
 

Evaluation of customer behavior with temporal centrality 
metrics for churn prediction of prepaid contracts. 

Laura Calzada-Infantea, María Óskarsdóttirb, Bart Baesensc,d  

 

a Faculty of Economics and Business, University of León, Campus de Vegazana 24071, León, 
Spain, lcali@unileon.es 

b Department of Computer Science, Reykjavík University, Menntavegi 1, 102 Reykjavík, Iceland, 
mariaoskars@ru.is 

c Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium, 
bart.baesens@kuleuven.be 

d Dept. of Decision Analytics and Risk, University of Southampton, United Kingdom 

 

Corresponding author: 

Address: Facultad de Economía y Empresa 

Campus de Vegazana,  

24071, León, Spain 

E-mail: lcali@unileon.es 

 

Phone:  +34 987 291000/5480 

 

 
ABSTRACT 

The telecommunication industry is a saturated market where a proper implementation of a 

retention campaign is critical to be competitive, since retaining a customer is cheaper than 

attracting a new one. Hence, it is crucial to detect customer behavioral patterns and define 

accurate approaches to predict potential churners. Multiple researchers have used binary 

classification methods to predict churn of customers. Some of them verify that customers’ 

social relationships influence the decision of changing the operator.  

We propose a novel method to extract the dynamic relevance of each customer using social 

network analysis techniques with a binary classification method called similarity forests. The 

dynamic importance of each customer is determined by applying various centrality metrics 

over temporal graphs, to represent the relationships between customers and to extract 

behavioral patterns of churners and non-churners. These relationships are established in a 

temporal graph using the call detail records (CDR) of telco’s customers. In this paper, we 

compare the performance of different centrality metrics applied over two types of temporal 

graphs: Time-Order Graph and Aggregated Static Graph. 

Keywords: Churn prediction; Social Network Analysis; Similarity Forests; Time Series; Centrality 

Metrics 



 

1. INTRODUCTION 

 

The mobile telecommunication industry (telco) is rapidly expanding. In 2017, two-thirds of the 

world population were connected by mobile devices, and it is estimated that almost 75% of 

the global population will be connected through mobile phones by 2020. Furthermore, the 

milestone of five billion mobile phone customers was achieved in 2017 (Hollander, 2017). The 

telco market is reaching saturation, as most people have a mobile phone. At the same time, it 

is relatively easy for customers to change telco operators if they become unhappy with their 

current services or if the competitors offer a better plan. In this context, telco operators have a 

high interest in applying effective customer retention campaigns. The main reasons are that 

retaining customers is five times less expensive than attracting a new customer, and long-term 

customers are more profitable due to their satisfaction, increased likelihood of buying other 

products and attracting new customers as well. (Kotler & Keller, 2006, Ganesh, Arnold, & 

Reynolds, 2000). As a result, retention campaigns are one of the main activities of customer 

relationship management (CRM) departments (Owczarczuk, 2010) where there is a high 

demand for effective and complete solutions that are capable of detecting potential churners 

before it is too late. 

The development of new methodologies to detect potential churners has been an active 

research field for some years. It is typically viewed as a classification problem and various data 

mining techniques have been proposed. Verbeke, Dejaeger, Martens, Hur, and Baesens (2012) 

provide an extensive overview of these techniques. For example, decision-rule based classifier 

(Amin et al., 2017); decision tree approaches (Wanchai, 2018, Caigny, Coussement & Bock., 

2018); neural networks (Vafeiadis, Diamantaras, Sarigiannidis & Chatzisavvas, 2015), nearest 

neighbor, ensemble methods (Óskarsdóttir, Bravo, Verbeke, Sarraute, Baesens & Vanthienen, 

2017), classic statistical methods like logistic regression (Wanchai, 2018), or support vector 

machine (SVM) (Vafeiadis et al., 2015) are some of the main techniques that have been used. 

