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Abstract

In time to event studies censoring often occurs and models that take this into account are wide-spread.

In the presence of outliers standard estimators of model parameters may be affected such that results

and conclusions are not reliable anymore. This in turn also hampers the detection of these outliers due to

masking effects. To cope with outliers when using proportional hazard models, we propose to use the Brier

score as a loss function. Since the coefficients often vary over time, we focus on the piecewise constant

hazard (PCH) model, which can flexibly model time-varying coefficients if a large number of cut-points is

used. To prevent overfitting, we add a penalty term that potentially shrinks time-varying effects to constant

effects. By fitting the coefficients of the PCH model using a penalized Brier score loss we obtain a robust

model that can handle time-varying coefficients. Its good performance is illustrated in a simulation study

and using two datasets from practice.
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1 Introduction

Modeling time to event data, also called survival data, is an important objective in many medical studies. Popular

models for time to event data that take into account censoring include Cox proportional hazard models, Weibull

models, and piecewise constant hazard (PCH) models.1

Real data sets often contain some observations that deviate from the pattern of the majority. Such outliers can

heavily influence the estimators which may lead to incorrect conclusions in survival analysis. Robust statistical

methods have been proposed to obtain estimates which remain reliable when a limited number of outliers are

present in the data.2 However, only few robust methods that can cope with censoring exist and these are rarely

used in practice.3,4

In addition to obtaining correct estimates in the presence of outliers, also the detection of these atypical

observations can be of interest. Outlying observations may be errors, may have been recorded under exceptional

circumstances, or could belong to another population. Consequently, outlier detection can for example lead to

the discovery of new disease subgroups or prognostic markers. One way to detect outliers is by inspection

of the residuals. Since non-robust estimators can be attracted by the outliers, residuals obtained by using

these estimates might not be detected as outliers. This is called the masking effect. Moreover, some regular

observations might even appear to be outliers, which is known as swamping.4 On the other hand, residuals

based on robust estimates allow to reliably identify outlying observations in the data.

The first robust estimation procedures in survival analysis focused on the coefficients of the widely used

Cox proportional hazard model.5,6 Extensions of and variations on these initially proposed methods include
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Biccler et al 3

a trimmed estimator of the coefficients and a robust estimator of the cumulative baseline hazard.7,8 Recently,

robust estimation procedures have also been developed for alternatives to the Cox proportional hazard model,

e.g. additive hazard and parametric accelerated failure time models.9–12

In this paper we propose robust estimators for proportional hazard models by adapting a minimum quadratic

distance based robust estimation procedure, which was originally developed for logistic regression.13 In

particular, we use a loss function based on the quadratic error, also called the Brier score, between the patient

status (dead or alive) and the predicted probability at specified time-points.14–16 To take the censoring into

account, an estimator based on inverse probability of censoring weighting (IPCW) is applied.17 IPCW M-

estimators have already been used to obtain robust estimators for accelerated failure time models.11

In medical studies the effect of covariates often varies over time. For example, the size of a tumor measured

at diagnosis tends to have a less pronounced effect after surviving two years post-diagnosis. One model

that naturally allows the incorporation of time-varying effects is the PCH model18,19, which is often used in

practice.20,21 In a PCH model a unique hazard rate is applied in each (predefined) time interval. By utilizing

a large number of intervals such models can be made flexible.22 A drawback of increasing the number of cut-

points is that it requires the estimation of a large number of parameters which can lead to instability issues. This

can be solved by adding an additional penalty to the time-varying effects. Recent developments concerning the

penalization of time-varying Cox proportional hazard models have focused on inducing sparsity in the sense

that some covariate effects are set to be constant over time.23,24 In this paper we induce sparsity in the same

sense for PCH models by applying a penalty similar to the group lasso (GL).25

By estimating the coefficients of a PCH model using the Brier score with the group lasso-like penalty as loss

function we obtain a flexible time-varying model which is more robust to the presence of outliers. To the best

of our knowledge, this is the first robust model that explicitly allows time-varying coefficients.

The paper is structured as follows. In Section 2 the PCH model is introduced, the standard maximum likelihood

estimator (MLE) is described, and the influence of leverage points is illustrated. In Section 3 we introduce

the Brier score to obtain robust estimates and provide some intuition as to why this approach is more robust

against leverage points. The penalization of the time-varying coefficients is described in Section 4 and an
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optimization algorithm is described in Section 5. To test the performance of the new method a simulation

study is performed in Section 6. Finally, in Section 7 we test the new method on data from an AIDS cohort and

on a cohort of cutaneous malignant melanoma patients. R scripts for the estimators and analyses are available

on https://github.com/JorneBiccler/RobustPCH.

2 Piecewise constant hazard models

The event and censoring times of the ith observation are denoted by Ti and Ci respectively, and the observed

right-censored information is Ui = min(Ti, Ci) and ∆i = 1(Ti ≤ Ci). Throughout this paper we assume

independent right-censoring (possibly conditional on covariates). The data is said to be generated from a PCH

model if there exist p time intervals [α0 = 0;α1) , [α1;α2) , . . . , [αp−1;αp =∞) and p constants θ̃1,0, . . . , θ̃p,0

such that the hazard is

αi (t) = lim
h→0

P(Ti ∈ [t; t+ h)|Ti > t)

h
=

p∑
j=1

1(t ∈ [αj−1;αj)) exp(θ̃j,0).

Inclusion of the effect of q covariates (X̃i ∈ Rq) is typically obtained by assuming a proportional effect on the

hazard, i.e.

