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Abstract—We investigate the uncertainty of large-signal mea-
surements of a microwave transistor due to variation in the
load conditions at the fundamental frequency. In particular, we
evaluate uncertainties in the complex frequency-domain traveling
voltage waves. In our analysis, uncertainty sources typical for
large-signal measurements are considered. Then, we discuss how
the resultant uncertainty in the waves is dependent on a varying
load reflection coefficient. For this investigation, we consider total
uncertainty of the waves as well as its magnitude and phase. We
also show that these errors unavoidably affect uncertainty of
performance quantities, like output power.

Index Terms—Calibration, large-signal measurements, load-
pull, measurement uncertainty, sensitivity analysis, vector net-
work analyzer

I. INTRODUCTION

LOAD-PULL measurements [1] extend large-signal mea-
surement systems [2], [3] by changing the load conditions

of a device under test (DUT). The most common setup
only sets load impedance at the DUT excitation signal’s
fundamental frequency f0. However, variants are also avail-
able that can control load conditions at harmonically related
frequencies of f0, usually at the second and third harmonic. A
number of methods have been introduced over the years for
setting the reflection coefficients. These solutions are based
on both active [4], [5] and passive [6] load tuning. Moreover,
a wideband load-pull system that is capable of controlling
reflection coefficients for a modulated signal has been recently
proposed [7]. Measurements taken with those setups can be
used for a variety of purposes, including device modeling [8],
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model validation [9], and design of high-performance power
amplifiers (PAs) [10].

Knowing the uncertainty in measurements is particularly
important for achieving first pass microwave circuit design
success [9], [11]. By using results with relevant uncertainties,
it is possible to estimate whether a project is likely to be
successful with only one development iteration. As load-pull
measurements gain popularity, it is of great importance to
provide microwave circuit designers with data on how credible
the load-pull results are. This may result in speeding up the
design process and shortening the time between an idea and
a product release.

While the uncertainty in large-signal measurements has been
extensively investigated [12]–[16], including time-domain
waveform uncertainties, [16], there has been relatively little
work on evaluating the uncertainty in load-pull measurements.
The attempts [17], [18] have so far focused on power-related
figures of merit, like power-added efficiency (PAE) or gain,
derived from these measurements. uncertainty in the actual
waves at the device’s terminals was not considered. Further-
more, focus was only on the uncertainty of figures of merit
in relation to the magnitude of the reflection coefficient ΓL
whereas its phase was not considered.

In this paper, we evaluate the uncertainty in the DUT’s
complex complex frequency-domain traveling voltage waves
while considering both the magnitude and the phase of the
load reflection coefficient. To achieve this goal, we per-
formed extensive measurements and followed strict calibration
schemes. We delineate sources of uncertainty in large-signal
measurements and derive how they are included during a
two-tier vector calibration using the Microwave Uncertainty
Framework (MUF) developed at the National Institute of
Standards and Technology (NIST) [19]. Next, we describe the
measurement system used for taking load-pull measurements
as well as a method for choosing load reflection coefficients.
Finally, we evaluate uncertainty in the DUT’s frequency-
domain waves.

II. UNCERTAINTY ANALYSIS OF LARGE-SIGNAL
MEASUREMENTS

Evaluating measurement uncertainty is a complex challenge
where many sources of errors, both random and systematic,
must be included. By using the NIST MUF, we were able
to consider uncertainties of the passive calibration standards,
power meter, NIST traceable phase calibration reference [20],
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Fig. 1. Calibration procedure when using the MUF [16]

cable bending, coaxial connector repeatability [21], probe
alignment, and even random errors [22] in our analysis. It
is, however, worth noting that the MUF is not the only
software package that can be used for estimating uncertainty
in microwave measurements [23].

Despite so many error sources contributing to the uncer-
tainty in large-signal measurements, including uncertainties
due to the harmonic phase reference (HPR) remains the most
challenging task. The HPR is used for re-establishing phase
relationships between waves measured at harmonically related
frequencies. Its characterization relies on a multi-step proce-
dure. First, an impulse response of a photodiode is measured
with an electrooptic sampling system [24]. Then, this device is
used to determine the impulse response of a sampling scope
[25] with mismatch correction applied [26]. Finally, charac-
terization of the HPR must be performed [27] [28]. Hence,
performing a full procedure is very cumbersome and requires
highly qualified personnel and, to the best knowledge of the
authors, NIST is the only research institute that has harmonic
phase references characterized with correlated uncertainty as
a measurement service.

Knowing the uncertainty in the HPR’s output signal, it is
possible to perform an uncertainty analysis of large-signal
measurements. It is important to stress that we do not ac-
tually measure the uncertainties. They are estimated based
on the characteristics of the calibration standards. To do
so, measurements of calibration standards along with their
statistical models must be processed by the MUF, see Fig. 1.
Thanks to such an approach, all the predefined error sources,
such as those listed above, are propagated through the large-
signal calibration procedure. As a result, we receive calibration
coefficients identified with perfect calibration standards as well
as the range within which we could expect the coefficients
if the definitions of the standards are imperfect. We can
investigate how the error sources impact the calibration by
performing either a sensitivity or a Monte Carlo analysis. The
former investigates how each error source individually affects
the final correction terms while the latter considers all the
errors simultaneously and perturbs the calibration coefficients
accordingly. Finally, the coefficients are used to correct the
raw DUT measurements and identify their ideal and error-

perturbed values. An analogous procedure also applies to
small-signal measurements.

Even though methods for computing uncertainty in large-
signal measurements have already been established, there has
been no thorough uncertainty analysis of frequency-domain
waves and how it translates to uncertainty of figures of merit
derived with these results. Moreover, how the uncertainty in
those waves are affected by changing load conditions has not
been examined. Such a procedure is performed in this paper.

