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SUMMARY 30 

In wheat and other cereals, the number of ears per unit area is one of the main yield 31 

determining components. An automatic evaluation of this parameter may contribute to the 32 

advance of wheat phenotyping and monitoring. There is no standard protocol for wheat 33 

ear counting in the field, and moreover it is time-consuming. An automatic ear counting 34 

system is proposed using machine learning techniques based on RGB images acquired 35 

from an unmanned aerial vehicle (UAV). Evaluation was performed on a set of 12 winter 36 

wheat cultivars with 3 nitrogen treatments during the 2017-2018 crop season. The 37 

automatic system uses a frequency filter, segmentation, and feature extraction with 38 

different classification techniques to discriminate wheat ears in micro-plot images. The 39 

relationship between the image-based manual counting and the algorithm counting 40 

exhibited high accuracy and efficiency. In addition, manual ear counting was conducted 41 

in the field for secondary validation. The correlations between the automatic and the 42 

manual in-situ ear counting with grain yield were also compared. Correlations between 43 

both ear counting systems were strong, particularly for the lower N treatment. 44 

Methodological requirements and limitations are discussed. 45 
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SIGNIFICANCE STATEMENT 49 

Ear density (ears/m2) is one of the main agronomical yield components of wheat. This 50 

study represents a novel contribution to the field of RGB image processing for plant 51 

phenotyping using unmanned aerial vehicle (UAV) platforms. By combining high 52 

resolution RGB imagery with an automatic ear classification and counting system, we 53 

have shown that it is possible to assess ear density with high precision from an aerial 54 

platform. This is the first study successfully deploying this approach. 55 

 56 

INTRODUCTION 57 

High throughput plant phenotyping (HTPP) relies on the availability of advanced sensors, 58 

suitable image analysis and data mining tools (Araus and Cairns, 2014; Deery et al., 59 

2014). In recent years, research in this area has been growing exponentially, but field 60 

phenotyping is still perceived as a bottleneck for crop breeding due to the need for 61 

massive data collection and processing (Araus and Kefauver, 2018), image analysis tasks 62 

(Kelly et al., 2015; Minervini et al., 2015; Kefauver et al., 2018), science community 63 

adaptation to new technologies (Singh et al., 2016), and the need to adapt sensors, 64 

algorithms and data management to the wide array of traits needed for plant phenotyping 65 

(Qiu et al., 2018). 66 

Grain weight, number of grains per ear and ear density (understood as the number of 67 

ears or spikes per unit ground area) are the most important yield components in wheat 68 

(García del Moral et al., 2003; Slafer et al., 2014; Simane et al., 1993). An appropriate 69 

quantification of these components is therefore essential for wheat breeders to be able to 70 

assess the yield potential of breeding material in early generations. Traditionally, ear 71 

density is determined manually in-situ, by counting the number of ears present in a given 72 



area, which is time-consuming. In addition, as only a small subsection of the plot is usually 73 

considered, intra-plot heterogeneity might result in inaccurate estimations. 74 

As an alternative to this approach, on-ground automatic ear counting systems have 75 

been developed, based on RGB (Red/Green/Blue), thermal, multispectral and laser 76 

images. In the case of thermal, multispectral and laser sensors, few image processing 77 

techniques have been developed, for instance, color thermal maps and contrast limited 78 

adaptive histogram equalization (CLAHE) (Fernandez-Gallego et al., 2019a); threshold 79 

segmentation and denoising based on morphological filters (Zhou et al., 2018a) for 80 

multispectral images; and in case of a laser sensor, voxel-based tree detection and mean 81 

shift approach (Velumani et al., 2017). Nevertheless, RGB sensors have been widely used 82 

as proximal and remote sensing tools in many phenotyping tasks (Araus et al., 2018) due 83 

to their relatively low cost (Qiu et al., 2018; Araus et al., 2018), high resolution (Deery et 84 

al., 2014; Minervini et al., 2015), and a fast adaptation to natural light conditions (Cointault 85 

et al., 2008; Fernandez-Gallego, et al., 2019c) that allows RGB sensors to acquire a 86 

faithful representation of an original scene even mounted on aerial platforms with 87 

continuous and unforeseen movements. 88 

Different image processing techniques have been developed for ear counting using 89 

RGB sensors. These image processing techniques include (i) hybrid spaces with texture 90 

parameters (Cointault et al., 2008); (ii) decorrelation stretching, scale-invariant feature 91 

transform (SIFT) descriptors and support vector machine (SVM) (Sadeghi-Tehran et al., 92 

2017; Zhu et al., 2016); (iii) multi-feature extraction using color, texture and histogram, 93 

kernel principal component analysis (KPCA) and the twin-support-vector-machine 94 

(TWSVM) model (Zhou, et al., 2018b); (iv) Laplacian frequency filter, median spatial filter 95 

and local peak segmentation (Fernandez-Gallego, et al., 2018b), including a simulation 96 



and implications of lower resolution (Fernandez-Gallego, et al., 2018a); and (v) 97 

convolutional neural networks (CNNs) using fast region-based CNN (Madec et al., 2019). 98 