αi(t) =

p∑
j=1

1(t ∈ [αj−1;αj)) exp
(
θ̃j,0 + X̃t

i θ̃
)
,

with θ̃ ∈ Rq . Time-varying covariate effects can be included by allowing the coefficients to change in each

interval

αi(t) =

p∑
j=1

1(t ∈ [αj−1;αj)) exp
(
θ̃j,0 + X̃t

i θ̃j

)
, (1)

with θ̃j ∈ Rq . The necessity of selecting cut-points is perhaps the biggest complication of this model. When

there are no preferred cut-points, equally spaced quantiles of the event times are recommended.26

From now on we denote whether or not we observe that the i’th event happens in [αj−1;αj) byOij = ∆i1(Ui ∈

[αj−1;αj)) and the time at risk in the interval as Rij =
∫ τ

0
1(Ui > t)1(t ∈ [αj−1;αj))dt in which τ is the
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largest time of interest, often the longest follow-up time observed in the study. Furthermore, we write the

covariate vector of observation i augmented with a 1 corresponding to the intercept as Xi = (1, X̃t
i )
t. To ease

the notation, we define θj = (θ̃j,0, θ̃
t
j)
t and θ = (θ1, . . . ,θp)

t. It can be shown that the negative log-likelihood

of the PCH model corresponding to (1) is1

LMLE (θ) = −l(θ) =

n∑
i=1

p∑
j=1

OijX
t
iθj − exp

(
Xt
iθj
)
Rij .

The maximum likelihood estimator (MLE) is then defined as θ̂MLE = arg minθ LMLE (θ). The corresponding

score equations,

∂LMLE

∂θz,l
=

n∑
i=1

OizXil −Riz exp
(
Xt
iθz
)
Xil = 0, z ∈ {1, . . . , p}, l ∈ {0, . . . , q}, (2)

give some intuition into why the MLE is not robust against leverage points. When the score equations are

evaluated at a certain θ, varying the covariate value of one observation can make the influence of that observation

on the score equation arbitrarily large.

3 PCH model with the Brier score loss

We now introduce a method to obtain outlier robust estimators for proportional hazard models and work out

the details for the PCH model. In logistic regression, estimates obtained by minimizing the squared distance, or

Brier score, have been shown to be robust.13 Prediction of the survival status at a single time t, 1(T ≥ t) can

be seen as a classification problem with censoring. To measure the classification error at time t, the Brier score,

B(t) = E
[
{1(T ≥ t)− S(t|X,θ)}2

]
can then be used.16 Given an estimate of the conditional probability of

an observation being uncensored,G(·|X), the Brier score can, under some regularity conditions, be consistently
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estimated by an IPCW estimator17

B̂(t) =

n∑
i=1

1(min(Ti, t) ≤ Ci)
Ĝ(min(Ti, t)|Xi)

{
1(Ti ≥ t)− S(t|Xi, θ̂)

}2

.

Often it is assumed that the covariates do not influence the censoring distribution and the Kaplan-Meier (KM)

estimator can be used as an estimator of G(t). If the real survival function is S0(t|X), it can be shown that

E

[
1(min(T, t) ≤ C)

G(min(T, t)|X)
{1(T ≥ t)− S(t|X,θ)}2

]
= E

[
{1(T ≥ t)− S(t|X,θ)}2

]
= E

[
{1(T ≥ t)− S0(t|X)}2

]
+ E

[
{S0(t|X)− S(t|X,θ)}2

]
.

(3)

Hence, the expected value of the Brier score decomposes into an irreducible variation term and a model-

misspecification error.

Instead of minimizing the negative log-likelihood, we propose to select a number of time-points, t1, . . . , ts and

use LBSL(θ) =
∑s
k=1 B̂(tk), which we denote the Brier score loss (BSL), as loss function. The coefficients

are then estimated as

θ̂BSL = arg min
θ

s∑
k=1

B̂(tk) = arg min
θ
LBSL(θ).

In the supplemental material it is shown that, under some regularity conditions, this leads to a consistent

estimator. Denoting the IPCW weight of observation i at time-point tk as IPWik = 1(min(Ti,tk)≤C)

Ĝ(min(Ti,tk)|Xi)
, we obtain

that for a PCH model the first order conditions are

∂LBSL
∂θzl

(θ) = 2

s∑
k=1

n∑
i=1

IPWik {1(Ti ≥ tk)− S(tk|Xi,θ)} ∂S
∂θzl

(tk|Xi,θ)

= 2

s∑
k=1

n∑
i=1

 IPWik {1(Ti ≥ tk)− S(tk|Xi,θ)}S(tk|Xi,θ)

× exp {Xt
iθz}

∫ tk
0
1(u ∈ [αz, αz+1))duXil


= 0.
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We get some insight into the effect of leverage points by inspecting the influence of a perturbed covariate value

on this equation.13 In the Supplementary material it is derived that when the score equations are evaluated

at θ 6= 0 and we let |X̃il| → ∞ we get S(tk|Xi,θ) exp {θzXi}Xil → 0. Hence, observations with large

covariate values have a minimal contribution to the score equations.

One drawback of using the Brier score as loss function is that, in the case of PCH models, the optimization

problem is not convex, so advanced optimization methods to compute the estimator are needed (see Section 5).

3.1 Selection of evaluation time-points

There are multiple options for selecting the time-points, t1, . . . , ts, at which the Brier score is evaluated. One

option is to approximate the integrated Brier score (IBS),
∫ τ

0
B̂(s)ds by using an equally spaced grid of time-

points. A second option is to use the quantiles of the event times.27

To avoid multiple global minima one should aim to evaluate the Brier score in at least one time-point in each

interval. When the cut-point selection is based on the quantiles of the event times this can be ensured by using

a larger number of quantiles as the evaluation time-points. Therefore, in this paper we focus on using quantiles

for both the cut- and evaluation time-point selection.

