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A B S T R A C T

Objective: Full-thickness cutaneous wounds treated with split-thickness skin grafts often result in unaesthetic and
hypertrophic scars. Dermal substitutes are currently used together with skin grafts in a single treatment to
reconstruct the dermal layer of the skin, resulting in improved quality of scars. Adipose-derived stem cells (ASCs)
have been described to enhance wound healing through structural and humoral mechanisms. In this study, we
investigate the compatibility of xenogen-free isolated human ASCs seeded on human acellular dermal matrix
(Glyaderm®) in a murine immunodeficient wound model.
Methods: Adipose tissue was obtained from abdominal liposuction, and stromal cells were isolated mechanically
and cultured xenogen-free in autologous plasma-supplemented medium. Glyaderm® discs were seeded with
EGFP-transduced ASCs, and implanted on 8mm full-thickness dorsal wounds in an immunodeficient murine
model, in comparison to standard Glyaderm® discs. Re-epithelialization rate, granulation thickness and vascu-
larity were assessed by histology on days 3, 7 and 12. Statistical analysis was conducted using the Wilcoxon
signed-rank test. EGFP-staining allowed for tracking of the ASCs in vivo. Hypoxic culture of the ASCs was
performed to evaluate cytokine production.
Results: ASCs were characterized with flowcytometric analysis and differentiation assay. EGFP-tranduction re-
sulted in 95% positive cells after sorting. Re-epithelialization in the ASC-seeded Glyaderm® side was significantly
increased, resulting in complete wound healing in 12 days. Granulation thickness and vascularization were
significantly increased during early wound healing. EGFP-ASCs could be retrieved by immunohistochemistry in
the granulation tissue in early wound healing, and lining vascular structures in later stages.
Conclusion: Glyaderm® is an effective carrier to deliver ASCs in full-thickness wounds. ASC-seeded Glyaderm®

significantly enhances wound healing compared to standard Glyaderm®. The results of this study encourage
clinical trials for treatment of full-thickness skin defects. Furthermore, xenogen-free isolation and autologous
plasma-augmented culture expansion of ASCs, combined with the existing clinical experience with Glyaderm®,
aid in simplifying the necessary procedures in a GMP-laboratory setting.

Impact statement

Significantly increased wound healing was achieved by introducing
ASCs seeded on human acellular dermis (Glyaderm®) into a full-thick-
ness wound environment in a murine immunodeficient wound model,

resulting in wound closure in less than 2 weeks time. This study incites
clinical trials to further research this treatment in skin reconstructive
surgery. Furthermore, Glyaderm® is at present commonly used in burn
centers, and the completely xenogen-free isolation and autologous
plasma-supplemented culture expansion of ASCs addition, described in
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this experiment, facilitate the use of this treatment in GMP-based la-
boratories.

1. Introduction

One of the main treatments for skin damage or absence, caused by
disease or trauma, consists of split-thickness skin grafting. In case of
extensive defects such as in severely burned patients, donor site mor-
bidity limits the available thickness and surface of skin autografts, ne-
cessitating meshing and expansion of the grafts. However, it is well
known that thin and widely expanded skin grafts often heal with un-
aesthetic and hypertrophic scars. To improve this outcome, skin sub-
stitutes such as decellularized dermis have been used to additionally
reconstruct the dermal layer of the skin defect. These serve as a scaffold
into which cells can migrate to form a thicker neo-dermis, and improve
the quality and elasticity of tissue after wound healing [1]. Human
acellular dermal matrix (ADM) allografts are considered the best skin
substitutes to date [2]. They are compact and elastic, and less expensive
than artificial substitutes. Glyaderm® is human allogeneic donor skin,
from which all antigenic structures and cells have been removed
through the use of glycerol preservation and Na–OH incubation [3]. It is
provided by a non-profit skin bank and is commonly used on patients
with full-thickness burns, showing engraftment after 6 days. Glyaderm®

consists of a normal collagen-elastin fiber network, thus providing the
optimal three-dimensional fiber structure for ingrowing fibroblasts,
blood vessels or other cells seeded on it.

