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Abstract
This article demonstrates a combined H∞ feedback control design for linear time-invariant (LTI) and linear parameter-
varying (LPV) systems and optimal sensors and actuators selection. The combined design problem is systematically
constructed as a Mixed Boolean Semi-Definite Programming (MBSDP) optimization problem. We impose Big-M
reformulations to the NP-hard coupled problem to be solved as a convex optimization problem using Branch and Bound
(BNB) Algorithm. The combined design of dynamic output feedback control along with optimal actuator selection for
an LTI seismic rejection controller design serves as an application for validation by simulation. Additionally, active
vibration control of a smart composite plate along with optimal sensor and actuator selection validates the developed
approach for LPV controller synthesis. On comparing this approach with exhaustive search (ES), it is observed that
MBSDP approaches has faster computation time and comparing with iterative re-weighted `1 norm algorithm (IRLA)
and MBSDP using Outer Approximations (OA), MBSDP yields a global solution.

Keywords
H∞ feedback control, sensor and actuator selection, active vibration control of a smart structure, seismic isolation of a
large building

Nomenclature
0n×n Matrix of dimension n× n with all its entries 0

1n×n Matrix of dimension n× n with all its entries
1. The subscripts are not mentioned when the
dimensions are understood from the context.

Rm×n Set of real matrices of dimension m× n

Rn Set of real vectors of dimension n

X X for LTI and X(ρ(t)) for LPV systems

? A symmetric term in any LMI inequality

Tr(X) Trace of the matrix X

He{X} Sum of the matrix and its transpose, X +XT

In Identity matrix of dimension n× n

X(ρ(t)) A real continuous function of ρ(t)

X ≺ 0 Negative-definiteness of a symmetric matrix

X � 0 Positive-definiteness of a symmetric matrix

XT Transpose of the matrix X

1 Introduction
Industries demand stable and high-performance feedback

controllers to deal with multi-input multi-output (MIMO)
systems. This accounts for designing a stable feedback con-
troller K that satisfies the required closed-loop performance
specifications for a mathematical model G portraying the

dynamical system behaviour. Optimal H∞ dynamic output
feedback control design is widely favored to obtain K due to
its accountability of the systems’ complex dynamic behavior.
Firstly, researchers Gahinet and Apkarian (1994) developed
H∞ methods using linear matrix inequalities (LMIs) for lin-
ear time-invariant (LTI) systems. Later, researchers Becker
and Packard (1994) extended these techniques for linear
parameter-varying (LPV) systems, a class of nonlinear sys-
tems which can be characterized using linear model and
which depends on real-time measurable parameters.

A feedback control design is typically performed for a
given set of actuators and sensors. If these sets are not
fixed in advanced, finding the optimal controller should be
combined with finding the best set of actuators and sensors,
such that the best trade-off between closed-loop performance
and lowest implementation cost (as few sensors and actuators
as possible) can be found systematically and efficiently. In
general, if there are ns sensors and na actuators, then the
possible number of combinations are (2na − 1)(2ns − 1) +
1. Thus, in order to find the best combination that achieves
desired closed-loop performance, a computationally more
affordable and low-cost methodology is required.

Researchers in Van De Wal and De Jager (2001) discussed
various controller-independent strategies, Gawronski (2004)
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and Nestorović and Trajkov (2013) used open-loop
H∞/H2 norms, and Summers et al. (2015) considered the
calculations of observability and controllability gramians
for the selection of sensors and actuators. Although these
approaches perform well for a control design after the
selection based on open loop, they do not consider this
selection concerning closed-loop performance. A controller-
dependent strategy like combined linear quadratic regulator
(LQR) design and sensor/actuator selection using a heuristic
techniques like genetic algorithm is discussed and studied
in Hiramoto et al. (2000) and Haemers et al. (2019) for active
suspension control of the vehicles. The main drawbacks
of this technique are that they cannot guarantee a globally
optimal solution and does not consider model uncertainties,
hence controller robustness cannot be accounted for.

Another heuristic technique for combining control design
with optimal selection is to explore sparsity in controller
matrices of the controller using `0-quasi norms. In order
to solve these combinatorial problems, convex relaxations
of `0 norms as weighted `1 norms are deployed in Tropp
(2006) and Boyd and Vandenberghe (2004). Dhingra
et al. (2014) and Argha et al. (2017) used this technique
for sparse H∞/H2 state feedback (SF) and static-output
feedback (SOF) controller design. This heuristic approach
is extended to H∞ dynamic output feedback control design
in Singh et al. (2018) by exploring sparsity in the controller
matrices of the controller. Argha et al. (2019) presented a
similar approach with conservative LMIs for the controller
synthesis. However, in general, these heuristics techniques
may not attain globally solution due to relaxations of `0
norms.

The selection of a sensor or actuator may also be
modeled with a boolean decision variable. Combining
boolean variables with the semi-definite variables of the
controller synthesis yield mixed boolean semi-definite
variables, and eventually the combined H∞ control design
with optimal selection leads to mixed boolean semi-definite
programming (MBSDP) problem. De Oliveira and Geromel
(2000) and Hiramoto et al. (2009) separated these coupling
of the mixed terms by following a two-step approach: first
solving for sensors and then fixing the solution and solving
for actuator selection. Finding a globally optimal solution
cannot be guaranteed with this two-step approach.

This paper presents a method to separate the MBSDP
terms using Big-M reformulations to solve the combined
problem ofH∞ optimal dynamic output feedback controller
design and optimal sensor/actuator selection as a convex
optimization problem. The same approach was adopted
in Nugroho et al. (2019), however, they design a
stabilizing SOF controller and do not consider closed-
loop performances. In general, SOF is a non-convex
rank minimization optimization problem of a dynamic
output feedback controller synthesis. It is solved imposing
assumptions on the structure of the output matrix of plant,
refer Sadabadi and Peaucelle (2016) for the propositions
and assumptions. Researchers Crusius and Trofino (1999)
and Rubió-Massegú et al. (2013) solved the LMIs
without the rank constraints by considering conservative
approaches. However, this approach involves additional
equality constraints, which do not represent all stabilizing
SOF controllers Goßmann and Svaricek (2019).