4 Penalizing time-varying effects

In order to deal with large amounts of parameters, penalization is a popular solution. This is done by adding a

penalty term, J(λ,θ), to the minimization problem:

θ̂ = min
θ
L(θ) + J(λ,θ). (4)
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Depending on the functional form of the penalty, certain desirable properties can be obtained. One example is

the least absolute shrinkage and selection operator (lasso)28,

J(λ,θ) = λ

p∑
j=1

q∑
l=0

|θj,l|.

This penalty typically sets a number of the coefficients equal to zero, yielding a sparse solution. An extension

of the lasso, the group lasso (GL), focuses on shrinking the coefficients of variables with an intrinsic

group structure, e.g. categorical variables, towards zero as a group.25 Although the GL penalty was initially

proposed for categorical variables it has been adapted to solve other problems, e.g. change point detection in

multidimensional signals.29

Often it is not a priori known whether a covariate effect should be modelled as time-varying. Therefore, it is

natural to focus on penalties that can select between constant and time-varying coefficients.23,24 In discrete

survival models this has previously been accomplished by using a GL-like penalty.30 The analogue of such a

GL-like penalty for the PCH model is obtained by penalizing the differences between adjacent coefficients. A

covariate-wise selection is then obtained by applying a GL-like penalty,

JGL (λ,θ) = λ

q∑
l=0

√√√√ p∑
j=2

(θj,l − θj−1,l)
2
.

The relation with the GL becomes clear when the model is re-parametrized using the original coefficients in the

first interval and the differences between adjacent coefficients for the remaining intervals,

ζ1,l = θ1,l ∀l ∈ {0, . . . , q}

ζj,l = θj,l − θj−1,l ∀j ∈ {2, . . . , p},∀l ∈ {0, . . . , q}.
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The corresponding transformation matrix is defined by Dθ = ζ. For ease of notation we will use this re-

parametrization from now on and write L(ζ) instead of L(D−1θ), the same is done for the penalty function

which becomes JGL (λ, ζ) = λ
∑q
k=0

√∑p
l=2 ζ

2
j,l.

5 Optimization algorithm

The optimization algorithm used to find a solution of the minimization problem in Equation 4 should be able to

deal with non-convex loss functions, such as the BSL, and efficiently incorporate the proposed penalty. Proximal

gradient algorithms are a class of algorithms that have shown their merit when used for penalized non-convex

loss functions and lead to a simple update scheme when combined with the GL penalty.31,32

5.1 Proximal gradient method

Proximal gradient algorithms are generalizations of the gradient descent algorithm which is an iterative

procedure that aims to minimize a differentiable function, e.g. the unpenalized loss L(ζ). At step r + 1 the

gradient descent method takes a step of size α(r) in the direction of the negative gradient

ζ(r+1) = ζ(r) − α(r)∇L
(
ζ(r)

)
.

ζ(r+1) can be interpreted as the solution of a linear approximation to the minimization problem penalized by a

quadratic term, i.e.33

ζ(r+1) = arg min
η

[
L
(
ζ(r)

)
+
〈
∇L

(
ζ(r)

)
,η − ζ(r)

〉
+

1

2α(r)

∥∥∥η − ζ(r)
∥∥∥2

2

]
. (5)

When a non-differentiable penalty is added to the differentiable loss function the gradient method has to be

adapted. One way of doing so is by the use of proximal gradient algorithms which focus on minimizing objective

functions of the form L(·) + J(λ, ·) in which J(λ, ·) is not necesarily differentiable.34 To achieve this, the
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penalty is added to the approximate minimization problem (5),

ζ(r+1) = arg min
η

 L (ζ(r)
)

+
〈
∇L

(
ζ(r)

)
,η − ζ(r)

〉
+ 1

2α(r)

∥∥η − ζ(r)
∥∥2

2
+ J(λ,η)


= arg min

η

 〈α(r)∇L
(
ζ(r)

)
,η − ζ(r)

〉
+ α(r)J(λ,η)

+ 1
2

∥∥η − ζ(r)
∥∥2

2
+ 1

2

∥∥α(r)∇L
(
ζ(r)

)∥∥2

2


= arg min

η

[
1

2

∥∥∥α(r)∇L
(
ζ(r)

)
+ η − ζ(r)

∥∥∥2

2
+ α(r)J(λ,η)

]
.

(6)

By defining the so-called proximal operator of α(r)J(λ, ·) as

proxα(r)J(λ,·) (ζ) = arg min
η

[
α(r)J(λ,η) +

1

2
‖ζ − η‖22

]
,

the updates from Equation 6 can be rewritten as

ζ(r+1) = proxα(r)J(λ,·)

[
ζ(r) − α(r)∇L

(
ζ(r)

)]
.

In the case of JGL (λ, ζ), the proximal operator can be derived from the proximal operator of the GL32 and the

updates can be explicitly computed as

ζ
(r+1)
1,l = ζ

(r)
1,l − α

(r) ∂L
∂ζ1,l

(
ζ(r)

)

ζ
(r+1)
−1,l =


ζ

(r)
−1,l − α(r) ∂L

∂ζ−1,l

(
ζ(r)

)(
1− λ∥∥∥ ∂L

∂ζ−1,l
(ζ(r))

∥∥∥
2

)
if
∥∥∥ζ(r)
−1,l − α(r) ∂L

∂ζ−1,l

(
ζ(r)

)∥∥∥
2
> λα(r)

0 if
∥∥∥ζ(r)
−1,l − α(r) ∂L

∂ζ−1,l

(
ζ(r)

)∥∥∥
2
≤ λα(r)

where ζ−1,l = (ζ2,l, . . . , ζp,l)
t.