These techniques use a wide variety of features to detect churners. Recently, call detail 

records (CDR) have become a popular data source for churn prediction. These logs of phone 

calls between the telco’s customers contain information about people’s calling behaviour and 

have been used to build social networks and show that churn is a social phenomenon, in the 

sense that the propensity of the customers to churn can be studied based on their churned 

friends (Dasgupta, Singh, Viswanathan, Chakraborty, Mukherjea, & Nanavati, 2008). The 

information in the CDR in combination with other data and machine learning techniques, such 

as linear classification, logistic regressions, decision trees, naive Bayes, multilayer perceptron 

neural networks, evolutionary data mining algorithm and support vector machines, enables 

the detection of more churners (Huang, Kechadi, & Buckley, 2012). Moreover, Dasgupta et al. 

(2008) affirm that social relationships play an important role in churn prediction, and not only 

that, structural relationships found in CDR affect churn apart from the individual relationships 

of churners. Ferreira, Telang and De Matos (2019) studied the effect of relationships between 

customers in the context of prepaid service when consumers pay different tariff depending on 

whether they call inside or outside the carrier.  

Modeling churn prediction for customers with prepaid contracts is more challenging than for 

customers with postpaid contracts since they do not pay a monthly subscription and their 

frequency of using the service is lower (Owczarczuk, 2010). The definition of churn could be 



the expiration date of the SIM cards, however, some telcos deactivate the SIM card after one 

year of inactive period. In this research, we consider the typical definition of churn as the first 

day of 30 days of an inactive period. 

In this paper, we evaluate the relevance of telco customers in a graph based on their 

connections established in the CDR. The main goal of this paper is to detect potential churners 

and consider them in the retention campaigns, as it is observed that the structural 

relationships play an important role in churn prediction (Dasgupta et al., 2008; Ferreira et al., 

2019; Pushpa & Shobha, 2013; Kim, Jun & Lee 2014). The relevance of each customer is 

studied from a well-known sociological tool called social network analysis (SNA) (Aggarwal, 

2011; Costa et al., 2011, Holme, 2014). In Section 2, there is a literature review of applications 

of SNA in the context of churn prediction and some propagation techniques to obtain the 

structural relationships to find churners. However, as a far as we known, there is no 

comparative study about the evolution of different structural relationships over telco graphs. 

In this study, we represent prepaid telco relationships with two different types of temporal 

graphs to compare the evolution of the structural properties of the customers in the graph by 

extracting multivariate time series of various centrality metrics. We compare the multivariate 

time series with a binary classification technique called similarity forests. This tool classifies the 

time series of churners and non-churners and detects evolution patterns and distinctive 

behavior in the centrality metrics for each group of customers, having as target variable 

whether the customer churned at a later time.  

The paper is organised as follows. In Section 2, we gather the related literature on the 

application of SNA in the context of churn prediction, and explain the main concepts of SNA 

used in this paper. In Section 3, we describe the methodology to define the influence of the 

churners with centrality metrics over static and temporal graphs, and the binary classification 

method used to evaluate the performance of each metric. Section 4 describes the used 

database and also how the data was prepared to be assessed by the binary classification 

method. In Section 5, the results of the performance of the binary classification method are 

shown and discussed. And last but not least, Section 6 gathers the conclusion of the paper. 

 

2. RELATED LITERATURE REVIEW 

 

2.1 SOCIAL NETWORK ANALYSIS FOR CHURN PREDICTION 

In the context of telco, there are two different types of social networks that represent the 

interaction among customers (Pushpa & Shobha, 2013): Homogeneous and Heterogeneous. 

The former collects only one kind of relationship among customers, for example, friendship, 

whilst the later represents multiple kinds of relationships.  

SNA provides tools to study the structure of these graphs; for instance, centrality metrics 

determine the relative importance of each customer in the telco graph. These centrality 

metrics have been applied by Pushpa and Shobha (2013) and Kim et al. (2014). In the first case, 

Pushpa and Shobha (2013) apply Regular Equivalent Algorithm after identifying the central 

players with different centrality metrics over heterogeneous graphs. On the other hand, Kim et 

al. (2014) have nice results examining the communication patterns among customers with a 

propagation process called SPA, based on the influenced of each customer. The influence of 



each customer is extracted using the eigenvector centrality over a homogeneous graph based 

on CDR. 

Although it has been shown that there is an influence among customers’ relationships and 

their churn decision (Óskarsdóttir, Van Calster, Baesens, Lemahieu, & Vanthienen, 2018), as far 

as we know, centrality metrics over temporal graphs have not been applied over telco 

customers in the context of churn prediction.  