In this paper, we employed the NIST MUF to perform sen-
sitivity analysis and compute relevant uncertainty quantities.
We chose this approach instead of the Monte Carlo simulations
since the latter does not let us investigate the impact of the
individual error sources on the final uncertainty results. Using
typical notation for a two-port device, we define a1 and b1
as incident and scattered complex frequency-domain traveling
voltage waves at port 1, while a2 and b2 are incident and
scattered waves, respectively, at port 2. Since the port 2 waves
are directly affected by changing load conditions, they are the
focus of this section. We can compute the wave’s covariance
matrix, which gives us uncertainty of real and imaginary
parts as well as the correlation between them. The waves are
assumed to be linear combinations of n error sources, which
we consider in our uncertainty analysis. For example, the b2
wave at the given frequency can be expressed as:

b2 = f (ξ1,ξ2, . . . ,ξn) , (1)

where variables ξn stand for error sources that can be traced
to real variables, like the length of a calibration standard. The
function f propagates all n errors through the large-signal
calibration and gives a complex value of b2.

All the physical error mechanisms may be grouped as an
error vector Ξ. By assumption, they are uncorrelated to each
other [12] and thus, their covariance matrix is diagonal:

ΣΞ =

 σ2
ξ1

. . .
σ2

ξn

 . (2)

The next step is calculating a Jacobian that provides us with
information on how the wave responds to the individual error
sources. For the purpose of this article, we separate how the
errors affect real and imaginary parts of the waves. In the case
of the b2 wave, we define its Jacobian Jb2 as:

Jb2 =

[
∂ℜ(b2)

∂ξ1
· · · ∂ℜ(b2)

∂ξn
∂ℑ(b2)

∂ξ1
· · · ∂ℑ(b2)

∂ξn

]
. (3)

Knowing the error vector’s covariance matrix ΣΞ and the
wave’s Jacobian Jb2 , we can compute covariance matrix of
the b2 wave:

Σb2 = Jb2 ·ΣΞ‘ · JT
b2
, (4)

which can be defined as:

Σb2 =

[
σ2

ℜ(b2)
σℜ(b2)ℑ(b2)

σℜ(b2)ℑ(b2) σ2
ℑ(b2)

]
, (5)
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where the diagonal terms are variances of the wave’s real
and imaginary parts while σℜ(b2)ℑ(b2) stands for covariance
between them.

Therefore, σℜ(b2)ℑ(b2) provides us with the variance of the
b2’s real and imaginary parts as well as their dependence
on each other. Using Σb2 , it is possible to derive additional
quantities. We define the total variance of b2 as:

σ
2
b2
= λ1 +λ2, (6)

where λ1 and λ2 are eigenvalues of the b2’s covariance matrix.
σ2

b2
could simply be interpreted as a sum of the real and

imaginary components, however, (6) allows to account for
σℜ(b2)ℑ(b2) as well. Having identified the covariance matrix,
it’s also possible to compute uncertainty of the b2’s magnitude

|b2|=
√

ℜ(b2)
2 +ℑ(b2)

2. (7)

Any change of |b2| caused by shifts in ℜ(b2) and ℑ(b2)
can be expressed as

d |b2|=
∂ |b2|

∂ℜ(b2)
dℜ(b2)+

∂ |b2|
∂ℑ(b2)

dℑ(b2) , (8)

where the derivatives can be calculated in terms of:

∂ |b2|
∂ℜ(b2)

=
ℜ(b2)

|b2|
, (9)

∂ |b2|
∂ℑ(b2)

=
ℑ(b2)

|b2|
. (10)

The variance of |b2| can be computed as the expected value
of the change in the b2’s magnitude squared

σ
2
|b2| = E

(
(d |b2|)2

)
. (11)

Variations of ℜ(b2) and ℑ(b2) resulting in d |b2| are sub-
stituted by standard deviations of the b2’s real and imaginary
parts, in which the covariance matrix Σb2 [1,2] also appears.
The result is

σ2
|b2| =

(
∂ |b2|

∂ℜ(b2)

)2
·σ2

ℜ(b2)
+(

∂ |b2|
∂ℑ(b2)

)2
·σ2

ℑ(b2)
+

2 · ∂ |b2|
∂ℜ(b2)

· ∂ |b2|
∂ℑ(b2)

·σℜ(b2)ℑ(b2).

(12)

Subsequently, the uncertainty of the b2’s phase is derived.
We can compute φ (b2) with the following equation

φ (b2) = arctan
(

ℑ(b2)

ℜ(b2)

)
. (13)

First, its change with regards to the varying ℜ(b2) and
ℑ(b2) is

dφ (b2) =
∂φ (b2)

∂ℜ(b2)
dℜ(b2)+

∂φ (b2)

∂ℑ(b2)
dℑ(b2) . (14)

Computing partial derivatives of φ (b2), we obtain

∂φ (b2)

∂ℜ(b2)
=

1

1+
(

ℑ(b2)
ℜ(b2)

)2 ·
−ℑ(b2)

ℜ(b2)
2 , (15)

∂φ (b2)

∂ℑ(b2)
=

1

1+
(

ℑ(b2)
ℜ(b2)

)2 ·
1

ℜ(b2)
. (16)

Finally, we can calculate the variance of the b2’s phase as

σ
2
φ(b2)

= E
(
(dφ (b2))

2
)

(17)

When we expand the equation and consider the covariance
between the real and imaginary parts of the b2 wave, we obtain

σ2
φ(b2)

=
(

∂φ(b2)
∂ℜ(b2)

)2
·σ2

ℜ(b2)
+(

∂φ(b2)
∂ℑ(b2)

)2
·σ2

ℑ(b2)
+

2 · ∂φ(b2)
∂ℜ(b2)

· ∂φ(b2)
∂ℑ(b2)

·σℜ(b2)ℑ(b2).