This article tackles the combined design problem for
LTI and LPV control design with optimal sensor and
actuator selection. Here, the boolean and the SDP variables
are decoupled using Big-M reformulations which were
discussed in our previous work Singh et al. (2018) for
LTI controller synthesis and were introduced in Singh
et al. (2019) for LPV controller synthesis. We formulate
the combined design problem by representing the LMIs
generalized for LTI and LPV controller synthesis as an
optimization problem. Unlike LTI, the Big-M constraints on
LPV controller synthesis are enforced on the coefficients
of the B-splines of the controller variables Hilhorst et al.
(2016). The final convex problem is solved using classical
Branch and Bound (MBSDP-BNB) algorithm Singh et al.
(2018). Additionally, our main contribution lies in applying
and validating this approach to LTI and LPV case studies in
applications. The LPV combined control design in our article
is applied to the optimal sensor and actuator selection. This is
an extension of our previous work Singh et al. (2019), where
the combined control design was applied with only actuator
selection for a composite plate.

The rest of the article is organized as follows. Section. 2
briefly describes the H∞ controller synthesis generalized
for LTI and LPV systems. The LPV controller synthesis is
based on the novel B-splines. Section. 3 combines the H∞
control design problem with the optimal sensor and actuator
selection and formulates the problem as an optimization
problem. Here, the Big-M reformulations are imposed on
the controller variables (LTI) or the coefficients of controller
matrices (LPV) to provide a convex optimization problem
which is solved by BNB algorithm. In section. 4, the
mentioned approach is applied to seismic vibration control
of a 20-story building for LTI controller synthesis and active
vibration control of a composite plate for an LPV controller
synthesis. In section 5, a comparison study is carried out
between different approaches available, that are Iterative
Reweighted `1-norm Algorithm (IRLA) Singh et al. (2018),
MBSDP-OA Coey et al. (2018) and Exhaustive Search (ES).
Discussions on comparison of methods and limitations are
also carried out in this section. Finally, section. 6 concludes
the article.

2 H∞ controller design
Assume a continuous-time generalized plant P expressed

as follows:

P :

 ẋ(t) = Ax(t) + Bww(t) + Buu(t)
z(t) = Czx(t) +Dzww(t) +Dzuu(t)
y(t) = Cyx(t) +Dyww(t),

(1)

where x ∈ Rnx , w ∈ Rnw , u ∈ Rnu , z ∈ Rnz and y ∈ Rny
represents the plant state vector, the exogenous input, the
control input, the regulated output and the measured output
signals respectively. For a MIMO system, the matrix A ∈
Rnx×nx represents the system matrix, each column of Bu ∈
Rnx×nu maps each possible actuator control inputs to the
system states, and each row of Cy ∈ Rny×nx maps the
system states to each possible sensor outputs. The matrix
Bw ∈ Rnx×nw models the relation between the plant states
and exogenous inputs such as external disturbances and
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references, Cz ∈ Rnz×nx between regulated output and the
system states, Dzw ∈ Rnz×nw between regulated outputs
and exogenous inputs, Dzu ∈ Rnz×nu between regulated
outputs and system inputs and Dyw ∈ Rny×nw between
measured outputs and exogenous inputs.

The goal is to obtain a strictly proper dynamic output
feedback controller K which is of the form:

K :

{
ζ̇(t) = ACζ(t) + BCy(t)
u(t) = CCζ(t),

(2)

where ζ(t) represents the controller state vector. If the
closed-loop transfer function from w to z is denoted by T ,
then the closed-loop specifications H∞ norm of T can be
described as:

‖T ‖∞ = sup
‖w‖2 6=0

‖z‖2
‖w‖2

(3)

where ‖w‖2 = [
∫∞
0
wT (t)w(t)dt]1/2 is a 2-norm of a

continuous signal. The basis of the combined design
approach is the LMI formulations of the full order
H∞ control design are elaborated below without proofs
(see Becker and Packard (1994) and Scherer et al. (1997)
for proofs).

Lemma 1. There exists a feedback controller (2) that
yields ‖T ‖∞ < γ if, and only if there exists symmetric
matrices X,Y ∈ Rnx×nx and auxiliary control variables
ÂC ∈ Rnx×nx , B̂C ∈ Rnx×ny and ĈC ∈ Rnu×nx for which,


He(AX + BuĈC) ? ? ?

ÂC +AT He(YA+ B̂CCy) ? ?

BTw Y Bw + B̂CDyw −I ?

CzX +DzuĈC Cz Dzw −γ2I

 ≺ 0

(4)

and [
X I
I Y

]
� 0, (5)

The H∞ feedback control optimization problem is formu-
lated as

minimize:
X,Y,ÂC ,B̂C ,ĈC ,γ2

γ2

subject to: (4), (5).
(6)

and the reconstruction is given as:

CC = ĈCR−T
BC = S−1B̂C
AC = S−1(ÂC − BCDyuĈC − SBCCyX

−Y BuCCRT − YAX)R−T ,

(7)

where R and S ∈ Rnx×nx are nonsingular matrices which
satisfies

RST = I −XY (8)

and can be obtained by singular value decomposition
of I −XY . Here, ÂC , B̂C and ĈC are the auxiliary
variables obtained when the linearizing change of variables
is performed Becker and Packard (1994). The matricesR and
S are not unique, however, they do not affect the closed-loop

performance because the non-uniqueness of these matrices
would only result in different realizations of the controller
matrices( Scherer et al. (1997)).