 

2.2 TEMPORAL GRAPHS 

Static graphs allow a representation of the relationships among people over a fixed period, but 

relationships are dynamic, and people’s interactions change constantly. In a dynamic process, 

the order and the delay among their interactions are crucial to define a representative system 

of the real situation. This fact is a limitation of static graphs; indeed, there are many paths over 

the static graphs that do not exist in the real system. Temporal graphs appear to solve this 

situation and represent the evolution of the interactions as can be observed in Figure 1.  

--------------------------------------------------Figure 1------------------------------------------------------------ 

Different definitions of temporal graphs allow representing dynamic systems (Holme & 

Saramäki, 2012). For example, some models represent the system as an interval graph where 

the edges are active over a set of intervals. The activation of each edge is done by a presence 

function. In the particular case of Time-Varying Graphs (TVG), which was defined by (Nicosia, 

Tang, Mascolo, Musolesi, Russo, & Latora, 2013) and (Casteigts, Flocchini, Quattrociocchi, & 

Santoro, 2012), the presence function can be used with the latency function, which defines the 

time that the edge appears. 

Another kind of temporal representations is through a static graph structure. For example, 

Kostakos (2008) represents each entity of the system as a directed chain of nodes, as Figure 1 

shows. Each chain represents all stages of one node over time. As a result, the temporal graph 

is a directed flow of interactions, where each node is linked to itself in the next stage where it 

appears and to the nodes with which it interacts in the current stage. A similar approach, 

called Time-Ordered Graphs (TOG), is used by Kim and Anderson (2012). TOG represent the 

dynamic system as a directed sequence of static graphs, where each static graph gathers the 

information of a span window. The main difference between the definition of the temporal 

graphs of (Kostakos, 2008) and TOG is that the latter gathers the information of a span window 

and all nodes are linked to themselves in the subsequent window. This allows for discretizing 

the time with the desired window granularity through the size of the span window. Tang, 

Musolesi, Mascolo and Latora (2009) studied the influence of the span window and showed 

that the larger the size of the window, the lower the precision due to neglecting the order of 

edge appearances. 

 

2.3 CENTRALITY METRICS 

One of the main features of graphs is centrality metrics. In SNA, centrality metrics are applied 

to identify how the information shared among people is spread on the graph. In this situation, 

the relative position of each node is relevant to determine what the influence of each node is 

by knowing: who is going to receive the information first, who can spread the information 



faster, who has a relevant position based on the importance of their connections, etc. The 

influence of each node over the graph is defined by different points of view through typical 

centrality metrics in static graphs like degree, closeness, betweenness and PageRank. 

The definition of each centrality metric is as follows. Degree counts the number of connections 

each node has. Closeness measures how far the nodes are from the other nodes in the graph, 

as the sum of the inverse of the shortest path between them. Betweenness assesses the ratio 

of how many times a node appears on the shortest path between all pairs of nodes in the 

graph, and PageRank defines the importance of each node based on the number of 

connections that they have and the importance of their connections. These centrality metrics 

measure the importance of nodes from different perspectives and together provide a holistic 

view of the nodes’ position in and influence over the graph. 

There are some studies about the application of centrality metrics on temporal graphs. Holme 

and Saramäki (2012) define temporal centrality metrics using latency functions. In the case of 

TOG, multiple comparisons between static and temporal graphs exist. Pan and Saramäki 

(2011) define the term of average temporal distance to compare closeness over static and 

temporal graphs on homogenous telco graph based on phone calls. They found a high 

correlation between both metrics, although there is a wide range between them. In static 

graphs, a group of nodes can seem to be closed, while they are far in temporal graphs, or there 

is no temporal path at all. 