(18)

σ2
a2

, σ2
|a2|, and σ2

φ(a2)
are calculated similarly. In the next

sections, standard deviations will be used for discussing the
uncertainty in the experiments performed.

Knowing the uncertainty in b2 and a2, it is possible to
investigate how their uncertainty affects figures of merit that
represent the performance of microwave devices. As an exam-
ple, we can derive uncertainty of the power delivered to the
load Pout as

Pout =
|b2|2−|a2|2

2Z0
. (19)

Since |b2| and |a2| directly affect Pout , they also define
its uncertainty. To identify σPout , we use an equation for
computing the standard deviation of a generic parameter y
dependent on N variables x [29]

σy =

√√√√ N

∑
i=1

N

∑
j=1

∂ f
∂xi

∂ f
∂x j

σxix j , (20)

which can be further simplified if we assume the variables x
are uncorrelated:

σy =

√
N

∑
i=1

(
∂ f
∂xi

)2

σ2
xi
. (21)

Since this assumption is valid for magnitudes of the b2 and
a2 waves [17], we derive the standard deviation of Pout as:

σPout =

√(
∂Pout

∂ |b2|

)2

·σ2
|b2|

+

(
∂Pout

∂ |a2|

)2

·σ2
|a2|

, (22)

which simplified takes a form of

σPout =

√
|b2|·σ2

|b2|
+ |a2|·σ2

|a2|

Z0
. (23)

This method of computing σPout is a simplification. A
Monte-Carlo approach can be used, but then it is not possible
to track sources of error in the problem. Reference [29]
suggests higher-order terms in the Taylor series expansion
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should be included if the function is highly nonlinear. But even
with this approach, tracking error sources will be imperfect
due to the interaction of errors in the nonlinear function. In the
case considered, it means a device generating non-negligible
amount of power at higher harmonics. Nevertheless, the
definition of the output power’s standard deviation provided
in (23) is sufficient to give microwave designers indication
whether their circuit will conform to the design requirements.
Furthermore, such an approach allows us to easily compare
our results with relevant publications, like reference [17] that
implies the uncertainty of Pout increases with the magnitude
of the load reflection coefficient ΓL for all its phases.

III. LOAD-PULL MEASUREMENT SYSTEM

In this section, we present the set up used for performing
load-pull measurements. The schematic diagram is shown in
Fig. 2. A nonlinear vector network analyzer (NVNA) measured
frequency-domain waves directly at the device’s terminals. To
achieve this on the DUT’s output and avoid de-embedding of
the passive tuner, we used a set of external couplers connected
directly to the NVNA’s receivers. In the figure, they are
denoted as the output port reflectometer. An internal bias-tee
of the network analyzer was used to set the DC voltage at
the DUT’s input. On the output side, an external bias-tee was
located outside the passive tuner.

A mixer-based Keysight LSNA, PNA-X N5245A1, operat-
ing in the frequency range up to 50 GHz, was used for the
large-signal measurements. The external output reflectometer
consisted of two low-loss directional Marki CA-501 couplers
and was connected to the output probe with a short cable.
HP 4142B modular DC supplies1 were used for setting the
requested bias voltages at the input and output terminals of
the DUT.

For the load-pull measurements, we used a Focus Mi-
crowave MPT-18181 passive tuner, which is capable of tuning
up to three harmonics at frequencies between 1.8 and 18 GHz.
However, we only used it to set load reflection coefficient at
the fundamental frequency. We characterized the instrument
with the manufacturer’s software [30]. This is achieved by
measuring the tuner’s S-parameters in multiple tuning states.
To ensure that the characterization procedure is valid, the
measurements of the instrument must be very accurate. Thus,
the NVNA was calibrated with the unknown thru scheme [31]
due to its high accuracy. Gathered data and the reflection
coefficient of the tuner’s termination are used by the control
software to accurately set ΓT at the tuner’s input. However,
if reflection coefficients other than those used as the charac-
terization tuning states are needed, interpolation methods are
employed. However, any inaccuracies due to the operation of
the tuning method can be ignored because the NVNA measures
absolute waves and thus, we exactly know what reflection
coefficient has been achieved.

Since the passive tuner is connected to the DUT through the
output reflectometer, we needed to consider its characteristics

1Trade names are used here only to fully specify the experimental con-
figuration and do not constitute an endorsement by NIST. Other instruments
made by the same or different manufacturer may function as well or better
for this application.

Fig. 2. Block diagram of a passive load-pull system used for experiments.
A1, B1, A2, and B2 denote the internal receivers of the NVNA that measure
the frequency-domain waves a1, b1, a2, and b2, respectively

Fig. 3. Load reflection coefficients ΓL identified by CVT (red circles) and
measured (orange dots) at f0 = 9 GHz during experiments, Pav = 0 dBm

while calculating ΓT so as to provide the requested load
reflection coefficient ΓL at the output of the DUT, see Fig.
2. Due to this configuration, the reflectometer’s losses limit
the maximum |ΓL|. Knowing the maximum magnitude of the
reflection coefficient achievable by the tuner, which is around
0.92, as well as the total insertion loss of the external couplers
and the on-wafer fixture, we decided to limit |ΓL| to 0.8. Values
of ΓL to be measured were identified with Centroidal Voronoi
Tessellation (CVT) [32] [33], which is a space division method
that, in our case, ensures a uniform coverage of the Smith
chart. Target load reflection coefficients are marked as orange
dots in Fig. 3. For our experiments, we employed CVT to
define 149 load reflection coefficients. This number of loads
was chosen as a trade-off between the highly dense coverage
of the Smith chart and the total measurement time.

