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ABSTRACT
Musical note onset detection is a building component for several
MIR related tasks. The ambiguity in the definition of a note onset
and the lack of a standard way to annotate onsets, introduce differ-
ences in datasets labeling, which in turn makes evaluations of note
onset detection algorithms difficult to compare. This paper gives
an overview of the parameters influencing the commonly used on-
set detection evaluation measure, i.e. the F1-score, pointing out
a consistently missing parameter which is the overall time shift in
annotations. This paper shows how crucial this parameter is in mak-
ing reported F1-scores comparable among different algorithms and
datasets, achieving a more reliable evaluation. As several MIR ap-
plications are concerned with the relative location of onsets to each
other and not their absolute location, this paper suggests to include
the overall time shift as a parameter when evaluating the algorithm
performance. Experiments show a strong variability in the reported
F1-score and up to 50% increase in the best-case F1-score when
varying the overall time shift. Optimizing the time shift turns out to
be crucial when training or testing algorithms with datasets that are
annotated differently (e.g. manually, automatically, and with differ-
ent annotators) and especially when using deep learning algorithms.

Index Terms— Musical note onsets, evaluation, acoustic event
detection, machine learning

1. INTRODUCTION

Detecting the onsets of musical notes is like a hide-and-seek game
in which we are trying to chase the starting of musical notes in a
piece of music. Usually in those kind of games we have a good idea
of what we hide and this moves the whole problem difficulty to the
seeking part. For note onset detection this is not the case as litera-
ture provides a variety of definitions for a note start. For instance it
could be either when a note is triggered or when it is perceived [1].
Considering a musical note as a sequence of a transient followed by
a steady-state component [2], an onset is the point chosen to mark
the transient [3] or more precisely it should be as close as possible to
the transient’s start [4]. But again a transient length depends on in-
strument and playing style and there is no objective way to measure
how close is the onset to the transient’s start.
∗This research work was carried out at the ESAT Laboratory of KU Leu-

ven. The research leading to these results has received funding from the KU
Leuven Internal Funds C2-16-00449, IMP/14/037, and VES/19/004, and the
European Research Council under the European Union’s Horizon 2020 re-
search and innovation program / ERC Consolidator Grant: SONORA (no.
773268). This paper reflects only the authors’ views and the Union is not
liable for any use that may be made of the contained information.

Even if note onset detection is an established research problem,
it is always capturing researchers’ interest. On one hand, there is
still quite some room for performance improvement. On the other
hand, it plays a core role in a variety of music signal processing
(adaptive audio effects [3], music synthesis [5] ) and MIR applica-
tions (automatic music transcription [6], recommender systems [7]
and music fingerprinting/search systems [8], [9], [10]).
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Figure 1: General scheme for note onset detection.

Literature is rich with many solutions proposed for detecting
note onsets. Each solution starts by deciding on an onset defini-
tion which may depend on several factors: application, target in-
struments, available datasets, labeling method, availability of an-
notators, etc. The selected definition has a fundamental impact on
how the ground-truth annotations are generated which may in turn
drastically affect how the detections are evaluated. In many MIR
applications like tempo estimation, songs search engines and music
synthesis, algorithms make more use of onsets’ relative positions
rather than their absolute positions. On the other hand, for applica-
tions seeking exact onset times, the latter are generally defined with
certain tolerance and adapted to the target application.

Before analyzing the performance evaluation, we first summa-
rize the seeking part of the game. It usually follows a certain scheme
of three steps [3] illustrated in Fig.1. Most of the research is fo-
cused on the middle step, trying to come up with a better Onset De-
tection Function (ODF) which is defined as a highly sub-sampled
version of the input music signal presenting distinguishable ampli-
tude peaks corresponding to onset locations. Existing ODFs are
grouped in two main classes: probabilistic and non-probabilistic.
Referring to MIREX results for the last years [11], the best per-
forming state-of-the-art non-probabilistic algorithm was fluctuating
between ComplexFlux [12] and SuperFlux [13] which are based on
LogSpecFlux(LSF) [14][15], a method detecting onsets by spec-



tral dissimilarity. Another non-probabilistic algorithm NINOS2 [2],
exploiting spectral sparsity, showed better results than LSF when
applied to guitar chord progressions. The same performance is
claimed to apply for polyphonic instruments where progressions
share more harmonics which challenges LSF. For the probabilis-
tic ODFs, deep learning algorithms were so far the best performing
solutions in MIREX and the convolutional neural network (CNN)
by [16] is considered to be the state-of-the-art solution [11].