However, to date all automatic ear counting systems have been implemented only from 99 

the ground for resolution reasons, using zenithal RGB images acquired at less than one 100 

meter (Cointault et al., 2008), around one meter (Fernandez-Gallego et al., 2018b) or at 101 

most, a limited height above the crop:  2.5 m (Madec et al., 2019), 2.9 m (Sadeghi-Tehran 102 

et al., 2017), 3.5 m (Zhou, et al., 2018a) and even 5 m (Zhu et al., 2016). 103 

To the best of our knowledge, there is no information in the literature regarding the use 104 

of RGB images acquired at further distances above the crop, for example from an 105 

Unmanned Aerial Vehicle (UAV), for ear counting. Resolution is a key factor for image 106 

processing: higher resolution allows for extracting more features from the input image 107 

compared to lower resolution images (Syrris et al., 2015), which is critical for the detection 108 

of ears from any aerial platform. While this limited application in the past, the increasing 109 

availability of high resolution RGB imaging devices that provide higher pixel density and 110 

thus improved ground sampling distance (GSD) from a greater distance, now make it 111 

feasible to use UAV platforms for ear counting. 112 

In this study, we propose an automatic wheat ear counting system using RGB images 113 

acquired from an UAV. A field trial comprising 12 modern wheat varieties tested under 114 

three fertilization conditions in four replicates was used for method development and 115 

validation. Orthophotos with a moderately high GSD of 0.24 cm/pixel were analysed with 116 

an image processing pipeline using filtering, segmentation, feature extraction and 117 

machine learning techniques. Manual in-situ and image-based counting were conducted 118 

for validation purposes along with grain yield. 119 

 120 



RESULTS 121 

Algorithm development and validation 122 

The true positive and true negative classification accuracies of each classifier was 123 

calculated (Table 1). The classification accuracies of the cross-validation demonstrated a 124 

high percentage of correct prediction with a low standard error for k-nearest neighbors 125 

(kNN), support vector machine (SVM), decision trees (DT) and random forest (RF) (Table 126 

1). The RF classifier reached the highest percent of accuracy of true positives (TP) and 127 

true negatives (TN) for both dates (June 4: TP = 98.0%, TN = 96.9%; June 19: TP = 128 

98.8%, TN = 95.8%), while the generalized linear models (GLM) (TP = 65.2%) and native 129 

Bayes (nB) (TN = 78.5%) showed the lowest accuracy in terms of TP and TN, respectively, 130 

for June 4; and (nB) (TP = 87.9%) and discriminant analysis (DA) (TN = 75.3%) showed 131 

the lowest accuracy of TP and TN, respectively, in the case of June 19. 132 

The manual image-based counting and the algorithm counting demonstrated high 133 

determination coefficient (R2) cross-validation results with low standard error for SVM, DT 134 

and RF under further subplot inputs (Table 2). The RF classifier achieved the highest R2 135 

cross-validation values for both dates (June 4: R2 = 0.82; June 19: R2 = 0.87), while GLM 136 

showed the lowest R2 cross-validation values for both dates (June 4: R2 = 0.33; June 19: 137 

R2 = 0.36). 138 

The relationship between the manual image-based counting and the algorithm counting 139 

for the best classifier (RF) also showed a high determination coefficient for both dates 140 

(June 4: R2 = 0.83, June 19: R2 = 0.89) when using a linear regression without cross-141 

validation (Figure 1). 142 

 143 

Relationship between manual in-situ, algorithm counting and grain yield 144 



The relationship between manual in-situ counting and algorithm counting with grain yield 145 

were assessed using the R2 of the cross-validation. In the case of algorithm counting, the 146 

mean of nine subplots from the RF classifier were used (Table 3). 147 

Using all data, determination coefficients showed no correlation between the manual 148 

in-situ counting and the algorithm counting for June 4 with grain yield (R2 = 0.02 and R2 = 149 

0.04). In the case of algorithm counting for June 19 and June 4 + June 19 together, low 150 

correlations (R2 = 0.14, R2 = 0.28; respectively) were observed. Including G effects, the 151 

results showed low correlation for all four input data (R2 = 0.06, R2 = 0.11, R2 = 0.16 and 152 

R2 = 0.20; respectively). By contrast including N effects (i.e. combining data of the three 153 

different nitrogen fertilization trials) the correlation increased (R2 = 0.34–0.36). In the case 154 

of G+N effects, the determination coefficient also increased (R2 = 0.41–0.46). Grouping 155 

by N treatments, the best correlations were achieved for N.std and N+30 (R2 = 0.14 and 156 

R2 = 0.20; respectively) on June 4; while for N-50 (R2 = 0.42) it was on June 19. 157 

Additionally, using two input data together (June 4 + June 19), the correlation increased 158 

for N-50 (R2 = 0.46). Moreover, the manual in-situ counting did not improve the strength 159 

of the correlations of the algorithm counting against grain yield when this variable was 160 

added in a multiple linear regression model (data not shown). 161 

The relationship between the manual in-situ counting and the algorithm counting were 162 

calculated using the determination coefficient of the cross-validation and the complete 163 

data set for each date of measurement (June 4, June 19) individually and also combining 164 

both dates (June 4 + June 19). No significant relationships were noted between the two 165 

counting techniques for either date individually or the combined dates. Moreover, the 166 

genotype (G), nitrogen fertilization (N), G+N and G*N effects on the relationship between 167 

manual in-situ counting and algorithm counting were tested with no interactions observed. 168 



