer requiring the user to specify the target in advance. We propose two
multi-target rule selection approaches: a generalization of Interpretable Decision
Sets (IDS) [11], and RR, a new algorithm focusing only on selecting a rule set
with a high predictive performance for all targets. Finally, we propose to derive
rule sets from Random Forests, as the number and size of trees in a Random
Forest is easy to control, and they are learned to do prediction. Our experiments
indicate that (1) using multi-target rules leads to smaller rule sets with a similar
predictive performance, (2) using tree rules instead of association rules leads
to rule sets of similar quality, and (3) RR outperforms MIDS, underlining the
usefulness of simple selection objectives.

The rest of this paper is structured as follows. After Section 2 provides ref-
erences to related work, Sections 3 and 4 introduce the predictive settings, rule
(set) representations and rule generation approaches used in this paper. Sec-
tions 5 and 6 describe RR and MIDS. An experimental evaluation is provided
in Section 7, after which Section 8 gives a conclusion.

2 Related work

Rule learning [5] can be divided into (1) predictive approaches for building clas-
sifiers, and (2) descriptive approaches for discover interesting patterns in data
in the form of rules. These two groups are bridged by the LeGo framework [6],
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of which associative classifiers [12,2] are a prototypical instantiation. Associative
classifiers are typically learned in three stages [6]. First, a set of candidate rules
Rcand is mined from data [1]. Second, a subset of those rules Rsel ⊆ Rcand is
selected which optimizes some rule set objective. Third, the selected rules are
combined to form a classifier. Different candidate rule generation and rule se-
lection approaches can be combined, as they are often independent. CBA [12]
is one of the oldest and best-known associative classifiers, selecting association
rules based on their confidence. In this paper, we propose two multi-directional
associative classifiers: MIDS and RR. MIDS generalizes the recent IDS [11] to
support multi-target rules. RR is a a new algorithm. However, other multi-target
classifiers exist [15]. Predictive clustering rules [16] is a coverage-based multi-
target rule learning approach keeping a clear separation between descriptive and
target attributes. Other examples are PGMs [10], which use a graph structure
instead of logical rules, and MERCS [14] models, which use decision trees.

3 Preliminaries

In this section, we first introduce the single-target and multi-directional predic-
tion settings used in this paper. Second, we define the representation of rules
and rule sets. Third, we point out the necessity of tie-breaking strategies and
default predictions in associative classification.

3.1 Predictive settings

In the single-target setting, a learned model predicts a designated target at-
tribute Y from m descriptive attributes Xj ∈ X. Here, the training data D =
{(xi, yi)}Ni=1 contains N attribute-value examples. In a multi-directional setting,
the target is not known in advance: the learned model must be able to predict
any attribute given all other attributes. Here, the training set D = {xi}Ni=1

has m attributes Xj and no distinction is made between descriptive and target
attributes. The value of attribute Xj for datapoint x is x[Xj ].

3.2 Rule set representations

This paper considers rules of the form:

r = body(r)→ head(r) = b1 ∧ · · · ∧ brb → h1 ∧ · · · ∧ hrh
where each hi and bi is of the form (Xj , operator, value). Abusing notation,
head(r) and body(r) denote both the set and conjunction of those literals, and
length(r) = |head(r)| + |body(r)| denotes the length of rule r. Using attr to de-
note the attributes in a head or body, attr(head(r))∩attr(body(r)) = ∅, and both
head(r) and body(r) are not empty. A rule is single-target if |head(r)| = 1 and
otherwise it is multi-target. All literals in the head use equality as the operator.

A single-target rule set consist of only single-target rules, but a multi-directional
rule set may consist of either single-target rules (with different rules predicting
different targets) or multi-target rules (where a single rule can predict multiple
targets at once).
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3.3 Tie breaking functions and default predictions

As the rules of an associative classifier might overlap, an instance might be
covered by multiple rules. As a result, a tie-breaking strategy is necessary to get
a single prediction. Different strategies exist, such as (weighted) voting, or only
using the rule with the highest F1-score. Also, as the rules might not cover the
whole instance space, a default prediction is necessary when no rule applies. A
common choice is the attribute’s mode in the training data.

