
Biometrics xx, 1–25 DOI: xx.xxxx/xxxx

xxx xxxx

Latent Ornstein-Uhlenbeck models

for Bayesian analysis of multivariate longitudinal categorical responses

Trung Dung Tran1,∗, Emmanuel Lesaffre1, Geert Verbeke1, and Joke Duyck2

1Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium

2Department of Oral Health Sciences, KU Leuven, 3000 Leuven, Belgium

*email: trungdung.tran@kuleuven.be

Summary: We propose a Bayesian latent Ornstein-Uhlenbeck model to analyze unbalanced longitudinal data of

binary and ordinal variables, which are manifestations of fewer continuous latent variables. We focus on the evolution

of such latent variables when they continuously change over time. Existing approaches are limited to data collected

at regular time intervals. Our proposal makes use of an Ornstein-Uhlenbeck (OU) process for the latent variables

to overcome this limitation. We show that assuming real eigenvalues for the drift matrix of the OU process, as

is frequently done in practice, can lead to biased estimates and/or misleading inference when the true process is

oscillating. In contrast, our proposal allows for both real and complex eigenvalues. We illustrate our proposed model

with a motivating dataset, containing patients with amyotrophic lateral sclerosis disease. We were interested in how

bulbar, cervical, and lumbar functions evolve over time.
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1. Introduction

Multivariate longitudinal data frequently occur in medical, social, or psychological appli-

cations. Such data are realized when multiple outcomes are repeatedly recorded over time.

Frequently, subjects are measured at irregular time points, resulting in unbalanced longitu-

dinal data. Irregular times points can arise in at least two ways: irregular within a subject

or irregular across subjects. Irregularity means that the time points are not the same for

all subjects, the time distance is not necessarily constant, and/or the number of repeated

measurements can be different from subject to subject. In many cases, the outcomes, which

express the subject’s condition over time, are manifestations of one or more underlying latent

characteristics. This paper focuses on modeling the evolution of such latent characteristics.

The motivating dataset is obtained from patients suffering from amyotrophic lateral sclero-

sis (ALS), also known as motor neuron disease (Atassi et al., 2014). Nine indicators are used

to represent the latent functions of three neurological regions: bulbar, cervical, and lumbar.

The question of interest is how these functions evolve over time.

The above research question leads to a joint framework consisting of two integrated compo-

nents: (i) an item response theory (IRT) model (e.g. De Ayala, 2009; Reckase, 2009) linking

the responses to the latent variables, and (ii) a multivariate model for continuous longitudinal

latent variables describing the development of the subject’s condition over time. When the

cross-lagged effects of the latent variables are of interest, a vector autoregressive (VAR)

process can be a candidate (Zhang and Nesselroade, 2007; Hutton and Chow, 2014; Cui

and Dunson, 2014; Tran et al., 2019). However, the VAR process cannot handle unbalanced

data because it requires a discrete time scale. Even observed at a discrete set of time points,

latent health characteristics, e.g. neurological functions (ALS), are believed to continuously

evolve over time (e.g. Soares and Canto, 2012; Cao et al., 2016). Continuity should be taken

into account because discrete time analyses may lead to considerably different results (e.g.
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Delsing et al., 2005). Wang et al. (2013) take into account the continuous time scale by

proposing a dynamic linear model for an individual’s ability growth trajectory over time.

However, this proposal is limited to a single latent variable.

To deal with unbalanced longitudinal data, one often makes use of a stochastic process for

variables that are continuous functions of time. The univariate and multivariate Ornstein-

Uhlenbeck (OU) processes have been proposed to model the univariate and multivariate

profiles in longitudinal data (e.g. Sy et al., 1997; Blackwell, 2003; Oravecz et al., 2009; Rosen

and Thompson, 2009; Oravecz et al., 2016). One advantage of the multivariate OU process

is that it directly addresses the cross-lagged effects, which in various cases are of the main

interest. In addition, it is considered as the continuous-time analogue of the discrete-time

(V)AR(1) model (e.g. Lindgren et al., 2013). The OU process can be used to model both

oscillating and non-oscillating processes (Blackwell, 2003; Oud, 2007; Oravecz et al., 2016;

van Montfort et al., 2018). The main difference is that in an oscillating process, the system

oscillates around the equilibrium point before eventually going to rest (van Montfort et al.,

2018). Despite its popularity, the OU process has not yet been applied to a latent structure.

Assuming that the latent variables are continuous functions of time, we propose a latent

Ornstein-Uhlenbeck (LOU) model that uses an IRT model for the responses and the OU

process for the latent variables. Our proposal overcomes the restriction to regular time

points, as proposed by Cui and Dunson (2014) and Tran et al. (2019). In addition, we show

that restricting to real eigenvalues for the drift matrix of the OU process, which is often

used in practice, can lead to biased estimates and/or misleading inference. In contrast, we

solve the mathematical conditions to make our proposal available for both real and complex

eigenvalues.

The article proceeds as follows. In Section 2, we present our proposed model along with

the identification, prior specification, and estimation procedure. We provide in Section 3
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a simulation study to investigate the performance of our proposal. The usefulness of our

proposal is illustrated in Section 4 with the ALS dataset. The paper concludes with some

discussions in Section 5.

2. Proposed model

2.1 Model specification

Suppose that K variables on N individuals are recorded repeatedly over time. Let Yijk be

the observed response for the kth item of the ith individual at time tij where i = 1, ..., N ,

j = 1, ..., ni, k = 1, ..., K with ni the number of occasions for individual i. We assume that

all K responses are collected at the same time tij. In addition, we assume that the observed

items are manifestations of R latent variables (factors). Denote ξij = (ξij1, ..., ξijr, ..., ξijR)T

the R× 1 vector of latent variables for individual i at time tij.