Using the setup described, we performed large-signal mea-
surements of state-of-the-art indium phosphide (InP) hetero-
junction bipolar transistors (HBTs) manufactured by Teledyne
Technologies1 [34]. Their emitter is 250 nm wide. For our
experiments, we used the transistors with 6 µm long emitter.
They were biased to achieve the collector current IC = 6 mA at
the collector voltage VC = 1.5 V. This operating point was cho-
sen to achieve high power gain when used in a power amplifier
configuration at mmWave frequencies. Complex waves at four
harmonics were measured with the fundamental frequency
f0 = 9 GHz. Available input power Pav was set between -
30 and 0 dBm. The reflection coefficient ΓL was varied at f0
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Table I
SOLT CALIBRATION STANDARDS WITH ASSOCIATED STANDRD

UNCERTAINTIES

General Characteristics
Inner conductor diameter (mm) 1.042±0.004
Outer conductor diameter (mm) 2.400±0.005
Pin diameter (mm) 0.511±0.005
Offset Short and Open
Line length (mm) 6.750±0.005
Offset Load
Line length (mm) 7.700±0.005
Load resistance (Ω) 50.0±0.7
Load inductance (nH) 0.02±0.02

Table II
TRL CALIBRATION STANDARDS WITH ASSOCIATED STANDARD

UNCERTAINTIES. PARAMETERS L AND W ARE THE TRANSMISSION
LINE’S LENGTH AND WIDTH, RESPECTIVELY. H IS THE SUBSTRATE’S

THICKNESS

Line 1 Line 2 Line 3
L (µm) 290±0.05 774±0.05 2000±0.05
W (µm) 11.6±0.05

H (µm) 5±0.5

Table III
NOMINAL PHASES OF THE COMB GENERATOR ALONG WITH THEIR

STANDARD UNCERTAINTIES

Frequency (GHz) 9 18 27 36
Phase (◦) 169.5±0.5 160.2±0.6 152.0±0.9 148.2±1.0

over the points defined in the previous paragraph. Measured
ΓL, shown as orange dots in Fig. 3, is calculated using the
following equation:

ΓL =
a2,nom

b2,nom
, (24)

where a2,nom and b2,nom are a frequency waves at the funda-
mental frequency f0 corrected with the nominal MUF cali-
bration unperturbed by any simulated error sources. Despite
limiting the magnitude of the load reflection coefficient, we
observe that the measured ΓL constellation is further com-
pressed and off-center. It is particularly noticeable on the left
side of the plot, for φ(ΓL) from to 90◦ or -90◦ where |ΓL|
hardly reaches 0.7. On the opposite side, the magnitudes go
up to 0.75. This shift may be attributed to the characterization
of the tuner’s termination, which consisted of a bias-tee and
a 50 Ω load. Whereas the additional decrease of |ΓL| is
probably a result of the extra loss introduced by the short
transmission lines connecting the transistors to the probe pads
or our overestimation how high the magnitude of the tuner’s
reflection coefficient ΓT at f0 may be achieved. The load
impedance at the second harmonic 2 f0 was set to 50 Ω.
Effectively, the magnitude of ΓL at 2 f0 was within 0.3 while its
phase varied. These load conditions can impact the uncertainty
in the waves at the second harmonic. However, the correlation
between frequency-domain waves at different frequencies was
confirmed to be negligible. Therefore, the uncertainty in the
waves at 2 f0 does not affect the results gathered at f0.

Since the load-pull experiments were done on-wafer, a two-
tier calibration procedure was executed. First, a Short-Open-
Load-Thru (SOLT) [35] coaxial large-signal calibration was
accomplished. Then, the NVNA was connected to the probe
station and an on-wafer multiline Thru-Reflect-Line (TRL)
[36] [37] calibration was performed such that the reference
planes could be moved to the device terminals. Therefore, both
coaxial SOLT and on-wafer TRL standards had to be provided
with uncertainty resulting from their imperfect physical param-
eters. TRL standards were manufactured on the same substrate
as the DUTs. Raw measurements of all calibration standards,
including the HPR and the power meter, were taken. They
were used for performing an on-wafer large-signal calibration
with the NIST MUF, as defined by a simplified flow chart
shown in Fig. 1. Resultant correction coefficients were applied
to uncalibrated measurements of the transistor.

All the error sources considered were propagated through
the calibration procedure. Physical parameters and the associ-
ated standard uncertainties of the SOLT and TRL calibration
artifacts are listed in Table I and II, respectively. The length of
the on-wafer thru and reflect artifacts is 0. Moreover, models
of the TRL standards include the repeatability of the probe
positioning. The uncertainty of the left-to-right alignment is
equal to ±20 µm. For including the possible cable bending
errors, we took measurements of a thru on-wafer standard
while changing the position of the cable. Furthermore, Tab. III
reports the phases of the NIST-characterized comb generator
[27] [28] along with their standard uncertainties at the frequen-
cies relevant for the calibration procedure. Next, we accounted
for the errors in the power meter measurements based on
[38]. They stem from the reference oscillator mismatch, the
reference oscillator power uncertainty, the zero-set error, the
zero carry-over error, the instrumentation error, and error in
the power sensor calibration factor. Finally, the HPR’s and
power meter’s reflection coefficients were considered as well.