4 Rule generation

In this paper, a candidate rule set is generated with either association rule mining
or decision tree ensembles. To mine association rules, each example x ∈ D is
transformed into a transaction containing m items of the form ‘Xj = vj ’ with vj
in the domain of Xj (vj ∈ dom(Xj)), on which frequent itemset mining can be
used. As this requires categorical attributes, numerical attributes are discretized.

To derive a rule set from a tree ensemble, each tree is converted into its
corresponding rule set [13]. Each rule corresponds to a path in a decision tree
from the root to a leaf node. The rule’s body consists of the tests in the inner
nodes, while its head consists of the predictions in the leaf node.

5 RR: a simple multi-target rule selection approach

This section proposes RR, a new algorithm that greedily selects multi-target
rules from a candidate rule set. RR is purely based on maximizing the predictive
performance of the resulting classifier.

Algorithm 1 outlines RR, which iteratively selects a rule increasing the F1-
score of one target while limiting a possible score decrease on the other targets.
Its input is a multi-target candidate rule set Rcand. It starts with an empty set
initial classifier Rsel. RR adds rules to Rsel by selecting one rule at a time from
Rcand \Rsel. To select rules, the algorithm loops over the target attributes in a
round-robin fashion (thus the name RR), focusing on each target in turn. When
focusing on a target attribute Xj , RR must select a rule rsel that increases the
F1-score of the complete rule set Rsel for Xj . However, selecting a multi-target
rule changes the F1-scores for all targets in the head of that rule. That is, adding
a rule increasing the F1-score of the current target Xj might decrease the F1-
scores of other targets Xo 6= Xj . To deal with this, RR first finds the rule rbest
that if added toRsel results in the largest F1-score increase for the current target
Xj . Second, it finds all rules RXj ,δ that, when individually added to Rsel, result
in a F1-score that differs by at most δ from the F1-score for Rsel ∪{rbest} when
predicting the current target Xj . Third, RR selects the rule from RXj ,δ that
decreases the F1-scores on the other targets the least. That is, δ allows trading
off selecting the better rule for the current target with the ‘damage’ done to
other targets. RR stops if no rule can be found that increases the F1-score of
Rsel on any target Xt by at least ε, to prevent overfitting. At the end, Rsel
contains the rules to be used as classifier.
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Algorithm 1 Round-Robin (RR). Note: R+ r is short for R∪ {r}.
Require:
Rcand, the candidate rule set.
ε, the minimally required increase in F1-score when adding a rule.
δ, the maximum distance a rule can be to the best rule to be considered.
scorei(R), the F1-score of rule set R for attribute Xi on the training data.

1: procedure round robin
2: Rsel ← ∅
3: while ∃ target Xt : select rule for(Xt, Rsel) 6= None do
4: Xj ← the next target in a round-robin fashion.
5: rsel ← select rule for(Xj , Rsel)
6: if rsel 6= None then
7: Rsel ←Rsel + rsel
8: return Rsel
9: procedure select rule for(target Xj , Rsel)

10: RXj ←
{
r ∈ Rcand \ Rsel | Xj ∈ head(r)∧

scorej(Rsel + r)− scorej(Rsel) > ε
}

11: if RXj == ∅ then
12: return None
13: else
14: rbest ← arg max

r∈RXj

scorej(Rsel + r)

15: RXj ,δ ←
{
r ∈ RXj | scorej(Rsel + rbest)− scorej(Rsel + r) < δ

}
16: rsel ← arg max

r∈RXj,δ

(
min

Xo∈head(r)\Xj
scoreo(Rsel + r)− scoreo(Rsel))

)
17: return rsel

6 MIDS: Multi-target IDS

As a second multi-target rule selection approach, we propose Multi-target Inter-
pretable Decision Sets (MIDS), a generalization of Interpretable Decision Sets
(IDS) [11]. We choose IDS as it is a recent single-target approach offering a high
predictive performance and interpretability with a small rule set size. Section 6.1
introduces IDS on a high level. In Section 6.2, we generalize the IDS objective
function to support multi-target rules.