We follow Tran et al. (2019) to model the responses. We make use of two-parameter IRT

models for binary items (Fox, 2010) and polytomous IRT models for ordinal items (Ostini

and Nering, 2005), namely,

h(P (Yijk 6 m)) = θkm + βTkxij − λTk ξij + bik, (1)

where h(.) is a link function (typically a logit or probit function) and m (0 6 m 6 ck − 2)

is some score of item k with ck the number of categories. For a binary variable (ck = 2

and m = 0), we model the probability being equal to 0 instead of 1 as typically done

in the IRT literature. The parameters θkm and λk are item-specific location (cut-point)

and discrimination (factor loading) parameters, respectively. The cut-points {θkm} are non-

decreasing in m. The R× 1 vector λk contains the factor loadings of the kth variable on the

latent variables. The K×R matrix with λTk as the kth row is called the factor loading matrix

and is denoted by Λ. Furthermore, βk is a p× 1 vector of regression parameters and xij is a

p× 1 vector consisting of the values of p covariates for individual i at time tij. Finally, bik is
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the random effect for item k of individual i, assumed to be normally distributed N(0, σ2
bk),

and independent for different k. In addition, ξij and bik are assumed to be independent.

The incorporation of random effects is to take local dependence into consideration, i.e. the

random effects and the latent variables jointly account for the longitudinal association of the

observed responses (Tran et al., 2019).

For the latent variables, we extend the approach of Tran et al. (2019) as follows. We assume

that the R latent variables are continuous functions of time. Let ξi(t) be the vector of these

R latent functions of the i individual evaluated at time t. Note that ξi(t) is defined on a

continuous time scale but it is indirectly observed at a finite set of time points. When t = tij,

ξij is used to replace ξi(tij). Under the assumption that a future state, ξi(t + ∆t), only

depends on the current state, ξi(t), and the time distance between the two states, ∆t, we

use an OU process to model ξi(t) over time. The reader is referred to Web Appendix A for

an introduction to and e.g. Gardiner (2004) for details about this process.

When ξi(t) follows an OU process, the conditional distribution of the future state given

the current state is specified as follows (e.g. Blackwell, 2003):

ξi(t+ ∆t) | ξi(t) ∼ N(µ+ e−Γ∆t (ξi(t)− µ) ,Ω− e−Γ∆tΩe−ΓT ∆t), (2)

where Ω and Γ are parameters satisfying the following conditions:

The real part of each eigenvalue of Γ is positive, (3)

ΓΩ + ΩΓT is a covariance matrix, (4)

Ω is a covariance matrix, (5)

and

eM = I +
+∞∑
j=1

M j

j!

denotes a matrix exponential where M is a square matrix with M j = M × ... × M (j

times). Typically, e−Γ∆t is called the transition matrix and has the same size as Γ. The
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diagonal and off-diagonal entries of this matrix, which are functions of time interval ∆t, are

called autoregressive and cross-lagged parameters, respectively. Constraint (3) is imposed to

ensure that e−Γt → 0 as t→ +∞. Constraint (4) comes from the fact that ΓΩ + ΩΓT is the

infinitesimal covariance matrix of ξi(t) (see e.g. Dunn and Gipson, 1977). As t approaches

infinity, ξi(t) ∼ N(µ,Ω). In addition, this holds for all t if and only if we assume that

ξi(0) ∼ N(µ,Ω). This leads to constraint (5). Matrix Γ is called the drift matrix of the OU

process (e.g. Kroese et al., 2013; Oravecz et al., 2016).

The above specification is for continuous time t, i.e. for all 0 6 t < +∞. However, for

each individual, the latent variables are indirectly observed via the responses at a finite set

of time points. The specification is reduced to:

ξi1 ∼ N(µ,Ω),

ξij | ξi,j−1 ∼ N(µ+ e−Γdij
(
ξi,j−1 − µ

)
,Ω− e−ΓdijΩe−ΓT dij),

(6)

where dij = tij − ti,j−1. Note that when the time points are equidistant, the OU process

reduces to the VAR(1) process.

In summary, our proposed model consists of specifications (1) and (6) where µ,Ω, and Γ

are parameters satisfying the constraints (3), (4), and (5).

2.2 Identification issues

According to Tran et al. (2019), to make the model identifiable, we fix the R factor means

at 0 and the R factor variances at 1 at the first occasion, i.e. µ=0 and Ω is a correlation

matrix. Under this assumption, (6) is reduced to

ξi1 ∼ N(0,Ω),

ξij | ξi,j−1 ∼ N(e−Γdijξi,j−1,Ω− e−ΓdijΩe−ΓT dij),

Note that the likelihood function (Web Appendix B) does not change if we replace Λ by Λ×T

and ξij by T−1ξij where T is a R × R non-singular matrix. Therefore, we must impose at

least R2 independent restrictions. Since we restrict R variances of Ω, we must further impose

at least R(R − 1) independent restrictions on Λ and/or Ω to make the model identifiable
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(Jöreskog, 1969). This can be done by fixing certain elements of Λ and/or Ω, typically

at zero (Jöreskog, 1969), or using priors with zero mean and small variance (Muthén and

Asparouhov, 2012)

2.3 The transition matrix

The transition matrix, e−Γ∆t, consists of the autoregressive and cross-lagged effects as func-

tions of time interval. This matrix explains in average how a future state (i.e. at time t+∆t)

relates to the current state (i.e. at time t). From that, a future state can be estimated as:

ξ̂i,t+∆t = e−Γ̂∆tξi,t. (7)

For example with R = 2, we can write ξ̂i,t+∆t,1 = a11(∆t)× ξi,t,1 + a12(∆t)× ξi,t,2

ξ̂i,t+∆t,2 = a21(∆t)× ξi,t,1 + a22(∆t)× ξi,t,2
. (8)

where e−Γ̂∆t is denoted by A(∆t) = (aij)(∆t).

The cross-lagged effects can be seen as ”additional” predictive information that we can

obtain in predicting the future state compared to the model where no cross-lagged effects

are considered. Additional information depends on the component of the process and the

time interval. In addition, from the transition matrix, we can examine how the cross-lagged

effects change. This matrix starts at the identity matrix when ∆t = 0 and approaches the zero

matrix when ∆t approaches infinity. Therefore, there is some value of ∆t where a particular

cross-lagged effect reaches a maximum. This information obtained from the transition matrix

might be useful so that an ”optimal” time interval can be used in the design stage of a future

research (Dormann and Griffin, 2015; Deboeck and Preacher, 2016).