Additionally, we also grouped the data by N treatments in order to analyze the correlation 169 

between the manual in-situ counting and the algorithm counting, but no correlations were 170 

observed (R2 ≈ 0.0) for all cases. 171 

 172 

DISCUSSION 173 

Agronomical yield components are key to dissecting how wheat responds to growing 174 

conditions as well as forming the basis for the genetic advancement of grain yield (Slafer 175 

et al., 2014). In our study, the classification showed high accuracy for TP and TN in the 176 

training and classifying step; four classification techniques showed results above 90% for 177 

TF and TN, which means relevant information contributed by the feature extraction step 178 

to classification (Kumar and Bhatia, 2014) (Table 1). Across all machine learning 179 

techniques, RF achieved the highest classification accuracy for both dates of 180 

measurement for Class1 and Class2 (June 4: TP = 98.0%, TN = 96.9%; June 19: TP = 181 

98.8%, TN = 95.8%) (Table 1). In the case of validation using manual image-based 182 

counting, RF also achieved the highest cross-validation results (June 4: R2 = 0.82, June 183 

19: R2 = 0.87), but the other classifiers achieved much lower results (Table 2). Particularly, 184 

the best three classifications techniques using manual image-based counting and 185 

algorithm counting cross-validation were SVM, DT and RF (Table 2). In the linear 186 

regression, RF also achieved the highest determination coefficient on both dates (June 4: 187 

R2 = 0.83, June 19: R2 = 0.89 in Figure 5), in this case cross-validation was not performed. 188 

In our case, RF has performed better than the other classifiers for our shape and statistic 189 

features; this may be due to RF often showing higher performance in classification tasks 190 

when multi-dimensional data is used (Belgiu and Drăgu, 2016), as it is usually does in 191 

other remote sensing applications. RF robustness to outliers and noise (Breiman, 2001) 192 



and bootstrapping aggregations together with the many tree learners used in the RF 193 

classifier proved less sensitive to the quality of the training samples than other machine 194 

learning classifiers (Belgiu and Drăgu, 2016). These characteristics allowed for an 195 

effective prediction capacity and also resulted in less overfitting (Berk, 2013). Moreover, 196 

for remote sensing approaches, parametric classifiers such as DA, GLM, and nB have 197 

shown limitations dealing with multimodal distributions (Liu et al., 2011), while by contrast, 198 

nonparametric classifiers such as kNN, NN, SVM, DT and RF have shown better results 199 

under multimodal distributions (Marsum et al., 2018; Maulik and Chakraborty, 2017). 200 

To date, automatic ear counting systems, regardless of the acquisition equipment, have 201 

been evaluated from ground, using only a portion of the area of the plot (Cointault et al., 202 

2008; Zhu et al., 2016; Sadeghi-Tehran et al., 2017; Velumani et al., 2017; Zhou, et al., 203 

2018a,b; Fernandez-Gallego, et al., 2018a,b,2019a,b; Madec et al., 2019). Although the 204 

use of a UAV platform allows the acquisition of the complete area of the phenotyping 205 

micro-plots, multispectral and thermal sensors that have fairly low spatial resolution from 206 

aerial platforms and laser sensors are still relatively costly. RGB sensors are not without 207 

their limitations; images taken on June 6, June 25 and July 3 under direct sunlight 208 

conditions (sunny days) were discarded. Due to the sunlight reflections on bending leaves, 209 

it was hard to differentiate between ears and reflections on the leaves, thus making it 210 

impossible to do a correct visual (i.e. manual) ear detection on the orthomosaic images 211 

for validation. Therefore, the relatively low spatial resolution from the UAV combined with 212 

sunny day restrictions (blurring and degraded orthophotos due to sunlight reflections) did 213 

not permit precise reconstruction of the orthophoto at the canopy scale (Ortega-Terol et 214 

al., 2017). As a result, these resolution and light conditions affect the number of matching 215 

features found for the Structure from Motion (SfM) process used to build the orthophoto 216 



(Aasen et al., 2018). Previous studies have shown reduction in the ear recognition 217 

accuracy due to lower resolution (Fernandez-Gallego, et al., 2018a). Nonetheless, under 218 

cloudy sky conditions, RGB orthophotos can precisely reconstruct the ears, leaves and 219 

soil for recognition purposes.  220 

On the other hand, although the ear density forms part of the main yield components, 221 

previous studies in ear recognition have not used this information in order to understand 222 

the relationship between (automatic) ear counting systems with grain yield. In this study 223 

using the complete plot size area, the automatic ear counting system and cross-validation 224 

technique overall results showed no correlation with grain yield at June 4 (R2 = 0.04) and 225 

low correlation at June 19 (R2 = 0.14). In the same way, for manual in-situ counting no 226 

correlation with grain yield (R2 = 0.02) was observed. Nevertheless, when including G and 227 

N effects the determination coefficient increased. Furthermore, the correlation for N 228 

effects is higher (R2 = 0.34–0.36) compared with G effects (R2 = 0.06–0.20) for manual 229 

and algorithm counting as input data, which suggests that the relationship between the 230 

manual in-situ counting and the algorithm counting with grain yield is more supported by 231 

the nitrogen treatment factors than genotype differences. In fact, Slafer et al. (2014) also 232 

concluded that the effect of nitrogen fertilization may affect ear density far more than the 233 

genotypic differences across cultivars. In addition, the determination coefficient including 234 