IV. UNCERTAINTY IN FREQUENCY-DOMAIN WAVES
UNDER SMALL-SIGNAL CONDITIONS

Knowing how the measurements were performed, we can
finally report results of frequency waves uncertainty analysis.
First, we estimate the uncertainty in frequency-domain waves
when the transistor operates under a small-signal regime, that
is at Pav = −22 dBm. σb2 , see Fig. 4, increases particularly
quickly when φ(ΓL) is around 30◦. The b2 standard devi-
ation increases significantly slower outside this area of the
load reflection coefficient and the lowest rate is when φ(ΓL)
approaches -150◦.

Fig. 5a shows how the magnitude of the b2 wave is
dependent on the changing reflection coefficient ΓL. It achieves
its maximum value when the magnitude of the reflection
coefficient is high and its phase nears 35◦. This is in line
with our expectations where the InP transistors used for the
experiments should achieve the highest magnitude of their
output signal. Consequently, |b2| steadily decreases towards
the opposite side of the plot where φ(ΓL) approaches -145◦.
The wave’s standard deviation σ (|b2|), presented in Fig. 5b,
acts similarly and has its maximum in the same region as the
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Fig. 4. Standard deviation of the b2 wave, σb2 (mV), at f0 in relation to ΓL,
Pav =−22 dBm

(a) |b2| (mV)

(b) σ|b2 | (mV)

Fig. 5. (a) Magnitude of b2 and (b) its standard deviation at f0 in relation to
ΓL, Pav =−22 dBm

|b2| wave. When φ(ΓL) is close to 90◦ or -90◦, the standard
deviation of b2’s magnitude is low. However, the magnitude’s
uncertainty slightly increases when φ(ΓL) is close to 180◦ and
|ΓL| raises.

Considering the b2 wave’s phase, shown in Fig. 6a, we

(a) φ(b2) (
◦)

(b) σφ(b2)
(◦)

Fig. 6. (a) Phase of b2 and (b) its standard deviation at f0 in relation to ΓL,
Pav =−22 dBm

observe that it gradually increases from the bottom towards
the top right quarter of the plot. The standard deviation of
the b2’s phase, which is shown in Fig. 6b, rises towards
the bottom and the top of the plot along the y-axis. While
the load reflection coefficient’s phase is around 0◦ and 180◦

degrees, σφ(b2) is practically unrelated to the ΓL’s magnitude.
Furthermore, σφ(b2)’s dependence on ΓL practically rotates by
90◦ when compared with σ (|b2|).

The b2 wave’s dependence on |ΓL| and φ(ΓL) can be
described as orthogonal and thus results in what is shown in
Fig. 4. Therefore, even though we might at first have assumed
that the standard deviation of the b2 is solely related to ΓL’s
magnitude, the actual dependence of b2 on the load reflection
coefficient is more complex and both the magnitude and phase
of ΓL have to be considered.

When analyzing the standard deviation of the a2 wave,
shown in Fig. 7, it clearly increases when φ(ΓL) is close to 35◦

and |ΓL| is high.σa2 decreases towards the opposite end of the
plot, that is where φ(ΓL) is close to -150◦ and |ΓL| is high. The
behavior of σa2 is similar to σb2 , shown in Fig. 4. However, it’s
more concentrated around its maximum. Another noteworthy
observation is the similarity between the σa2 ’s contours and
the behavior of the b2’s magnitude, which can be seen in Fig.
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Fig. 7. Standard deviation of the a2 wave, σa2 (mV), at f0 in relation to ΓL,
Pav =−22 dBm

(a) |a2| (mV)

(b) σ|a2 | (mV)

Fig. 8. (a) Magnitude of a2 and (b) its standard deviation at f0 in relation to
ΓL, Pav =−22 dBm

5a. Additionally, σa2 is higher than σb2 .
As expected, the magnitude of a2, which is shown in Fig.

8a, follows |b2|. However, its contours are very similar to the
plot of σb2 from Fig. 4. Consequently, σ|a2|, see Fig. 8b, also
follows the b2 wave and is largest when the phase of the load

(a) φ(a2) (
◦)

(b) σφ(a2)
(◦)

Fig. 9. (a) Phase of a2 and (b) its standard deviation at f0 in relation to ΓL,
Pav =−22 dBm

reflection coefficient is close to 25◦ and the magnitude of ΓL
is around 0.7, just like σ|b2|. When φ(ΓL) is close to 90◦ and
-90◦, σ|a2| is small and further decreases when |ΓL| rises. As
φ(ΓL) nears 180◦, σ|a2| slightly increases. On top of this, we
observe that σ|a2| is generally higher than σ|b2| at this input
power level.

We also investigated the phase of the a2 wave, which is
presented in Fig. 9a. Subsequently, Fig. 9b shows the standard
deviation of φ(a2), which is largest when the magnitude of
ΓL is small and rapidly decreases when it gets higher. The
decrease rate is higher along the x-axis, that is when φ(ΓL)
close to 0◦ or 180◦. We suspect that the uncertainty of the a2’s
phase is highest in the middle of the plot due to low levels
of |a2|. This makes the measurements of a2 more susceptible
to noise and other error sources. Thus, even slight changes of
the real or imaginary parts of a2 can cause high variability of
σφ(a2).

Knowing the a2 and b2 waves and uncertainty of their
magnitudes, it is possible to compute the device’s output
power Pout delivered to the load, see (19). Fig. 10a shows
how Pout behaves when the reflection coefficient ΓL changes.
Pout achieves its maximum when |ΓL| is about 0.7 while φ(ΓL)
is close to 35◦. For other reflection coefficients, Pout steadily
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(a) Pout (mW)

(b) σPout (mW)

Fig. 10. (a) Output power Pout and its (b) standard deviation at f0 in relation
to ΓL, Pav =−22 dBm

decreases. As expected, the output power closely follows the
magnitude characteristics of the b2 and a2 waves shown in
Fig. 5a and 8a, respectively.