2.4 Eigenvalues of the drift matrix Γ

The OU processes can be classified into two types: oscillating and non-oscillating. A process

is called oscillating if at least one of its univariate variables oscillates around an equilib-
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rium point. In an oscillating process, the predictive relationship between a state and a

current state, addressed by the transition matrix, fluctuate depending on the time interval

(Schwarzacher, 1993). This classification is equivalent to the eigenvalues of the drift matrix.

When all the eigenvalues of Γ are real, the corresponding process is non-oscillating whereas

when some of the eigenvalues are complex with a positive real part, the process is oscillating

(Völkle and Oud, 2013; van Montfort et al., 2018). Although constraint (3) specifies that

the real part of each eigenvalue of the drift matrix is positive, a number of proposals in

the literature assume stronger assumptions by limiting to real eigenvalues. Several examples

can be listed: the isotropic form (Γ = γI where γ > 0) (e.g. Blackwell, 2003; Oravecz

et al., 2009), a lower triangular matrix with positive diagonal elements (Ait-Sahalia, 2008),

a diagonalizable matrix with real positive eigenvalues (Rosen and Thompson, 2009), or a

symmetric and positive-definite matrix (Oravecz et al., 2016). As we will see later, assuming

real eigenvalues can lead to biased estimates and/or misleading inference. In contrast, we

applied the original constraint (3) and solved the mathematical conditions such that Γ

satisfies this constraint. In Web Appendix C, we provide detailed computations for R = 2

and R = 3. In short, when R = 2, constraint (3) is replaced by the following

 γ11 + γ22 > 0

γ11γ22 − γ12γ21 > 0

,

whereas the following was used to replace constraint (3) in case R = 3:


−γ33 − γ22 − γ11 < 0

−γ31γ13 − γ32γ23 + γ33γ22 + γ33γ11 − γ21γ12 + γ22γ11 > 0

−γ31γ12γ23 − γ32γ21γ13 + γ31γ13γ22 + γ32γ23γ11 + γ33γ21γ12 − γ33γ22γ11 < 0

,

where γij denotes the (i, j) element of Γ.
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3. Simulation study

We conducted a simulation study to investigate the effect of misspecification of the eigen-

values of Γ, i.e. the effect of assuming real eigenvalues while they are complex (belonging

to C \ R). Two scenarios, only different by the eigenvalues of Γ, were considered. The first

scenario (S1) makes use of a Γ with real and positive eigenvalues while in the second scenario

(S2), Γ has complex eigenvalues with a positive real part. The resulting processes of the

latent variables for S1 (real eigenvalues) and S2 (complex eigenvalues) are non-oscillating

and oscillating, respectively (Völkle and Oud, 2013).

Under each scenario, 200 datasets were simulated. For each simulated dataset, two models

were fitted using two different sets of constraints on Γ. The first model (M1) constrains the

eigenvalues of Γ to be real and positive, while the second (M2) only constrains the real part

of each eigenvalue of Γ to be positive. For each scenario, we applied the two models, therefore

four combinations, denoted by S1M1, S1M2, S2M1, and S2M2, were considered.

The following setting was taken. Because of model complexity, we fixed the number of

individuals at N = 600. For each individual, the number of repeated measurements was

randomly sampled (with weights) in {2, . . . , 12} (i.e. 2 6 ni 6 12 ∀i) (see Web Appendix

D). The number of latent variables was fixed at two, i.e. R = 2, and the number of items at

seven with three binary and four ordinal items. The Λ matrix took the following form:

Λ =

λ11 λ21 λ31 0 0 0 0

0 0 0 λ42 λ52 λ62 λ72


T

. (9)

We took two covariates: a binary covariate assuming 1 with probability 0.5, and a N(0, 1)

distributed covariate. Finally, the Γ matrices for S1 and S2 scenarios are

ΓS1 =

 0.18 −0.07

−0.10 0.15

 and ΓS2 =

 0.18 −0.07

0.10 0.15

 ,

where the sets of the eigenvalues are {0.25, 0.08} and {0.165 + 0.082i, 0.165 − 0.082i},

respectively.
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From each complete dataset, item values were put as missing using a missing at random

mechanism. The percentage of missing values was around 6-11% for each item. The prob-

abilities of being missing depend on the covariates and the previous response of that item,

starting at the second time point. The sampling procedure for ni, the true values of the

model parameters, and the parameters for coding missing values are given in Web Appendix

D.

We took a hierarchical prior for the cut-points (taking into account the ordering) and

another hierarchical prior for the discrimination parameters. Hierarchical priors have the

advantage that the parameters are connected as much as the data allow for. Hence, they

ensure some stability in the estimation process. For the regression coefficients, a Cauchy(0,

5) prior was taken after standardizing the covariates. A half-Cauchy distribution was given

to σbk (1 6 k 6 K) (Gelman, 2006). A normal distribution with large variance was given to

each element of Γ. In this case where R = 2, a uniform prior on [-1, 1] was placed on ρ, the

correlation coefficient. For R > 2, a LKJ prior was specified for Ω (Lewandowski et al., 2009).

For a discussion on the chosen priors, the reader is referred to Web Appendix E. Specifically,

the following prior distributions were then specified for model fitting:

θkm ∼ N(µθ, σ
2
θ), given the order constraint,

µθ ∼ N(0, 100),

σθ ∼ half-Cauchy(0, 5),

λkr ∼ half-N(1, σ2
λ)

σλ ∼ half-Cauchy(0, 5),

βk ∼ Cauchy(0, 5),

γ11, γ12, γ21, γ22 ∼ N(0, 100),

ρ ∼ Uniform(−1, 1),

σbk ∼ half-Cauchy(0, 5).
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The sets of constraints for the Γ matrix under M1 and M2 are given by
γ11 + γ22 > 0

γ11γ22 − γ12γ21 > 0

(γ11 − γ22)2 + 4γ12γ21 > 0

(10)

and  γ11 + γ22 > 0

γ11γ22 − γ12γ21 > 0

,

respectively (See Web Appendix C). The third inequality in (10) distinguishes M1 and M2.