When evaluating the ODFs using different datasets, one could
expect that having a slight shift in the annotations between the train-
ing/tuning and testing datasets may result in a misleading perfor-
mance assessment. This mismatch in labeling is quite common be-
tween different datasets due to many reasons, for instance:

• the lack of unified onset definition,
• datasets are labeled by different people and research groups,
• datasets may be of different nature (manually annotated by

different annotators, synthesized from symbolic data, natural
recording using a Yamaha Disklavier, mixing isolated notes).

In [4] authors suggest a methodology to manually label note onsets
in a more consistent way. They also provided a dataset that was
used by several researches, but unfortunately is not large enough
for training a deep network. On the other hand, in [1], the authors
focused on the evaluation parameters and measures. Referring to
Detection Performance as the most important measure and analyz-
ing the resolution of onset perception, the authors in [1] consider a
correct detection to be within a time window of 50 ms around the
reference onset time - 25ms on each of the annotation sides - which
will be shown not enough when dealing with diverse datasets. In
[17], it was shown how a minor labeling mismatch dramatically de-
creases the evaluation reliability for the melody extraction problem.
In that paper, they were mainly considering the mismatch due to
framing which is generally smaller than the inter-dataset annotation
mismatch.

In this paper we introduce the overall shift in annotations pa-
rameter providing a means to overcome the datasets’ labeling mis-
match. We show how this parameter makes the evaluation metric
less dependent on datasets and more focused on the performance
of detection algorithms. Section 2 will give a concise overview of
onset detection methods and will explain the parameters influenc-
ing the performance evaluation. The experiment environment and
datasets will be summarized in Section 3. Finally Sections 4 and 5,
will discuss the results and give some suggestions for future work.

2. ONSET DETECTION AND EVALUATION

2.1. Onset detection function

Considering the non-probabilistic ODFs, the logarithmic spectral
flux (LSF) [14] is given by:

LSF(i) =

k=K
2∑

k=1

H(|Yik| − |Yi−1,k|) , (1)

where H(x) = x+|x|
2

is the half-wave rectifier function and |Yik|
is the logarithmic magnitude spectrogram for a music signal frame
with frame index i, frequency bin k and K is the frame length.
NINOS2 ODF [2] is given by

NINOS2(i) =
‖Yi‖22

4
√
K‖Yi‖4

, (2)

calculating the inverse-spectral sparsity per frame which is high for
transients and therefore for onsets. On the other hand the proba-
bilistic CNN is trained on input points labeled with 0 for non-onsets
and 1 for onsets. Each point is a 3D tensor formed by concatenat-
ing different spectrograms representing a short snippet of the sig-
nal. The network’s output is treated as an ODF where thresholding
is needed afterwards to decide on the output’s class. As a conse-
quence of being deep learners, added to the fact of being trained on
binary labels, the CNN-ODF is quite different in its nature when
compared the non-probabilistic ODFs. This is shown in Fig.2 with
the dashed lines marking the onsets ground-truth. The CNN-ODF
is more precise, i.e. it experiences a magnitude increase in a short
window around the onset candidates which may increase evaluation
sensitivity to labeling mismatch.
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Figure 2: Comparison of LogSpecFlux, NINOS2 and CNN ODFs
for a Cello excerpt.

2.2. Peak-Picking

In general, the peak-picking starts by smoothing the signal in order
to avoid glitches. Then comes either a fixed or an adaptive thresh-
olding policy depending on the ODF’s shape. For non-probabilistic
techniques, researchers went to the adaptive choice, calculating a
moving average of the ODF and picking the local maxima that are
higher than this average with a certain threshold. This is described
mathematically by detecting an onset at frame i only if the three
following conditions hold:

1. O(i) = maxl O(i+ l), with l = −α, . . . ,+β,

2. O(i) ≥ 1
a+b+1

∑+b
l=−aO(i+ l) + τ ,

3. i− p > θ,

where (α, β) and (a, b) define the maximum and averaging win-
dows respectively and with the last rule restricting the distance be-
tween any two onsets i and p to a minimum distance θ. The thresh-
old τ is used when comparing the ODF to the moving average. The
parameters α, β, a, b and τ are tuned together or separately for
achieving the best performance while θ is heuristically fixed to a
distance allowing on average two notes to be distinguishable and



hence manually annotated. On the other hand, the CNN produces
ODFs where magnitude peaks are centered around candidates’ po-
sitions and are almost zero elsewhere. Picking all the maxima using
only fixed thresholding will do the job reducing all the tunable pa-
rameters to the threshold τ . Both peak-picking ways, will produce a
list of frame/input-point numbers which represent the detected on-
sets. Those frame numbers are usually translated then to time in-
stants before feeding them to the evaluation process.