Generally, X and Y are parameter dependent lyapunov
functions for LPV feedback control design. However, there
exists a case where the rates of the scheduling parameter
are unbounded (and hence our assumption), when these
symmetric matrices are considered parameter independent
(refer Apkarian and Adams (2000)). In our formulations, the
symmetric matrices X and Y are parameter independent.
The LMI formulations can also be reformulated with
parameter dependent matrices, when the bounds on the rates
of scheduling parameter are considered finite. However,
this introduces rational dependencies in the controller
reconstruction (7), which can be avoided by adopting the
approach for LPV controller reconstruction from Verbandt
et al. (2018).

In case of the LPV systems, the system matrices have
a piece-wise polynomial dependency on a multivariate
scheduling parameter ρ(t) ∈ Rnρ that lies in the a prior
known admissible compact convex set Λ. Furthermore,
ρ(t) is assumed to be continuously differentiable in the
continuous-time. In this article, we consider a tensor product
polynomial spline based parameterization (Hilhorst et al.
(2016)). For a multivariate case, a parameter dependent
matrix function is formulated as:

S(ρ) =

nλ1−nd1−1∑
i1=1

...

nλnρ−ndnρ−1∑
inρ=1

Si1,...,inρ (Bi,nd,λ(ρ))

(9)
with

Bi,nd,λ(ρ) =

(
nρ∏
k=1

Bik,ndk ,λk
(ρk)

)
(10)

where nd is the number of degrees, λ ∈ Rnλ is a knot
sequence, Sik(k = 1...nρ) are the coefficient matrices and
Bik,ndk ,λk

(ρ) are the B-splines. Unique properties like
positivity, partition of unity and minimal support are the
advantages of using B-splines as basis to model the
scheduling parameter dependencies.

3 Big-M reformulation of a MBSDP problem
This section deals with the combined problem of

designing a dynamic output feedback controller of the
form (2), considering the generalized plant (1), along with
optimal selection of sensors and actuators.

3.1 MBSDP formulation
‖ĈC‖r−`0 (and hence ‖CC‖r−`0 ) represents the number of

non-zero rows of ĈC , where r − `0 is the row `0-quasi norm.
The non-zero rows denotes the actuators to be used in the
control design. Similarly, ‖B̂C‖c−`0 (and hence ‖BC‖c−`0 )
denotes the number of non-zero columns of ‖B̂C‖c−`0 and
thus the information on which sensors to be fed back. Thus,
the mixed boolean semi-definite terms B̂CΦ and ΨĈC for
LTI systems and the terms B̂CikΦ and ΨĈCik for LPV
system determines the selection of sensors and actuators
respectively, where B̂Cik and ĈCik are the coefficients
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matrices of the B-spline functions B̂C and ĈC respectively,
and Φ and Ψ are defined as

Φ =

 s1 0
. . .

0 sny

 ,Ψ =

 a1 0
. . .

0 anu

 . (11)

to give ∆ = {s, a : si, aj ∈ {0, 1}} which represents the set
of all possible candidates of sensors and actuators and si and
aj as the boolean decision variables for ith sensor and jth

actuator respectively.
These mixed variables have a non-linear coupling which

can be decoupled by applying Big-M reformulations on
these variables transforming boolean constraints to a set
of constraints that describe the same feasible set (see
Luenberger et al. (1984)), which is shown by

mBΦ 6 B̂C 6MBΦ, ΨmC 6 ĈC 6 ΨMC ,

mBΦ 6 B̂Cik 6MBΦ, ΨmC 6 ĈCik 6 ΨMC ,
(12)

for LTI systems and LPV systems respectively and
mB ∈ Rnx×ny− , MB ∈ Rnx×ny+ , mC ∈ Rnu×nx− and MC ∈
Rnu×nx+ are matrices representing Big-M bounds. If MB

and MC are chosen sufficiently larger and mB and mC

are chosen sufficiently smaller than any possible values of
B̂C or B̂Cik and ĈC or ĈCik respectively, then the Big-M
reformulation is equivalent to the original constraint. Refer
to appendix. A for a detailed insight.

3.2 H∞ controller synthesis with optimal
selection of sensors and actuators

Let there be additional requirements for {k : 1 6 k 6 ny}
sensors and {l : 1 6 l 6 nu}, which can be deduced in the
following equality constraints,

Tr(Φ) = k, Tr(Ψ) = l. (13)

The aim is to find the optimal set ∆ such that it satisfies
the desired closed loop specifications and satisfies the desired
constraints for the number of sensors and actuators allocated
for the control system design. This leads to a MBSDP
optimization problem for the selection of the optimal set of
k sensors and l actuators along with H∞ feedback control
design leading to the following theorem.

Theorem 2. The dynamic output feedback controller (2) is
obtained for (1) that satisfies the closed-loop specification,
‖T ‖∞ < γ and concurrently gives the optimal set of sensors
and actuators, ∆, for the desired k sensors and l actuators
as a solution to the optimization problem (14).

minimize:
X,Y,ÂC,B̂C,ĈC,γ2,s,a

γ2

subject to: (4), (5), (12), (13).
(14)

Refer appendix A for the proof.

Now, suppose we can assign implementation costs ηB
and ηC as normalized costs for sensors and actuators
respectively. The total implementation costs for the sensors
and actuators can be denoted by Tr(ηBΦ) and Tr(ηCΨ).
Here, ηB and ηC can be a scalar quantity, which would

indicate that all the sensors or actuators have same costs or
a diagonal matrix with distinct costs. This gives rise to a
multi-objective optimization problem which is presented in
the following theorem.

Theorem 3. The dynamic output feedback controller (2) is
obtained for (1) that satisfies the closed-loop specification,
‖T ‖∞ < γ and concurrently gives the optimal set of sensors
and actuators, ∆, that also minimizes their implementation
costs as a solution to the optimization problem (15).

minimize:
X,Y,ÂC,B̂C,ĈC,γ2,s,a

γ2 + Tr(ηBΦ) + Tr(ηCΨ)

subject to: (4), (5), (12).
(15)

Refer appendix A for the proof.

