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Abstract

For the past decades there has been a rising interest for wireless sensor networks to obtain in-
formation about an environment. One interesting modality is that of audio, as it is highly infor-
mative for numerous applications including automatically classifying domestic activities that is
focussed on in this work. However, as they operate at prohibitively high energy consumption,
commercialisation of battery-powered wireless acoustic sensor networks has been limited. To
increase the network’s lifetime, this paper explores decision-level fusion, adopting a topology
where processing – including feature extraction and classification – is performed on a (dynamic)
set of sensor nodes that compute classification outputs which are fused centrally. The main con-
tribution of this paper is the comparison of decision-level fusion with different dynamic sensor
activation strategies that leverage the redundancy of information in the network. Our results
show that representing the classification output using vector quantisation can reduce communi-
cation per classification output to 8 bit without loss of significant performance. In case of fixed
sensor activation this results in an energy reduction up to 3%. While the savings of fixed sensor
activation are limited, it is shown that dynamic sensor activation, using a centralised approach,
can provide an energy reduction up to 80%. In general, this work indicates that if opted for a
topology using decision-level fusion, dynamic sensor activation is needed when a long battery
lifetime is desired.

Keywords: Sound classification, Activities of the Daily Living, Wireless Acoustic Sensor
Network, Edge computing, Decision-level fusion, Dynamic sensor activation

1. Introduction

Over the past decades, integrated components containing wireless radios and sensors are
shrinking in size, while maintaining computational power [1]. This has facilitated the rising
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interest in smart environments, which aim to understand the home scene for enabling smart
functionality to the inhabitant, e.g. security, health monitoring and entertainment [2, 3, 4, 5, 6].
The use case depicted in this paper is the classification of domestic activities, including the
Activities of the Daily Living (ADL), which describes the current activity being performed by a
person in a domestic environment (e.g. cooking or watching TV).

A first application to automatic classification of ADLs is that it plays a vital part in a system
to measure the self-reliance of a person. The ratio of retired to working people is significantly
increasing, which brings important challenges to our society. One of the main wishes of the
ageing population is to be able to live in their own dwelling as long as possible. Self-reliance is
currently manually determined by healthcare professionals using validated scales. Observing the
self-reliance continuously and automatically individualises the care of older persons [7].

Another application is related to comfort, where such information could be fed to a domotics
system to automatically control an actuator (e.g. activate extraction hood when cooking, dim
lights when watching TV). Similarly, it can also provide information to a security system (e.g.
when the owner is not present no activity should be detected).

To ensure sufficient spatial coverage for classifying domestic activities, wireless sensor net-
works are of interest [8, 9]. In this work microphones are used as sensor, thereby making it
a Wireless Acoustic Sensor Network (WASN). A microphone contains highly informative data
which can be leveraged for classifying domestic activities [9] but also for other tasks, e.g. speech
recognition, urban scene classification and sound event detection [10, 11, 12, 13]. In the remain-
der of this paper a sensor node refers to a single device in a WASN capable of sensing, processing
and communication.

In order to make such a system easily installed, an interesting avenue is to use battery-
powered sensor nodes in the WASN [8]. This brings an additional challenge because, besides
acquiring a high performance, a long autonomous lifetime of the sensor nodes is of interest.
Reducing energy consumption of a particular sensor node can be tackled on many layers of the
processing chain (e.g. sensing, feature extraction, classification and communication) [14]. An
important choice to make before designing a WASN is to determine how much processing is
performed locally, i.e. on the sensor nodes instead of in a fusion center. Performing more com-
putation locally has the potential advantage of a lower communication bandwidth at the expense
of less information being available centrally and vice-versa.

The first part of the paper explains the motivation for, and evaluation of, different decision-
level fusion methods. Each sensor node in a network performs local processing (including clas-
sification), and these local classification outputs (decisions) are combined centrally in a fusion
center to obtain a final classification output based on local decisions. The evaluated methods
differ on the needed communication bandwidth and are therefor evaluated on classification per-
formance at the fusion center along with the communication bandwidth and energy consumption
that is needed to compute a single classification output at the local level.

The second part of the paper introduces and evaluates dynamic sensor activation algorithms.
As the sensor nodes in the network monitor the same process from a different point of view,
redundancy may exist and a good subset of the sensor nodes may be sufficient. The proposed
algorithms dynamically (de-)activate layers of the processing chain (i.e. sensing, processing and
communication) for each sensor node separately to further reduce energy consumption.

In this work, related to classification of domestic activities, the main contributions are:

(a) A motivation for local classification based on an energy consumption model,

(b) A performance baseline for single-sensor node versus multi-sensor node classification,
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(c) An evaluation of the classification performance and communicated bits for different decision-
level fusion methods with a fixed set of active sensor nodes,

(d) A comparison of three dynamic sensor activation strategies using decision-level fusion on
classification performance and the resulting percentage of time the sensor node is active
(i.e. duty cycle).

The rest of the paper is organised as follows. In Section 2, the related work is introduced.
As this paper is cross-disciplinary this section introduces work from all involved disciplines.
Section 3 introduces the problem description along with a motivation for the design choices that
were made. In order to properly compare the proposed algorithms two data sets are used which
are introduced in Section 4. Section 5 shows the results for single sensor node classification.
Section 6 and 7 introduce and discuss the results related to the proposed algorithms. A final
discussion on the results along with conclusions are provided in Section 8.

2. Related work

First, the literature regarding sound monitoring in general and specifically for classifying
activities in domestic environments is briefly discussed. Then, relevant work regarding data
fusion is reviewed. Finally, approaches available in the literature to make WSN more energy-
efficient are summarised.

Audio is an attractive sensor modality for monitoring an environment as it can convey highly
informative data [10, 7, 15]. Over the past decade, a considerable amount of research has been
performed on designing computational methods to automatically extract information from audio
data. Besides the classification of domestic activities, depicted in this paper, many other tasks
are researched [11, 12, 13]. Few examples are, but not limited to, classification of urban acoustic
scenes [16], general-purpose audio tagging [17], bird sound detection [18] and sound event de-
tection in domestic environments [19]. In many of these tasks similar techniques are being used,
starting from a paradigm consisting of a hand-crafted feature extraction and a machine learning
stage. In recent years, (Deep) Neural Networks have become the most popular computational
method, which has led to a paradigm shift where feature extraction is no longer or less hand-
crafted and included in the learner’s objective. An overview of the current state-of-the-art for
various sound recognition tasks can be found in [11, 12, 13].