The reconstructive properties of adipose-derived stem cells (ASCs)
have been extensively described. They are easily obtained and can be
cultured xenogen-free in large amounts as previously demonstrated by
our group. They have the potential to promote angiogenesis, secrete
growth factors and differentiate into multiple lineages upon appro-
priate stimulation [4,5]. Therefore, introducing them to the local is-
chemic environment of the wound through an acellular matrix could
effectively accelerate wound healing through promoting inflammation,
granulation and neovascularization.

Besides this indirect paracrine effect, direct enhancement of wound
healing through differentiation into endothelial and epithelial lineages
has been described [6–8].

In this study, we investigated an acellular human dermal matrix
seeded with human ASCs in a severely combined immunodeficient
(SCID) murine model as a proof of principle for treatment of full-
thickness skin defects.

2. Materials and methods

Adipose tissue was obtained from an abdominal liposuction proce-
dure in a healthy female patient (age 36 years) after obtaining informed
consent using an UZ Gent ethical review board-approved protocol. After
infiltration with Klein's solution, a 3-mm blunt cannula (Mentor, Santa
Barbara, Cal, USA) was used in combination with device aspiration at
−1,5 atm. 50 cc of peripheral venous blood was also obtained during
the procedure by venous puncture.

For isolation of ASC's from the lipo-aspirate, a previously described
protocol was used. In brief, the lipo-aspirate was centrifuged in 10 cc
luer-lok™ syringes (Becton Dickinson, Franklin Lake, NJ, USA) at
3000 rpm for 1min. After centrifugation, the oily and fluid phases were
discarded, and the fat was transferred to produce 20 cc syringes filled
with exactly 10 cc centrifuged fat. Next, a 20 cc syringe filled with 10 cc
centrifuged lipo-aspirate was connected luer-to-luer with another 20 cc
syringe filled with 10 cc PBS (phosphate-buffered saline), and the
contents were forcefully pushed back-and-forth 30 times. The resulting
PBS-diluted adipose emulsion was then centrifuged again for 10min at
3000 rpm.

The blood samples were processed to extract plasma. After cen-
trifugation for 10min at 4000 rpm, the supernatant fluid layer without
the buffy coat was obtained. The plasma was then passed through a

0,22 μm filter. Culture medium was created with 90% DMEM-hepes
(Sigma-Aldrich, St Louis, MO, USA), 10% human plasma, 1%
Penicillin/Streptomycin (Sigma-Aldrich, St Louis, MO, USA) and 100 IU
of heparin (Leo Pharma, Lier, Belgium). After 48 h, the medium was
replaced to sort the cells for adherence. After 3 more days, the medium
was replaced again.

After 8 days, cells were released using TrypLE Select (Thermo-
Fisher, Waltham MA, USA). The P1 viable cells were counted using
propidium iodide (Sigma-Aldrich, St Louis, MO, USA) and suspended in
PBS for flowcytometric analysis.

2.1. Flow cytometry

First-passage ASCs were labeled with CD13-APC-Vio700, CD31-
APC, CD34-PE, CD45-VioGreen, CD73-PE-Vio770, CD105-VioBlue and
CD146-VioBright515, purchased from Miltenyi Biotec (Bergisch
Gladbach, Germany). Samples were acquired on a four-laser flow cy-
tometry system (BD LSR II, Becton-Dickinson, Franklin Lake, NJ, USA).
Fc receptor reagent was added to avoid unspecific labelling of cells via
Fc receptors.