To speed up convergence we rely on the Barzilai-Borwein method, a Hessian-free approximation to Newton’s

method, to select the α(r)’s.32,35 The complete minimization procedure is described in Algorithm 1.

Prepared using sagej.cls



Biccler et al 11

Algorithm 1: Minimization algorithm of the penalized problem

1 input: initial values ζ(0); a fixed penalty parameter λ; an initial step-size α(0), a maximum step-size
αmax, and a minimum step-size αmin such that αmax ≥ α(0) ≥ αmin > 0; and a tolerance ε > 0

2 initialization: r ← 0;
3 repeat
4 ζ(r+1) = proxα(r)J(λ,·)

(
ζ(r) − α(r)∇L

(
ζ(r)

))
;

5 α(r+1) = 〈∇L(ζ(r+1))−∇L(ζr),ζ(r+1)−ζ(r)〉
‖∇L(ζ(r+1))−∇L(ζ(r))‖2

2

;

6 if α(r+1) > αmax then
7 α(r+1) ← αmax;
8 else if α(r+1) < αmin then
9 α(r+1) ← αmin;

10 r ← r + 1;

11 until
∑p

j=1

∑q
l=0 |ζ

(r)
j,l −ζ

(r+1)
j,l |∑p

j=1

∑q
l=0 |ζ

(r)
j,l |

< ε;

12 output: ζ(r)

To select an optimal λ usually a regularization path is calculated and the λ corresponding to the minimum of a

cross validated summary measure is selected. In the rest of this paper this summary measure is the log-likelihood

when the MLE is used, when the BSL estimator (BSLE) is used, this is based on the BSL.

5.2 Initial values

Plugging LBSL(·) and JGL(·, ·) into Equation 4 does not necessarily lead to a convex problem. Convergence

problems can to some degree be avoided by using appropriate initial values. The approach taken here consists of

two steps. First of all, a large penalty parameter is used which leads to a model without time-varying coefficients.

Secondly, starting from the solution corresponding to such a large penalty parameter, a regularization path is

calculated by relying on warm starts.

First of all, when there are no time-varying effects, i.e. ζj = 0, ∀j ∈ {2, . . . , p}, the PCH model corresponds

to an exponential model. Indeed, the parameters of an exponential model estimated by the Brier score loss

ζexp = arg min
ζ
LBSL(ζ) subject to ζj = 0, ∀j ∈ {2, . . . , p},
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are identical to the solution of

arg min
ζ
LBSL(ζ) + JGL(λ, ζ) with λ ≥ λmax = max

l∈{0,...,q}

∥∥∥∥ ∂L
∂ζ−1,l

(ζexp)

∥∥∥∥
2

.

To estimate ζexp we propose to use a gradient descent algorithm with initial values obtained by other robust

methods. In particular, firstly the covariates are standardized using robust location and scale estimators, e.g. the

median and median absolute deviation estimators. Secondly, estimates of the covariate coefficients are obtained

from a robust estimator for the Cox proportional hazard model.5 The estimator of the baseline parameter, ζ1,0, is

based on the fact that if there are no covariate effects and then the p’th percentile of an exponentially distributed

T is

ζ1,0 = log

[
− log (1− p)
F−1
T (p)

]
. (7)

We suggest to estimate the marginal distribution function, FT (·), using the KM estimator and pick p =

F̂T (maxi(∆iTi))
2 . Note that when there is no censoring p ≈ 0.5 and the denominator in Equation 7 will be the

robust median estimator.

To find the estimates for arbitrary λ < λmax the regularization path over a grid of decreasing λ values can be

calculated using the preceding solution to calculate the solution of a new λ.

6 Simulations

To inspect the estimation procedures and robustness properties of the proposed estimator, a simulation study

is performed. Throughout this section the penalized MLE and BSLE are compared. The simulated data is

generated from a PCH model which depends on two covariates X1 and X2 and has

α(t) =


exp(−3 + 2X2) if t < 2

exp(−2.5 + 0.75X1 + 2X2) if 2 ≤ t < 10

exp(−2 + 0.75X1 + 2X2) if 10 ≤ t
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as hazard rate. Hence, the coefficient ofX1 is time-varying while the coefficient ofX2 is not. The covariates are

independent and simulated using a standard normal distribution. To get a censoring percentage of approximately

40% the censoring time variable is simulated from an exponential distribution with mean exp(3.02). The

robustness properties are inspected by contaminating a fraction ε of the data, in Section 6.1 this is done by

simulating data from a PCH model with a different hazard rate while in Section 6.2 leverage points at pre-

specified positions are added. We consider two different sample sizes, n = 500 and n = 1000, and every

scenario is simulated 100 times. To measure the performance, we compute the integrated absolute error (IAE)

for each coefficient

IAEj,i =

∫ τ
0
|θj,i − θ̂i(u)|1(u ∈ (αj , αj+1])du

αj − αj+1
,

where θ̂(u) =
∑p
j=1 1(u ∈ [αj−1;αj))θ̂j . Based on the decomposition of the prediction error in Equation (3),

the quality of the overall fit is measured using the root of the integrated Brier score (RIBS)16 between the

estimated and data-generating survival functions

RIBS =

√√√√√E

[∫ τ
0

{
S0(t|X)− Ŝ(t|X, θ̂)

}2

dt

]
τ

.

The RIBS and IAEs are calculated by setting τ = 15. The expected value is approximated by simulating 100000

values from a bivariate normal distribution, and the involved integral is approximated with the composite

midpoint rule.