Regarding the task depicted in this paper, classification of activities in a domestic environ-
ment, research has been devoted to a wide range of sensor modalities [7]. Research using solely
audio or a combination of sensor modalities is limited. In [10, 20] a system is introduced for
ADL recognition along with distant speech recognition for home automation. The dataset in
that work contained multiple non-wearable sensor modalities including audio. Regarding audio,
the number of audio events was extracted using an adaptive threshold algorithm and used as a
feature. This is similar to the work performed in [7] which focusses solely on classification of
ADLs using a multi-modal dataset. In [21], the authors analyse the performance of a system
with Mel-Frequency Cepstral Coefficients (MFCC) feature extraction along with a Support Vec-
tor Machine or Gaussian Mixture Model classifier with respect to computational complexity for
various parameter settings. Recently, a competition was organised in the scope of the DCASE
2018 Challenge, which was related to classification of ADLs using multi-channel audio [22].
Most submissions used log-mel energies or MFCCs as features along with a Neural Network-
based classifier.
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In case multiple sensor nodes are available, information needs to be fused to output a final
decision. By fusing information, the system can increase its spatial resolution and consequently
achieve a higher performance [8]. Multi-sensor data fusion is widely used to combine data
acquired by different sensor nodes to monitor a particular process [23, 24, 25, 26]. Typical ap-
proaches can be subdivided into data-, feature- and decision-level fusion and whether or not
labels are available. Fusing data at an earlier stage, either as raw data or as features that are a
compressed representation of the raw data, can be beneficial to obtain a better classification per-
formance, while fusing at a later stage, i.e. decisions, could reduce communication bandwidth.
Unfortunately, the problem of finding optimal strategies for distributed processing and decision
making is in general NP-hard [27]. Therefore, heuristics (see e.g. [28]) are necessary when
designing practical solutions.

Decision-level fusion approaches, such as the ones considered in this paper, can be cate-
gorised based on how the output of each classifier is formatted (e.g. labels or probability values)
[29]. Common methods that do not require a learning cycle that needs data annotation are the
product, sum, maximum and minimum rule in case of probabilistic inputs and the majority vote
or borda count in case of labels [24, 29, 30]. To improve the performance of decision-level
fusion researchers have suggested (optimal) fusion strategies that require learning or a-priori in-
formation [24, 26, 29, 31]. In this paper methods are explored that do not need a learning cycle.
Methods which do require training need labelling and training for each environment, which is
not a realistic setting as positions of the sensor nodes and the deployed environments are different
for each setup. As a consequence, for each environment, a new training cycle would be required.

The literature on sound classification tailored to WASN is limited. In [32] the authors propose
a WASN for classifying ADLs. The benefit of a WASN, by using a Signal-to-Noise ratio (SNR)
based sensor selection, is shown in clean and noisy conditions. In [33] various decision-level
fusion methods are compared for acoustic event detection and classification using a Bag-of-
Features type of classification. Similarly, in [34] multiple decision-level fusion methods are
compared for audio event detection on different SNRs. Different from their work is that here not
only performance but also the energy consumption is taken into account.

Increasing the energy efficiency of a WASN can be tackled in different layers of the pro-
cessing chain, including sensing, signal processing and wireless communication [14, 35]. With
respect to the processing layer, reduction of energy consumption can be achieved by design-
ing energy-efficient hardware [36, 37], or comparing different algorithms and parameter settings
[21, 38]. Substantial efforts have been made to decrease energy consumption of wireless com-
munication modules, ranging from the physical layer [39, 40, 41, 42], multihop and routing
[43, 44, 45] to network layer protocols [46]. Another approach is to consider different com-
munication strategies as in [15] where the energy consumption for acoustic surveillance was
evaluated on a distributed and centralised approach for sound source detection and localisation.
A characteristic of a WASN is that the collected data and obtained information at a sensor node
is correlated to that of neighbouring sensor nodes, which could be used to reduce the overall
energy consumption [47]. To the best of our knowledge no work has been performed on com-
paring (dynamic) decision-level fusion schemes with respect to performance and communication
bandwidth for the purpose of audio classification.

3. Problem description and motivation

This work investigates the distribution of processing tasks over different components of a
WASN with battery-fed sensor nodes in order to optimise the autonomy of the nodes. A specific

4



use case of automated monitoring of domestic activities of persons was selected to carry out the
study. For this use case the task of the WASN is to classify audio segments into a pre-defined set
C of NC daily activities. First, the WASN setup that is used throughout the paper is discussed.
Then, a motivation is provided for using decision-level fusion. Finally, the problem definition
for dynamic sensor activation is introduced.

3.1. WASN setup and energy model

In Figure 1 a WASN is shown that consists out of multiple acoustic sensor nodes with wire-
less communication capabilities and a central dedicated device or fusion center, that can gather
and process (fuse) the sensed data. In order to allow such a WASN to be easily installed, wireless
battery powered architectures are preferred to avoid extensive use of wiring [8]. Unfortunately,
this brings additional challenges as the lifetime of these devices can be compromised by the en-
ergy consumption of acoustic sensors ES, local processing EP, and wireless transmission ET and
reception ER, which usually goes beyond the scope of what current sensor network architectures
can provide [48]. Note that the following characteristics of the WASN were assumed: star topol-
ogy, sensor nodes support duty cycling, an up- and downlink is available and the fusion center is
not energy-constrained, while the others are battery-powered.