Tang, Musolesi, Mascolo, Latora, and Nicosia (2010) establish a new definition of centrality 

over TOG and compare them with aggregated graphs to determine the significant nodes to 

spread the information. It is important to highlight that the definition of the temporal shortest 

path allows a maximum number of exchanges among nodes in the same window, and that the 

temporal betweenness metric considers how much time a node keeps the information until it 

gives the information in another window. Kim and Anderson (2012) discuss other definitions of 

temporal centrality metrics over TOG that are more correlated with the static metrics. In this 

case, the main difference is that temporal betweenness and closeness consider all temporal 

shortest paths evaluating all snapshots from their beginning until the end of the evaluated 

period. After comparing the defined temporal centrality metrics with the static ones over an 

aggregated graph using unweighted bidirectional edges, Kim and Anderson (2012) show that 

there is a significant difference in the role of the nodes when the temporal order of the edges 

is considered. These metrics are available in the R package TNC (Hanke, 2017). 

 

3. METHODOLOGY 

 

Our proposed methodology looks at churn from a social perspective using dynamic behavior 

by comparing different structural relationships over temporal graphs. The methodology 

consists of three steps. In the first step, we build homogeneous graphs using CDR of prepaid 

customers. We consider both aggregated static and temporal ordered graphs. In the second 

step, we compute in each graph both temporal and static centrality of each node across time 

and obtain multivariate time series throughout various time steps. In the final step, we classify 

the resulting multivariate time series using a state-of-the-art classification technique called 

similarity forests. We evaluate the model performance using three distinct performance 

measures. This approach allows us to establish whether a customer´s position and importance 



in the graph changes in the time leading up to churn and which centrality metric is affected the 

most.  

3.1 GRAPHS  

As shown in the previous section, there is a vast literature on the comparison between 

temporal and static centrality metrics. However, as far as we know, this comparison has not 

been done in the context of churn prediction in telco. In this paper, two different undirected 

unweighted graphs are used to model the dynamic influence of churners to compare the 

performance of centrality metrics based on Kim and Anderson (2012). In churn prediction 

based on SNA, the important fact is the existence of connections among customers. 

Óskarsdóttir et al. (2017) formulate that undirected graphs offer better results than the 

directed ones when they represent the interactions among customers. Moreover, Óskarsdóttir 

et al. (2017) conclude that there is no significant difference between using weighted graphs 

based on the length of the calls or the number of calls, and unweighted graphs. Therefore, we 

use graphs with undirected and unweighted edges to represent relationships between telco 

customers which we extract from CDR data. 

The first type of graphs, the aggregated static graphs, are an ordered sequence of static 

graphs, where each graph gathers the information of a span window. The second type is a 

temporal ordered graph based on TOG, which similarly gathers information of a span window, 

but orders each span in a directed sequence of ordered graphs. In the case of TOG, as 

mentioned previously, all the nodes have a directed edge pointing to themselves in the 

subsequent window. Therefore, all the sequences are related in a directed flow. Both graphs 

consider a rolling window of seven days with daily steps. This fact allows enhancing the 

evolution of the relationships over time, considering important those that constantly appear 

along the week independent of the duration of the phone calls.  

Both static graphs and temporal graphs are defined by a set of nodes  and edges  that 

appear in snapshot  with  where n is the total number of snapshots. The 

information of each snapshot is gathered in a symmetric adjacency matrix ( ). However, in 

the case of the aggregated static graphs, the result is a list of n static graphs, while in the case 

of the temporal ordered graphs is a graph composed by a directed flow of n snapshots. In our 

application, nodes are the customers of the telco with prepaid mobile plans and the edges are 

phone calls between them. 

The transformation of the temporal graph into a static graph of directed flows allows for 

applying static centrality metrics defined by Kim and Anderson (2012) over the temporal 

graphs. Both types of graphs facilitate a comparison between static and temporal centrality 

metrics through their time series of length n. 

 

3.2 CENTRALITY METRICS APPLIED OVER TEMPORAL GRAPHS 

Centrality metrics identify how information is spread in the graph and the power of each node 

over their relationships while taking into account the flow of information between nodes. In 

this paper, we only apply existing centrality metrics that have not been used in the context of 

churn prediction with temporal graphs. There are four different types of centrality metrics, 

namely degree, closeness, betweenness and PageRank (eigenvector centrality). Our goal is to 

compare static centrality metrics, which are applied on the aggregated static graphs, and 



dynamic centrality metrics as defined by Kim and Anderson (2012) which are applied on the 

temporal ordered graphs. We distinguish these two types using the adjectives “static” and 

“temporal”. Each centrality metric, as mentioned before, gives different information about the 

relative position of the nodes in the graph. The centrality metrics are formulated in Table 1. 