6.1 IDS: (Single-Target) Interpretable Decision Sets

First, IDS specifies to generate a candidate association rule setRcand using Apri-
ori, which we substitute for the more efficient FP-growth [7]. Second, IDS selects
a subset Rsel ⊆ Rcand that (locally) maximizes an objective function f(R). The
objective function is a weighted sum of several heuristics fi indicating the rule
set quality, such as the predictive performance, the size and the interpretability
of the rule set:

Rsel = arg max
R⊆Rcand

f(R) = arg max
R⊆Rcand

7∑
i=1

λifi(R) (1)
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Section 6.2 explains the different sub-objectives fi and how we generalize them
to support multi-target rules.

The final subset Rsel is used for classification. IDS suggests using the rule
with the highest F1-score as a tie-breaking strategy and to predict the majority
class label in the training data as default prediction. However, the user is free
to choose other tie-breaking and default prediction strategies.

Unconstrained submodular maximization Finding the best subset Rsel ⊆
Rcand that maximizes some objective function f (Eq. 1) corresponds to a combi-
natorial optimization problem. By formulating f as a non-negative non-normal
unconstrained submodular maximization problem, a general algorithm for this
problem type can be used for IDS. However, as maximizing an unconstrained
submodular function is NP-hard [4], polynomial algorithms only guarantee to
find a local optimum. Originally, IDS [11] specified to use the Smooth Local
Search (SLS) algorithm [4]. However, as using SLS with IDS can be prohibitively
slow [8], we choose to use the more recent Randomized Double Greedy Search
algorithm [3], which is considerably faster and has better theoretical guarantees.

6.2 From IDS to MIDS: adding support for multi-target rules

To select a rule setRsel ⊆ Rcand, IDS maximizes an objective function composed
of 7 sub-objectives (see Eq. 1). The sub-objectives can be loosely divided into
four groups, quantifying different aspects of a rule set R. The first group focuses
on rule set conciseness, the second on non-overlapping decision boundaries, the
third on explaining as many attribute-values as possible, while the fourth group
focuses on making accurate predictions. To trade off the importance of each of
these aspects, the original work suggests that the weights λi can either be set
by the user or be found using coordinate ascent.

Next, we modify the IDS sub-objectives in two ways3: we add (1) normal-
ization and (2) support for multi-target rules. First, we normalize each of the
sub-objectives to be in the interval [0, 1]. While the sub-objectives of the original
IDS are non-negative, they do not have a clear upper bound. This might result in
some sub-objectives dominating over others, but it also makes it difficult for the
user to choose weights λi. When compared to the original specification, our nor-
malization corresponds to multiplying the weight λi with a constant dependent
on the candidate rule set Rcand.

Second, we modify the IDS sub-objectives to support multi-target rules.
Our generalization collapses to the original formulation when using single-target
rules. To stay close to the original IDS specification, we do not further modify
the sub-objectives, but indicate possible improvements as footnotes.

3 Note that while IDS specifies it uses association rules, no modifications are necessary
to support rules derived from decision trees. Any rule type for which the coverage
and overlap can be calculated is supported.
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Rule set conciseness The first two sub-objectives f1 and f2 directly corre-
spond to those of IDS, apart from the normalization. The first minimizes the
number of rules selected from the candidate rule set, while the second minimizes
the total number of literals in the rule set4:

f1(R) = 1− |R|
|Rcand|

f2(R) = 1− 1

Lmax · |Rcand|
∑
r∈R

length(r)

Lmax = max
r∈Rcand

length(r)

Non-overlapping decision boundaries Two IDS sub-objectives f3 and f4
minimize the overlap of rules predicting a value for its target attribute Y . IDS
assumes that a rule set with lower overlap is easier interpret, as fewer rules make
predictions for a given example. While rule overlap in IDS is implicitly relative
to its single target, we generalize the definition of rule overlap to be relative to
a given target attribute Xj .