6.1 Outlying event times

In this section the contaminated data is generated from an exponential survival model with hazard function

hcont(t) = exp(−4− 2X1). To achieve a censoring rate of approximately 50% the censoring time is simulated

using an exponential distribution with mean exp(4). Just as for the clean data the covariates are independently

generated from independent standard normal distributions.
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6.1.1 Known breaks The results of the simulations when the correct cut-points are provided can be found

in Table 1. In the case without outliers, the MLE led to lower IAEs than the BSLE for nearly all coefficients.

Furthermore, the RIBS was essentially equal for the MLE and the BSLE. When the contamination proportion

is set to 5% or 10% the MLE for the estimates of the coefficients in the second and third intervals degrade

noticeably while the performance of the BSLE remains acceptable. Finally, once the contamination rate is

raised to 15% also the performance measures of the BSLE indicate a decrease in performance when compared

to the non-contaminated scenario. Comparing the performance measures across sample sizes shows that both

methods perform slightly better when larger sample sizes are used.

Table 1. Integrated absolute errors and RIBS of the MLE and Brier score loss estimator (BSLE) when the correct
breaks are specified in the estimation process.

ε Sample size method θ1,1 θ1,2 θ1,3 θ2,1 θ2,2 θ2,3 θ3,1 θ3,2 θ3,3 RIBS
0 500 MLE 0.13 0.09 0.09 0.08 0.08 0.09 0.13 0.10 0.11 0.02

Brier 0.15 0.15 0.11 0.09 0.10 0.14 0.18 0.17 0.23 0.03
1000 MLE 0.08 0.06 0.06 0.05 0.06 0.06 0.08 0.07 0.10 0.01

Brier 0.12 0.10 0.08 0.07 0.07 0.08 0.13 0.13 0.17 0.02
0.05 500 MLE 0.17 0.09 0.21 0.11 0.23 0.62 1.15 0.70 1.27 0.07

Brier 0.20 0.13 0.21 0.10 0.16 0.24 0.35 0.24 0.44 0.04
1000 MLE 0.13 0.06 0.17 0.07 0.26 0.71 1.27 0.77 1.40 0.07

Brier 0.20 0.10 0.20 0.07 0.15 0.24 0.31 0.27 0.34 0.03
0.1 500 MLE 0.22 0.12 0.35 0.16 0.37 0.94 1.48 0.90 1.57 0.11

Brier 0.30 0.14 0.35 0.14 0.30 0.47 0.64 0.52 0.66 0.07
1000 MLE 0.19 0.10 0.33 0.14 0.36 0.96 1.53 0.94 1.60 0.11

Brier 0.31 0.10 0.35 0.13 0.26 0.49 0.61 0.52 0.66 0.06
0.15 500 MLE 0.23 0.15 0.45 0.22 0.45 1.09 1.63 1.06 1.62 0.14

Brier 0.38 0.15 0.52 0.22 0.44 0.75 0.93 0.75 0.93 0.10
1000 MLE 0.24 0.14 0.47 0.20 0.47 1.11 1.66 1.06 1.68 0.14

Brier 0.39 0.11 0.49 0.19 0.43 0.80 0.94 0.75 0.98 0.10

6.1.2 Unknown breaks In this section the cut-points are estimated. More specifically, 9 intervals are used.

The results can be found in Table 2. The main difference between this and the previous scenario is that the IAEs

indicate that both the BSLE and MLE lead to less accurate estimates when the cut-points are estimated. On the

other hand, for both methods the RIBS is approximately on par with those reported in the previous section. The
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effect of contamination on both methods is similar as before. While a small fraction of contamination already

has a big impact on the MLE, the performance of the BSLE degrades much more slowly.

Table 2. Integrated absolute errors and RIBS of the MLE and Brier score loss estimator (BSLE) when the breaks are
estimated in the estimation process.

ε Sample size method θ1,1 θ1,2 θ1,3 θ2,1 θ2,2 θ2,3 θ3,1 θ3,2 θ3,3 RIBS
0 500 MLE 0.49 0.58 0.21 0.49 0.25 0.27 0.37 0.18 0.21 0.03

Brier 0.43 0.65 0.28 0.53 0.36 0.44 0.44 0.33 0.41 0.03
1000 MLE 0.47 0.51 0.16 0.48 0.20 0.19 0.30 0.15 0.14 0.02

Brier 0.42 0.55 0.22 0.48 0.29 0.35 0.37 0.26 0.34 0.02
0.05 5000 MLE 0.69 0.49 0.76 0.64 1.05 2.36 2.18 1.29 2.64 0.08

Brier 0.56 0.56 0.46 0.30 0.58 0.69 0.82 0.53 0.74 0.04
1000 MLE 0.69 0.49 0.78 0.60 1.08 2.54 2.23 1.36 2.80 0.08

Brier 0.57 0.53 0.48 0.31 0.52 0.81 0.86 0.59 0.85 0.04
0.1 500 MLE 0.75 0.42 1.13 0.92 1.40 2.94 2.84 1.80 3.42 0.11

Brier 0.73 0.46 0.85 0.37 0.98 1.41 1.49 1.14 1.57 0.07
1000 MLE 0.84 0.46 1.26 0.91 1.38 2.97 2.83 1.87 3.64 0.11

Brier 0.68 0.46 0.77 0.37 0.94 1.43 1.55 1.17 1.71 0.06
0.15 500 MLE 0.86 0.34 1.44 1.39 1.63 3.29 3.76 2.21 4.17 0.15

Brier 0.79 0.35 1.22 0.71 1.39 2.10 2.34 1.72 2.51 0.11
1000 MLE 0.88 0.45 1.60 1.07 1.56 3.18 3.38 2.34 4.25 0.14

Brier 0.89 0.44 1.31 0.69 1.38 2.17 2.47 2.00 2.74 0.10

6.2 Leverage points

Instead of generating contamination data from a different survival distribution we now focus on a point

contamination. More specifically, 5% of the data is replaced by observations with ti = 15, δi = 0, X1 =

ν, X2 = ν and the effect of varying ν over [−5, 5] is inspected. In total 9 time-intervals are used and the

cut-points are estimated. A box-plot of the RIBS values can be found in Figure 1. Note that for ν ≤ 0 the

MLE is very stable and performs very well. This can be explained by inspecting the score equations of the

MLE, i.e. Equation 2. Given that the contaminated points correspond to censored observations the first term is

zero. Additionally, exp (Xsθ)X → 0 when X → −∞ and, hence, the contaminated points have a near zero

contribution to the score equations when −ν is sufficiently large. However, once ν > 0 the performance of the
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Figure 1. Root integrated squared error (RIBS) when contamination is added at a fixed position.