G+N effects also increased (R2 = 0.41–0.46) in all cases. In general, for grain yield 235 

assessment, algorithm counting performed better in terms of correlation with grain yield 236 

than manual in-situ counting. Regarding this relationship, no correlations were observed 237 

between manual and algorithm counting. This may be due to the limited reference 238 

measurement of two half linear meters used for manual in-situ counting compared to the 239 

complete plot area footprint acquired from the UAV platform. On the other hand, automatic 240 



counting from zenithal images only considers the upper (i.e. exposed) ears, which usually 241 

correspond to the main and primary tillers, while manual counting considers all the ears, 242 

including those from secondary and tertiary tillers, which frequently are placed to lower 243 

levels within the canopy. Since the contribution of secondary and tertiary tillers to grain 244 

yield is usually minor if not negative (Ishag and Taha, 1974), this might explain the fact 245 

that in-situ ear counting correlated even weaker with grain yield than the values of the 246 

automatic counting. 247 

Grouping by nitrogen treatments, the best correlations of ear density against grain yield 248 

were achieved for June 4 and June 19 in N+30 and N-50 (R2 = 0.20 and R2 = 0.42, 249 

respectively). June 4 + June 19 achieved the best correlation in the N-50 treatment (R2 = 250 

0.46). In this way, the number of ears may be assumed to be affected by genotype 251 

characteristics as well as the N treatments, and therefore these considerations should be 252 

added as variables in the model for grain yield assessment. A higher correlation between 253 

ear density and grain yield was observed at the lower N treatment (N-50). This could be 254 

explained by less hidden ears as less nitrogen fertilization diminishes tillering capacity 255 

(Power and Alessi, 1978), which decreases hidden ears out of the reach of the automatic 256 

counting system. Fewer ears in total may also result in less instances of overlapping ears. 257 

Considering the massive amount of data acquired from an aerial platform and the lower 258 

spatial resolution due to increased distance between object and camera, the image 259 

processing systems combined with machine learning techniques demonstrated an 260 

effective data management and image interpretation capacity. 261 

 262 

CONCLUSIONS 263 



We have presented details for an automatic system for ear counting using RGB aerial 264 

images captured from a UAV platform that includes a pipeline for employing machine 265 

learning techniques for image classification and ear counting. The ear counting system 266 

was able to identify wheat ears with relatively high accuracy considering the reduction in 267 

image resolution when using a UAV platform (compared with ground-acquired images). 268 

Though similar techniques have been implemented previously from the ground, 269 

adaptation to UAVs should provide improved throughput and more complete plot 270 

coverage making automatic ear counting feasible to large phenotyping studies. Moreover, 271 

our approach demonstrated higher accuracy than the already published studies from the 272 

ground. In this way, the system may be used for targeted trait breeding in cereal 273 

phenotyping that could be translated into increasing yield gains through indirect selection 274 

(Araus et al., 2018). Nevertheless, in scaling from ground to aerial platforms, sensitivity to 275 

light conditions increased and should be investigated further. 276 

The automatic ear counting demonstrated better correlations with grain yield compared 277 

to the manual in-situ measurements and thus may provide for improved direct selection 278 

of higher performance varieties. Including the effects of G+N factors increased the R2 with 279 

grain yield and the R2 with grain yield was higher when including N than G factors, 280 

indicating that the ear counting relationship with grain yield was more supported by the N 281 

treatment factors than by G differences. Finally, the highest correlation between automatic 282 

ear counting and grain yield were achieved at the lowest N treatment, where fewer hidden 283 

ears and lower tillering capacity occurs, which could indicate more applicability in real 284 

growing conditions in farmer fields under rainfed or low N conditions. Future potential for 285 

increased image resolution and processing and 3D imaging, along with ear size/volume 286 

estimation, could be next steps to achieve higher correlations with grain yield for direct 287 



selection. 288 

 289 

EXPERIMENTAL PROCEDURES 290 

Plant material and growing conditions 291 

A field trial with twelve winter wheat (Triticum aestivum L.) varieties (Benchmark, Bologna, 292 

Nara, Chambo, Henrik, Hondia, Diego, Julius, Lilli, Siskin, RGT Reform and Sobervio) and 293 

3 nitrogen levels was established on a sandy loam soil at the experimental farm of Ghent 294 

University in Bottelare, Belgium (lat. 50.96 N, long. 3.78 E). Nitrogen fertilization levels 295 

included the standard recommended in the area (N.std), standard+30% (N+30) and 296 

standard-50% (N-50) (Figure 2). The trial was part of a multi-location field trial run by the 297 

European Consortium for Open Field Experimentation (ECOFE, https://www.ecofe.eu) 298 

(Stützel et al., 2016). The field trial was set-up as a split-plot design with varieties grown 299 

in plots of 1.5 m by 12 m at a sowing density of 350 seeds m-2, and with four replicates. 300 

Nitrogen fractions were given on March 22, 2018, on April 27, 2018 and on May 25, 2018 301 

respectively. Nitrogen fertilizer used was ammonium nitrate 27%. The accumulated 302 

rainfall during the growing season was 513.7 mm and the average temperature was 10.2 303 