As we will see later, this inequality led to a substantial difference between M1 and M2.

Estimating the parameters of the LOU model is quite challenging (See Web Appendix B),

and requires a Markov Chain Monte Carlo (MCMC) procedure (e.g. Lesaffre and Lawson,

2012). Sampling from the posterior distribution was done using the software package Stan

(Carpenter et al., 2017). To assess convergence, we checked the trace plots and used the

Gelman-Rubin diagnostic to ensure that the estimated potential scale reduction factor (Rhat)

for all parameters is smaller than 1.1.

For each fitting, three chains with 5 000 iterations were run and the last 2 500 iterations

of each chain were retained for posterior summaries. Only fittings passing the convergence

check were retained. For each of the four combinations and for each parameter, we computed

over all retained fittings the average relative bias ((estimated-true)/true) (RB), the mean

squared error (MSE) of the estimate, and the coverage probability (CP), i.e. the proportion

where the 95% credible interval (CI) covers the true value. In addition, we computed the

average effective sample size and the maximum Rhat over all retained fittings in order to

compare the efficiency of two models.

Under scenario S1, all fittings for both models passed the convergence check. The results

are provided in Table 1 for selected parameters. The results show that the performance for

both models are similar in estimation. The computation times are 19.5 and 20.9 hours for
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a simulated dataset, respectively. However, comparing Rhat, M2 converges faster than M1.

Regarding ESS, M2 is much more efficient than M1 in exploring the parameter space as ESS

for M2 is substantially larger.

[Table 1 about here.]

Under scenario S2, all fittings for model M2 and only 37 fittings for model M1 passed the

convergence check. Even when M1 converged the estimates were less reliable. Table 2 shows

poor performance of model M1 where biased estimates were obtained. This is due to the

truncation of the parameter space. Specifically, under this scenario, (γ11 − γ22)2 + 4γ12γ21 =

(0.18 − 0.15)2 + 4 × (−0.07) × 0.10 = −0.0271 < 0 but the third condition in (10) requires

this expression to be positive. In other words, the true point in the parameter space that the

chains should converge to was discarded (see also Web Figure 1). In contrast, Table 2 shows

a good performance of M2. For all parameters, the coverage probability of the 95% CI’s for

model M2 is around the nominal level, the average relative bias and MSE are close to 0.

[Table 2 about here.]

The results from the simulation study show that when the true eigenvalues are real, M1 and

M2 perform similarly but M2 is much faster in exploring the parameter space. When the

true eigenvalues are not real, M2 performs well whereas M1 substantially suffers from non-

convergence. This means that assuming a non-oscillating behavior if it is a truly oscillating

process might result in misleading inference. Based on this finding, M2 was used to estimate

the model parameters for the motivating dataset.

4. Application to the ALS dataset

4.1 ALS disease

Amyotrophic lateral sclerosis, also known as motor neuron disease, is a progressive neuro-

logical disease that causes a gradual degeneration and death of motor nerve cells (neurons).
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These neurons are responsible for signaling voluntary muscles. When they degenerate, com-

munication between the brain and voluntary muscles is disrupted, causing muscle weakening.

Eventually, all movements are affected, and patients gradually lose their ability of walking,

talking, etc (vanEs et al., 2017).

Typical physical signs of this disorder encompass degeneration of limb (upper and lower)

and bulbar functions (Mitchell and Borasio, 2007; vanEs et al., 2017). The clinical features

can be considered in relation to bulbar region, cervical spine, and lumbar spine (Wijesekera

and Nigel Leigh, 2009). Bulbar-onset patients present with slurring of speech and/or difficulty

swallowing. Cervical-onset patients present with upper-limb symptoms, having difficulty with

fine movements. Lumbar-onset is associated with lower-limb symptoms, showing difficulty

with gross movements (Mitchell and Borasio, 2007; Wijesekera and Nigel Leigh, 2009).

How the disease progresses is an active research area. Ravits and La Spada (2009) propose

that motor neuron degeneration is fundamentally a focal process and the disease spreads

contiguously through the motor systems complex 3-dimensional anatomy. Kanouchi et al.

(2012) provide support for that but note that about 30% of ALS patients show a ”skipping”

pattern of spread, such as lower limb manifestations following bulbar onset. Grad et al. (2014)

suggest that superoxide dismutase protein can be transmitted from region to region in the

nervous system, offering a molecular explanation for the progressive nature of the spread.

In addition, disease spread may have directionality. For example, symptoms are more likely

to evolve from the bulbar region to the limbs than vice versa (Ravits and La Spada, 2009;

Fujimura-Kiyono et al., 2011). This is consistent with the findings in Fujimura-Kiyono et al.

(2011) where the authors show that duration from bulbar onset to limb involvement (upper

and lower) was shorter than the reverse (9 months from bulbar regions to upper limb versus

17 months from upper limb to bulbar regions and 14 months from bulbar regions to lower

limb vs 27 months from lower limb to bulbar regions until occurrence in 50% of patients).
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Knowledge about the ALS disease suggests key features that we took into account: (i) the

motor function abilities decrease over time, (ii) if one neurological region is affected, the

other regions will be affected later in time, and (iii) spread from one region to another region

is not symmetric.

4.2 Data for analysis

In this paper, we were interested in the relationship among bulbar, cervical, and lumbar

functions. Since they are unobservable quantities that are indirectly observed via typical

symptoms of weakened muscles. ALS Functional Rating Scale (ALSFRS) was developed to

monitor disease progression by measuring those symptoms (The ALS CNTF treatment study

(ACTS) phase I-II Study Group, 1996). It contained ten items falling into four categories:

bulbar (speech, salivation, and swallowing), fine motor (handwriting, cutting, and dressing),

and gross motor (turning, walking, and climbing) function, and respiratory disability (see

Web Table 1 for details).