If we consider the standard deviation of Pout , shown in Fig.
10b, we see that it reaches its maximum when |ΓL| is around
0.7 and φ(ΓL) reaches 30◦. Such a behavior could be expected
based on plots of σ|b2| and σ|a2|, see Fig. 5b and 8b.

V. UNCERTAINTY IN FREQUENCY-DOMAIN WAVES UNDER
LARGE-SIGNAL CONDITIONS

Considering the device’s behavior under large-signal con-
ditions, at Pav = 0 dBm, we observe very similar results to
what was shown for the transistor working in the small-signal
regime, that is at Pav =−22 dBm. Looking at Fig. 11, we could
conclude that the standard deviation of the b2 wave is simply
proportional to the magnitude of the load reflection coefficient
ΓL while virtually independent of its phase. However, to
completely understand this, it is necessary to analyze how the
uncertainty of b2’s magnitude and phase behave in relation to
the changing load.

Starting with the characteristic of the b2’s magnitude, see
Fig. 12a, we observe that it steadily rises along the x-axis
towards the open side of the plot, that is when φ(ΓL) close to

Fig. 11. Standard deviation of b2, σb2 (mV), at f0 in relation to ΓL, Pav =
0 dBm

(a) |b2| (mV)

(b) σ|b2 | (mV)

Fig. 12. (a) Magnitude of b2 and (b) its standard deviation at f0 in relation
to ΓL, Pav = 0 dBm

0◦ and |ΓL| approaches 0.7. Next, Fig. 12b shows the standard
deviation of the wave’s magnitude σ|b2|, which increases with
ΓL’s magnitude but only when the phase of the reflection
coefficient is close to 0◦ or 180◦. The rate of the change is
significantly higher in the right part of the plot. This aligns
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(a) φ(b2) (
◦)

(b) σφ(b2)
(◦)

Fig. 13. (a) Phase of b2 and (b) its standard deviation at f0 in relation to ΓL,
Pav = 0 dBm

with the behavior of |b2|. When the ΓL’s phase gets close to
90◦ or -90◦, σ|b2| is practically independent of |ΓL|. Finally, it’s
noteworthy that σ|b2| acts similarly to its counterpart measured
at Pav =−22 dBm.

The phase of the b2 wave was investigated as well. Its
graph is shown in Fig. 13a. It is highest as φ(ΓL) approaches
75◦ and |ΓL| is high. Its lowest values are observed when
φ(ΓL) is close to -60◦. However, considering the standard
deviation of the b2’s phase, shown in Fig. 13b, it is particularly
noteworthy the characteristic of σφ(b2) is virtually identical to
the characteristic of this parameter at Pav =−22 dBm, see Fig.
6b, with just insignificant value differences.

Analyzing the a2 wave’s uncertainty, sweeping the reflection
coefficient over the specified area does not cause significant
changes in the a2’s standard deviation, shown in Fig. 14.
Moreover, those changes are relatively smaller than in the case
of the small-signal conditions, see Fig. 7. Nevertheless, σa2
steadily increases as ΓL approaches open circuit conditions.
Finally, the uncertainty of a2 closely follows the characteristic
of the b2’s magnitude, which is shown in Fig. 12b. Thus, the
σa2 ’s behavior under large-signal conditions is in line with its
small-signal counterpart.

In Fig. 15a, we show the magnitude of a2 under changing

Fig. 14. Standard deviation of a2, σa2 (mV), at f0 in relation to ΓL, Pav =
0 dBm

(a) |a2| (mV)

(b) σ|a2 | (mV)

Fig. 15. (a) Magnitude of a2 and (b) its standard deviation at f0 in relation
to ΓL, Pav = 0 dBm

load conditions. As expected, |a2| rises when |ΓL|’s nears
the maximum values achievable by the measurement setup.
|a2| at Pav = 0 dBm acts similarly to this wave’s magnitude
under small-signal conditions and thus, its contours are almost
identical to σb2 in Fig. 11. The standard deviation of |a2|, see
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(a) φ(a2) (
◦)

(b) σφ(a2)
(◦)

Fig. 16. (a) Phase of a2 and (b) its standard deviation at f0 in relation to ΓL,
Pav = 0 dBm

Fig. 15b, achieves its maximum in the same region as σ|b2|
from Fig. 12b. σ|a2| increases noticeably faster when φ(ΓL) is
close to 180◦ in comparison to its small-signal counterpart in
Fig. 8b. As before, σ|a2| is higher than σ|b2| at the same power
level.

Fig. 16a shows the phase of a2 under large-signal condi-
tions. Just like b2 at Pav = 0 dBm, σφ(a2) has a very similar
behavior to its counterpart when the DUT is excited with the
small signal, see Fig. 16b and 9b, respectively.

As in the case of measurement under small-signal con-
ditions, we can analyze Pout and it standard deviation. For
Pav = 0 dBm, we observe the maximum output power is
achieved when |ΓL| is 0.2 and φ(ΓL) equal to around 0◦, see
Fig. 17a. This is a significant change in comparison with the
Pout ’s behavior at Pav =−22 dBm, shown in Fig. 10a.

σPout , see Fig. 17b, follows this change as it is highest when
the phase of the reflection coefficient gets close to 0◦ and its
magnitude is high. As in the small-signal case, this behavior
could be expected if the uncertainty in the b2 and a2 waves’s
magnitudes are scrutinized, see Fig. 12b and 12b, respectively.