2.3. Evaluation method

For the evaluation we stick to the guidelines mentioned for the
MIREX competition [11]. The F1-score is defined as the harmonic
average of the precision (P) and the recall (R) given by:

F1 =
2× P ×R
P +R

, (3)

with the precision being the ratio of correctly detected onsets to
the total number of onsets under test, and the recall comparing the
amount of correctly detected onsets to the total number of points de-
tected as onsets. When reporting the F1-score, we should differenti-
ate between two cases: best-case and on-average F1-score. Having
a limited amount of annotated songs, many researchers are satisfied
by sharing the highest achievable F1-score as a proof-of-concept.
For this, an F1-score per threshold F1(τ ) is calculated and averaged
over all the test examples, and the highest F1-score corresponding
to the optimal threshold τ∗ is the reported best-case F1-score. Alter-
natively, an F1-score is reported for a hold out dataset using the op-
timal threshold τ∗ calculated on the validation set which is similar
to MIREX evaluation as the dataset is not public. For a more elab-
orate evaluation, an on-average F1-score is reported using a k-fold
cross-validation [16] which is calculated by averaging the highest
F1-score for the different validations sets. Note that in both prob-
abilistic and data-driven algorithms, the F1-score is optimized as a
function of the threshold τ only. In general all the remaining param-
eters (peak-picking and neural network weights) are tuned before-
hand on a separate training set. For the purpose of this paper, we
will compare the best-case F1-scores as our focus is the evaluation
process and not the algorithms’ performance.

In the following, it will be shown that the commonly used eval-
uation window of 50 ms [1] is not enough for dataset mismatch
compensation, when the F1-score is optimized considering only the
detection threshold τ . Increasing the evaluation window would lead
to a worse resolution. That’s why we introduce here the overall
shift in annotations δ. While searching for the best threshold, this
parameter can be used to find the best match between annotations
and detections from the timing point of view. This is done by shift-
ing the annotations for the whole dataset to the right (or left) by
adding a small offset δ and searching for the best overlap corre-
sponding to the highest F1-score. In other words, F1-score denoted
by F1(τ ,δ) is optimized over two parameters: detection threshold
τ and overall shift in annotations δ. In our opinion, this doesn’t
weaken the performance measure. On the contrary, it makes the
performance assessment less dependent on the labeling definition
or the used method or persons asked to annotate the dataset.

3. EXPERIMENTAL EVALUATION

3.1. Datasets

In order to assess the effect of the overall shift in annotations δ on
the F1-score, we used four datasets to which we give the names:

MDS, SDS, MAPS CL, MAPS AM. The MDS dataset is the one
used to evaluate the CNN for onset detection [18]. It is a manually
annotated dataset containing audio excerpts from various sources.
A 20% portion of this dataset is used for training the network and
tuning the peak-picking parameters - except τ - while the remain-
ing examples added to the remaining datasets are used to form four
different testing use-cases. The SDS is an automatically annotated
dataset [2], containing 138 audio examples. Each example is a
mix of 70 notes annotated beforehand - when the notes were iso-
lated - depending on an energy measure. Finally, the MAPS CL
and MAPS AM are part of the MAPS1 dataset, specifically the mu-
sic pieces portion of ENSTDkCl and ENSTDkAm. ’Cl’ and ’Am’
acronyms refer to close and ambient way of recordings specifying
the distance to the microphone. Those two datasets were recorded
using a Yamaha Disklavier and annotations are generated automat-
ically. Table1 gives an overview of the used training and test sets
in terms of number of music pieces, onsets and the corresponding
number of input points fed to the CNN.

Table 1: Datasets summary

Name Files # Onsets # Points #

MDS train 77 5979 150K
MDS test 204 18540 400K
SDS 138 9660 650K
MAPS CL 30 76364 800K
MAPS AM 30 77988 800K

3.2. Experiment setup and parameters

For the CNN we used the same characterization as in [16] with mi-
nor differences pointed out here. First, an input point is a 3D-tensor
(3x15x80) holding 3 magnitude spectrograms with different pro-
cessing window sizes (23 ms, 46 ms and 93 ms) but same frame
rate of 10 ms. The number of logarithmically scaled MEL bands per
frame is 80 while 15 is the number of frames per point. A point is
given a label ‘1’ if the middle frame is matching an onset and ‘0.25’
for its neighboring points to handle annotations ambiguity. While
50% dropout in training is maintained, no feature normalization
is applied which was not necessary for the experiment. Convolu-
tional layers use the ReLU activation functions pushing the CNN to
learn spectral differences like the state-of-the-art non-probabilistic
ODF’s, and the fully-connected layers use the logistic sigmoid. The
training is done on mini-batches of 256 points for 150 epochs us-
ing the ADAM optimizer [19], minimizing the cross-entropy error.
The order of training examples is shuffled after each epoch. This
was found to achieve comparable results to the ones reported in
[16] when applied on the same datasets with 8-fold cross validation
setup and using the same folds.