From the Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) database (Atassi

et al., 2014), we retained ALSFRS items, treatment (medication or placebo), gender, age,

and time. At the time of data retrieval (November, 2018), the PRO-ACT database contained

information for 6844 patients. For reasons of privacy, the trial identifications and exact

medications used in the trials are not specified. We merged items 5a (cutting without

gastrostomy) and 5b (cutting with gastrostomy) into item 5 (cutting). If both were available,

their maximum value was taken. If only one was observed, item 5 was set to equal the non-

missing item. Scores imputed by the original data donors were put back to be missing.

Both ALSFRS and its revised version were used in the database and we here only selected

patients where ALSFRS was used. In addition, we excluded subjects for whom occasion times

were not known, resulting in 3537 individuals. However, because of the long computation

time for fitting model M2, only a random subset of 300 subjects with 2911 observations
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were used for analysis. Among those subjects, 172 were males, 208 received treatment, and

their age at the baseline ranged from 23 to 80 with mean 56.1 and standard deviation 11.7.

Measurement times were irregular as seen in Figure 1. Over all observations, the percentage

of missing values for ten ALSFRS items is less than 0.62%.

4.3 Graphical data exploration

Before fitting the model, we first explore the data to obtain some indirect insights into the

evolution and interaction of three latent neurological functions. Since the latent variables are

unobservable, for each variable, we sum the scores of three corresponding items. In Figure

1, 50 individuals are randomly selected and their profiles are depicted. We can see that the

mean profiles and also the individual profiles linearly decrease over time. This suggests that

the neurological functions deteriorate over time.

[Figure 1 about here.]

In addition, we explored correlations between a neurological function at time t+∆t (given its

state at time t) and the other functions at time t. Figure 2 presents scatter plots where the

difference between the current and future bulbar scores is plotted against the lumbar score.

The plots are classified based on the time intervals. The slope of the fitted linear line changes

from positive to negative when the time interval increases. This means that the correlation

changes from positive to negative.

[Figure 2 about here.]

Similar patterns are observed for the other pairs (Web Figures 2-6). Although this is an

indirect way to look into the latent neurological functions, change of sign of the correlation

coefficients might suggest that the latent variables follow an oscillating process.
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4.4 Analysis and results

We set six months as one unit of time. As discussed above, nine items were grouped into

three categories: bulbar (items 1, 2, and 3), fine motor (items 4, 5, and 6), gross motor (items

7, 8, and 9). Therefore, the following Λ matrix was used:
λ11 λ21 λ31 0 0 0 0 0 0

0 0 0 λ42 λ52 λ62 0 0 0

0 0 0 0 0 0 λ73 λ83 λ93


T

.

Since the motor function abilities decrease over time, we allowed for a trend for the latent

process by assuming that

ξi(t) = standard OU process +αt, (11)

where the standard OU process is the OU process introduced in Section 2 with µ = 0 and a

correlation matrix Ω. Although we can directly specify time effects on the observed responses

in (1), this specification implies that those effects go through the latent variables. In other

words, time is assumed to associate with deterioration of latent neurological functions, which

leads to a decline in movement ability.

We performed a posterior predictive check (PPC) as a goodness-of-fit test for the kth

observed response (item) with the following discrepancy function (van der Linden, 2016):

χk(y,η) =
N∑
i=1

ni∑
j=1

(Yijk − E(Yijk|η))2

V ar(Yijk|η)
,

where E(Yijk|η) =
ck−1∑
m=0

m× P (Yijk = m|η), V ar(Yijk|η) =
ck−1∑
m=0

(m− E(Yijk|η))2 × P (Yijk =

m|η), and η is the set of all parameters. We then computed the posterior predictive p-value

(PPP-value):

estimated PPP-value =
1

L

L∑
i=1

I[χk(y,η
l) > χk(ỹ

l,ηl)]

where η1, ...,ηL is a converged Markov chain from p(η | y), ỹl a replicated data generated

from p(y | ηl). For a well chosen model, the PPP-value is around 0.5. The PPP-values for
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the nine items are 0.66, 0.86, 0.74, 0.94, 0.38, 0.51, 0.58, 0.88, 0.64. As no PPP-value is close

to 0 or 1, we concluded a good model fit to the data.

Web Table 2 provides the correlation coefficients of the items and the latent variables.

Speech, salivation, and swallowing, were highly associated with bulbar function. Fine move-

ments were highly correlated with cervical function while gross movements were highly

associated with lumbar function. In addition, fine movements were also highly associated with

lumbar function whereas strong associations were observed for gross movements and cervical

function. These results indicate that the nine items in ALSFRS capture the information from

three latent functions well. In addition, the magnitude of local dependence is very low for

the other nine items (Web Table 3). This again indicates that the items represent the latent

functions well (Tran et al., 2019).

Estimates (95% CI) for α1, α2, and α3 are -0.297 ([-0.340, -0.256]), -0.453 ([-0.504, -

0.407]), -0.459 ([-0.509, -0.413]), respectively, showing that the latent functions decrease

over time. In addition, the rate of deterioration of cervical and lumbar functions, i.e. α2 and

α3, respectively, (corresponding to upper and lower limbs) are very similar. This is consistent

with the clinical observation (Ravits and La Spada, 2009).