ºC (Figure 2). Plots were mechanically harvested on July 14, 2018. 304 

 305 

Orthophotos, plot and subplot images 306 

RGB images were acquired using a 12-rotor UAV (Model Onyxstar Hydra-12, Altigator, 307 

Belgium) flying a predefined flight plan with 70% front and side overlap of the images. 308 

Flight altitude was 25 m and flight speed 2.5 m/s. The camera was triggered based on the 309 

waypoints of the flight plan. The images were taken with a Sony α6000 (Sony Corporation, 310 

Japan), which is a 24.5-megapixel resolution camera with a 23.5 x 15.6 mm sensor size. 311 



The camera has a native resolution of 6000 x 4000 pixels and was equipped with a 35 312 

mm focal length lens. All images were taken in manual mode to avoid different settings in 313 

successive images. Trigger speed, aperture and sensitivity to light (ISO) were adjusted in 314 

the field before the start of the flight, and the focus was set to automatic mode. Files were 315 

stored in RAW and JPG format. Images were acquired under diffuse light conditions 316 

(cloudy days) at two dates: June 4 and June 19, 2018 corresponding to 61 and 75 growth 317 

stages (GS) of the Zadoks scale (Zadoks et al., 1974), respectively. Images were also 318 

acquired under direct sunlight conditions (sunny days) at three dates: Jun 6, June 25 and 319 

July 3, 2018 corresponding to 61, 85 and 90 GS. The images acquired at these dates 320 

contribute to understand the low resolution + sunlight reflections issues in the 321 

reconstruction of the orthophoto at canopy scale from aerial platforms. Agisoft Photoscan 322 

software (version 1.2.3, Agisoft LLC, St. Peterburg, Russia) was used to build geo-323 

referenced orthophotos using nine ground control points (Figure 2). The coordinates of 324 

those points were determined with an RTK GPS (Stonex S10 GNSS, Stonex SRL, Italy). 325 

The spatial resolution was defined automatically by the software based on the camera 326 

parameters and flight altitude. In practice it ranged from 0.23 cm/pixel to 0.24 cm/pixel. 327 

For comparison reasons the orthomosaics of both dates were exported at the lowest 328 

spatial resolution, which was 0.24 cm/pixel. Halcon Image Analysis software (version 11, 329 

MVTec Software GmbH, Munich, Germany) was used to delineate each plot avoiding 330 

borders and to divide it into nine subplots (Figure 3). The resulting plots had a footprint 331 

size of 0.96 m x 8.64 m; therefore, each subplot had a footprint size of 0.96 m x 0.96 m. 332 

Images from the center of each plot (subplot #5, Figure 3) were selected for training and 333 

validation purposes in order to avoid possible errors due to the distortion or perspective 334 



(Jaud et al., 2018). The complete plots (from subplot #1 to #9) were used for the automatic 335 

wheat ear counting system. In total 2592 subplot images were processed. 336 

 337 

Automatic wheat ear counting system using UAV imagery 338 

The algorithm for ear counting is based on the pipeline developed by Fernandez-Gallego 339 

et al. (2018b) which includes three main steps: Laplacian frequency filter, median filter 340 

and Find Maxima. For the case presented in this study based on UAV imagery, we have 341 

used the Laplacian frequency filter and Find Maxima steps (Fernandez-Gallego, et al., 342 

2018b), and have included two additional steps: (a) feature extraction and (b) training and 343 

classifying (Figure 4). In this adaptation of the original algorithm, the median filter step 344 

was excluded in order to maintain the high frequency information of the canopy after the 345 

Laplacian frequency filter step, considering the greater distance between the sensor and 346 

canopy. The algorithms were developed in ImageJ (version 2.0.0-rc-69, NIH, Bethesda, 347 

MD, USA) and MATLAB (version R2014b, Mathworks, Inc., MA, USA). Therefore, the final 348 

pipeline algorithm consists of four steps: (1) Laplacian frequency filter, (2) Find Maxima, 349 

(3) feature extraction and (4) training and classifying. The Laplacian filter was applied as 350 

a wide frequency filter to avoid unwanted objects such as awns, leaves and soil; this 351 

isotropic filter responds independently of image discontinuities detects and changes in the 352 

different directions of the image. Find Maxima was then used for local peak detection in 353 

order to define image areas where ears could be located. This step creates a binary image 354 

(segmentation) using the pixel value for each local peak and its nearest neighbor pixels; 355 

in addition, this step reduces the overlapping ear errors by first locating the center of the 356 

ears that contributes to isolating neighboring ears. We developed a feature extraction step 357 

in order to obtain numerical characteristics related to shape, color and statistical 358 



measurements (such as mean and standard deviation) for each local peak detected in the 359 

previous step. Finally, a training and classifying step was developed to decide between 360 

two classes; Class1: Ear, Class2: Non-Ear. The image processing system proposed uses 361 

as inputs all of subplot images in batch (Figure 4). This means that the estimation of the 362 

number of ears per plot is the sum of each subplot (from the subplot #1 to #9 not including 363 

the buffer area, which was excluded in the preliminary plot delineation). The sequence of 364 

steps implemented is described in Figure 4. Laplacian frequency filter and Find Maxima 365 

steps are thoroughly discussed in Fernandez-Gallego et al., 2018 (Fernandez-Gallego, et 366 

al., 2018b). 367 

 368 

Feature extraction 369 

The feature extraction was developed using Analyze Particles after Find Maxima 370 