2.2. Differentiation assay

First-passage ASCs were replated on thermanox cover slips (Nunc,
Roskilde, Denmark) for adipogenic differentiation, and another part for
osteogenic differentiation. Adipogenic differentiation was performed
using basic culture medium with addition of dexamethasone, insuline,
indomethacine and 3-isobutyl-1-methylxanthine (Sigma-Aldrich, St
Louis, MO, USA). Differentiation was confirmed by Oil Red O stain.
Osteogenic differentiation was performed using basic culture medium
with addition of dexamethasone, ascorbic acid and β-glycerophosphate
(Sigma-Aldrich, St Louis, MO, USA). Differentiation was confirmed by
Von Kossa's Stain. Digital imaging of all wells was performed using an
Olympus inverted microscope, and Cell^M software (Olympus Europe,
Hamburg, Germany).

2.3. EGFP-transduction of ASCs

293T cells were cultured in DMEM (41965039, ThermoFisher) with
10% Fetal Calf Serum (FCS) (Sigma-Aldrich, St Louis, MO, USA) and
2mM L-Glutamine (BE17-605F, Lonza) and transfected with lentiviral
envelope plasmid pMD2.G, packaging plasmid psPAX2 and lentiviral
EGFP expression plasmid pLenti6-EGFP. The medium was removed and
replaced with fresh medium 8 h post transfection. The virus was har-
vested 48 h post-transfection and filtered through a 0.45 μm PES filter
(Merck- Millipore, Burlington, Massachusetts, USA). P1 ASC's were
cultured in DMEM with 10% FCS and 2mM L-Glutamine until a density
of approximately 60% was reached. The medium was removed and
replaced by pLenti6-EGFP virus containing medium for 24 h. After 10
days the EGFP positive cells were sorted with the BD FACSAria III cell
sorter.

2.4. Hypoxic culture of ASCs

Second passage ASCs were cultured for 7 days in normal conditions,
and compared to second passage ASCs cultured in hypoxic conditions
with 5% O2 and 5% CO2 in the incubator. After 4 days and 7 days, the
culture medium was collected and compared to base line culture
medium. The samples were shipped on dry ice to Eve Technologies,
Calgary, Canada for cytokine array on the following cytokines: Insulin
binding growth factor binding protein-1 (IGFBP1), Epidermal growth
Factor (EGF), fibroblast growth factor-1(FGF-1), fibroblast growth
factor-2 (FGF-2), Granulocyte colony stimulating factor (G-CSF),
Eotaxin-1.

Tumour growth factor-α (TGF-α), Platelet Derived Growth Factor-α
(PDGF-α), Platelet Derived Growth Factor-β (PDGF-β), Interleukine-1B
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(IL-1B), Interleukine-2 (IL-2), Interleukine-3 (IL-3), Interleukine-9 (IL-
9), Interleukine-10 (IL-10), Interleukine-13 (IL-13).

Vascular Endothelial Growth Factor-A (VEGF-A), Tumour Necrosis
Factor-α (TNF-α), Fibroblast Growth Factor-1 (FGF-1), Fibroblast
Growth Factor-2 (FGF-2), Granulocyte-Macrophage Colony Stimulating
Factor (GM-CSF), Growth-Related Oncogene-α (GRO-α), FMS-like
Tyrosine Kinase 3L (Flt-3L).

2.5. Compatibility assay: preparation of Glyaderm® in vitro

Glyaderm® is a 0,3 mm dermal substitute derived from glycerol-
preserved human allogeneic skin. Samples were rinsed three times in
PBS, after which an 8mm punch biopsy device (Kai Medical, Seki,
Japan) was used to create discs. The Glyaderm® discs were placed in a
48-well plate (ThermoFischer Scientific, MA, US) after which 0,2ml of
medium containing 105 EGFP-ASCs was added. After 4 h, extra medium
was added to 1ml. GFP-ASCs were cultured on the Glyaderm® for 12
days as a pre-study. After 3, 7 and 12 days, the Glyaderm® discs con-
taining the GFP-ASCs were fixed in 4% formalin for at least 24 h at 5 °C
and subsequently embedded in paraffin and sectioned at 5 μm.