MLE quickly degrades while the performance of the BSLE is a lot less sensitive to the presence and position of

the leverage point.

7 Applications

7.1 AIDS

The first example is based on a dataset of 2843 Australian AIDS patients diagnosed prior to 1991. The data

can be found in the MASS R package and was originally extracted from the national AIDS register of the

National Centre in HIV Epidemiology and Clinical Research.36 The first registered patient was diagnosed in

1982 and hence the dataset describes the period during which the AIDS epidemic spread throughout Australia.

The limited knowledge of transmission patterns of HIV in the eighties led to its largely unchecked spread

throughout Australia by means of sexual activity, contaminated blood transfusions, transmission from mother

to unborn, etc. Before 1987 antiretroviral treatment was not routinely administered in Australia and from 1987

until 1991 monotherapy with zidovudine was standard of care.
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In this analysis we model the time to death and investigate the effect of age at diagnosis in years and gender.

In > 80% of cases the cause of transmission was sexual contact between homo- or bisexual people, the median

age at diagnosis was 36 years, and 3.3% of the included patients were female. Follow-up ended on the first of

July 1991 and in total 613 events were observed. To model the coefficients and the baseline hazard 10 intervals

were used. The BSLE was obtained by evaluating the Brier score in 31 time-points. The effect of the covariates

on the censoring distribution was inspected with a robust Cox proportional hazard model and using the KM-

estimator of the marginal censoring distribution was deemed reasonable.5 The optimal shrinkage parameters

were selected using a 10 times repeated 10-fold CV procedure.

A plot of the estimated coefficients can be found in Figure 2. Both the MLE and BSLE indicate that older

patients initially had an increased hazard rate. Later on the effect of age at diagnosis decreased and became

negligible two years post-diagnosis. The age effect is modeled differently by the MLE and BSLE. The BSLE

leads to a monotonically decreasing age effect, while the MLE estimates an increasing hazard ratio during the

first half year post-diagnosis. A comparison between the MLE and BSLE of the baseline indicates a similar

discrepancy during the first six months post-diagnosis after which the estimates become more similar. For the

gender effect, both the BSLE and MLE indicate that, for the majority of the follow-up period, males with AIDS

had a larger hazard rate during the follow-up as compared to females with AIDS. Considering that in > 80% of

the cases the infection occurred through sexual contact between homo- or bisexual people, this is in agreement

with previous reports of the population of Australian AIDS patients infected through sexual contact between

homo- or bisexual people having a worse prognosis than most patients infected in other ways.37

To find potential outliers, normal deviate residuals, defined as Φ−1[S(Ui|Xi)]∆i + Φ−1
[
S(Ui|Xi)

2

]
(1−∆i)

were calculated.38 When the MLE estimates were used, no observation with absolute value of the residual larger

than three was detected. When the BSLE estimates were used, ten observations with an absolute value of their

residual larger than three were detected. These observations are described in Table 3. Each of these potential

outliers was a patient who died right after being diagnosed. This might indicate that a variable describing the

state of the disease progression at diagnosis should be included. Furthermore, five of the described patients

were remarkably young and did not get the disease through sexual contact. This could indicate that the disease
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Figure 2. Estimated coefficients of a PCH model for the AIDS dataset.

progression of non-adolescent patients or patients who did not contract AIDS through sexual contact was

significantly different from that of the majority of the AIDS patients. The coefficient paths obtained by fitting

the MLE while excluding the nine potential outliers can be found in Figure 2. The MLE estimates in which the

potential outliers were removed lie closer to the BSLE estimates than the original MLE estimates.

7.2 Cutaneous malignant melanoma

Cutaneous malignant melanoma (CMM) is a type of aggressive skin cancer. The application described here

is based on a dataset of 205 CMM patients treated during the period 1964-1973 at the University Hospital of

Odense. Patients were followed until the first of January 1978.39 The dataset includes the covariates gender,

presence of ulcerations, and tumor thickness (1/100 mm). The outcome variable of interest is the number of

days from surgery till death from any cause or censoring. In total there were 71 events of which 57 were
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Table 3. Observation from the AIDS dataset for which the absolute value of the corresponding normal deviate
residuals was larger than three.

Status Time (in days) Gender Age Cause of transmission
Death 1 Female 0 Mother with HIV infection
Death 1 Male 11 Blood transfusion
Death 1 Male 0 Blood transfusion
Death 1 Male 12 Blood transfusion
Death 1 Male 31 Sexual contact between homo- or bisexual people
Death 1 Male 34 Sexual contact between homo- or bisexual people
Death 1 Male 25 Sexual contact between homo- or bisexual people
Death 1 Male 25 Sexual contact between homo- or bisexual people
Death 1 Male 36 Sexual contact between homo- or bisexual people
Death 2 Male 12 Haemophilia

melanoma related. The data is publicly available in the timereg R package40 and has previously been analyzed

by Martinussen and Scheike41. The analysis done by Martinussen and Scheike41 focused on the cause-specific

hazard of deaths from melanoma modeled by a non-parametric multiplicative model with time-varying effects.