(Schneider et al., 2012). The binary areas from the Find Maxima step were used as masks 371 

to calculate features (Figure 4). We have extracted shape descriptors and statistical 372 

information from the original RGB image and its color channels, such as area, height, 373 

width, Feret, circularity, mean, standard deviation, mode and more measurements, 374 

totaling 30 features (m = 30 in Figure 4). An overview of the complete set of features 375 

extracted and their definition can be found in Supplementary Table 1 (Table S1) and 376 

Supplementary Table 2 (Table S2). A feature selection was developed in order to reduce 377 

the dimensionality of the data in preference to feature reduction by transformation. This 378 

allowed us to keep the units and meaning of all variables (Tripathy and Sahoo, 2015), 379 

thereby losing less of the information contained in the original features space (Khalid et 380 

al., 2014). For this purpose the Sequential Feature Selection (SFS) (Kohavi and John, 381 

1997) was used with forward direction and stop criterium of 20 features (s = 20 in Figure 382 



4). Supplementary Table 3 (Table S3) also shows the selected features. 383 

 384 

Training and classifying 385 

The training and classifying steps were developed using diverse machine learning 386 

techniques in order to compare the capability of each technique to discriminate between 387 

the Class1 and the Class2 labeled objects using the manual marks as a reference. 388 

For labeling purposes (Class1 or Class2), red marks were used to delineate all the ears 389 

manually. We marked the complete area covered by each single ear in order to maximize 390 

the information gained in this step. Figure 3 shows in the dotted line rectangle a sample 391 

of the manual marks. For each date of measurement (June 4 and June 19), 16 subplots 392 

images were manually marked for training and classifying; totaling 32 subplots. Different 393 

subplots were used for each date of measurement. The overlapping areas between 394 

automatic and manual selection were represented in white color and correspond to the 395 

Class1; the non-overlapping areas were represented in blue color and correspond to the 396 

Class2 (Figure 4). The same data was used for training and validation purposes for each 397 

classification technique. While the use of supervised classification techniques requires 398 

time inputs, the robustness of the models produced should make them repeatedly 399 

applicable across similar growth stages and for similar varieties as the original training 400 

and validation data. 401 

The supervised machine learning techniques implemented for classification were: (i) 402 

discriminant analysis (DA) (Box, 1949) using linear discriminant, (ii) generalized linear 403 

models (GLM) (Dobson and Barnett, 2008) using binomial distribution, (iii) k-nearest 404 

neighbors (kNN) (Mitchell, 1997) using Euclidian distance, (iv) native Bayes (nB) (Mitchell, 405 

1997) using normal distribution, (v) neural feedforward neural networks (NN) (Beale et al., 406 



2015) with ten hidden layers, (vi) support vector machine (SVM) (Cristianini and Shawe-407 

Taylor, 2000) with a Gaussian radial basis kernel (Cristianini and Scholkopf, 2002; Liu et 408 

al., 2012), (vii) decision trees (DT) (Sheppard, 2017) using a binary tree and (viii) random 409 

forest (RF) (Breiman, 2001) using bootstrapping aggregation. The selected parameters of 410 

each machine learning technique can be found in Supplementary Table 4 (Table S4). The 411 

same data from the feature extraction step were used to train each classifier. The 412 

classification accuracy was calculated using cross-validation in terms of true positives 413 

(TP) and false positives (FP) and true negatives (TN) and false negatives (FN) based on 414 

the confusion matrix (Tso and Mather, 2009). The TP and TN correspond to the Class1 415 

and Class2 correctly classified by the automatic system, respectively. 416 

 417 

Algorithm validation 418 

In addition to the training and classification section, the performance of the image 419 

processing system using an UAV platform was also tested at anthesis (June 4, GS = 61) 420 

and early grain filling (June 19, GS = 75) growth stages using additional subplots from the 421 

total dataset of subplot images. These additional subplots were not used at the training 422 

and classifying procedure (previous section). In order to further validate the automatic ear 423 

counting system, the algorithm results were compared with the manual image-based 424 

marks on the same images. The number of ears automatically detected by the image 425 

processing system is referred to as the algorithm counting and the number of ears 426 

manually marked is referred to as the manual image-based counting. For each N 427 

treatment and date of measurement we have used 24 subplots, totaling 144 subplots. For 428 

this manual image-based counting, only one red dot was marked per ear in the original 429 

image with the same color value, circular shape and size; then, we used a simple 430 



algorithm to search the same color and shape marks and count them. The corresponding 431 

manual image-based counting and algorithm counting numbers were expressed in terms 432 

of ears per square meter in order to use standard units. To determine the prediction power 433 

of the automatic ear counting, we calculated cross-validation R2 values between the 434 

manual image-based counting and the algorithm counting for each discrimination 435 

technique and date of measurement. 436 

 A manual in-situ counting at crop maturity was carried out. For each plot, two half linear 437 

meter counts were used as a reference for the number of ears. Two different rows near 438 

the centre of the plot were selected. The manual in-situ counting was calculated as the 439 

sum of the number of ears counted in each half linear meter divided by the ratio between 440 

the plot width and the number of rows per plot.  441 

 442 

STATISTICAL ANALYSIS 443 

Data analyses were performed using R Studio (version 1.2.135, R Foundation for Statistic 444 