2.6. In vivo analysis of effect of ASC-seeded Glyaderm® versus standard
Glyaderm® on full-thickness wound murine model

Preparation of the Glyaderm® was identical as described above in
the in vitro compatibility assay: 15 Glyaderm® discs seeded with 105

EGFP-ASCs and 15 Glyaderm® discs were kept in 48-well plates for 5
days before the animal experiment.

15 female eight-week-old T-cell deficient nude mice (BALB/c-nude;
Envigo, Huntingdon, UK) were used in this study. The study was ap-
proved by the Ghent University Hospital Ethical Committee and all
animal experiments were conducted according to this institutions
guidelines, and compliant to the ARRIVE criteria [9]. For the sample
size, we based our calculation on similar research [10], but limited the
events of experimental data collection to reduce the number of animal
test subjects. All of the surgical instruments were sterilized, and surgical
procedures were performed under laminar flow. The surgical sites on
the mouse skin were sterilized with Chlorhexidin digluconate 0,5% in
aqua. Animal anaesthesia was achieved with isoflurane vaporizer 3,5%
for induction, and 1% for maintenance, with non-rebreather mask.
After anaesthesia, a rounded, full-thickness, 8-mm cutaneous wound
was made by punch biopsy instrument on each mid-dorsum by lifting
the dorsal skin in a fold and pushing the punch biopt through and
through against a sterile compress, so the full-thickness aspect of the
wound was assured. The left full-thickness wound was covered with an
8mm Glyaderm® disc. The right full-thickness wound was covered with
an 8mm Glyaderm® disc seeded with EGFP-positive ASCs, with the cell-
seeded side facing the wound. The discs were fixed with 3 sutures vicryl
5/0 (Johnson&Johnson, New Jersey, US) and covered with Tegaderm®

film (3M Health, MN, US), to prevent contraction and dehydration. The
peri- and post-intervention period was uneventful. The mice were
housed in groups of five in specific pathogen-free (SPF) rooms and
micro-isolator cages. They were provided with sterile nesting material
and SC Ketoprofen (Novartis, Basel, Switzerland) for post-operative
pain relief upon signs of distress [11]. To evaluate the wound healing
and ingrowth of the Glyaderm®, the mice were sacrificed on post-
operative day 3 (n=5), day 7 (n=5) and day 12 (n=5) by isoflurane
anaesthesia induction followed by cervical dislocation. The grafts with
surrounding skin and upper dorsal muscle layer were recovered by
sharp dissection. Digital microscopy imaging (Dino-lite, Naarden, The
Netherlands) of the wounds was performed for evaluation of re-epi-
thelialization. Two-ruler wound area measurement and planimetry
(ImageJ [12]) were performed, as described in detail by Foltynksi et al.
[13]. In brief, a straight line segment was drawn at the scale bar, “Set
Scale” from the “Analyse” menu was chosen and the number of pixels
from the field “Distance in pixels” was noted, corresponding now with

the length of the scale bar. Next, using the “Measurement” tool, a
polygon was drawn along the remaining wound surface. This value was
normalized to the 50,3mm3 original wound surface of the 8mm
Glyaderm® discs.

2.7. Histology

5-μm paraffin sections of the skin grafts were made through the
center and perpendicular to the surface of the wound. The sections were
stained with H&E and photographed by light microscopy (Olympus
BX50, Hamburg, Germany). Additional Immunohistochemistry (IHC)
staining for Smooth Muscle Actin (SMA) (clone 1A4, Dako/Agilent,
Santa Clara, US), CD31 (clone JC70A, Dako/Agilent, Santa Clara, US)
and Ets-Related Gene (ERG) (clone EPR3864, Roche, Vilvoorde,
Belgium) was performed.