Tests and visual inspection of the time-varying coefficients in the model for melanoma related deaths indicated

that the effect of tumor thickness decreased over time while the effects of the other covariates were relatively

constant.

Instead of following the cause-specific hazard approach we modeled overall survival, i.e. time from surgery till

death from any cause. The PCH model included 10 intervals and when using the BSLE 31 evaluation points were

used. To inspect whether relying on the KM estimator for the IPCW weights used in the BSLE was reasonable,

the influence of the covariates on the censoring was inspected with a robust Cox proportional hazard model and

none of the effects were found to be significant.5 Optimal values for the penalty parameters were selected using

a 100 times repeated 10-fold cross-validation.

The estimated coefficients can be found in Figure 3. The gender effect is modeled as time-varying by the BSLE

but the effect is constant when the MLE is used, indicating that the adjacent coefficients have been shrunk

towards each other. All other coefficients were modeled as time-varying, demonstrating the GL-like shrinkage

of the proposed penalty. The BSLE of the tumor thickness effect shows a large decrease over time while the
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Figure 3. Estimated coefficients of a PCH model for the melanoma dataset.

MLE remains rather stable. A similar conclusion is obtained for the baseline effect. Finally, the hazard ratio of

the presence of an ulceration is modeled as slowly decreasing by both the MLE and BSLE.

Based on the BSLE estimates, five observations with absolute residual values larger than two were detected.

These observations are described in Table 4. Four out of the five patients died relatively early on from a non-

melanoma related cause. This is rather interesting given that a minority of the deaths (20%) were non-melanoma

related. Refitting the MLE without the five potential outliers leads to estimates closer to the BSLE (Figure 3).

In particular, the baseline and tumour thickness effects of the MLE with the potential outliers removed are close

to those obtained from the BSLE.
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Table 4. Observations from the CMM dataset for which the absolute value of the corresponding normal deviate
residual was larger than two.

Status Time (in days) Ulceration Tumour thickness Gender
Death: other cause 10 Present 676 Male
Death: other cause 30 Absent 65 Male
Death: other cause 99 Absent 290 Female
Death: other cause 355 Present 16 Female

Death: due to melanoma 817 Absent 32 Female

8 Discussion

In this paper we proposed to use the Brier score as loss function to obtain more robust estimators for proportional

hazard models. The feasibility of the BSLE approach was illustrated for PCH models with penalized time-

varying coefficients which was compared with the penalized MLE in a simulation study and on real data.

In the future this approach could be extended to different types of models. Based on the intuitive explanation of

the robustness properties in Section 3 this approach is readily extendable to most parametric proportional hazard

models. Furthermore, a different trade-off between efficiency and robustness could be obtained by replacing the

quadratic error used in the Brier score by a different error measure. However, care will have to be taken when

selecting the error measure to ensure it corresponds to a proper scoring rule. E.g. replacing the quadratic error

with the absolute error would lead to an estimator which does not obtain its minimum at the true survival

function.42 Finally, only penalties that select between time-varying and constant effects were considered, this

could be extended to include automatic variable selection.

One of the main weaknesses of this model is that standard errors are not available. Although e.g. the bootstrap

could be used to obtain these, they are not particularly meaningful since the penalization leads to, potentially

substantially, biased estimates. Another potential drawback is that the IPCW step might cause unstable estimates

if the censoring rate is very high. Furthermore, as touched upon in the application, the IPCW step requires a

reasonable model for the censoring distribution. When the estimator of the censoring distribution is heavily

influenced by outliers, this might become problematic. However, in practice the censoring can often be assumed

to be independent of the covariates and using the KM estimator seems to lead to relatively stable estimates.
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Supplemental material

Consistency of the Brier score loss estimator

Theorem 1. If the data are i.i.d. and come from a PCH model with coefficients θ̇, then the BSLE is consistent given that the

following conditions are met:

1. The estimator of the censoring distribution is uniformly consistent on [0, ts], i.e. supt∈[0,ts] supx |Ĝ(t|x)−

G(t|x)| → 0.

2. G(ts|x) > δ > 0 for all x.

3. The parameter space Θ is compact.

4. ∀j ∈ {1, . . . , p},∃k ∈ {1, . . . , s} such that tk ∈ [αj−1 − αj).

5. There is no hyperplane in Rq which contains the covariates with probability one, i.e. ∀γ ∈ Rq+1 we have that

P (Xtγ 6= 0) > 0.

Proof. Following Wey et al 27 we start by showing that the difference between the empirical and expected versions of the

BSL converges uniformly to zero,
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sup
θ∈Θ

∣∣∣∣∣
s∑

k=1

B(tk|θ)− 1

n

n∑
i=1

s∑
k=1

1(min(Ti, tk) ≤ Ci)
Ĝ(min(Ti, tk)|Xi)

{1(Ti ≥ tk)− S(tk|Xi,θ)}2
∣∣∣∣∣

= sup
θ∈Θ

∣∣∣∣∣∣∣
s∑

k=1

B(tk|θ)− 1

n

n∑
i=1

s∑
k=1

 1(min(Ti, tk) ≤ Ci) {1(Ti ≥ tk)− S(tk|Xi,θ)}2

×
(

1

Ĝ(min(Ti,tk)|Xi)
− 1

G(min(Ti,tk)|Xi)
+ 1

G(min(Ti,tk)|Xi)

)2


∣∣∣∣∣∣∣

≤ sup
θ∈Θ

∣∣∣∣∣
s∑

k=1

B(tk|θ)− 1

n

n∑
i=1

s∑
k=1

1(min(Ti, tk) ≤ Ci)
G(min(Ti, tk)|Xi)

{1(Ti ≥ tk)− S(tk|Xi,θ)}2
∣∣∣∣∣+

sup
θ∈Θ

∣∣∣∣∣∣∣
1

n

n∑
i=1

s∑
k=1

 1(min(Ti, tk) ≤ Ci) {1(Ti ≥ tk)− S(tk|Xi,θ)}2

×
(

1

Ĝ(min(Ti,tk)|Xi)
− 1

G(min(Ti,tk)|Xi)

)2


∣∣∣∣∣∣∣ .