The Big-M reformulations in the MBSDP optimization
problems (14) and (15) can be solved by a BNB algorithm
to attain globally optimal solution. The results in this paper
are obtained by the BNB algorithm of YALMIP (Lofberg
(2004)). The BNB algorithm works by simultaneously
building and searching a binary tree of optimization
problems where every child is obtained from a parent via a
branching procedure (see Morrison et al. (2016)).

4 Application

This section presents two applications to illustrate the
capabilities of the presented MBSDP optimization. First,
we considered an application of placing optimal actuators
in a twenty-story building and design a H∞ LTI feedback
controller. Second, we consider a H∞ LPV control design
with optimal selection of collocated sensors and actuators of
a smart composite plate.

4.1 Vibration Control of a twenty-story building

This subsection focuses on combined actuator selection
with H∞ feedback control design for the seismic isolation
of tall buildings dwelled with a distributed set of actuators. It
is assumed that the building stories are equipped with inter-
story force-actuation devices and sensing units that measures
the interstory accelerations.

4.1.1 Modeling Description The building is modeled as
depicted in Figure. 1, following the approach from Palacios-
Quiñonero et al. (2018). The dynamical model for the lateral
displacement can be constructed in state space matrices form
as

A = Π

[
0n×n In

−M−1Ks −M−1Cd

]
Π−1,

Bu = Π

[
0n×p

λM−1Tu

]
,Bw = Π

[
0n×1
−1n×1

] (16)

where M and Ks corresponds to the mass and stiffness
matrices respectively that displays the mechanical character-
istics of the building with n stories and p actuators and their

Prepared using sagej.cls



Singh, De Mauri, Decre, Swevers and Pipeleers 5

k1

c1

mn

kn

cn

w(t)

m2

u2(t)

-u2(t)
m1

Figure 1. simplified mechanical model for a n-story building
with masses mi, stiffness ki and damping coefficients ci with
interstory actuation devices which produce a pair of opposite
structural forces.

structure is given as follows:

M =

 m1 0
. . .

0 mn



Ks =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
−kn−1 kn−1 + kn −kn

−kn kn


(17)

and the parameters mi and ki are given in Table. 1 and λ =
6× 104 in (17) represents a constant for scaling the inputs of
the plant. Introducing this scaling factor does not affect the
closed loop performance, but modifies the numerical model
such that the minimum and maximum values of ĈC in (7) do
not affect the selection of Big-M constants for the combined
control design and actuator selection problem. The selection
of Big-M constant is also addressed in Section 5.

Table 1. Mass and stiffness parameters for the twenty-story
building

Story Mass (×106 kg) Stiffness (×108 N/m)

1-5 1.10 8.62
6-11 1.10 5.54
12-14 1.10 4.54
15-17 1.10 2.91
18-19 1.10 2.56
20 1.10 1.72

The damping matrix Cd is chosen by considering
relative damping of 2%, i.e, ζd = 0.02 and is formulated
using Rayleigh’s damping method (See (Chopra 2001, p.
455)) with Cd = a0M + a1Ks where a0 and a1 are the
coefficients that are obtained by solving the following
equation for ith and jth nodes, with ω as the frequency of
the respective nodes

1

2

[
1/ωi ωi
1/ωj ωj

] [
a0
a1

]
=

[
ζd
ζd

]
. (18)

The control location matrix Tu which specifies the structural
effect of the actuation forces u(t) is taken as:

Tu =


1 −1

. . . . . .
1 −1

1

 (19)

and w(t) is the disturbance created by seismic ground
acceleration and Π denotes the state transformation matrix
such that

x(t) = Π

[
q(t)
q̇(t)

]
(20)

where q(t) is the vector of story displacements with respect
to the ground and finally, state vector x(t) represents the
interstory drifts.

4.1.2 Control Design The control configuration for seis-
mic disturbance rejection control design for n-story building
is shown in Figure. 2. with static loop-shaping weights WD

and WU , and D is the disturbance channel.
In our case, p = 20 and the weights are chosen as

WD = I20, WU = λ10−7.4I20 (21)

to reduce the vibrations as low as possible (ideally 0db)
at each performance channels (z1 · · · z20) and limit the
actuator effort for the performance channels (zu1

· · · zu20
).

Eventually, the control configuration and the weighting
filters lead to the LTI generalized plant (1) producing the
LTI dynamic output feedback controller (2) to form (6)
which is solved using ’LCToolbox’∗, an open source control
design toolbox with in-built routines for MATLAB (See
Verbandt et al. (2018)). The parsing of LMIs is done
with YALMIP Lofberg (2004) and MOSEK Mosek (2015)
to solve the SDP problem. The full-order controller is
reconstructed using (7) which uses all the twenty interstory
sensors and actuators.

GK u1 WD

WU

up

b
b
b

zu1
zup

z1
zp

w

b
b
b

b
b
b

b
b
b

b
b
b

Figure 2. control configuration for disturbance rejection control
design problem with p actuators and sensors.

4.1.3 Combined Control Design and Actuator Selection
Researchers Palacios-Quiñonero et al. (2018) investigated
H∞ state-feedback and partial state-feedback control design
by allocating the actuator pair locations using three
different strategies. The first strategy they considered was
a concentrated actuation scheme by selecting the first ten

∗https://github.com/meco-group/lc toolbox
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locations. In the second strategy, they examined a semi-
distributed actuation scheme by selecting first five locations,
and the rest five are distributed in the rest of the floors. In the
third strategy, they imposed a distributed actuation scheme,
selecting ten actuators on alternate floors. In order to select
the optimal (optimal in terms of closed-loop performances)
locations of the actuators we require to choose from 20C10

combinations. The number of combinations is reduced to
16C6, when an assumption is made that there are four known
positions, which are common in all the above mentioned 3
schemes, viz; locations 1, 3, 5 and 7. The aim is to find the ten
optimal locations for the actuators in the 20-story building.