Additionally, sections were examined with GFP staining: tissue
sections were deparaffinised and rehydrated. Antigen retrieval was
performed by heating the sections in 10 mM sodium citrate buffer (pH
6.0) (Vector laboratories, Burlingame, US) in an electric pressure
cooker. Blocking of endogenous peroxidase occurred in 3% H2O2 in
methanol. Sections were then treated with 5% goat serum in PBS+1%
BSA, followed by an overnight incubation with primary GFP-antibody
(Clone D5.1, Cell Signaling Technology, US) at 4 °C. Detection was done
with a biotin-conjugated secondary antibody followed by Avidin-Biotin
complex (ABC) and developed with diaminobenzidine (DAB) (Vector
Laboratories, Burlingame, US). Stained sections were analysed by light
microscopy (Olympus BX50, Hamburg, Germany).

For each section, the granulation thickness and blood vessel density
were evaluated. The granulation thickness at 3 points (centre of the
remaining Glyaderm, and 2 points exactly between the centre and the
edge of the Glyaderm®) was measured on H&E and SMA stained sec-
tions (magnification 400x). For assessment of blood vessel density,
randomized areas of ERG-stained sections (magnification 400x, 1 high-
power field) were photographed, and vessels containing ERG-stained
endothelial cells were counted. The number of blood vessels was
quantified across 4 non-consecutive high-power field areas for each
wound.

2.8. Statistical analysis

All quantitative data are expressed as mean ± standard error of the
mean. Statistical analysis was conducted with the Wilcoxon signed-rank
test. All tests were performed by commercially-available statistical
software SPSS Statistics version 25 (IBM, New York, US). A result was
deemed statistically significant if the probability was lower than 5% or
a P-value< 0,05.

3. Results

3.1. Characterization of the human ASCs and EGFP-transduction

To determine the presence of ASCs in the mechanically isolated
stromal cells from the human fat, flow cytometry using markers for
ASCs as suggested by recent literature was performed [14,15]. First
passage ASCs contained 46,8% CD13, 46,9% CD73, 9,8% CD34, 6,7%
CD105 and 2,7% CD31, 0,1% CD45 and 0,5% CD146 (Fig. 1). By the
fourth passage, CD34 had disappeared. Differentiation assays confirmed
multilineage potential into adipogenic (Fig. 2A) and osteogenic lineage
(Fig. 2B). To enable tracking of the ASCs during the in vivo experiment,
EGFP-transduction of the ASCs was performed and resulted in 45,3%
EGFP-positive ASCs before sorting, and 95% after sorting (Fig. 2C).

3.2. Cytokine array

Results from the cytokine array are listed in Table 1. Some growth
factors are present in the basic culture medium, containing 10% human
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plasma. All growth factors are strongly upregulated in hypoxic culture
conditions compared to normal culture conditions.

3.3. Preparation of Glyaderm® in vitro

EGFP-positive cells were visualised by IHC, attached to the upper
surface of the Glyaderm® discs. At day 3 the cells were dispersed, but
were observed to progressively cover the surface of the Glyaderm® by
day 7, and confluency further increased by day 12 (Fig. 3).

3.4. In vivo analysis of effect of ASC-seeded glyaderm® versus standard
glyaderm® on a full-thickness wound in a murine model

All experimental procedures were well tolerated by the murine
model. To compare the effect of the human ASCs-seeded Glyaderm®

versus the standard Glyaderm® on a full-thickness dorsal wound, 5 mice
were sacrificed on post-operative day 3, 5 and 12.

On post-operative day 3, wound areas measured by digital plani-
metry showed increased re-epithelialization on the right side of com-
pared to the left side (30,6 ± 15,6 vs. 20 ± 7%; P= 0,068). On day 7,
the re-epithelialized area on the right side again was larger (43,8 ± 5,
vs. 34,2 ± 2,3%; P=0,0039). On day 12, re-epithelialization on the
right side was again significantly increased (87,7 ± 1,5 vs.
75,5 ± 5,5%; P=0,0046). Digital photography shows the wounds on
the right side achieving near complete re-epithelialization, in contrast
to the left side (Fig. 4).