We define two rules r1, r2 to overlap relative to an attribute Xj if they share
a covered example and both predict a value for attribute Xj :

cover(r) = {x ∈ D | x |= body(r)}

overlapj(r1, r2) =

{
cover(r1) ∩ cover(r2) if Xj ∈ attr(head(r1)) ∩ attr(head(r2))

∅ if Xj 6∈ attr(head(r1)) ∩ attr(head(r2))

The goal of f3 is to minimize the overlap of rules predicting the same value for
a given target attribute. To generalize this to the multi-target case, we average
over them different targets, normalizing each contribution. Following the original
IDS, N · |Rcand,Xj |2 is used as a simple upper bound for the maximal overlap
relative to an attribute Xj given a training set of N instances5:

f3(R) =
1

m

m∑
j=1

[
1− 1

N · |Rcand,Xj |2
∑

rk,rl∈R
k<l

(Xj=ck)∈head(rk)
(Xj=cl)∈head(rl)

ck=cl

|overlapj(rk, rl)|
]

Rcand,Xj = {r ∈ Rcand | Xj ∈ attr(head(r))}

Sub-objective f4 minimizes the overlap of rules predicting a different value
for a given target attribute, which corresponds to substituting ck = cl by ck 6= cl
when filtering the sum in the formulation of f3 above.

4 A better denominator is to use
∑
r∈Rcand

length(r) instead of Lmax · |Rcand|.
5 A stricter upper bound is N

2
· |Rcand,Xj | · (|Rcand,Xj | − 1).
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Predicting all attribute-values IDS sub-objective f5 formulates the assump-
tion that a user wants for each value c in a target’s domain dom(Y ) at least one
rule that explains it. We generalize this for multi-target rules by averaging the
normalized contributions for each different target:

f5(R) =
1

m

m∑
j=1

1

|dom(Xj)|
∑

c′∈dom(Xj )

1

[
∃r ∈ R | (Xj = c′) ∈ head(r)

]

Predictive performance Two sub-objectives focus on the predictive perfor-
mance of the rule set. To generalize these objectives to a multi-directional set-
ting, we first define the (in)correct coverage of a rule as the set of (in)correctly
classified examples relative to a given target attribute:

correct-coverj(r) = {x ∈ cover(r) | (Xj = cj) ∈ head(r) and x[Xj ] = cj}
incorrect-coverj(r) = {x ∈ cover(r) | (Xj = cj) ∈ head(r) and x[Xj ] 6= cj}

Sub-objective f6 prefers rules predicting few examples incorrectly. Its generaliza-
tion to the multi-directional setting averages the number of mistakes each rule
makes over that rule’s target attributes:

f6(R) = 1− 1

N · |Rcand|
∑
r∈R

avg-incorrect-cover-size(r)

avg-incorrect-cover-size(r) =
1

|attr(head(r))|
∑

Xj∈attr(head(r))

|incorrect-coverj(r)|

Sub-objective f7 focuses on each attribute-value of each instance being correctly
predicted by at least one rule:

f7(R) =
1

N ·m
∑
x∈D

m∑
j=1

1

[
|{r ∈ R | x ∈ correct-coverj(r)}| ≥ 1

]

7 Experimental evaluation

In this section, we use two questions to experimentally investigate whether our
proposed rule generation and rule selection approaches can lead to better rule
models than using single-target association rules.

First, (Q1) “do tree rules lead to better models than association rules?”
To answer this, we compare association rules with tree rules in a single-target
prediction setting using IDS as the single-target rule selection approach.

Second, (Q2) “does learning a multi-directional model from multi-target
rules have advantages over using a collection of single-target rule models?” To
answer this, we compare single-target and multi-target tree-derived rules in a
multi-directional prediction setting using three rule selection methods: IDS for
the single-target rules, RR and MIDS for the multi-target rules.

Our Python code is available on GitHub.6

6 https://github.com/joschout/Multi-Directional-Rule-Set-Learning

https://github.com/joschout/Multi-Directional-Rule-Set-Learning


Multi-Directional Rule Set Learning 9

7.1 General methodology

We use 7 UCI datasets, provided in discretized form by the arcBench bench-
marking suite [9]: iris, diabetes, glass, segment, breast-w and vehicle. The dis-
cretization is required for association rule mining. We learn and evaluate all
models using 10-fold cross validation. When comparing two models, we use a
Wilcoxon signed-rank test with a significance level α = 0.05.