--------------------------------------------------Table 1------------------------------------------------------------ 

The first centrality metric is the degree, which measures the number of neighbors that the 

evaluated node has in the graph in the snapshot . In the case of static graphs, as the adjacency 

matrix ( ) is symmetric, the degree of the node , , defined in equation (1), is the 

sum of the rows of the adjacency matrix. In the case of TOG, the temporal degree ( ) 

defined in equation (2) collects all the edges of the node  on the interval  being 

 This means that the degree of the node  is the sum of all the degrees  of 

the  snapshots which belongs to the interval . However, we are working with time series 

of length n defined by the mentioned snapshots to allow the comparison between them, so 

we do not need the aggregated degree , we only need the degree , whose value is 

the same independently of using static graphs or temporal graphs. As a consequence of this, in 

the rest of the paper, we use degree only. 

The second centrality metric is the closeness. This metric assesses how close the customers are 

to each other depending on the shortest paths between them. The shortest path between 

each pair of nodes  is called the geodesic path . In the case of the aggregated static 

graphs, the closeness of the node  , see equation (3), is the inverse of the sum of the shortest 

paths of the node  with the rest of the graph. This metric can be normalized if it is multiplied 

by , being then the inverse of the average distance from the node  to the rest of the 

graph. The temporal closeness, defined by equation (4), is the inverse of the temporal shortest 

path  on the time interval , so in this case we are considering m time 

intervals where . This metric can also be normalized by multiplying with ( . 

Betweenness of a node  is the third centrality metric we apply. It is based on the sum of the 

ratios between the shortest path between each pair of nodes passing through the node  and 

the shortest path between the pair of nodes being evaluated. The static betweenness (5) is 

normalized by . To compute the temporal betweenness (6) we must define 

two different subsets. The subset   collects all the temporal shortest paths from node  

to destination node  on the interval and the subset  gathers all the temporal 

shortest paths from the subset  that go through node . In the formulation of temporal 

betweenness,  and . This formulation is 

normalized by  being , where  for each  and . 

The fourth centrality metric is Static PageRank, which is applied only over the aggregated static 

graphs as it has not been developed for TOG. Static PageRank, see equation (7), is the typical 

formula from Brin and Page (1998) which is an iterative algorithm that calculates the 

importance of the node , ( ) depending on the importance of its neighbors and the 

number of connections that they have.  



All these centrality metrics allow observing the evolution of influence of each node in the 

graph from a different perspective and the changes in the structural relationships between 

them over time. After computing the temporal and static centrality metrics with the temporal 

graph based on TOG and the ordered sequence of static graphs respectively, the result is 

various multivariate time series that reflect the structural relationships of the nodes. The 

length of these time series corresponds to the number of days that are used when aggregating 

data for the graphs. 

 

3.3 SIMILARITY FORESTS 

After extracting the structural relationships of the graph, a binary classification method called 

similarity forests compares the different multivariate time series with respect to churn labels. 

This technique has already been used in the context of churn prediction with good results 

(Óskarsdóttir et al., 2018). Similarity forests are a novel supervised machine learning technique 

for binary classification that can work with arbitrary data. It was developed by Sathe and 

Aggarwal (2017) and is an extension of random forests. During the training time, it creates 

multiple decision trees, which are used later to do a prediction for each object. However, the 

main difference between the two techniques is that similarity forests do not use random 

directions to split at the nodes. Instead, splits are based on the pairwise similarity of the 

objects in each node. This means that it computes over a small fraction of the objects, making 

it faster. The result is an efficient technique, which increases the performance of the 

traditional random forest.  

Similarity forests work as follows. Each decision tree is split recursively until the leaf nodes 

belong only to a single class. The objects in the dataset ,..,  are embedded in some 

multidimensional space as the points ,.. . The technique works as a random forest 

technique defining a vector direction of a sample   selected randomly The dataset is 
projected over the defined direction, the projection of each specific data point   is 

proportional to the similarity difference of datapoints  and , as the similarity among   

and  is constant .  After that, the split point is defined by 

minimizing the weighted Gini Index based on the pairwise similarity of the sample. This split 
point defines a hyperplane perpendicular to the vector direction, which divides the objects 
into two groups. This process is repeated recursively to construct each ensemble component 
of the similarity forests.  