For the pre-processing, peak-picking and evaluation parameters
we stick to the ones used in [16] and [2]. Frames are smoothed with
a 50 ms hamming window. For the peak-picking we set θ, α and β
to 30 ms, a to 100 ms and b to 70 ms. The evaluation window is kept
50 ms around the ground-truth. Only the probabilistic ODFs were
normalized in the range [0, 1] before applying the peak-picking as
the algorithms’ online capabilities are not our concern in this study.

1Midi Aligned Piano Sounds dataset - freely available under Creative
Commons license
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Figure 3: F1-score as a function of threshold τ (vertical axis) and shift δ (horizontal axis), averaged per test set. Circles and crosses
respectively represent the best F1-score average with and without considering the overall shift in annotations δ.

4. RESULTS

In order to study the effect of including the overall shift in annota-
tions δ, we calculated a grid of the average F1-score per dataset as
a function of the threshold τ ∈ [0, 1] with a step 0.01 vs the shift
δ ∈ [−60, 60] ms with a step of 5 ms.

Figure 3 shows the threshold-vs-shift F1-score grids for the four
test sets using the three ODFs. While the F1-score is less sensitive
to threshold variations, it is remarkable how the regions marking
the F1-score peaks are not aligned for the different datasets. The
F1-score peak values are centered around δ = 0 when the train-
ing and testing examples are coming from the same dataset MDS
while being always shifted for the other datasets. By comparing
the best F1(δ, τ )∗ to the zero-shift F1(δ = 0, τ∗) in Table2, we can
see that it is consistently registering a higher F1-score upper bound
for the synthetic and disklavier datasets. For instance, neglecting
the overall annotations shift for the MAPS AM dataset reports a
best-case performance of more than 50% less than the actual one
due to labeling mismatch between the datasets. Note that the shifts
δ ∈ [5, 30] allowing for a better assessment are calculated on top
of the evaluation window, which means a labeling mismatch of up
to 30 + 50/2 = 55 ms which would need an evaluation window
of 110 ms to handle it using the methodology in [1]. Different δ
values were needed to attain the best scores for the different algo-
rithms. This tells how the different ODFs reply differently to the
seeking question which confirms the need for a better evaluation
independent from the shift.

5. CONCLUSION & FUTURE WORK

This paper argues that the use of an overall shift in annotations pa-
rameter δ improves the onset detection evaluation reliability coping

with the labeling mismatch between datasets that are annotated dif-
ferently. δ is crucial for a sound performance assessment making
the evaluation process less dependent on the annotation method and
thereby more focused on the assessment of the detection algorithm.
When reporting the best-case F1-score, we suggest providing the
full F1(δ, τ) grid. For the on-average F1-score, a possibility is to
search for the optimal (δ, τ)∗ using a validation set taken out from
the same dataset as the test set. In the future, we would like to
make use of the shift mismatch results to align the examples label-
ing when mixing together different datasets for training. Moreover,
this work can be extended to any MIR time-dependent task.

Table 2: Comparison of best-case F1-score with and without Over-
all Shift in Annotations δ Parameter

Zero-Shift Considering the Shift

Fold F1(%) τ F1(%) δ(ms) τ

C
N

N

MDS test 86.7 0.36 86.7 0 0.36
SDS 59.5 0.14 63.1 15 0.14
MAPS CL 75.9 0.13 81.1 10 0.13
MAPS AM 39.6 0.05 80.0 30 0.07

L
SF

MDS test 78.4 0.60 78.4 0 0.60
SDS 59.5 0.10 64.7 15 0.10
MAPS CL 72.8 0.03 79.3 15 0.03
MAPS AM 36.6 0.03 78.3 30 0.04

N
IN

O
S2 MDS test 70.2 0.04 70.2 0 0.04

SDS 57.5 0.05 59.3 5 0.05
MAPS CL 76.2 0.01 76.2 0 0.01
MAPS AM 45.8 0.01 72.1 25 0.01
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