We use the same tie-breaking and default prediction strategies for all models.
As the tie-breaking strategy, we use weighted voting, where each rule gets a vote
weighted by the rule’s confidence in the training set. As a default prediction for
each target attribute, we use its majority value in the training set.

For (M)IDS, we use as optimization algorithm ‘Double Greedy Local Search’
(unlike the original IDS; see Section 6.1). Since the optimization uses random-
ization to find a locally optimal rule set Rsel, we run each (M)IDS configuration
10 times and pick the rule set with the highest objective function value. For both
IDS and MIDS, we use the same implementation including normalization of the
sub-objectives with all weights set to λi = 1.

Compared metrics We investigate the predictive performance, model induc-
tion time, model size and interpretability of the selected rule models Rsel.

The predictive performance of a rule set is measured with the micro-averaged
F1-score. In the single-target setting, we measure the rule set’s micro-averaged
F1-score on the given target. In the multi-directional setting, we separately mea-
sure the micro-averaged F1-score on each target attribute and report the average.

To compare run time, we measure both the rule generation time and the rule
selection time, the sum of which we call the total run time.

The model size of Rsel is indicated by three different metrics: (1) the number
of literals in Rsel as the sum of its rule lengths, (2) its average rule length and
(3) the number of rules in Rsel.

Although the interpretability of a rule set is related to its model size, we also
use three interpretability metrics as proposed for IDS [11]. First, we use f5(R)
to measure the fraction of values occurring in the test data that are predicted
by at least one rule (Section 6.2). Second, we consider the fraction of test set
examples not covered by any rule. Third, we use the fraction of bodily overlap,
which indicates how much the bodies of a rule set R overlap with respect to a
test dataset of M instances, independent of the targets predicted by the rules:

fraction-bodily-overlap(R) =
2

|R| · (|R| − 1)

∑
rk,rl∈R
k<l

|overlap(rk, rl)|
M

7.2 Single-target tree rules vs. association rules.

Methodology To investigate (Q1) , we generate for both rule types a candidate
single-target rule set of the same size. For both rule sets, we then use IDS to
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select a single-target model. We call IDS using association rules AR-IDS, and
using tree rules T-IDS. After rule selection, we compare the resulting models.

The two candidate rule sets are generated in two steps to ensure they have
the same size. First, we generate the association rules using FP-growth [7] for a
given support and confidence (instead of Apriori; see Sec. 6.1). Second, we learn a
Scikit-learn Random Forest by increasing its number of trees until it corresponds
to a rule set with the same number of rules or more. If it generates more rules,
we sample without replacement as many tree rules as there are association rules.
For both approaches, we use a minimum support of 0.1 and a maximum rule
length of 7. For the tree rules, this corresponds to setting a minimum fraction
of examples per leaf node of 0.1 and a maximum tree depth of 7.

For each dataset, we use two different candidate rule set sizes. We obtain
these rule set sizes by using two different minimum confidence levels for the
association rules: 0.75 and 0.95. Using a higher confidence results in a smaller
candidate rule set (Fig. 1). Limiting the number of candidate rules is important
because the computational cost of the rule selection step increases with the
candidate rule set size. Note that other metrics than the confidence can be used
to limit the number of association rules [17].

Results

Model size For a given candidate set size, the rule models selected by AR-IDS
and T-IDS do not significantly differ in their number of rules or their number of
literals (Fig. 1). Which of the two approaches selects more rules or contains more
literals differs over the datasets. However, the average rule length is significantly
shorter for tree rules than for association rules. For high confidence levels, this is
to be expected, as association rules with a higher confidence are typically longer.
But the tree rules are also shorter for confidence 0.75.

Run time The total run time seems independent of the rule type (as shown in
Fig. 1). The rule generation time is negligible compared to the rule selection time,
i.e. the time inducing an IDS model dominates over the rule generation time.
Surprisingly, the time to generate association rules is not significantly different
from the time to create tree rules. The rule selection time seems independent of
the rule type, but increases with the candidate set size: selecting rules is much
faster for confidence level 0.95 than for confidence level 0.75.