Computing, Vienna 2018) and MATLAB (version R2014b, Mathworks, Inc., MA, USA). 445 

Determination coefficients of linear regressions (LR) and multiple linear regression (MLR), 446 

as well as the root mean square error (RMSE), were calculated. The effects of genotype 447 

(G), nitrogen (N) and genotype plus nitrogen (G+N) fertilization factors on grain yield (GY) 448 

were also calculated using LR and MLR. The G by N interactions (G*N) were analysed 449 

using analysis of variance (ANOVA). To validate the robustness of the classification and 450 

validation a five-fold cross-validation (CV) was performed. In total, 100 CV runs (20 times 451 

five-fold CV) were performed. We have not included the model equation per each factor 452 

as we have performed a five-fold cross-validation (20 times five-fold cross-validation), 453 

totaling 100 different model equation per each factor and input data. The data was plotted 454 



using SigmaPlot (version 12, Systat Software, Inc., San Jose California USA). 455 
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DATA AVAILABILITY STAMENT 479 

The image pre-processing in this study was initially completed using Halcon due to the 480 

very large field file size, but the first step of micro-plot segmentation from an orthophoto 481 

may also be conducted using, for instance, the MosaicTool, as described in Gracia-482 

Romero et al. (2019). The authors are working to incorporate the new Technical 483 

Advancements presented here into the pre-existing CerealScanner plug-in, which was 484 

produced as open source software to share previous ground-based cereal ear counting 485 

and trait-based phenotyping tools. Meanwhile, the FIJI and MATLAB code developed as 486 

part of this study, as well as a subset of the original training and validation data of the data 487 

presented here have been made available in an open-access folder with the title of this 488 

publication within the GitLab of the CerealScanner, link. For video methods instructions 489 

on the use of the CerealScanner itself see Fernandez-Gallego, et al. (2019), JoVE. 490 

 491 

Table S1: Shape descriptors: In the feature extraction step, shape descriptors from the 492 

original Red/Green/Blue (RGB) image, including Area, Feret distance, Min Feret distance, 493 

Width, Height, Raw integrated distance, Circularity, Aspect ratio, Solidity and Round were 494 

extracted. The visual representation corresponds to one area segmented at the Find 495 

maxima step into the image processing system. The shape descriptors were calculated 496 

using the complete color image. In summary, 10 shape descriptors.  497 

 498 

Table S2. Statistical descriptors: In the feature extraction step, statistical descriptors from 499 

the original Red/Green/Blue (RGB) color channels, including mean (Mean), standard 500 

deviation (Std), mode (Mode), maximum (Max), and minimum (Min). These descriptors 501 

were extracted from the image using the value of all of the pixels of each individual area 502 



segmented during image processing pipeline. The statistical descriptors were calculated 503 

using the complete color image (5 descriptors). In addition, the statistical descriptors were 504 

also calculated for each color channel separately (R, B and G color channels, 15 505 

descriptors). In summary, 20 statistical descriptors. 506 

 507 

Table S3. Feature selection: The Sequential Feature Selection (SFS) was used to select 508 

the 20 features from the complete 30 features extracted as detailed in Tables S1 and S2. 509 

The complete shape descriptors and statistical descriptors (for the color image) were 510 

selected (15 features). Moreover, the statistical descriptors of Mean (in G color channel), 511 

Std (in R, G, B color channels), Max (in G color channel) were also selected (5 features) 512 

for each color channel, totaling 20 features selected per segmented area. 513 

 514 

Table S4. Machine learning parameters: The following parameters were used for each 515 

machine learning technique in the training and classifying steps. 516 

 517 
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TABLES 656 

 657 

Table 1. Classification accuracy of the automatic wheat ear counting system using UAV 658 

imagery for each classification technique and date. Training and classifying step used 659 

cross-validation to calculate the confusion matrix. Standard error (se) was calculated for 660 

each result for each true positives (TP) and true negatives (TN). For details about the 661 

classification techniques assayed see Material and Methods. Discriminant analysis (DA), 662 

generalized linear models (GLM), k-nearest neighbors (kNN), native Bayes (nB), neural 663 

feedforward neural networks (NN), support vector machine (SVM), decision trees (DT) 664 

and random forest (RF). 665 

Classification 
technique 

June 4 June 19 

TP (%) 
Class1 

 
se 

TN (%) 
Class2 

 
se 

TP (%) 
Class1 

 
se 

TN (%) 
Class2 

 
se 

DA 90.7 0.09 80.2 0.16 93.2 0.07 75.3 0.17 
GLM 65.2 0.13 93.7 0.08 92.2 0.08 77.5 0.17 
kNN 96.4 0.17 94.1 0.28 97.0 0.15 93.9 0.27 
nB 86.1 0.11 78.5 0.15 87.9 0.11 75.6 0.16 
NN 90.5 0.09 79.7 0.16 93.1 0.08 79.8 0.15 

SVM 94.0 0.14 93.5 0.10 95.3 0.14 91.7 0.13 
DT 94.3 0.13 93.0 0.16 94.3 0.13 91.6 0.20 
RF 98.0 0.10 96.8 0.16 98.8 0.06 95.8 0.20 