Granulation tissue under the Glyaderm® patch was significantly
increased in all right side specimen on day 3 compared to the left side
(0,87 ± 0,34 vs. 0,52 ± 0,17mm; P= 0,043). On day 7, there was
significantly more granulation thickness on the right side compared to
left (134 ± 49,3 vs. 76 ± 26mm; P= 0,043). On day 12 however, a
trend towards more granulation tissue was seen on the left side com-
pared to the right (87,5 ± 2,1 vs. 92,5 ± 30,5 mm, P=0,068)
(Fig. 5).

There was a significantly larger number of newly formed capillaries
under the Glyaderm® patch on the right side compared to the left on
day 3 (5,5 ± 0,15 vs. 2,34 ± 0,89 per HPF; P=0,043), and on day 7
(21,1 ± 25,3 vs. 7,3 ± 0,29 per HPF; P=0,043). Macroscopically,
neovascularization with even vascular pedicles consisting of 2 veins and

one artery growing into the Glyaderm® patch were observed (Fig. 4).
On day 12, a trend towards more vascularization was seen on the left
side (11,6 ± 3,1 vs. 16,7 ± 0,14 per HPF; P= 0,066) (Fig. 5).

The EGFP-ASCs could be retrieved by GFP staining on the under-
surface of the Glyaderm® on the right side on days 3 and 7, and in some
specimen lining the lumen of blood vessel walls in the granulation
tissue on day 12 (Fig. 3).

4. Discussion

In this study, Glyaderm® human acellular dermal matrix demon-
strated to be an efficient carrier for human ASCs. Glyaderm® is cur-
rently clinically applied in full-thickness wounds such as deep burns, in
co-application with thin split-thickness skin grafts. Loose-skin animals
such as mice heal 90% of their wounds by contraction, unlike humans
[16]. However, dermal substitutes, especially acellular dermal matrix
have shown to decrease contraction, in particular when seeded with
fibroblasts or SVF cells [17–20]. The dermal matrix provides a struc-
tural support withstanding contraction. In another explanation, the
myofibroblasts that are responsible for contraction disappear when
epithelialization is complete, hence faster epidermis regeneration sup-
presses wound contraction [21]. More recently, exosomes from ASC
have been described preventing differentiation from fibroblasts into
myofibroblasts and preventing granulation tissue [22]. In our in vivo
experiment, Glyaderm® was used as a vector for efficient ASC delivery
to a full-thickness murine wound bed. Although Glyaderm® is thin
(0,3 mm) and pliable, which aids in epithelial overgrowth in this
murine model, significantly accelerated healing was observed with
ASC-seeded Glyaderm® in comparison to normal Glyaderm®-treated
wounds. The histologic results demonstrate an augmented in-
flammatory phase with significantly more granulation tissue and vas-
cularization on the ASC side during day 3 till day 7. However, on day
12, the situation seems reversed, although not significant. This could
indicate that the inflammatory and proliferative phases on the ASC
augmented side are already reaching the next step of wound healing,
the remodeling phase. This corroborates the clinical images of the ASC-
augmented wounds on the right sides who appear re-epithelialized and
lack the induration still present on the left sides. Since time to healing is
a predominant factor in the degree of scarring, this finding is of clinical

Fig. 1. Representative histogram of ASC marker analysis; Cell surface markers were analysed by flow cytometry for the expression of CD34, CD73, CD13, CD105,
CD45, CD31 and CD146.
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relevance.
Our in vitro cultures confirm that ASCs in hypoxic environment are

capable of increased production of numerous growth factors, con-
tributing in the inflammatory and proliferative phases of wound
healing. In pathophysiology, platelets release cytokines attracting
neutrophils and macrophages that migrate over the fibrin gel cloth.