Sensing
layer

Communication
layer

Processing
layer

sensor node

fusion center

Figure 1: A WASN containing a fusion center along with multiple sensor nodes. Each sensor node is represented in three
basic layers along with their energy consumption, i.e. sensing, processing and communication layer with ES, EP and
ET + ER respectively. [49]

To motivate the experiment conducted in this paper, an energy consumption model is intro-
duced. The total energy cost of a sensor node can be calculated as:

Enode = δSES + δPEP + δTET + δRER (1)

which is comprised of the energy consumption of acoustic sensors ES, local processing EP,
and wireless transmission ET and reception ER. Reducing the duty cycle δ ∈ [0, 1] has an impact
on a specific layer. The respective duty cycle for a particular layer is denoted with the respective
subscript. In this work, duty cycle refers to a percentage of the average time a layer (i.e. sensing,
processing and communication) is active compared to always-on. Note that the energy cost for
reception ER is only needed if communication is needed from the fusion center to a dedicated
node. For simplicity, our modelling neglects costs associated with feedback control messages,
which is often orders of magnitude smaller than the costs of feedforward transmissions [50, 51,
52].
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3.2. Motivation for choosing decision-level fusion

Reducing the amount of bits to communicate from a sensor node to the fusion center involves
processing of the collected data which increases the energy consumption, on the sensor node, due
to arithmetic operations, memory storage and memory accesses. To gain autonomous lifetime,
the additional energy consumption should -obviously- be less than the energy consumption de-
crease in the communication layer.

Figure 2 shows the energy consumption of each component in a hypothetical WASN in func-
tion of the amount of transmitted bytes per classification output. To classify the acoustic data, it
is assumed that a segment of 15s of data is available such as in [9]. The sensing layer, contribut-
ing to cost ES, outputs an amount of bits depending on the bit depth S and sampling frequency
fs of the analog-to-digital converter. Subsequently, the processing layer processes the sampled
audio to output features or a meaningful classification output (e.g. detected activity is cooking).
In this figure the energy acquired by the processing layer is denoted as EP,low and EP,high refer-
ring to two architectures with a relatively low and high complexity respectively based on [9, 14].
The amount of communicated bytes, attributing to ET, are roughly categorised in three groups or
strategies for distributed classification: raw audio (24 kB/s with fs = 16 kHz and S = 12 bit),
feature extraction (in-between) and classification (160 bit per classification output in case of 10
classes with 16 bit posterior probabilities).
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Figure 2: Energy consumption of each layer in a WASN in function of the amount of communicated bytes.1

1More information on the hypothetical hardware architecture and how the energy consumption is calculated can
be found in [14]. The energy consumption model mimics the energy consumption behaviour of a setup including a
microphone, analog-to-digital converter, microcontroller with a Cortex-M4 processor [53] and communication module
following the IEEE 802.15.4 standard [54]. Open-source code to compute the graph is available at [49].
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Regarding communication, two curves are shown, with and without additional cost ER for
receiving information of a single byte from the fusion center. The cost of ER should only be
taken into account if it is desirable to control each sensor node from the fusion center. Given this
hypothetical sensor node and a typical battery of 2100 mAh at 2.2V, a lifetime is expected of ±20
and ±30 days for the low and high complexity architecture with sensing and communication (i.e.
EP,low and EP,high respectively). In the case of communicating raw audio this would be ±2 days,
i.e. not an option when a high autonomous lifetime is required. As a consequence the use of
local processing that computes high-level features or classification outputs is desired. Evidently,
the additional energy spent by local processing should remain limited to not undo the gain that
is achieved by lowering communication bandwidth.

Previous paragraph indicated that lowering the communication bandwidth is desired if high
autonomous lifetime is needed. In this work it is chosen to compare decision-level fusion meth-
ods w.r.t. communicated bits per classification output and classification performance including a
fixed and dynamic sensor activation strategy.

3.3. Dynamic sensor activation

With typical decision-level fusion, sensor activation is fixed. In this case, the processing
layer tends to dominate to overall energy consumption. To further reduce energy consumption,
dynamic sensor activation strategies are explored that can reduce the sensor node’s duty cycle.
When using a WASN, sensor nodes are spatially distributed and redundancy will exist. This was
the motivation to evaluate algorithms that, based on the given classification outputs off one or
multiple sensor node(s), select the next set of active sensor nodes. Three algorithms are proposed
that differ on where the decision is made, i.e. locally, centrally or a hybrid form.

4. Datasets

The results in this work are based on two datasets containing multi-channel acoustic record-
ings of daily activities performed in a home environment. The first dataset, named SINS, contains
audio of a single person living in a vacation home recorded using a WASN of seven sensor nodes
each containing an array of four microphones. The daily activities are performed in a sponta-
neous manner and recorded in a continuous stream. In this work the data acquired by the first
sensor in each of the seven microphone arrays in the living room is used. The annotation of
the data acquired in the living room distinguishes ten activities: cooking, calling, dishwashing,
eating, vacuum cleaning, visit, watching tv, working, absence and others. More information on
the dataset can be retrieved in [9].

The second dataset, named SWEET-HOME, is a multi-modal dataset recorded in an apart-
ment. In this work the audio recordings of the subset named multimodal are used. The subset
contains recordings of 21 participants that perform several activities without any constraint on
duration and procedure. The data was collected for each participant separately by seven sensor
nodes containing a single microphone distributed over multiple rooms in the apartment. In total
26 hours of data is available per microphone channel. The dataset distinguishes between eight
activities: cleaning, communication, dressing, hygiene, meal, relaxation, sleeping and other. Fig-
ure 3 shows a two-dimensional map of the recording environments of both datasets. Each map
contains dots indicating the placement of each sensor node along with an index number.
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(a) (b)

Figure 3: 2D map of the recording environment used in the (a) SINS and (b) SWEET-HOME [20] dataset

Both datasets are segmented such that each classification example is an audio sample of 15
seconds and each two successive samples overlap for 5 seconds, similarly as in [9]. Only a
single class is active at a particular time instant. However, as these datasets are continuous, a
single audio sample can contain a transition between two classes. Each audio sample is assigned
a label corresponding to that of the class that is active in the middle of the sample. Table 1 shows
the amount of audio samples per class for both datasets along with the amount of groups. A
group represents a consecutive set of samples that belong to a single activity and should be kept
together when dividing in training and test sets for classification. In total 106419 and 18819
audio samples are available for the SINS and SWEET-HOME dataset respectively.