Firstly, the optimization problem (6) to obtain a full-
orderH∞ dynamic output feedback is solved by considering
actuators in all 20 stories using ’LCToolbox’. The optimal
γ = 2.1713 represents an upper bound on the closed-loop
performance for the control design. After obtaining the
solution, the Big-M reformulation matrices mC and MC are
constructed as follows

mC = 10 min(ĈC(:)), MC = 10 max(ĈC(:)). (22)

where ĈC(:) denotes all the elements ĈC . The optimization
problem that attains the optimal solution for combined
location and control design for the ten-story building is given
by

minimize:
X,Y,ÂC ,B̂C ,ĈC ,γ2

lti,a
γ2lti

subject to: (4), (5)

Ψmc 6 ĈC 6 ΨMC

{ah : h = 1, 3, 5, 7} = 1,
Tr(Ψ) = 10,

(23)

This optimization problem is parsed using YALMIP,
and uses YALMIP’s in-built BNB for solving the MBSDP
problem and MOSEK for solving the SDP problems. The
integer tolerance for BNB is chosen as intTol = 10−6.
An additional test is carried out to check the sensitivity
of the integer tolerance of the BNB tolerance for the
formulation (23). As shown in Figure. 3, if the integer
tolerance is smaller or larger, it does not affect convergence
of the solution and it hardly affects the speed of convergence.

10-14 10-12 10-10 10-8 10-6 10-4 10-2
3

4

5

Integer tolerance vs. 

10-14 10-12 10-10 10-8 10-6 10-4 10-2

Integer tolerance

2000

4000

6000

8000

10000

T
im

e 
(s

)

Figure 3. γ and Computation time vs. Integer tolerance for
Yalmip’s BNB

The optimal actuator locations obtained corresponds to
the concentrated scheme of selecting the first ten stories.

The optimal γlti achieved is 4.3598. After performing an ES
by solving 16C6 combinations, it was found out that, the
obtained solution by our approach is indeed globally optimal
in terms of the actuator locations and also provides the exact
closed loop performance cost.

We compared the computation time taken to find a solution
using this approach with an ES for 16C6 combinations.
The simulations were executed in MATLAB 2015b on a 4-
core (8 logical processors) with 2.70GHz Intel Core i7-820
CPU with 16GB RAM. For performing an ES, the control
design problems were distributed parallel among 8 logical
processors while only one processor was used for MBSDP-
BNB approach. It was found out that the computation time
required to solve the combined problem using the mentioned
approach (1.8354h) is very less than the time required to
obtain a solution using ES (12.8619h) even though the latter
task was distributed.

Figure 4. Singular value plot of the channel from disturbance w
to interstory accelerations y1...y20 for comparing between the
open loop response and closed loop response.

Figure 5. Interstory r.m.s accelerations obtained from time
response from seismic ground disturbances w of North-South
Kobe 1995, Chi-Chi 1999 and El Centro 1940 for comparing
between the open loop response and closed loop response.

After reconstructing the model (16) by eliminating the
actuator positions at the last ten stories and with λ = 1 that
means without the input scaling, a controller is designed
using the control configuration in Figure. 2. Figure. 4
represents the singular value responses of open loop and
the closed loop from the disturbance w to the all the 20
acceleration outputs. It can be easily seen that closed loop
system adds a lot of damping at the resonances. Figure. 5
represents the time-domain analysis where the ground
seismic disturbance profiles from three different places
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namely, El Centro 1940, North-South Kobe 1995 and Chi-
Chi 1999 using ’OpenSeismoMATLAB’ Papazafeiropoulos
and Plevris (2018). The interstory r.m.s accelerations of 20
accelerations are recorded from open loop and closed loop
and compared in the figure. Figure. 5 shows significant
reduction in the r.m.s values of the accelerations.

4.2 Active Vibration Control of a Composite
Plate

This subsection focuses on combined collocated sensor
and actuator selection with H∞ LPV control design for
active vibration control of a composite plate.

4.2.1 Modeling Description The setup consists of a
composite plate of dimension 503mm× 400mm× 2.5mm
composed of unidirectional carbon fiber laminates with a
symmetric lay-up of [−45◦45◦0◦90◦]s Dong et al. (2019).
The plate is equipped with nine M2814-P1 macro-fiber
composite (MFC) actuators of dimension 28mm× 14mm×
0.3mm and with nine accelerometers. Force disturbances act
on the plate at four locations, with their placements shown in
Figure. 6. Since the weights of accelerometers are negligible
(approx. 5 grams per unit) as compared to the actuators,
the mechanical influence of sensors on the dynamics of the
model is neglected.

Figure 6. simplified model of a composite plate with (d1...d4)
as the force disturbances applied to the plate.

Table 2. Structure and material parameters used in modeling of
the composite plate.

Parameter MFC− d33 laminates

mass density 5440 Kg/m3 1500 Kg/m3

Y11 27.142 GPa 110.15 GPa
Y22 14.8 GPa 7.868 GPa
G12 4.1312 GPa 4.05 GPa
ν12 0.2922 0.26
G13 5.385 GPa −
G23 = G31 10.5 GPa −
d33 = d31 272 pm/V −
d32 −133 pm/V −
Cp 0.30nF/cm2 −

To model the plate, we use their equivalent substrate
modeling (ESM) approach Dong et al. (2019). The structural
and material properties of the composite plate and MFC
actuators are shown in the Table. 2, where Yij are the Young’s
moduli, Gij are the shear moduli in ij plane, νij are the
Poisson’s ratios, dij are piezoelectric charge constants and
Cp is the capacitance of the actuator. These parameters are
used to obtain the dynamics of the plate with actuators Dong
et al. (2017) and can be expressed as