Macrophages produce VEGF and TGF-β, IL-1, IL-6 and TNF-α [23].
Numerous other studies have demonstrated the paracrine wound
healing effects of ASCs [4,24–27]. Simultaneously, fibroblastic or me-
senchymal cells proliferate to produce extracellular matrix (ECM) and
endothelial cells (ECs) creating new blood vessels. Besides the paracrine
effect, the GFP-marked ASCs in this experiment could be retrieved in
vivo on the underside of the Glyaderm® in the granulation tissue, and in
later time points, lining blood vessels in the granulation tissue. These
findings corroborate those of Sivan et al. who have demonstrated the
differentiation of ASCs into dermal-like fibroblasts and the deposition of
dermal-specific ECM by these cells [28] and of others have described
incorporation of ASCs into blood vessel walls [10]. Microscopically,
ingrowth of neovascular structures into Glyaderm® was observed.

Other researchers have performed similar experiments as ours.
Foubert et al. compared Integra® seeded with porcine ASCs to normal
Integra® and found increased neovascularization and collagen deposi-
tion in the ASC group [29]. Hendrickx et al. have successfully used
blood outgrowth endothelial cells (BOECs) on multilayered fibroblast
sheets in full-thickness wounds to promote revascularization and inhibit
wound contraction [30]. However, in the adult patient the relative
scarcity of BOECs, even with culture expansion, would require large
volume flebotomies. Nambu et al. found increased granulation and

Fig. 2. Differentiation assay. A) ASCs were assessed for adipogenic differ-
entiation and stained with Oil red O. B) ASCs were assessed for osteogenic
differentiation and stained with Von Kossa's stain. C) ASCs were transfected
with pLenti6-EGFP, unstained image under fluorescence microscope. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the Web version of this article.)

Table 1
Comparison ASC culture cytokine array in normal and hypoxic culture en-
vironment.

Cytokine ASC D2 medium D4 hypox D4 D7 hypox D7

IGFBP1 0,03 0,1 0,31 0,93 2,78 8,33
EGF 0 3,5 15,8 80,26 402,87 1848,43
FGF-2 0 26,32 77,54 405,39 1949,56 13089,05
Eotaxin-1 3,2 16 80 400 2000 6783,95
TGF-a 0,63 3,33 15,32 82,18 404,73 1463,37
G-CSF 0,29 3,98 15,44 78,44 411,42 1955,39
Flt-3L 0,51 3,41 15,52 82,18 390,41 2126,12
GM-CSF 0,64 3,2 16 80 400 2000
GRO-alpha 0 0 21,76 78,03 403,82 1985,26
IL-10 0,64 3,28 15,34 83,33 392,34 2018,46
PDGF-AA 0,62 3,28 16,61 76,66 425,41 2159,53
PDGF-BB 0,55 3,48 15,49 80,8 399,7 1999,57
IL-13 0,64 3,24 15,35 84,68 388,92 2084,85
IL-9 0,65 3,05 16,59 82,64 365,66 3247,21
IL-1B 0,65 3,1 16,12 82,47 385,34 2103,1
IL-2 0,65 3,13 15,03 92,62 372,14 2185,38
IL-3 0,61 3,41 15,44 79 427,69 1797,25
TNF-@ 0,062 3,37 15,11 84,22 382,71 3035,84
VEGF-A 0 4,57 15,51 80,57 399,12 2006,8
EGF 0,9 2,82 8,11 24,46 76,32 215,04
FGF-1 4,57 13,72 41,15 123,46 370,37 1111,11
FGF-2 17,65 39,35 123,61 375,26 1063,62 4471,22