Class Samples Groups
Absence 50977 64
Calling 2162 22

Cooking 3791 19
Dishwashing 1144 15

Eating 1771 19
Other 1789 198

Vacuum cleaner 745 13
Visit 1435 9

Watching TV 24238 13
Working 18367 49

(a)

Class Samples Groups
Cleaning 3048 60

Communication 664 43
Dressing 486 50
Hygiene 1317 60

Meal 3913 21
Other 3850 285

Relaxation 3689 81
Sleeping 1852 38

(b)

Table 1: Dataset distribution over all class labels for the SINS (a) and SWEET-HOME (b) dataset.

5. Classification using a single sensor node

5.1. Overview
Before exploring the performance of a WASN the limits in terms of classification accuracy

and energy consumption of a single sensor node system are studied. The performance of a single
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sensor node, for the given problem, varies and is subject to location, sensor node characteristics
and classifier model variability. Therefore, for each available sensor first an individual perfor-
mance evaluation was performed. Secondly, statistics are drawn from the performance of the
entire sensor set, i.e. the best, average and worst sensor. In this section, and in the remainder
of the paper, two classifier architectures of distinct computational complexity are used. Multiple
architectures were tested and provided similar results, therefor only the two extremes are shown
here.

5.2. Classifier architectures

For this experiment two classifier architectures were chosen with a relatively low and high
computational complexity, denoted as NN and CNN respectively. These architectures are based
on common architectures used in the field of sound classification including typical Mel-Frequency
Cepstral Coefficients (MFCC) and a (Convolutional) Neural Network (NN) [11, 12, 13]. The
computational complexity is intentionally kept relatively low such that it is realistic to fit on a
low-power embedded device.

For both architectures, a Short-Time Fourier Transform (STFT) is applied to the audio sam-
ples of 15 s duration, that have a sampling frequency of 16 kHz. A 30 ms Hamming window and
a 10 ms step size was used. Then, the STFT magnitude of the resulting frames is fed to a mel-
scale filterbank with 26 bands and a frequency range of 500 to 8000 Hz followed by a logarithmic
transformation at the end which leads to a feature representation of size 26 by 1500. Regarding
the CNN architecture, the aforementioned features, denoted logMel, are used directly as input to
the classifier model. For the NN architecture, sequentially, a Discrete Cosine Transform (DCT)
is applied. The first 14 DCT coefficients were kept, including the 0th order coefficient. Delta (∆)
and acceleration (∆∆) coefficients were also computed, based on a window length of 9. Finally,
the mean and standard deviation over time are calculated for each DCT, delta and acceleration
feature in the entire audio sample of 15s. The resulting feature vector is of size 84, and referred
to as MFCC.

Framing &
Windowing

FFT Mel Log DCT µ / ? 

Framing &
Windowing

FFT Mel Log

NN:

CNN:

2x (1D CNN & Max-Pooling & ReLU) + 3x (FC & ReLU) + Softmax

3x (FC + ReLU) + Softmax

?/??

Figure 4: The classifier architectures ranging from low to higher computational complexity: NN and CNN.

Regarding the classification model, NN uses the MFCC feature vector with size of 84 as input
to three Fully Connected (FC) layers, containing 128 neurons, and ReLU activation to allow for
non-linear classification. A softmax output layer is used to provide a probabilistic output. The
CNN architecture (adopted from the work in [22]) uses the logMel features with a size of 26 by
1500. Here, two one-dimensional (1D) convolutional layers are used (i.e. convolution is only
performed over the time axis). The first 1D convolutional layer has 64 filters with a kernel size
of 26 by 5 and stride 1. Subsampling is then performed by using max pooling of size 1 by 5
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and stride 1 by 5. The resulting feature map of size 64 by 299 is then provided to a second 1D
convolutional layer that has 128 filters with a kernel size of 64 by 5 and stride 1. Sequentially, this
is subsampled by global max pooling to aggregate over the entire time axis. The resulting vector
of length 128 is provided to the same network as the NN. All convolutional layers have batch
normalisation and ReLU activation at their output. For regularisation, a 20% dropout is used
between all convolutional and FC layers. The networks are trained using the Adam optimiser
with a learning rate of 0.001 and a batch size of 256 samples. On each epoch, the training dataset
is randomly subsampled such that the number of examples for each class match the size of the
smallest class. The performance of the model is evaluated every 10 epochs, of 500 in total, on
a validation subset. The model with the highest score is used as the final model. As a metric,
the macro-averaged F1-score is used, which is the mean of the class-wise F1-scores. A single
model is trained on data from all sensor nodes. Everything is performed in a cross-validation
(CV) fashion where the data is divided into 4 folds without splitting the groups (see Table 1) and
keeping a similar class distribution. In each CV iteration two folds are used for training, one for
validation and one for testing.

5.3. Results and discussion

Figure 5 shows the F1-score statistics of the entire set of sensor nodes for both architectures
(CNN and NN) on both datasets. Boundaries for each architecture indicate the best and the worst
performing sensor node along with the average in-between (indicated by a circle). The indices
next to the maximum and minimum refer to the sensor node index which can be located on Figure
3. On the SINS dataset, F1-scores for the separate sensor nodes range between 83.5%-84.4% for
CNN and 77.4%-80.35% for NN. The variance on the performance for a particular sensor node is
lower than on the SWEET-HOME dataset. There the F1-scores range between 48.0%-56.9% for
CNN and 40.8%-50.1% for NN. This can be explained by the fact that the SWEET-HOME dataset
has sensor nodes distributed over multiple rooms. As expected, the best and worst performing
sensor nodes, for both datasets, are the sensor nodes closest to all sound sources, while sensor
nodes which are further away provide the lowest performance.

CNN NN
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Figure 5: F1-scores for best, least and average performing sensor node of the CNN and NN architectures on the SINS
(a) and SWEETHOME (b) dataset.
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Class CNN NN
Absence 2 / 1 2 / 3
Calling 6 / 1 6 / 1
Cooking 4 / 7 4 / 7

Dishwashing 3 / 4 6 / 4
Eating 4 / 6 4 / 1
Other 3 / 4 5 / 1

Vacuumcleaner 6 / 2 3 / 7
Visit 3 / 2 5 / 2

Watching TV 3 / 5 3 / 1
Working 1 / 4 1 / 4

(a)

Class CNN NN
Cleaning 1 / 7 1 / 7

Communication 7 / 1 7 / 2
Dressing 4 / 3 4 / 6
Hygiene 3 / 7 3 / 6

Meal 5 / 7 5 / 7
Other 4 / 7 4 / 7

Relaxation 7 / 3 7 / 1
Sleeping 4 / 6 5 / 3

(b)

Table 2: Best (at the left of /) and worst (at the right of /) performing sensor node for each activity in dataset SINS (a)
and SWEET-HOME (b).