Figures of σPout for two operation conditions undeniably
show that when considering uncertainty of the device’s figures

(a) Pout (mW)

(b) σPout (mW)

Fig. 17. (a) Output power Pout and its (b) standard deviation at f0 in relation
to ΓL, Pav = 0 dBm

of merit under changing load conditions, we need to analyze
them in relation to both the magnitude and the phase of
the load reflection coefficient. Otherwise, we lose important
dependencies that may invalidate the design process.

VI. JUXTAPOSITION OF SMALL- AND LARGE-SIGNAL
CONDITIONS

For comparison, uncertainty in the DUT’s b2 wave at two
power levels, that is Pav = −22 dBm and Pav = 0 dBm, are
displayed in the same figures. Fig. 18a presents standard
deviation of the b2 wave with regards to the magnitude of
the reflection coefficient. As already suggested by analyzing
Fig. 11 and 4, there is seemingly a clear correlation between
σb2 and |ΓL|.

However, this assumption is invalidated by Fig. 18b, which
shows dependence of σ|b2| on |ΓL|. This plot shows that σ|b2|
is not necessarily high when the magnitude of ΓL increases.
Moreover, Fig. 19a clearly shows that the standard deviation
of b2’s magnitude is strongly dependent on the phase of ΓL.
In Fig. 18a, we also observe the standard deviation of the b2
wave increases when the input power level rises. The same
applies to σ|b2|, based on Fig. 18b and 19a.
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(a) σb2 (mV) (b) σ|b2 | (mV)

Fig. 18. Standard deviation of (a) b2 and its (b) magnitude in relation to |ΓL|, for −180◦ < φ(ΓL)< 180◦

(a) σ|b2 | (mV) (b) σφ(b2)
(◦)

Fig. 19. Standard deviation of b2’s (a) magnitude and (b) phase at f0 in relation to φ(ΓL), for |ΓL| ≥ 0.65

(a) σb2 (b) σ|b2 |

(c) σφ(b2)
(d) σPout

Fig. 20. Standard deviation of (a) b2, its (b) magnitude and (c) phase at f0 as well as (d) Pout in relation to Pav
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Table IV
TOTAL AND INDIVIDUAL UNCERTAINTY CONTRIBUTIONS IN THE MAGNITUDE AND PHASE OF THE b2 WAVE UNDER THREE DISTINCT LOAD

CONDITIONS FOR Pav = 0 dBm

|ΓL1|= 0.73, φ(ΓL1) =−90.13◦ |ΓL2|= 0.74, φ(ΓL2) =−50.74◦ |ΓL3|= 0.74, φ(ΓL3) = 4.18◦

σ|b2| (mV) σφ(b2)
(◦) σ|b2 | (mV) σφ(b2)

(◦) σ|b2 | (mV) σφ(b2)
(◦)

Total 2.467 1.584 13.938 1.291 22.963 0.291

TRL 1.731 1.559 13.696 1.270 22.896 0.133
SOLT 1.176 0.144 1.414 0.139 1.181 0.151
Power Meter 0.133 0.006 0.169 0.002 0.058 0.011
Comb Generator Repeatability 5.904 ·10−12 2.054 ·10−13 7.045 ·10−12 2.943 ·10−13 5.218 ·10−12 3.484 ·10−13

Comb Generator Characterization 9.965 ·10−11 3.407 ·10−12 1.151 ·10−10 3.941 ·10−12 8.988 ·10−11 4.768 ·10−12

Probe Alignment 0.756 0.173 0.743 0.179 0.394 0.184
Cable Bending 0.073 0.005 0.079 0.006 0.082 0.005

Fig. 21. Standard deviation of the output power Pout for a slice of Pout between
2.1 and 2.3 mW

On top of this, σφ(b2) also has a strong dependence on φ(ΓL)
as displayed in Fig. 19b that confirms conclusions reached
analyzing Fig. 13b and 6b. Since both traces practically
overlap, Fig. 19b also confirms that the phase error only
slightly changes when the input power is increased.

Finally, it is worth showing how these parameters behave
over the entire sweep of the input power level at three
illustrative reflection coefficients. Under these load conditions
summarized in Tab. IV, three distinct cases can be identified:

1) At ΓL1, σb2 is predominantly a result of σφ(b2),
2) At ΓL2, σb2 is a result of both σ|b2| and σφ(b2),
3) At ΓL3, σb2 is mainly a result of σ|b2|.

As shown in Fig. 20a, σb2 increases with the input power
level Pav. This agrees with the results shown by previous
paragraphs of this section. The behavior of σ|b2|, see Fig.
20b, is also in line with our expectations, thus, it’s largest
when φ(ΓL) is close to 0◦. Then, σ|b2| decreases when φ(ΓL)
approaches -90◦. σφ(b2) also acts as anticipated and we do not
see significant variations of this parameters while increasing
Pav for the particular ΓL. As before, we observe that σφ(b2)

is smallest when φ(ΓL) is around 0◦ while σφ(b2) reaches its
peak when φ(ΓL) equals to around -90◦.

As expected considering the results shown in the previous
sections, Fig. 20d shows that the standard deviation of Pout

closely follows the uncertainty of b2’s magnitude. Thus, σPout ,
just like σ|b2|, is dependent on both |ΓL| and φ(ΓL).