Parameter estimates for the transition matrix at some particular time intervals and for the

other model parameters are provided in Web Table 4. Given the current state at time t, from

(7) and (11), the future state after six months (one time unit or ∆t = 1) can be estimated

as follows:

b̂ulbart+1 = 0.958(0.009)× bulbart − 0.038(0.017)× cervicalt − 0.035(0.017)× lumbart − 0.297(0.021)(t+ 1)

̂cervicalt+1 = 0.050(0.017)× bulbart + 0.900(0.015)× cervicalt + 0.020(0.020)× lumbart − 0.453(0.025)(t+ 1)

̂lumbart+1 = 0.022(0.016)× bulbart − 0.037(0.018)× cervicalt + 0.941(0.012)× lumbart − 0.459(0.025)(t+ 1)

,

(12)

(the coefficients are the posterior means of the entries of the transition matrix with the

posterior standard deviations in brackets). This result indicates predictive relationships

between the latent neurological functions. In particular, significant cross-lagged effects from
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bulbart to ̂cervicalt+1 show that deterioration of the bulbar function likely indicates a

deterioration of the cervical function after six months. This is consistent with the result

in Fujimura-Kiyono et al. (2011) where upper limb (cervical) involvement is about after nine

months. Relationships at any other time intervals can be made similarly based on Figure 3

which depicts the transition matrix as functions of time interval.

[Figure 3 about here.]

To assess whether the additional information from cross effects is useful, we compare our

model with the model where all cross effects are not considered (M3), i.e. Γ and Ω are

diagonal. Specifically, we compare the error when predicting the future state, measured

by the variances of the covariance matrix Ω − e−Γ∆tΩe−ΓT ∆t (see (2)). The variances are

depicted in Web Figure 7. This figure shows that errors that we make when predicting the

future state are larger if no cross effects are considered. In addition, WAIC (Watanabe, 2010)

for our model and M3 are 26733.6 and 27160.1, respectively. Therefore, it is useful to include

the cross effects by allowing general form of Γ and Ω.

Finally, we note that inference with time intervals larger than six months should be made

with caution because most of the time intervals are less than six months. This is because the

estimated transition matrix (based on the model) for larger time intervals (Web Figure 8)

indicate that when ∆t changes, the orders and signs of the estimated regression coefficients in

(12) change. Typical patterns in Web Figure 8 include line crossing and changes of sign. The

reason behind the above observations is that two out of three eigenvalues of the drift matrix

are not real (Web Table 5) and therefore the process of three latent neurological functions

is oscillating (Völkle and Oud, 2013). For comparison, we fitted a model restricting to real

eigenvalues. However, convergence could not be achieved. Similarly to Scenario 2 in Section

3, a possible reason is that the discriminant of the characteristic equation of Γ was set to be

positive while it is in fact negative (see Web Appendix F).
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5. Discussion

We have proposed a Bayesian LOU model that uses the OU process to describe the evolu-

tion of continuous latent variables in an unbalanced, multivariate longitudinal setting. Our

proposal overcomes the limitation of the VAR(1) process in Cui and Dunson (2014) and

Tran et al. (2019), which requires balanced data. In addition, our proposal allows for both

non-oscillating and oscillating processes. We have applied the LOU model to examine the

evolution of three neurological functions, i.e bulbar, cervical, and lumbar, for patients suf-

fering from ALS disease. We have found predictive relationships, which follow an oscillating

process, between these latent functions.

Our major contribution is the introduction of the multivariate OU process for the latent

continuous variables, allowing a continuous time analysis at the latent level. With this key

feature of our proposed model, we can make inference at any time distance by using the

corresponding estimated transition matrix. This may not be performed using the VAR(1)

process because one has to either drop observations or create missing values. More crucial,

unless the process is bivariate, stationary, and non-oscillating, results from using a VAR(1)

process are sensitive to the choice of uniform time-interval, i.e. different conclusions might

be obtained if the VAR(1) process is used for different time distances (Oud, 2007; Völkle

and Oud, 2013; Kuiper and Ryan, 2018).

An advantage of our proposal is that it allows real and complex eigenvalues for the drift

matrix and therefore makes the proposed model valid for the analysis of non-oscillating as well

as oscillating processes. This is because we applied the constraint (3) rather than simplifying

it as typically done in practice (e.g. Blackwell, 2003; Ait-Sahalia, 2008; Oravecz et al., 2009;

Rosen and Thompson, 2009; Oravecz et al., 2016). Although constraining the eigenvalues to

be real in these proposals might facilitate computation, limiting to real eigenvalues eliminates

the class of oscillating processes. As an illustration, we tried to fit a model assuming real
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eigenvalues, i.e. assuming a non-oscillating process for the latent variables, to the ALS dataset

but we did not achieve convergence.

As suggested by Oort (2001), we kept the factor loadings of each item invariant over time

in order to keep the meaning of the items constant. Although the factor loadings can vary

over time, this extension should be examined carefully because the difference between two

consecutive factor loadings should depend on the time distance.

Another ALS dataset was analyzed by Wang and Luo (2017). In that paper, they focused

on the mean structure, i.e. they specified a multivariate linear mixed model for the latent

variables and examined the effects of the covariates the latent variables. In contrast, we focus

on the dynamic structure, i.e. the relationships between the future state and the current state

of the process. Because of this difference, we do not make a comparison here.

There are some limitations of the proposed methodology. We focused on two and three

latent variables. The generalization to more than three variables impacts mostly constraint

(3) of the Γ matrix and may not be easy to solve. In addition, it took about 120 hours to

fit the proposed model for the ALS dataset on a computer with CPU Intel Xeon Gold 6140,

2.30GHz. We believe that the matrix exponential operator of dimension three and the large

number of random effects mainly contribute to the computation time. Stan uses the Padé

approximation (Arioli et al., 1996) to the matrix exponential function. Other approaches have

been proposed, e.g. Völkle and Oud (2013) use the oversampling technique to approximate

the matrix exponential function while Driver and Voelkle (2018) use a continuous-discrete,

or hybrid, Kalman filter to approximate the stochastic process, but computation time is still

long (see Web Appendix G for the details). It is, however, not clear how to speed up the

model fitting. This is definitely calls for future research. Finally, survival in ALS patients

is critical which probably induces informative dropout in the clinical trials. Informative
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dropouts are often associated with health outcomes, creating informative censoring. This

should be addressed in a further research.
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matrix exponential. Linear Algebra and its Applications 240, 111 – 130.