Table 2 shows the best and worst performing sensor node for each class separately. In both
datasets, some activities can be considered to be originated from a fixed area (e.g. watching tv
and meal) while others are more uniformly distributed (e.g. absence and vacuum cleaner) over
the monitored area. The activities originating from a dense region are expected to be classified
better by a nearby sensor node (and vice versa). In the table sensor nodes are indicated in bold
if they are the best performing sensor node for that class and are the nearest. Note that, in both
datasets, no music or any noise sources were present (e.g. other people) besides sensor and
environmental noise. The proximity of the sensor to the audio source correlates well with its
classification performance.

6. Decision-level fusion

6.1. Methods

In the previous section, the performance in case of a single sensor node was explored. In
this section the performance when fusing information sent by Nn different sensor nodes is anal-
ysed. As was motivated in the problem description in Section 3, each sensor node performs local
classification, i.e. discriminating the given input signal in one out of Nc pre-defined classes.
As a consequence only decision-level fusion strategies are considered which depend on the in-
formation provided by the individual sensor nodes, which can be categorised in the following
information levels [24]:

• Soft level: each sensor node provides a Nc-dimensional vector dn = [dn,1, ..., dn,Nc ]
T which

represents the probability for all classes c ∈ {1, ...,Nc} and a particular node n ∈ {1, ...,Nn},

• Ranked level: each sensor node provides a Nr-dimensional vector rn = [rn,1, ..., rn,Nr ]
T

which consists of labels (∈ {1, ...,Nc}) ranked (high to low) based on probability dn. In
this work this is extended by limiting the amount of labels to be send through to Nr ≤ Nc.
Hereby, it is assumed that the ranking of less probable classes is less relevant for fusion.
In case Nr = Nc all labels are send through, similar to the work in [29].
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• Label level: each sensor node provides a single class label (i.e. the most probable class).
This is a special case of the ranked level where Nr = 1.

To transmit these sources of information, the data needs to be formatted in an efficient man-
ner. Regarding the soft level two formats will be compared: a) concatenation of probabilities
in unsigned fixed-point 16 bit format of dn and b) vector quantised version Q(dn) of all prob-
ability vectors dn. While the former quantisation is linear, the latter takes into the account the
distribution probabilities for a certain ground truth class. After the model training phase, Nvq,c

prototype vectors are estimated for a particular ground truth class c using K-means clustering
[55] on the training set. To make sure at least one prototype is assigned to a class, vector quan-
tisation is done for each class separately. For transmission, only an index iv ∈ {0, ...,Nvq}, with
Nvq =

∑Nc
c=0 Nvq,c, will be transmitted to the fusion center where it will be decoded. For this pur-

pose at least log2(Nvq !) bits are required to encode this information. Similarly, to send through
the ranked level information, for a particular rank size Nr the minimal amount of bits is at least
log2( Nc !

(Nc−Nr) ! ) where an index ir ∈ {0, ...,Nr} will be transmitted.
In this paper, fusion methods are explored that require no training. Common methods include

the product-, sum-, maximum- and minimum-rule in case of soft level and the majority vote
or borda count in case of ranked- and label level [29]. For each information level, all these
combination rules were evaluated but no notable differences in terms of classification accuracy
were observed. These experiments were not added to the paper. In case of soft level, the mean
rule will be used in the experiments throughout the rest of the paper. The final predicted class in
case of the mean rule is formally defined as:

ĉ = arg max
c∈C

1
Nn

Nn∑
n=1

dn,c . (2)

In case of ranked level, the borda count will be used. For each node n, a class is given a particular
weight based on the ranking. All weights for each node are added to obtain a final vector that
gives the support for each class. The final predicted class in case of borda count is formally
defined as:

ĉ = arg max
c∈C

Nn∑
n=1

Nr∑
r=1

ωr1{c = rn,r} , (3)

where ω = [ω1, ..., ωNr ] denotes the weight vector for a particular ranking and 1 the identity
which is one in case the argument is satisfied and zero if not. In case of traditional borda count
the weight is equal to the amount of classes ranked lower (i.e. ωn = [Nr − 1,Nr − 2, ..., 0]) [29].

6.2. Results and discussion

In this section the results for different ways to fuse the information received from each sensor
node are compared using the same classifier architectures, introduced in Section 5.2, on both
datasets. The methods described in previous paragraph using different parameter settings are
compared based on classification performance and the amount of communicated bits per clas-
sification output. Next to classification performance also a measure related to the autonomy of
the WASN nodes is included in the assessment. As was discussed in Section 3, the amount of
communicated bits per classification output is used for the latter. However, to preserve a link to
a practical solution, estimates of the energy consumption will be given using the energy model
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that was introduced in Section 3. Before comparing various methods and settings, first the per-
formance of soft-level fusion at a precision of 16 bit using the mean-rule, denoted as Posterior16,
is shown in function of different node set sizes in Figure 6.
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Figure 6: F1-score with respect to the used sensor node set size in case of mean probability fusion for the CNN and NN
architecture on the SINS (a) and SWEET-HOME (b) dataset

In total there are seven sensor nodes, of this set all subsets of size one till seven are evalu-
ated and performance metrics are averaged per set size. This is considered to be an upper bound
for fixed decision-level fusion on both the performance and communicated bits as the posterior
probabilities of each sensor node are send through in a precision of 16 bit. In case of the SINS
dataset the average gain in performance from set size of one to seven is, for both NN and CNN,
approximately 2%. The difference in performance of the worst and best performing set is relative
low (<3%), especially in case of CNN (<1%). As expected, this difference gets smaller with a
larger set size. In case of the SWEET-HOME dataset the gain in average performance is consid-
erably larger (±15%). Similarly, the difference of the best and worst performing set over all sets
is higher (±8%). This is expected as the microphones are deployed over multiple rooms while in
case of SINS all microphones are in the same room in a relatively small area (± 25m2).
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Figure 7: F1-scores versus amount of communicated bits per prediction for two fusion methods and three set sizes. Each
subfigure shows to results for a different dataset and architecture. (a) SINS dataset and CNN architecture, (b) SINS and
NN, (c) SWEET-HOME and CNN and (d) SWEET-HOME and NN.