Furthermore, by limiting the range of the output power Pout ,
we make its uncertainty analysis independent of large Pout
changes over the whole Smith chart. In Fig. 21, we chose
the Pout slice that is within the maximum σPout but gives us
enough measurement points for interpolation. Thus, we set
the Pout range between 2.1 and 2.4 mW and identified 79 load
points across input available powers Pav ranging from -20 to 0
dBm. Despite the limited Pout range, σPout still closely follows
the general behavior of uncertainty of the b2 and a2 waves’
magnitudes, that is it increases towards the areas where |ΓL|
is high and φ(ΓL)) is close to 0 or 180◦. Thus, it may be
concluded that the behavior of σPout is independent of the Pout
values.

It’s also worth analyzing how the main uncertainty sources,
delineated in Sec. III, contribute to the uncertainty of the
b2 wave’s magnitude and phase. In Tab. IV, we present the
individual deviations when the DUT operates at Pav = 0 dBm
and under the three distinct load conditions already discussed
in this section. In all the cases considered, the main causes
of the uncertainty are the TRL and SOLT vector calibrations.
Moreover, the TRL correction procedure’s contribution to σ|b2|
rapidly increases when φ(ΓL) gets close to 0◦. In the case
of σφ(b2), the behavior is opposite. Thus, the behavior of
σφ(b2) shown in Fig. 9b and 16b may be attributed to the
TRL calibration scheme. Individual deviations due the SOLT
calibration do not change with the varying load conditions.
The errors originating from the probe alignment are also
significant. The power meter measurements and the cable
bending have small but definitely non-negligible contributions.
Whereas, the inaccuracy caused by the characterization and
repeatability of the HPR can practically be ignored.

VII. SUMMARY OF THE RESULTS

Considering the results shown in the previous subsections,
we can sum up the behavior of the b2 wave’s uncertainties:

1) σ|b2| rapidly increases when ΓL approaches the optimum
load. Regardless of this, when φ(ΓL) is close to 90◦ or
-90◦, σ|b2| is low and practically independent of |ΓL|,
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2) σφ(b2) is only directly dependent on |ΓL| when φ(ΓL) is
close to 90◦ or -90◦. When φ(ΓL) is close to 0◦ or 180◦,
σ|b2| is low and practically independent of |ΓL|,

3) Behavior of σb2 is a result of the first two dependencies
– this parameter increases with |ΓL| for all φ(ΓL),

4) σb2 and σ|b2| are proportional to the Pav level,
5) σφ(b2) is virtually independent of the Pav levels.

Referring to the uncertainty in the a2 wave, we have the
following inferences for the test case considered here:

1) σ|a2| closely follows σ|b2| and thus, increases as ΓL gets
close to the optimum load. However, σ|a2| is higher than
σ|b2| at all the input power levels Pav,

2) σφ(a2) is in inverse proportion to |ΓL|. σφ(a2) decreases
more rapidly when φ(ΓL) is close to 0◦ or 180◦,

3) σa2 has similar characteristic to the magnitude of b2 and
as well achieves its maximum when ΓL gets close to the
optimum load. Furthermore, σa2 is higher than σb2 ,

4) σa2 and σ|a2| are proportional to the Pav level,
5) σφ(a2) is stable at all the Pav levels.

We assume that those findings are applicable also to devices
other than the InP HBTs we used for performing the experi-
ments. Furthermore, the dependencies of the b2 and a2 waves
on the load reflection coefficient also affect figures of merit.
By calculating the standard deviation of Pout , we have proven
it’s not only related to the the magnitude of the reflection
coefficient, like in [17], but to its phase as well.

All the results presented in the paper may be of great
value to the designers of microwave circuits. The knowledge
of uncertainty in load-pull measurements could be used for
extracting and validating nonlinear transistor models within
a range of confidence [39]. Either using such models or
measurement results directly, the designers can guarantee
that circuits comply with the design requirements even in
the worst-case scenarios [11]. If we could provide load-pull
uncertainty data in real-time, another application could be
adaptive sampling for modeling purposes [40]. In this case,
the information provided by the uncertainty data could be used
for safely choosing subsequent measurement points without
violating the DUT’s operational constraints [41]. Unfortu-
nately, existing measurement platforms cannot provide real-
time uncertainty in nonlinear measurements.

VIII. CONCLUSION

In this paper, we evaluated uncertainty in large signal
measurements under changing load conditions. In contrast to
other relevant publications, we focused on frequency waves
and investigated their residual errors. We included multiple
sources of uncertainties in our analysis, such as passive
calibration standards, power meter, NIST traceable phase
calibration reference, and cable bending. For this purpose, we
performed on-wafer load-pull measurements of the InP HBT
transistors. Then, we were able to estimate the uncertainties
in the frequency-domain waves by using the NIST Microwave
Uncertainty Framework.

Since b2 and a2 are directly influenced by changing load
conditions, we focused on their standard deviations of these

waves as well as their magnitudes and phases. b2 is par-
ticularly interesting as its uncertainty is dependent on both
the phase and magnitude of ΓL. We observe this behavior
due to orthogonality of σ|b2| and σφ(b2) in relation to ΓL.
Interestingly, σa2 closely follows the magnitude of the b2’s
magnitude. Another noteworthy observation is that neither
σφ(b2) nor σφ(a2) increases with the input power level even
though standard deviations of these waves, as well as their
magnitudes, rise when more power is delivered to the DUT.
On top of this, uncertainties related to the a2 wave and its
magnitude are higher than those affecting b2.

In the paper, we also show the uncertainty of output power
Pout , that is the power delivered to the load. This figure of
merit illustrates how the uncertainty of performance quantities
may be indirectly dependent on both the magnitude and phase
of the load reflection coefficient. Thus, those relationships
need to be considered during the development process if
such performance figures are employed to design microwave
circuits.
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