Cytokine array, Values are Pg/ml. D2: P1 ASCs 24 h after adherence (Medium:
90% DMEM-hepes, 10% human plasma, 1% P/S and 100 IU of heparin); D4: P1
ASCs day 4 in culture; D4 hypox: ASCs day 4 in culture in hypoxic culture
conditions (5% O2, 5% CO2); D7: P1 ASCs day 7 in culture; D7 hypox: ASCs day
7 in culture in hypoxic culture conditions (5% O2, 5% CO2).
Abbreviations: adipose-derived stem cells (ASC), growth factors in basic
medium (90% DMEM-hepes, 10% human plasma, 1% P/S and 100 IU of he-
parin) day 2 of culture (ASC D2), day 4 of culture (D4), day 4 of culture in
hypoxic environment (Hypox D4), day 7 of culture (D7), day 7 of culture in
hypoxic environment (Hypox D7), Insulin binding growth factor binding pro-
tein-1 (IGFBP1), Epidermal growth Factor (EGF), fibroblast growth factor-
1(FGF-1), fibroblast growth factor-2 (FGF-2), Granulocyte colony stimulating
factor (G-CSF), Eotaxin-1, Tumour growth factor-α (TGF-α), Platelet Derived
Growth Factor-α (PDGF-α), Platelet Derived Growth Factor-β (PDGF-β),
Interleukine-1B (IL-1B), Interleukine-2 (IL-2), Interleukine-3 (IL-3),
Interleukine-9 (IL-9), Interleukine-10 (IL-10), Interleukine-13 (IL-13), Vascular
Endothelial Growth Factor-A (VEGF-A), Tumour Necrosis Factor-α (TNF-α),
Fibroblast Growth Factor-1 (FGF-1), Fibroblast Growth Factor-2 (FGF-2),
Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Growth-Related
Oncogene-α (GRO-α), FMS-like Tyrosine Kinase 3L (Flt-3L).
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revascularization when using murine ASCs combined with atelo-
collagen matrix in diabetic wounds [31]. Huang et al. also used a mouse
model with murine acellular dermal matrix and ASCs to prove en-
hanced wound healing, granulation and revascularization [10]. Nie
et al. found that rat ASCs delivered by an Alloderm® matrix accelerated
diabetic wound healing [32]. Our results corroborate their findings.

In our study, a T-cell deficient nude mouse strain was used. The
murine epidermis houses populations of high and low self-renewing
epidermal stem cells for short- and long-term wound repair, that might
not occur in human tissues [33]. On the other hand, impaired wound
healing in T-cell deficient mice has been extensively described [34–38],
with decreased granulation and decreased wound bed vascularization.
Although animal models have limited correlation to human wounds,
our model allowed to test the efficacy of human acellular dermal matrix
as a carrier for human ASCs, that were isolated and cultured xenogen-
free, in vivo. Both are currently already used separately in the clinical
practice, and the beneficial combination described in this study may
thus encourage future clinical trials with autologous ASC-seeded
dermal matrix. A cGMP-facility would allow for rapid expansion and
clinical use of the ASCs on Glyaderm®. The harvest of human ASCs
through small-volume liposuction would thus not significantly com-
promise systemic physiology in patients already under anaesthesia for
e.g. early burn debridement.

In conclusion, Glyaderm® is an effective carrier for human ASCs. In
this immunodeficient murine model, the combination of ASC-seeded
acellular dermal matrix allowed for enhanced wound healing, both
through paracrine and histological structural support. Based on these
results, this study encourages future clinical trials to elaborate this
treatment for full-thickness skin defects.
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Fig. 3. Histological results for EGFP-ASCs. A–D: Compatibility assay for 104

EGFP-ASCs seeded on 8mm Glyaderm® patch in vitro. IHC staining for EGFP-
expression in ochre. A) Control Glyaderm® (10x). B) ASCs seeded Glyaderm®

day 3 (40x). C) ASCs seeded Glyaderm® day 7 (20x). D) ASCs seeded Glyaderm®

day 12 (20x). E–F: In vivo experiment. IHC-staining of EGFP-ASCs in ochre. E)
EGFP-ASCs are stained at the undersurface of the Glyaderm® on day 3 (10x). F)
EGFP-ASCs are stained at the undersurface of the Glyaderm® on day 7 (20x). G)
Detail image of EGFP-ASCs on day 7 (40x). H) EGFP-ASCs are retrieved in the
granulation tissue on day 12 (20x).
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