Mq̈ + Cdq̇ + (Ks −ΘC−1p ΘT )︸ ︷︷ ︸
Kag

= Θu+ Lw, (24)

where q represents the displacement, M , Cd and Ks are
the mass, damping and spring matrices respectively, Kag

represents the augmented stiffness matrix which includes
the piezoelectric induced stiffness and Θ is the piezoelectric
coupling matrix. The localization matrix of disturbances is
denoted by L, whilew = [d1, d2, d3, d4]T and u are the force
disturbances and input voltage respectively. Second-Order-
Rational-Arnoldi approach Bai and Su (2005) is used to
reduce the model (24) to five vibration modes resulting into
the following tenthth order state-space model

[
q̇
q̈

]
=

[
0 I

−M−1r Kag
r −M−1r Cr

]
︸ ︷︷ ︸

A

[
q
q̇

]

+

[
0

−M−1r Θr

]
︸ ︷︷ ︸

Bu

u+

[
0

−M−1r Lr

]
︸ ︷︷ ︸

Bw

w.

(25)

where the matrices with subscript (.)r represents the
respective matrices of the reduced-order model and the
acceleration output y is taken as,

y =
[
0 Ca

] [q̇
q̈

]
(26)

such that substituting (25) into (26) results into

y =
[
0 Ca

]
A︸ ︷︷ ︸

C

[
q
q̇

]
+
[
0 Ca

] [
Bu Bw

]︸ ︷︷ ︸
D

[
u
w

]
. (27)

The state-space model obtained is a LTI system. To
illustrate the power and generality of the approach, an
artificial LPV system is constructed by parameterizing
the system matrix, A with α as the artificially generated
scheduling parameter, assuming values in the interval
[0.05, 0.1], with A(α(t)) = A+ αA.

4.2.2 Control Design The control configuration for the
force disturbance rejection for active vibration control
of the composite plate is adopted as Figure. 2, where
w = [d1, d2, d3, d4]T represents the force disturbances and
WD and WU are the static loop-shaping weights for the
disturbance channel D and the input sensitivity channel
U , respectively. The goal is to obtain a full-order dynamic
output feedback LPV controller to minimize the cost
function representing the closed-loop specification,

minimize:
∥∥∥∥[ WDD

WUU

]∥∥∥∥
∞
. (28)

The weights are selected as static gains as

WD = 0.320I9, WU = 10−2.25I9. (29)

to reduce the vibrations as low as possible as 10db at
each performance channels (z1....z9) and limit the actuator
effort for the performance channels (zu1

...zu9
). Using the

Prepared using sagej.cls



8 Journal Title XX(X)

system model constructed from (25) and (26) along with the
weights (29) and attaining the control configuration results
into a LPV dynamic output feedback controller which is
solved using LCToolbox. The upper bound on the closed
the closed-loop performance γlpv is 142.4256. The slack
variables ÂC , B̂C and ĈC are parameterized with B-Splines
of degree 1, and the knot sequence [0.05, 0.05, 0.1, 0.1].
The parsing of the LMIs is done using YALMIP and
OptiSpline Andersson (2013), Gillis et al. (2018), and
MOSEK is used to solve the SDPs which results into a full-
order controller that uses all the sensors and actuators.

4.2.3 Combined Control Design and Sensor/Actuator
Selection The main focus of this subsection is to attain
a LPV output feedback controller combined with optimal
sensor and actuator selection. After obtaining the solution to
the control design problem as explained it in the previous
subsection, the Big-M matrices are constructed using the
following

mB1
= mB2

= 100 min(min(B̂C1
(:)),min(B̂C2

(:)),

MB1 = MB2 = 100 max(max(B̂C1(:)),max(B̂C2(:))

mC1 = mC2 = 10 min(min(ĈC1(:)),min(ĈC2(:)),

MC1
= MC2

= 10 max(max(ĈC1
(:)),max(ĈC2

(:))
(30)

where B̂C1
(:), B̂C2

(:) and ĈC1
(:), ĈC2

(:) denotes all the
elements in vector of the coefficient matrices of B̂C and
ĈC respectively. The optimization that gives the optimal
solution for the combined control design and collocated
sensor/actuator selection is given by

minimize:
X,Y,ÂC ,B̂C ,ĈC ,γ2

lpv,s,a
γ2lpv + Tr(ηCΨ)

subject to: (4), (5), (12)
1 < Tr(Ψ) < numax .
Φ = Ψ.

(31)

We assume that all the actuators cost are same, ηC = 1000
and numax = 9. Also, note that, the equality constraint Φ =
Ψ represents collocated sensor and actuator selection. This
gives rise to 501 possible combinations distributed among
the plate. The problem (31) is parsed using YALMIP and
OptiSpline and solved using MOSEK and YALMIP’s inbuilt
BNB algorithm. The optimal sensor/actuator pair locations
achieved are 1, 4, 6, 7 and 9. The upper bound on the closed-
loop performance is achieved as γlpv = 147.1015.

Figure. 7. shows the singular values of the LPV frequency
response function matrix of the disturbances channels
d1....d4 to y1...y9, evaluated at equidistant grid points of
the scheduling parameter α of the disturbance channel. In
the figure, we have the open loop singular value response
(• • • •), the closed loop response with all the actuators
and sensors (- - - -) and the closed loop response with
an optimal selection of sensors and actuators (——–). Both
closed loop responses are well damped, with little differences
between them. This shows that, although the number of
actuators and sensors is reduced, the performance does not
degrade substantially.

Figure. 8. represents the time-domain analysis. The force
disturbances d1...d4 are chosen as unit step disturbances
while the scheduling parameter α is varied sinusoidal within

Figure 7. Singular value plot of the disturbance channel for
comparing between the open loop response and closed loop
responses.

its permissible range for generating the open and closed loop
responses. In order to compare the open loop responses and
closed loop responses, the r.m.s values of the accelerations
obtained from the simulations. An average reduction of about
28% is achieved for the r.m.s values using this approach.