The estimated energy consumption for communicating 16 bit posterior probabilities is 167
µJ per classification output which could be reduced by choosing a different representation and
fusion method. Figure 7 shows the F1-score of two decision-level fusion methods and a range of
settings with respect to the amount of communicated bits per classification output. The evaluated
methods are soft level fusion, with vector quantisation (PosteriorVQ) as data representation, and
ranked level fusion (Ranked). Each line in the graph is a function of a parameter that controls
the amount of bits. In case of PosteriorVQ, this is a function of Nvq ∈ 2b with b ∈ [4, 5, 6, 8]
for the SINS dataset and b ∈ [3, 4, 5, 6, 8] for the SWEETHOME dataset. The difference between
the two datasets is due to the amount of classes being 10 and 8 respectively as each class should
be represented by at least one prototype vector . Regarding Ranked, Nr ∈ [1, 2, 3, 4, 6, 8]. Note
that each possible combination for Ranked is represented by a single integer and that the amount
of bits to represent all these combinations is log2( Nc !

(Nc−Nr) ! ), e.g. for Nr = 8 at least 16 bits are
needed for communicating all different combinations. To improve visibility, the performance is
shown for a subset of the possible set sizes (2, 3 and 7 nodes are shown) but this has no effect
on the conclusions. For both datasets and architectures it is clear that PosteriorVQ outperforms
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Ranked. This is particularly the case for smaller set sizes where Ranked suffers from randomness
if multiple classes have equal support. In case of the SINS dataset the amount of bits can be
reduced down to four without losing performance as long as the set size is larger than two. This
is because the posterior probabilities are highly skewed towards a single class, i.e. all values are
close to zero and close to one for a single class. This is not the case in the SWEET-HOME dataset
as a loss of performance is noticeable for all set sizes (>4%). In a practical case, the gain in terms
of energy consumption is limited due to the used communication standard (i.e. IEEE 802.15.4
[54]). As communication frames are limited to an integer multiple of a single byte, going lower
than one byte has no advantage. Additionally, the overhead of a communication frame is typically
in the order tens of bytes. When using the energy consumption model introduced in Section 3 the
consumed energy for all methods is 126-130 µJ in case of 4-21 bits. With respect to Posterior16
(160 bit, 167 µJ) there is a decrease in energy consumption of 25%. However, this decrease is
negligible compared to the cost at other layers as shown in Figure 2 in Section 3, i.e. the cost for
communication ranges in 0.1-1 mJ, while local processing ranges between 10-100 mJ. Note that
reducing the amount of bits per classification output could be useful when multiple classification
outputs are concatenated in a single communication frame, at the expense of extra latency. To
conclude, the benefit of reducing the amount of communicated bits could be useful but strongly
depends on the used communication standard and the relative energy cost with respect to other
layers.

7. Dynamic sensor activation

7.1. Overview

Dynamic sensor activation could be of interest to reduce the duty cycle of several layers in
a sensor node which have a direct impact on the energy costs as indicated in Section 3. In this
section three algorithms are proposed compared: 1) locally-controlled, 2) centrally-controlled
and 3) hybrid. As the name indicates, locally-controlled refers to an algorithm where each sensor
node determines for itself whether or not to communicate, while centrally-controlled gathers all
information and decides which are the sensor node(s) that will be active in the next time step.
The hybrid form is a combination of both. All dynamic sensor activation strategies are primarily
based on two concepts: reliability estimation and best set selection. First, these two concepts are
introduced and afterwards the strategies are more elaborately explained. For the remainder of the
paper the focus is on vector quantised soft level fusion motivated by the previous section.

7.2. Reliability estimation and best set selection

Reliability estimation involves determining if a particular classification output is reliable or
not, i.e. a binary classification ∈ [0, 1], while best set selection is choosing the best set of size
Nn,act out of a set Φ of available sensor nodes that will be made active in the next time step.
To enable reliability estimation, Confidence Measures (CM) are introduced. In order to indicate
to the user that the system is unsure, CM have been researched in various fields such as auto-
matic speech recognition, image classification and audio detection [32, 56, 57]. When a posterior
probability for each class is available an obvious choice is to use this information as CM. Typical
approaches are to use the maximum, entropy or N-best likelihood ratio of the posterior probabil-
ity for each class [56]. Multiple CM methods (e.g. maximum posterior probability [56], N-best
likelihood difference [58], relative signal-to-noise ratio [32]) were compared that did not require
any training. The maximum element of the posterior probability vector dn was selected as it’s
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easy to interpret and the difference in performance, for the purpose of dynamic sensor activation,
between other methods was not significant.
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Figure 8: Area Under a Curve of reliability estimation based on maximum posterior probability for various quantisations.

In this work reliability estimation simply involves thresholding a CM, which makes Area
Under a Curve (AUC) a natural metric for evaluation. The AUC refers to the total area under
the ROC curve, which is set up by plotting the true positive rate in function of the false positive
rate. AUC was chosen as a metric at it is threshold independent. Figure 8 shows the AUC
for reliability estimation based on the maximum posterior probability versus the set size. The
AUC was evaluated for different set sizes, where all possible sensor nodes combinations of that
particular set size were averaged. As the experiments contain multiple classes, the average of
Nc AUC scores is computed by placing a single class versus all the remaining ones. Each line
refers to a different amount of bits used for representing the prototype vectors of posteriorVQ
including 4, 5 and 8 bits for the SINS dataset and 3, 4 and 8 for the SWEET-HOME dataset.
Lowering the precision has a detrimental effect on the AUC, although this is only noticeable at
the lowest amount of bits. Increasing the set size has a positive effect on the AUC, but does not
entirely compensate the gap in AUC for the lowest amount of bits.