 
The pairwise similarity can be computed in multiple ways. In this paper, the pairwise similarity 

is calculated using Euclidea distance as it was shown in the case of churn prediction in telco 

that this measure does not have significant differences with others distances and allows 

results without high computational requirements (Óskarsdóttir et al., 2018).  

 

3.4 PERFORMANCE MEASURES 

In this paper, we use three threshold-independent measures to evaluate the predictive 

performance of the similarity forest classifier with each centrality metric. These measures are 

area under the ROC curve (AUC), area under the precision-recall curve (AUPR) and the top 

decile lift (TDL). 



The AUC is commonly used to evaluate binary classification models. It summarizes the trade-

off between the true and false positive rates using the receiver operating characteristic curve 

(ROC). The AUC value is calculated as the area under the ROC curve. In contrast, the area 

under the precision-recall curve measures the trade-off between precision and recall, being 

more suitable for imbalanced datasets as it does not consider true negatives. Both measures 

can be compared with a random model using their baseline. In the case of AUC, the baseline is 

0.5, while in the case of the precision-recall curve it is the ratio of positive labels over the 

whole number of customers. 

Top decile lift is a ratio between the ratio of churners in a fraction of customers with the 

highest probabilities and the ratio of churners in the actual customer base. In this paper, we 

use the top decile lift, also called Ten Lift, which is common in churn prediction (Óskarsdóttir 

et al., 2017). This measure represents how much better the model is at identifying churners, 

compared to a random sample of customers.  

 

4. DATASET AND EXPERIMENTAL SETUP 

 

Before applying the described methodology to detect churners based on the structural 

relationships of the prepaid customers, it is critical to clean the dataset properly. This 

preprocessing step removes all the phone calls that last less than 4 seconds, all the duplicated 

observations, self-calls and all the customers who have never used the telco service during the 

whole selected period. The cleaned dataset has around 170 thousand customers and contains 

over 17 million phone calls among the telco’s customers during six consecutive months.  

Inevitably, the high computational requirements of the proposed temporal centrality metrics 

limit the size of the evaluated sample. Therefore, we extract a random sample of customers 

together with their most connected neighbors for 60 days in an attempt to have highly 

connected graphs. The desired sample must have customers, which have already made phone 

calls over the selected period, and all the customers must meet the definition of being 

churners after 30 days of the inactive period.  

The process of choosing the sample of the dataset starts by selecting a random sample of 

5,000 customers. After that, the closest neighbors of the previously selected customers are 

gathered in the sample. In this case, the threshold to define whether two customers are highly 

connected is 25 phone calls. This threshold defines the size of the end sample, and it is 

selected based on the highest limitation to compute some of the centrality metrics. 

It is important to highlight that the first random sample must have enough churners to keep 

the churn rate of the dataset. In this case, the selected sample has 13,454 customers, the 

length of the analysed period, that is, the number of snapshots n, is 60 days, and the churn 

rate is 10.24%. Note that the churn rate is not constant as it depends on the period that is 

being analysed.  

After preprocessing the raw data and selecting the sample, the interactions among customers 

are represented in undirected and unweighted static graphs and temporal graphs to define the 

influence of each customer over their relationships. A sliding window collects the call 

information of one week and moves with a step of one day. In the case of the static graphs, 

each undirected unweighted graph represents all the interactions of each sliding window, 



while in the temporal graphs the interactions are represented as a directed flow of a sequence 

of the undirected static graphs. We use a seven day window in order to have enough 

connections in each graph and move the window one day at a time to capture daily changes in 

the customers’ behaviour. 

Once the data is cleaned and transformed into graphs, we compute the centrality metrics for 

each node. Degree, closeness, betweenness and PageRank are applied over the aggregated 

static graphs, and temporal closeness and betweenness are applied over the temporal ordered 

graphs. These metrics are calculated using the R package (Csardi & Nepusz, 2006) for 

aggregated static graphs. For the temporal ordered graphs, we use the temporal metrics 

implemented in the R package (Hanke, 2017) which uses the REN algorithm defined by Hanke 

and Foraita (2017), to reduce the computational burden. The result is a multidimensional time 

series for each customer that measure their importance in the graph. To estimate how long 

the churn process is in temporal graphs, and for how long the customer behavior should be 

observed to make accurate predictions, we compare two different lengths of time series 14 

and 28 days. 