Figure 8. r.m.s accelerations obtained from time response from
step force disturbances d1...d4 for comparing between the open
loop response and closed loop responses.

We also compared the computation time required to find
an optimal solution using MBSDP approach with an ES
of (31) for 501 combinations. The computation time using
MBSDP is 0.02h, while using an ES is 0.95h. It is also found
out that a globally optimal solution (globally optimal is terms
of closed loop performance and sensor/actuator selection) is
obtained.

5 Comparison and limitations of combined
design approaches

In this section, we consider two LTI case studies with
one of them already discussed in section. 4 to compare the
MBSDP-BNB approach with three other approaches namely,
IRLA Singh et al. (2018), MBSDP-OA Coey et al. (2018)
and finally with an Exhaustive Search (ES).

For the combined control design with actuator selection
using IRLA, we followed the approach from problem Singh
et al. (2018). Here, we replace `0 norm sparse function by
iterative reweighted `1 norm regularization Candes et al.
(2008) in a multi-objective optimization. Here, the goal is
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to update the weights that are used for `1-norm convex
relaxation iteratively.

For combined control design using MBSDP-OA, we
use the Pajarito solver, formulated in JuMP Dunning
et al. (2017) in Julia programming language and use
Gurobi Optimization (2014) and MOSEK as the sub
solvers. Unlike Yalmip’s BNB, which relaxes the integer
constraints during the iterative BNB algorithm, MBSDP-
OA using Pajarito solver Coey et al. (2018) relaxes the
SDP constraints. The underlying idea is to convert the SDP
constraints into a finite-dimensional linear problem with
linear constraints which are called cutting planes obtaining
outer approximation of the original SDP problem.

The first case study is the seismic tall building rejection
case as in section. 4. To apply IRLA Singh et al. (2018),
three tuning parameters need to be set: the parameter ηC that
trades off the closed loop performance cost and the sparsity
regularization, the convergence tolerance tol = 10−4, and
a tuning parameter ε = 10−5, to avoid singularities during
the re-weighting process. The IRLA is formulated and
solved and all results for this case study are summarized
in table. 3. To apply MBSDP-OA, Pajarito solver requires
duality gap tolerance for convergence, which was set as 10−5

and the results are shown in the table. 3. When compared
with MBSDP-OA approach and ES, it was found out that
MBSDP-BNB yield global optimal results for closed-loop
performance and actuators selection, while IRLA achieves
the global actuator selection however yields sub-optimal
solution with respect to the closed loop performance.

MBSDP-BNB finds the global optimal solution about
1/7th of the time of the ES. The solution of IRLA closely
approaches the global solution at a considerably shorter
calculation time than all other approaches.

Table 3. Comparison of approaches for MIMO building system
with 20 actuators.

Approach γ Global Computation time (h)

IRLA 4.3682 × 0.1576
MBSDP-BNB 4.3598 X 1.8354
MBSDP-OA 5.9354 × 2.4709
ES 4.3598 X 12.8619

The second comparative case study is the vibration control
design with optimal actuator selection of the composite plate
for LTI system as discussed in section. 4. The difference
lies in the grid of possible collocated sensor-actuator pairs,
which is not a 5x5 grid instead of the 3x3 grid considered
in section 5, making this case more challenging. The tuning
parameters for the IRLA are set to the same values as in
the first comparative case study, except for ηC = 0.75. The
results are summarized in table. 4. For this case, only the
MBSDP-BNB and of course the ES find the global optimal
solution with IRLA and the MBSDP-BNB approach have
comparable computation times. However, MBSDP-OA fails
to converge to a global optimal solution.

The comparisons show that the approach followed in
this article, i.e, MBSDP-BNB attain global optimal solution
in terms of closed-loop performance and optimal selection
which can be confirmed with ES. The computation time

Table 4. Comparison of approaches for MIMO composite plate
system with 25 actuators.

Approach γ Global Computation time (h)

IRLA 165.4361 × 1.4416
MBSDP-BNB 112.8167 X 1.5824
MBSDP-OA 115.4630 × 1.5278
ES 112.8167 X 5.3739

required to obtain the solution via MBSDP-BNB is however
significantly less when compared with an ES.

IRLA is the fastest approach but fails to find the global
solution in the second case study. which is probably caused
by the relaxations of the sparsity inducing `0 norm by a
reweighted `1 norm.

It is not guaranteed that MBSDP-OA converges to a
global solution because a feasible solution to the linear
programming approximation is not guaranteed to be a
feasible solution to the semidefinite programming. An in-
depth analysis of this problem is out of the scope of this
paper. In addition, since H∞ control design is formulated in
Matlab and Yalmip, and Pajarito requires the control design
to be shifted to Julia and JuMP makes this method less
convenient than using methods in Matlab.

Table. 5 summarizes the comparison of all the approaches
that are used for combined control and selection design.
The first two features mentioned in the table can be easily
deduced from the results in the tables. 3 and 4. IRLA is
not able to handle some of the boolean constraints, for
example, the multi-objective problem (31) for achieving a
trade-off between the closed-loop performance and total
implementation cost of sensors and actuators. Additionally,
translation of minimum and maximum actuator requirement
in (31) into `1-norm is not straightforward and requires a
more detailed study, while the other approaches can handle
such constraints.