Condition 1 gives that the second supremum converges to zero. If we can show that

E

[
s∑

k=1

1(min(T, tk) ≤ C)

G(min(T, tk)|Xi)
{1(T ≥ tk)− S(tk|X,θ)}2

]

is bounded, then Lemma 2.4 from Newey and McFadden 43 gives that the first supremum converges to zero. This follows

easily from Condition 2,

E

[
s∑

k=1

1(min(T, tk) ≤ C)

G(min(T, tk)|X)
{1(T ≥ tk)− S(tk|X,θ)}2

]
< E

[
s∑

k=1

1

δ
{1(T ≥ tk)− S(tk|X,θ)}2

]

which is clearly bounded. We therefore get

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

s∑
k=1

1(min(Ti, tk) ≤ Ci)
Ĝ(min(Ti, tk)|Xi)

{1(Ti ≥ tk)− S(tk|Xi,θ)} −
s∑

k=1

B(tk|θ)

∣∣∣∣∣→ 0.

Hence, to inspect the asymptotic behaviour we can focus on the minimizer of the expected BSL. We now show that the

minimizer of the expected BSL is θ̇ and that this is the only solution. That θ̇ is a solution of the minimization problem
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follows directly from the decomposition of the Brier score loss into

s∑
k=1

B(tk|θ) =

s∑
k=1

(
E
[
{1(T ≥ tk)− S(tk|X, θ̇)}2

]
+ E

[
{S(tk|X, θ̇)− S(tk|X,θ)}2

])
.

The first term within the sum is independent of θ and the second term reaches a minimum when θ = θ̇. To show the

uniqueness of this minimizer assume that there is a second solution θ̈ 6= θ̇ for which

s∑
k=1

B(tk|θ̈) =
s∑

k=1

B(tk|θ̇).

Let j be the smallest integer for which the coefficients within the corresponding interval [αj−1, αj) are different, i.e. θ̈j 6= θ̇j

Furthermore, from condition 3 we know that there is aw ∈ {1, . . . , s} such that the evaluation point tw ∈ [αj−1, αj). Given

condition 4 we have that

P [(Xtθ̇j − θ̈j) 6= 0] > 0,

which implies that

P [S(tw|X, θ̇) 6= S(tw|X, θ̈)] > 0.

And hence E
[{
S(tw|X, θ̇)− S(tw|X, θ̈)

}2
]
> 0 contradicting that θ̈ was a minimizer of the expected BSL.

Robustness of the Brier score loss against leverage points

For each observation i, the contribution to the BSL estimating equation consists of a finite sum of terms with the following

form:

IPWik {1(Ti ≥ tk)− S(tk|Xi,θ)}S(tk|Xi,θ) exp
(
Xt
iθz
) ∫ tk

0

1(u ∈ [αz, αz+1))duXil.
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Note that if tk ≤ αz this equals zero and we will focus on the case in which tk > αz for which
∫ tk

0
1(u ∈ [αz, αz+1))du =

ζ > 0. By defining cik = IPWik

∫ tk
0
1(u ∈ [αz, αz+1))du we get that

|IPWik {1(Ti ≥ tk)− S(tk|Xi,θ)}S(tk|Xi,θ) exp
(
Xt
iθz
) ∫ tk

0

1(u ∈ [αz, αz+1))duXil|

≤ |cik| × |1(Ti ≥ tk)− S(tk|Xi,θ)| × |S(tk|Xi,θ)| ×
∣∣exp

(
Xt
iθz
)
Xil
∣∣

≤ |cik| ×
∣∣exp

(
−ζ exp

[
Xt
iθz
])

exp
(
Xt
iθz
)
Xil
∣∣ .

Since cik is independent of X we can focus on the behavior of
∣∣exp (−ζ exp [θzXi]) exp

(
Xt
iθz
)
Xil
∣∣. To simplify the

notation, we restrict ourselves to the univariate case and drop the i, z, and l subscripts. We now inspect the behaviour of

exp(θX)X
exp(ζ exp[θX])

when X → ±∞.

θ > 0, X → +∞ or θ < 0, X → −∞

lim
X→±∞

exp (θX)X

exp (ζ exp [θX])
= lim
X→±∞

exp (θX) (1 + θX)

ζθ exp(θX) exp (ζ exp [θX])

= lim
X→±∞

(1 + θX)

ζθ exp (ζ exp [θX])

= lim
X→±∞

θ

ζ2θ2 exp(θX) exp (ζ exp [θX])

= 0.

θ > 0, X → +∞ or θ < 0, X → +∞
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lim
X→±∞

exp (θX)X

exp (ζ exp [θX])
= lim
X→±∞

X

exp (−θX + ζ exp [θX])

= lim
X→±∞

1

(−θ + ζ exp [θX] θ) exp (−θX + ζ exp [θX])

= 0.

All the equations follow from applying L’Hôpital’s rule. When θ = 0 we obtain limX→±∞
exp(θX)X

exp(ζ exp[θX]))
→ ±∞. Hence,

leverage points can only have a large influence on the estimating equations of the BSL when θ = 0.
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