Regarding best set selection, Figure 9 shows the performance of the set selected with the high-
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est reliability (according to the maximum posterior probability rule) along with the performance
of selecting a random set for each classification output. Similarly as for reliability estimation,
lowering the number of prototype vectors Nvq has a detrimental effect and increasing the set size
improves the performance. Regarding the SINS dataset, the best set has a similar performance,
or even better, with respect to using all sensor nodes. In case of the SWEET-HOME dataset the
decrease in performance from 28 to 23 prototype vectors is roughly 5%.
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Figure 9: F1-score with respect to the used sensor node set size for best set selection based on maximum posterior
probability and random selection for various quantizations.

7.3. Proposed strategies

The previous paragraph introduced the concept of reliability estimation and best set selection,
key elements used in for the dynamic sensor activation strategies introduced here. In this section
three strategies are compared that differ on where the decision is made to (de-)activate a sensor,
i.e. duty cycling some layers. The sensing layer is considered to be always-on, as the sensor
node needs to respond quickly when an activation is desired as classification outputs are based
on 15 s. However, the communication layer and/or processing layer could be duty-cycled if
needed. Which layers can be duty-cycled depends on the dynamic sensor activation strategy. As
mentioned earlier, the strategies primarily differ on where the decision is made to (de-)activate a
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layer, i.e. centrally-controlled (D1), locally-controlled (D2) or a combination of both (D3). As
these strategies overlap from an algorithmic point of view, a single algorithm for each sensor
node and the fusion center is introduced. The algorithm on each sensor node takes care of
classification and sends a vector quantised posterior probability in case the current classification
output is reliable. Note that the entire sensor node can be (de-)activated by the fusion center.
In case of the fusion center, the algorithm takes care of fusing all classification outputs received
from a dynamic set of sensor nodes. Additionally, the fusion center can decide to force a sensor
node to be active, i.e. classify and transmit. Both algorithms are applicable for the three strategies
given a particular parameter setting. Algorithm 1 and Algorithm 2 shows the pseudo-code of
the sensor node and fusion center respectively. Regarding Algorithm 1, key parameters include
control ∈ {True, False} to allow (de-)activation by the fusion center based on φn ∈ {True, False}
and a threshold ρl ∈ [0, 1] on the reliability to control if a vector quantised classification output
Q(dn) is sent to the fusion center if φn is False.

Algorithm 1 Sensor node n
Parameters: ρl, control
Initialise: φn ← True
1: for every time step do
2: if control then receive φn

3: if φn then
4: estimate dn

5: if reliability(dn) ≥ ρl or φn then transmit Q(dn)

Regarding Algorithm 2, in case control is True, Nn,act ∈ {1, ...,Nn} is the desired set size and
ρc ∈ [0, 1] is a threshold on the reliability to either select a new active set Φ or keep the current
one.
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Algorithm 2 Fusion center
Parameters: Nn,act, ρc, control
Initialise: Φ← {1, ...,Nn} if control else ∅
1: for every time step do
2: for n ∈ {1, ...,Nn} do
3: if control then
4: φn ← True if n ∈ Φ else False
5: transmit φn to node n
6: if received dn then Φ← Φ ∪ {n}
7: if |Φ| > 0 then
8: d← 1

|Φ|

∑
n∈Φ dn

9: ĉ← arg maxc∈C dc

10: else
11: ĉ← class with highest prior probability
12: if control then
13: if reliability(d) ≥ ρc and |Φ| > Nn,act then
14: Φ← BestSetSelection(Nn,act, Φ, d, ĉ)
15: else if reliability(dn) < ρc then Φ← {1, ...,Nn}

16: else Φ← ∅

The first strategy for dynamic sensor activation (D1) operates in a locally-controlled manner,
and can be obtained by setting control to True, ρl to 0 and ρc is left as an hyperparameter. In
that case, all sensor nodes receive φn ∈ {0, 1} from the fusion center, which controls whether to
process the data and transmit a classification output. The fusion center fuses the information sent
by the set of active sensor nodes Φ ∈ {1, ...,Nn} to obtain a final classification output. When the
reliability is above or equal to threshold ρc it will keep the current set active, if not, all sensor
nodes are activated to estimate and transmit their vector quantised posterior probability. If the
classification outputs of all sensor nodes are reliable, a new set Φ is selected which is described
in pseudo-code of Algorithm 3. All possible sets of sensor node combinations S k in S with
k ∈ [1, ...,

(
|Φ|

Nn,act

)
] given a set size of Nn,act are evaluated on their reliability. The most reliable

(i.e. best set selection) set, that has a prediction ĉ′ that equals the prediction ĉ of all available
sensor nodes, is used as the active set in the next iteration. The sensing layer is always on as
the microphone data needs to be buffered in case the sensor node is needed. Additionally, this
algorithm adds an additional energy consumption by the sensor nodes since a downlink wireless
communication link for φn is needed to receive control frames.

19



Algorithm 3 Select active sensor node set

1: function BestSetSelection(Nn,act, Φ, d, ĉ)
2: S ← set of all possible node sets Sk that satisfy |Sk | = Nn,act and S k ∈ Φ

3: R ← ∅

4: for Sk in S do
5: d← 1

|Φ|

∑
n∈Φ dn

6: ĉ′ ← arg maxc∈C dc

7: if ĉ′ = ĉ then R ← R ∪ {(k, reliability(d))}
return Sk with (k, r) = arg max(k,r)∈R r

While D1 was controlled centrally, D2 is controlled locally. Each sensor node is responsible
for determining whether to send something or not. As control is set to False, ρc does not matter
and ρl is left as a hyperparameter. Each sensor node performs classification and determines a
reliability at every time step. When the reliability of the classification output is above or equal
to ρl it transmits the classification output to the fusion center. These outputs are fused to obtain
the final predicted class. If no sensor nodes send a classification output it chooses the class with
the highest prior probability. The algorithm on the sensor node duty cycles the communication
layer and lacks the need for reception of frames coming from the fusion center. The processing
and sensing layer are always on as the reliability estimate r depends on those.