 666 

  667 



Table 2. Determination coefficient (R2) of the cross-validation results between the manual 668 

image-based counting and the algorithm counting for each classification technique and 669 

date. Standard error (se) was calculated for each result. Discriminant analysis (DA), 670 

generalized linear models (GLM), k-nearest neighbors (kNN), native Bayes (nB), neural 671 

feedforward neural networks (NN), support vector machine (SVM), decision trees (DT) 672 

and random forest (RF). 673 

Classification 
technique 

cross-validation R2 value 
June 4 se June 19 se 

DA 0.59 0.02 0.63 0.02 
GLM 0.33 0.03 0.36 0.03 
kNN 0.58 0.02 0.71 0.02 
nB 0.44 0.02 0.38 0.02 
NN 0.60 0.02 0.64 0.02 

SVM 0.80 0.01 0.71 0.01 
DT 0.77 0.01 0.76 0.01 
RF 0.82 0.01 0.87 0.01 

  674 



 675 

Table 3. Determination coefficient (R2) of the cross-validation results between the manual 676 

in-situ counting and the algorithm counting (June 4, June 19 and June 4 + June 19) with 677 

grain yield (GY) using the linear regression (LR) for all data (n = 144) and also for data 678 

grouping by N fertilization (N.std, N+30 and N+50) are shown (n = 48). The results are 679 

also shown for the same data and dates with GY including the effects of G (all data + G) 680 

and N (all data + N) and also both combined (all data + G + N) factors (n = 144) using 681 

multiple linear regression (MLR). G by N interactions were not observed. The root mean 682 

square error (RMSE) was calculated for each model. 683 

 n = 144 n = 48 

Input data 
all data 

all data 
+ G 

all data 
+ N 

all data 
+ G + N 

N.std N+30 N-50 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Manual in-situ counting 0.02 806.0 0.06 807.5 0.34 664.8 0.41 631.0 0.11 733.6 0.14 735.1 0.08 442.4 

Algorithm counting 
(June 4) 0.04 798.5 0.11 781.8 0.34 662.9 0.45 609.4 0.14 740.0 0.20 737.4 0.17 447.2 

Algorithm counting 
(June 19) 0.14 766.2 0.16 766.2 0.36 764.8 0.41 630.1 0.11 752.3 0.17 732.2 0.42 376.2 

Algorithm counting 
(June 4 + June 19) 0.28 737.7 0.20 745.5 0.35 656.6 0.46 606.8 0.10 766.0 0.16 727.9 0.46 368.5 

 684 
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FIGURE LEGENDS 686 

 687 

Figure 1. Linear regression for algorithm counting vs. manual image-based counting on 688 

the same image using the RF classifier. Two dates of measurement with the whole data 689 

were used. The dotted line indicates the 1:1 slope. The root mean square error (RMSE) 690 

was calculated for each date. 691 

 692 

Figure 2. A) Schematic overview of the field trial with the nine ground control points 693 

(GCPs), the four blocks division, plots delimited and the treatments applied; B) Zoom of 694 

one plot (central part indicated in red in A); C) overview of the field trial and D) average 695 

air temperature (°C) and cumulative precipitation (mm) for the entire growing period 696 

(November 1, 2017 – July 15, 2018) of the winter wheat trial. 697 

 698 

Figure 3. Schematic representation of the image acquisition system and image-based 699 

validation. Each plot was divided in nine subplots. The central subplot (subplot #5) was 700 

selected for training and validation, to avoid possible errors due to the distortion or 701 

perspective. Red marks were placed manually on each ear. The dotted line rectangle 702 

shows a zoom-in of subplot #5 including the manual marks corresponding to the complete 703 

area covered by each single ear. These marks were used for training and classification 704 

purposes. For algorithm validation, a single dot per ear was used, as the final purpose of 705 

this work was to develop a methodology for wheat ear counting and not to determine their 706 

shape or size. 707 

 708 



Figure 4. Image processing system proposed. The input is a subplot images in batch. 709 

Laplacian filter and Find Maxima are used for filtering and segmentation tasks 710 

respectively. Numerical characteristics such as shape, color and statistical measurement 711 

for each segmented area are calculated such that each row of the feature extraction matrix 712 

contained the features of each particular area detected per subplot image. Inside the 713 

dotted line rectangle, each matrix row was labelled automatically Class1 or Class2. Areas 714 

in color were used for training and classifying purposes: (i) red: manual image-based ears; 715 

(ii) white (Class1: Ear): overlap between the areas automatically selected and the areas 716 

manually marked as ear; (iii) blue (Class2: Non-Ear): no overlap between the areas 717 

automatically selected and the areas manually marked as ear; these blue areas 718 

corresponding to soil, leaves and unwanted objects that were wrongly identified by ear by 719 

the automatic counting algorithm. The m features (columns) per n segmented areas 720 

(rows) were calculated to obtain the feature matrix. Feature selection reduced the 721 

dimensionality of the data and then the classifier was trained. The m features per each n 722 

area were used for training and classifying, and s features were selected. The same data 723 

from the feature extraction step was used to train each classifier. Classification accuracy 724 

was calculated using cross-validation. 725 