Table 5. Summary of approaches for the combined design
problems

Features IRLA MBSDP-
BNB

MBSDP-
OA

ES

Global Optimal
Solution × X × X

Computationally
inexpensive X X X ×

Handle all
integer/boolean
constraints

× X X X

Determination of
Big-M constants × X X ×

The main drawback of using MBSDP-BNB is the
determination of the Big-M constants. In order to
demonstrate the sensitivity of the solution to the Big-M
constants, the numerical case of tall building is reconsidered
but with a different boolean constraints than (23). The reason
for considering a different problem is to reduce the number
of combinations such that their computation time is reduced.
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The new problem formulation is given in (32)

minimize:
X,Y,ÂC ,B̂C ,ĈC ,γ2

lti,a
γ2lti

subject to: (4), (5)

Ψmc 6 ĈC 6 ΨMC

{ah : h = 1 : 10} = 1,
Tr(Ψ) = 12,

(32)

where the actuators are fixed in first 10 stories and the
objective is to select 2 out of the remaining 10 actuators
which reduces the number of combinations from 16C6 to
10C2.

Clearly, since the control design specifications are same,
the minimum and maximum values of ĈC(:) are also same,
and (22) can be written as:

mC = k ·min(ĈC(:)),MC = k ·max(ĈC(:)) (33)

with k = 10. The global solution obtained with exhaustive
search is γ = 3.5822 with the selected 2 actuators at the 11th

and 12th story.
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Figure 9. γ and Computation time vs. k (Multiplicative factor for
Big-M)

As shown in Figure. 9, when the scaling factor is
significantly low, e.g k < 1, the BNB is not able to find
the global optimal solution. However, as we increase the
scaling factor, the bounds on the matrix increases and it
finally converges to the global optimal solution. With, respect
to the computation time, the time increases with increase
in the scaling factor, because the search domain for ĈC is
increased. Notice also in the bottom plot of Figure. 9, that
the computation time does not linearly scale with the Big-M
bounds.

If, the scalar factor is increased significantly, for, eg.
k ≥ 104, the algorithm does not converge to a global
solution due to numerical problems that occur while solving
the SDP optimization using Yalmip Lofberg (2004) and
MOSEK Mosek (2015). In order to tackle this numerical
problem, the primal-dual gap tolerance in MOSEK must be
altered and by doing so, the SDP performance is relaxed,
which is undesirable. In conclusion, a careful selection of
Big-M constants is important.

6 Conclusion
In this article, we addressed combined feedback control

design and optimal sensor/actuator selection using a MBSDP
optimization formulation. The first contribution of our work

lies in expressing the combinatorial optimization problem
as a convex optimization problem by imposing Big-M
constraints on the optimization variables of the controller.
We introduced formulations for both LTI and LPV systems
and proposed two different kind of optimization scheme for
the combined control design and selection, theorem 2 and 3.

The second contribution of our article is to validate the
proposed approach on two different applications: seismic
rejection of a tall building and active vibration control of a
composite plate. On comparing the singular value plots of the
open loop and closed loop in both the applications, we found
out that we were able to damp the resonances significantly
even with a smaller number of sensors/actuators. Apart from
that, we found out that there is a significant reduction in the
r.m.s values of the open loop and closed loop responses in
the disturbance channels.

The applications are compared with ES and another
approaches: IRLA and MBSDP-OA. These case studies
reveal the favorable properties of the developed approach:
(i) calculation times significantly shorter than ES and similar
as those of IRLA, and (ii) the global solution w.r.t to closed-
loop performance and optimal selection is attained.
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A Proof of theorems 2 and 3
This appendix focuses on proving that the optimization

in (14) and (15) obtain combined controller design with
an optimal sensors/actuators selection by assigning optimal
values to the boolean variables of the diagonal of Φ and Ψ.
In order to do so, consider the following lemma:

Lemma 4. Given matrices G, k, K ∈ Rn×n and a
diagonal matrix D ∈ Rn×n, such that:

kD 6 G 6 KD (or, similarly, Dk 6 G 6 DK), (34)

then, the following holds: ‖G‖c−`0 6
‖D‖c−`0 or (‖G‖r−`0 6 ‖D‖r−`0).

Proof. For proving by contradiction, assume that:
‖G‖c−`0 ≥ ‖D‖c−`0 or (‖G‖r−`0 ≥ ‖D‖r−`0), then,
there exist at least a couple of indices (r, c) ∈ {1, . . . , n}2
such that:

G(r,c) 6= 0 and D(c,c) = 0 or (G(r,c) 6= 0 and D(r,r) = 0).

However, this contradicts the the condition (34) which
implies that for any couple (r, c) ∈ {1, . . . , n}2 it holds:

k(r,c)D(c,c) 6 G(r,c) 6 K(r,c)D(c,c)

or D(r,r)k(r,c) 6 G(r,c) 6 D(r,r)K(r,c)

Hence, using the lemma 4 and the binary nature of the
variables used to define Φ and Ψ we can conclude that,

‖B̂C‖c−`0 6 ‖Φ‖c−`0 = Tr(Φ)

and ‖ĈC‖r−`0 6 ‖Ψ‖r−`0 = Tr(Ψ)
(35)

This can be easily extended to the LPV counterpart by
constructing B-splines. All the inequality constraints are
imposed on the coefficients of the B-splines (9). By
construction, B-splines are everywhere contained in the
convex-hull of their coefficients or control points Hilhorst
et al. (2016). Therefore, given the convexity of the element-
wise constraints (12), we have

mBΦ 6 B̂C(ρ) 6MBΦ, ΨmC 6 ĈC(ρ) 6 ΨMC , ∀ρ ∈ Λ,
(36)

Using, lemma 4. and (36), we can conclude,

‖B̂C(ρ)‖c−`0 6 ‖Φ‖c−`0 = Tr(Φ)

and ‖ĈC(ρ)‖r−`0 6 ‖Ψ‖r−`0 = Tr(Ψ), ∀ρ ∈ Λ.
(37)

where,

mB :=

[
min
i,k

m
(r,c)
Bik

]
r,c

, MB :=

[
max
i,k

M
(r,c)
Bik

]
r,c

,

mC :=

[
min
i,k

m
(r,c)
Cik

]
r,c

, MC :=

[
max
i,k

M
(r,c)
Cik

]
r,c

.
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