A disadvantage of D2 is that it could be that all sensor nodes are not reliable on a local level
and send no classification output, while D1 has a disadvantage of using a quantised version of
the posterior probability for the reliability estimation and best selection. D3, by setting control
to True and ρc to 0, uses the same principle as D1 regarding centrally-controlled set selection in
case the current classification output is unreliable (i.e. reliability lower than ρl). However, all
sensor nodes can decide for themselves to send information or not even if φn is False. Based on
the available sensor nodes the fusion center selects a new active set of set size Nn,act which sends
information regardless of its reliability.

7.4. Results and discussion

Figure 10 and 11 show the results of the proposed strategies in Section 7.3 in which pos-
teriorVQ with a precision of 8, 4 and 3 bits respectively was selected as the fusion strategy.
Additionally, the average results for static fusion on different set sizes (indicated by text added
next to marker ) is shown for comparison. As these results are averaged, static fusion can be
considered to be similar to the case of random selection of the sensor nodes and is included as
a reference. Each curve related to dynamic sensor activation (D1-D3) is a function of the relia-
bility threshold ρ where the marker refers to three distinct (0, 0.5 and 1) values for ρ. Previously
these thresholds were denoted as ρl and ρc, where depending on the used dynamic strategy one
of them is set to zero or left as a hyperparameter. In the remainder ρ will be used for simplicity
referring to the parameter that is non-zero. Besides the reliability threshold, D1 and D2 are also
depending on the desired set size Nn,act. In the figures this is shown for a set size of 1 and 3 (n1
and n3 respectively).
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Figure 10: F1-score with respect to the duty cycle of a sensor node for PosteriorVQ fusion at a precision of 8 bits.
Various dynamic sensor activation strategies are shown with respect to the threshold ρ along with random selection of
sensor nodes.

Regarding Figure 10, in case of a precision of 8 bits, D1 is superior to the alternatives for
both the SINS and SWEET-HOME datasets. Roughly speaking, a relative decrease in duty cycle
of 50%-80% can be obtained with respect to a static set of sensor nodes without observing a
significant different in F1-score. D2 suffers from no sensor node being active at lower values of ρ.
In case of the SINS dataset, using D1 the duty cycle can be reduced up to 15% without significant
loss of performance. Regarding the SWEET-HOME dataset the performance is more gradual in
function of ρ. The choice of ρ is a trade-off between energy consumption and accuracy. Overall,
given these datasets, a choice of ρ = 0.5 seems reasonable if similar performance is needed at a
lower energy consumption. Regarding the choice of Nn,act it is sufficient to limit this to a single
active sensor.

Figure 11 shows the results in case of a vector quantised posterior probability at the lowest
precision (i.e. 3 and 4 bits for SWEET-HOME and SINS dataset respectively). Overall, this has
a detrimental effect compared to using 8 bits. In case of the SINS dataset results are close to
randomly selecting sensor nodes. Regarding the SWEET-HOME dataset the hybrid approach
(D3) performs better at lower duty cycles, which is expected as the reliability estimation is not
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affected. At higher values of ρ this disadvantage is gone as for D1 it is more likely to not trust
the current classification output and query all sensor nodes to send a classification output, which
explains why for higher duty cycles D1 outperforms D3. Unlike the case of a precision of 8 bits,
at lower precision the size of the set Nn,act has an impact on the F1-score as adding more sensor
nodes increases the performance of best set selection and reliability estimation.
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Figure 11: F1-score with respect to the duty cycle of a sensor node for PosteriorVQ fusion at a precision of 4/3 bits for
SINS and SWEET-HOME dataset respectively. Various dynamic sensor activation strategies are shown with respect to
the threshold ρ along with random selection of sensor nodes.

Depending on the algorithm, the duty cycle has a different effect on the energy consumption.
D1 has a direct reduction in energy consumption of the processing and wireless transmission,
while sensing and wireless reception are always on. D2 allows for duty cycling on the wire-
less transmission along with no additional cost for wireless reception. D3 only introduces duty
cycling on the wireless transmission. Depending on the relative energy consumption for each
layer a particular scheme may be more favourable than the other. Given a hypothetical hard-
ware architecture and processing, introduced in Section 3 and Paragraph 5.2, D1 would be the
favourable option as the cost for processing is a factor 40-70 more than the other layers, i.e. ±1
mJ for communication versus ±40 mJ and ±70 mJ for architectures FC and CNN respectively
as long as posterior probabilities are represented at sufficient precision. The reduction in energy
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consumption is therefore comparable to the decrease in duty cycle, hence resulting in an energy
decrease of 50 to 80%.

8. Conclusion

Battery-fed wireless acoustic sensor networks are of interest to many applications, including
the use case of classifying daily activities occurring in a home environment. However, commer-
cialisation is limited due to the prohibitively high energy consumption when raw audio data is
transmitted. In order to extend the network’s lifetime, this paper proposes reducing the amount of
communication needed per classification output and dynamically (de-)activating sensor node(s).

First, the energy spend in the sensing, processing and communication layer was compared
using an energy consumption model of a hypothetical hardware system that complies with cur-
rent standards. It was concluded that it is favourable to use decision-level fusion, adopting a
topology where processing – including feature extraction and classification – is performed on a
(dynamic) set of sensor nodes that output decisions which are fused centrally. Using this topol-
ogy, a comparison of multiple methods for representing a sensor node’s decision indicated that
vector quantisation can reduce communication to 8 bit per classification output without signif-
icant performance loss. In terms of energy consumption, this resulted in a decrease of up to
3%.

As this is fairly limited, dynamic sensor activation strategies were explored that use a classifi-
cation output’s confidence measure to (de-)activate sensor node(s). These strategies mainly differ
by the way sensor (de-)activation is controlled (i.e. centrally, locally or both). It is shown that the
algorithm, employing central control, was favoured the most with a reduction in duty cycle down
to 20%. As a result this, given the energy consumption model, resulted in an energy decrease
of up to 80% as the processing layer dominated the overall energy budget. However, when the
amount of bits used for vector quantisation on a sensor node’s classification output is limited (1
bit/class), the gains are negligible over random duty cycling. In this case the hybrid approach is
preferred but only if the cost for wireless communication dominates the overall energy budget.

Our results suggest that adjusting the likelihood of (de-)activation based on the sensor node’s
battery depletion rate could bring significant savings; hence, the exploration of such schemes
correspond to a promising avenue for future research.
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