Atassi, N., Berry, J., Shui, A., Zach, N., Sherman, A., Sinani, E., Walker, J., Katsovskiy,

I., Schoenfeld, D., Cudkowicz, M., and Leitner, M. (2014). The PRO-ACT database.

Neurology 83, 1719–1725.

Blackwell, P. G. (2003). Bayesian inference for Markov processes with diffusion and discrete

components. Biometrika 90, 613–627.

Cao, Q., Buskens, E., Feenstra, T., Jaarsma, T., Hillege, H., and Postmus, D. (2016).

Continuous-time semi-markov models in health economic decision making: An illustrative

example in heart failure disease management. Medical Decision Making 36, 59–71.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language.

Journal of Statistical Software 76, 1–32.

Cui, K. and Dunson, D. B. (2014). Generalized dynamic factor models for mixed-

measurement time series. Journal of Computational and Graphical Statistics 23, 169–191.

De Ayala, R. J. (2009). The Theory and Practice of Item Response Theory. Guildord Press,

New York.

Deboeck, P. R. and Preacher, K. J. (2016). No need to be discrete: A method for continuous

time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal 23,

61–75.

Delsing, M., Oud, J., and De Bruyn, E. (2005). Assessment of bidirectional influences

between family relationships and adolescent problem behavior - discrete vs. continuous



22 Biometrics, xxx xxxx

time analysis. European Journal Of Psychological Assessment 21, 226–231.

Dormann, C. and Griffin, M. A. (2015). Optimal time lags in panel studies. Psychological

Methods 20, 489–505.

Driver, C. C. and Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic

modeling. Psychological Methods 23, 774–799.

Dunn, J. E. and Gipson, P. S. (1977). Analysis of radio telemetry data in studies of home

range. Biometrics 33, 85–101.

Fox, J.-P. (2010). Bayesian Item Response Modeling: Theory and Applications. Statistics for

Social and Behavioral Sciences. Springer, New York.

Fujimura-Kiyono, C., Kimura, F., Ishida, S., Nakajima, H., Hosokawa, T., Sugino, M., and

Hanafusa, T. (2011). Onset and spreading patterns of lower motor neuron involvements

predict survival in sporadic amyotrophic lateral sclerosis. Journal of Neurology, Neuro-

surgery & Psychiatry 82, 1244–1249.

Gardiner, C. W. (2004). Handbook of Stochastic Methods for Physics, Chemistry and the

Natural Sciences, volume 13 of Springer Series in Synergetics. Springer-Verlag, Berlin,

third edition.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis 1, 515–534.

Grad, L. I., Yerbury, J. J., Turner, B. J., Guest, W. C., Pokrishevsky, E., O’Neill, M. A.,

Yanai, A., Silverman, J. M., Zeineddine, R., Corcoran, L., Kumita, J. R., Luheshi,

L. M., Yousefi, M., Coleman, B. M., Hill, A. F., Plotkin, S. S., Mackenzie, I. R.,

and Cashman, N. R. (2014). Intercellular propagated misfolding of wild-type cu/zn

superoxide dismutase occurs via exosome-dependent and -independent mechanisms.

Proceedings of the National Academy of Sciences 111, 3620–3625.

Hutton, R. S. and Chow, S.-M. (2014). Longitudinal multi-trait-state-method model using



Latent Ornstein-Uhlenbeck models 23

ordinal data. Multivariate Behavioral Research 49, 269–282.
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Figure 1. ALS application: Profile plots for 50 randomly selected individuals. The scores
of the items are summed up by three neurological categories. The thick black lines are the
mean profiles across time estimated by the LOESS technique.
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Figure 2. ALS application: Scatter plots between the difference between current and future
bulbar score versus the current lumbar score, classified by time distance (day).
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Figure 3. ALS application: Estimated transition matrix versus time distance where
a11, a22, and a33 are the autoregressive parameters, and the others are the cross-lagged
parameters. Zero lines are added for off-diagonal plots.
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Table 1
Simulation study, scenario S1 (real eigenvalues): Average relative bias (RB), mean squared error (MSE), coverage
probability (CP), average effective sample size (ESS), and maximum Rhat (Rhat) for the selected parameters. For
200 simulated datasets, all fittings for M1 (imposing real eigenvalues) and M2 (allowing for complex eigenvalues)

passed the convergence check.