Predictive performance While we expected tree rules to lead to more accurate
models than association rules, AR-IDS does not differ in micro-averaged F1-
score from T-IDS in a statistically significant way. Our experiments also suggest
there is no difference between both candidate set sizes.

Interpretability First, we see that rules selected by T-IDS have a significantly
higher overlap than the rules selected by AR-IDS. Thus, tree rules require more
tie-breaking. Second, while almost all examples in a test set are covered by the
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Fig. 1. Metrics quantifying the rule sets Rsel selected by IDS from single-target asso-
ciation rules and tree rules. For each dataset and rule type, two candidate rule set sizes
were used by filtering the association rules on confidence 0.75 and 0.95.

T-IDS model, a large fraction is not covered by any rule in the AR-IDS model,
thus requiring a default prediction without an explanation. Third, we see that
T-IDS predicts more values in the target’s domain than AR-IDS.

Discussion Answering (Q1), comparing T-IDS and AR-IDS indicates that tree
and association rules lead to rule sets that do not significantly differ in predictive
performance, model size and run time. However, they differ in interpretability.
First, the T-IDS models explain more predictions than AR-IDS models, as they
cover more instances; AR-models fall back on unexplained default predictions
more frequently. Second, the explained predictions are less clear for the T-IDS
models than for the AR-IDS models, since the larger overlap indicates more
rules have to be interpreted for a prediction. Third, the T-IDS models predict
more values than AR-IDS. A possible explanation for the difference in coverage
and overlap of the selected rule sets can be found in the similar difference in
the candidate rule sets. The candidate tree rules also have a high overlap and
coverage, as every point in the instance space is covered by as many rules as there
are trees in the corresponding ensemble. In contrast, the candidate association
rules do not have to cover the whole instance space, even though they can overlap.
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Thus, our results suggest that for interpretability, tree rules are preferred
for explaining predictions for as many instances as possible, or for having more
class values explained by at least one rule. But if it is acceptable that a rule
model cannot always make a prediction and might have to use a default value,
association rules can give clearer predictions for the instances that are covered.

7.3 Multi-target vs. single-target rules

To investigate (Q2), we compare single-target and multi-target rules in a multi-
directional setting. We use tree rules, as their number is easy to control and
our previous experiment indicates that tree rules and association rules lead to
models similar in size and predictive performance. For the single-target rules,
we use IDS to select one single-target IDS model per target and combine these
models in a multi-directional ensemble called eIDS. For the multi-target rules,
we use RR and MIDS as rule selectors.

Rule generation Both rules types are derived from Scikit-learn Random Forests
using a minimum support of 0.1 and maximum rule length of 7.

For each attribute, a single-target candidate set is generated by (1) learning
a Random Forest that predicts it, and (2) converting that Forest to rules. Each
Random Forest contains 50 trees and has a maximum tree depth of 7.

One multi-target candidate set is constructed per dataset as follows. First,
all attributes are randomly partitioned in groups of 2. For each group, a Random
Forest of 10 trees is learned predicting those 2 attributes simultaneously. The
attribute partitioning and Random Forest construction is repeated 5 times. As a
result, each attribute is predicted by 5 Random Forests of 10 trees, or 50 trees in
total. Then, one multi-target candidate set is generated for all target attributes
by converting the trees of all Forest to rules. To ensure the rules have at most 7
literals, we use a maximum tree depth of 5 (as each tree predicts 2 targets).

Note that although each attribute is initially predicted by 50 trees in both the
single-target and multi-target case, the number of rules predicting an attribute
differs between the single-target and multi-target candidate rule sets. This results
from each multi-target tree predicting 2 attributes. Thus, when combining the
single-target rule sets, there are more candidate single-target rules than multi-
target rules (# init. rules in Fig. 2).

Rule selection From each single-target candidate set, we use IDS to select a
model. These single-target models are combined in one multi-directional ensem-
ble model per dataset, called eIDS.

For each multi-target rule set, we use two rule selectors: RR and MIDS. For
both RR and MIDS, one model is learned per dataset. We use RR with the same
tie-breaking function and default predictions as used for (M)IDS, i.e. weighted
voting and the majority class label. We set ε = 0.1 and δ = 0.01. (Sec. 5)

Results
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Fig. 2. Metrics quantifying the rule sets found using eIDS, MIDS and RR.

Run time For all three approaches, the rule generation time is negligible com-
pared to the rule selection time. When comparing rule selection time, RR is
orders of magnitude slower than eIDS and MIDS. Learning one MIDS model
takes more time than learning the eIDS model, which can be explained by IDS
selecting from smaller candidate sets and having a simpler objective function.

Model size RR results in a smaller model than both eIDS and MIDS (Fig. 2).
The RR models contain significantly fewer literals than eIDS and MIDS, while
the number of literals in the eIDS and MIDS models are similar.

When comparing the number of rules, the multi-target selection approaches
result in the smallest rule sets. RR selects the smallest number of rules, while
MIDS also selects significantly fewer rules than eIDS.

However, the multi-target selection approaches select significantly longer
rules than eIDS. The average rule lengths of MIDS and RR are comparable,
which can be expected, as they are built from the same candidate rule sets. The
average rule lengths are longer for RR and MIDS than for eIDS, since the former
use multi-target rules, whereas eIDS uses single-target rules.

Predictive performance While RR outperforms both eIDS and MIDS in micro-
averaged F1-score, the micro-averaged F1-scores of eIDS and MIDS do not differ
in a statistically significant manner.

Interpretability RR has a lower overlap than both MIDS and eIDS, while MIDS
has a lower overlap than eIDS.

RR predicts fewer values occurring in the training data than eIDS and MIDS,
between which there is no statistically significant difference.



14 Jonas Schouterden, Jesse Davis, and Hendrik Blockeel

As all three approaches cover almost all test instances with at least one rule,
the fraction of uncovered instances is excluded from Fig. 2.

Discussion Answering (Q2), our results for MIDS and eIDS indicate that
in a multi-directional setting, learning a single model using multi-target rules
instead of naively learning multiple single-target models can lead to fewer rules
and less overlap between rules, but a similar predictive performance. A possible
explanation is that the selected multi-target rules explicate correlations between
different targets, which cannot occur in an ensemble of single-target rule models.

Our results also indicate it is better to use RR than MIDS or eIDS in
a multi-target prediction setting. Unsurprisingly, RR outperforms (M)IDS in
micro-averaged F1-score, as this is the only focus of RR, while the composite
(M)IDS objective function also focuses on model size and interpretability. How-
ever, RR also outperforms (M)IDS on model size and interpretability. Not only
does RR select rule sets with fewer rules and literals than the (M)IDS rule sets,
RR also has the lowest rule overlap of the three approaches. The only benefits
of using eIDS or MIDS over RR is that they are faster and their resulting rule
sets provide explanations for a larger variety of values. This highlights it is often
better to use a simple rule selection objective. Although it might be possible
to find parameters λi for (M)IDS resulting in a similar model size and predic-
tive performance as the RR models, this would require a potentially expensive
hyperparameter optimization.

8 Conclusion

In this paper, we proposed how to train a multi-directional rule set based on
multi-target tree rules, as a user might not know in advance which target will
need to be predicted or which support and confidence thresholds to use with as-
sociation rule mining. We proposed two new methods able to select multi-target
rules: the greedy RR, focused on providing a high predictive performance on all
targets, and MIDS, a generalization of IDS. Our experiments indicate that tree
and association rules lead to models of similar size and predictive performance,
although with different interpretability characteristics. Tree rules lead to models
with a higher coverage, but association rules lead to clearer decision boundaries.
We also showed that, compared to naively merging a collection of single-target
rule models, using a multi-directional model built using multi-target rules re-
sults in fewer rules with lower overlap but with a similar predictive performance.
Lastly, the usefulness of simple objective functions was demonstrated, as our RR
models were not only more accurate than IDS and MIDS, they were also smaller
with a lower overlap.

Future work While we compared single-target association and tree rules in the
context of IDS, a similar comparison using other rule selection methods would be
useful. Similarly, comparing RR and MIDS with other single-target rule selectors
can help position these methods more clearly. Also, it would be interesting to
generalize other rule selectors than IDS to handle multi-target rules.
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