S1M1 S1M2
Para. RB MSE CP ESS Rhat RB MSE CP ESS Rhat

θ1 2.30 0.019 0.102 95.5 5751.7 1.039 0.019 0.102 95.5 7322.1 1.001
θ3 2.90 0.024 0.305 96.0 2858.3 1.021 0.024 0.304 96.5 4058.6 1.004
θ51 -7.50 -0.007 0.350 94.5 4629.1 1.015 -0.007 0.348 95.0 6673.7 1.002
θ52 -2.50 -0.027 0.221 97.5 5525.3 1.018 -0.027 0.221 97.0 7288.8 1.002
θ53 2.60 0.029 0.260 96.0 5675.8 1.027 0.029 0.260 95.5 7322.5 1.001
θ71 -4.30 -0.005 0.035 97.0 5862.4 1.079 -0.005 0.035 96.5 7429.2 1.003
θ72 -1.00 -0.024 0.023 95.5 5657.2 1.056 -0.024 0.023 95.5 7325.0 1.001
θ73 1.40 0.025 0.026 93.5 5614.7 1.040 0.025 0.026 94.5 7310.6 1.001
λ11 1.20 0.018 0.051 94.0 2867.4 1.047 0.016 0.052 94.0 3649.5 1.008
λ21 4.00 0.053 0.392 96.5 1773.5 1.039 0.053 0.393 95.0 2188.1 1.008
λ31 4.10 0.037 0.481 97.0 1649.3 1.013 0.037 0.484 97.0 1984.1 1.006
λ42 3.10 0.005 0.044 94.5 1770.9 1.019 0.005 0.044 94.0 2099.7 1.006
λ52 5.20 -0.004 0.210 93.0 1331.5 1.017 -0.004 0.209 93.5 1546.8 1.007
λ62 3.00 0.003 0.059 95.5 1731.9 1.016 0.003 0.059 95.5 2085.1 1.006
λ72 1.70 -0.002 0.013 94.0 3297.1 1.020 -0.002 0.013 94.0 5107.3 1.004
β21 0.10 0.584 0.240 93.5 5554.3 1.034 0.541 0.238 94.0 7273.7 1.001
β22 0.20 -0.120 0.065 96.0 5432.3 1.033 -0.110 0.064 95.5 7231.1 1.001
β51 0.30 0.328 0.434 93.5 5664.3 1.042 0.334 0.432 93.5 7334.5 1.001
β52 -0.30 0.109 0.112 94.5 5710.6 1.044 0.104 0.112 94.0 7343.0 1.005
σb1 3.70 0.031 0.111 93.5 2011.4 1.020 0.032 0.113 94.0 2304.9 1.003
σb3 4.80 0.065 0.548 95.0 1304.1 1.027 0.062 0.549 94.0 1500.3 1.010
σb4 3.10 0.016 0.037 94.0 2098.5 1.052 0.016 0.037 93.0 2548.5 1.005
σb7 1.70 0.002 0.011 95.5 1627.0 1.028 0.002 0.011 95.5 1913.1 1.005
γ11 0.18 0.275 0.006 92.5 221.4 1.073 0.264 0.006 93.5 239.2 1.066
γ12 -0.07 0.514 0.004 94.0 355.1 1.056 0.493 0.004 93.5 392.2 1.048
γ21 -0.10 0.156 0.002 95.5 831.2 1.052 0.154 0.002 96.0 951.4 1.019
γ22 0.15 0.113 0.001 94.0 610.0 1.052 0.112 0.001 94.0 677.3 1.020
ρ 0.60 0.002 0.002 94.5 873.0 1.068 0.002 0.002 94.5 1053.7 1.021
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Table 2
Simulation study, scenario S2 (complex eigenvalues): Average relative bias (RB), mean squared error (MSE),

coverage probability (CP), average effective sample size (ESS), and maximum Rhat (Rhat) for the selected
parameters. For 200 simulated datasets, 37 fittings for M1 (imposing real eigenvalues) and all for M2 (allowing for

complex eigenvalues) passed the convergence check.

S2M1 S2M2
Para. RB MSE CP ESS Rhat RB MSE CP ESS Rhat

ρ 0.60 -0.02 0.003 76 46.9 1.052 0.012 0.002 96 321.5 1.011
θ1 2.30 0.020 0.064 97.3 484.5 1.030 0.016 0.083 95.0 7360.8 1.002
θ1 2.90 0.012 0.267 97.3 414.3 1.032 0.015 0.281 95.5 5453.5 1.005
θ51 -7.50 -0.013 0.515 86.5 358.5 1.043 -0.019 0.436 94.0 6194.5 1.004
θ52 -2.50 -0.019 0.324 78.4 387.0 1.048 -0.036 0.259 94.0 7348.9 1.003
θ53 2.60 0.015 0.289 89.2 418.0 1.040 0.038 0.264 93.0 7460.2 1.004
θ71 -4.30 -0.001 0.041 91.9 499.5 1.035 -0.002 0.038 92.5 7472.5 1.001
θ72 -1.00 -0.006 0.026 94.6 462.9 1.032 -0.016 0.025 94.5 7465.2 1.002
θ73 1.40 0.010 0.024 94.6 519.2 1.034 0.020 0.025 93.5 7461.6 1.003
λ11 1.20 0.044 0.042 94.6 447.6 1.029 0.013 0.038 94.5 4989.2 1.005
λ21 4.00 0.043 0.312 97.3 329.3 1.044 0.033 0.282 96.0 2407.0 1.004
λ31 4.10 0.057 0.381 94.6 376.7 1.046 0.019 0.343 94.5 2421.4 1.007
λ42 3.10 -0.003 0.038 97.3 400.1 1.078 0.000 0.035 95.0 3204.6 1.002
λ52 5.20 -0.033 0.186 94.6 307.8 1.049 -0.012 0.189 93.0 2017.5 1.006
λ62 3.00 0.005 0.051 89.2 440.5 1.028 0.006 0.040 95.5 3609.1 1.003
λ72 1.70 -0.013 0.013 91.9 471.1 1.030 0.002 0.010 94.5 7117.7 1.003
β21 0.10 1.323 0.268 97.3 428.0 1.025 0.758 0.307 92.5 7441.8 1.001
β22 0.20 0.180 0.047 100.0 441.7 1.038 0.039 0.071 94.5 7431.5 1.004
β51 0.30 0.468 0.724 89.2 392.0 1.034 0.314 0.485 93.5 7427.5 1.002
β52 -0.30 0.136 0.102 94.6 394.7 1.072 -0.030 0.102 94.0 7431.1 1.001
σb1 3.70 0.019 0.095 89.2 518.6 1.020 0.023 0.106 93.0 2315.8 1.004
σb3 4.80 0.038 0.319 97.3 331.6 1.030 0.053 0.425 94.5 1316.7 1.019
σb4 3.10 0.016 0.044 91.9 425.8 1.044 0.009 0.032 94.5 2714.2 1.006
σb7 1.70 0.020 0.010 97.3 434.3 1.038 0.013 0.011 95.5 2042.9 1.004
γ11 0.18 -0.088 0.011 59.5 75.1 1.093 0.189 0.004 91.5 213.0 1.086
γ12 -0.07 -0.404 0.007 62.2 160.1 1.095 0.368 0.003 94.0 354.7 1.083
γ21 0.10 -0.648 0.006 29.7 165.9 1.061 0.015 0.001 93.5 2745.2 1.006
γ22 0.15 0.479 0.006 13.5 182.7 1.063 0.043 0.001 96.5 2386.3 1.005
ρ 0.60 -0.002 0.003 81.1 141.8 1.094 0.016 0.002 95.0 1035.9 1.062