--------------------------------------------------Figure 2------------------------------------------------------------ 

We propose two approaches to evaluate the performance of the centrality metrics to predict 

churn and to overcome the limitations of using only a sample of the whole dataset. These 

approaches are illustrated in Figure 2, where the green boxes represent the periods where the 

customer is active and the time series of centrality metrics are extracted and the black circle 

represents the moment when the customers churned. If there is no black circle, it means that 

the customer did not churn. 

The first approach, approach A, evaluates the individual behavior of each customer while 

checking if there is a different pairwise behavior among churners and non-churners and 

considering how many days it takes to churn . This approach selects the active period of 

churners some days before the start of the inactive period (w), while the active period for the 

non-churners is fixed (k). For non-churners, the active period is the last available time series of 

the dataset with length k. This means that the approach evaluates all the churners of the 

selected sample. The time series of churners are selected depending on which day churn is 

predicted. As a consequence of this, we can observe how accurate the predictions are in both 

short and long term. We consider various churn moments in the month along the observation 

period, i.e., whether it happens in the next 1, 3, 7, 10, 14, 17, 21, 24 and 28 days. This way we 

can see a precision in churn predictions, that is, how the approach performance varies in time.   

The second approach, approach B, considers a fixed observation period for all customers and 

predicts churn in the following 1 2, 3, or 4 weeks. This approach represents a realistic way to 

evaluate the performance of the centrality metrics because all the inactive periods start in 

different moments, as can be observed in Figure 2. In this approach, it is important to highlight 

that we are training for different scenarios, that is, one prediction for each of the four weeks. 

In this way, we can see how well the centrality metrics predict churn immediately after the 

observation period, and also after some time has passed. 

There are two main differences between both approaches. The first one is the churn rate. In 

the first approach the churn rate is around 9% and it decreases as predictions are made 

further in the future due to the desirable time series are not available for the customers who 

churn in the first weeks of the sample. The churn rate in the second approach is around 2% 

and reflects the ratio of churners who churn in each week. The second main difference of the 



approaches is when the prediction is done: in the first approach, all churners churn “x” days 

after the end of the time series, while in approach B churners churn within a whole week.  

After extracting the multivariate time series based on the two described approaches, similarity 

forests are applied using a stratified cross-validation of 10 folds to extend the sample keeping 

the original balance between churners and non-churners. The result of this classification is 

evaluated by the performance measure AUC, TDL and AUPR, as mentioned in the previous 

section. 

 

5. RESULTS AND DISCUSSION 

 

In this section, we compare the results of static and temporal centrality metrics to reveal 

whether the relative importance of churners is different from that of non-churners. As 

mentioned before, two different approaches for the experimental setup are implemented and 

similarity forests are used to predict potential churners. Figure 3 summarizes the results of the 

first approach, with time series of length two or four weeks. This figure reports the capacity of 

the centrality metrics to predict churners in short and long term. For both lengths of time 

series, all centrality metrics have a stable behavior to detect churners in middle and long term 

according to all three performance measures AUC, TDL and AUPR. 

--------------------------------------------------Figure 3------------------------------------------------------------ 

In the short term, most of centrality metrics predict better the churners whether they churn in 

the first seven days. PageRank, static closeness and degree are the centrality metrics, which 

perform better in the short term. All of them have an AUPR value over 75%, compared to the 

baseline of about 14.2% and TDL is over 6, when predicting churn in the following day. 

Although their performance drops sharply, they still perform better in the short term than the 

rest of the centrality metrics. Moreover, after the seventh or tenth day, the behavior of the 

centrality metrics is stable, except for temporal betweenness, which increases monotonously. 

Temporal betweenness is the only centrality metric whose behavior increases monotonously 

in the long term. This metric has poor behavior in short-term like static betweenness and 

temporal closeness. However, in the long term, the behavior of temporal betweenness 

matches that of the degree when considering TDL for short and long series, and is furthermore 

similar to the static closeness when measured in terms of AUPR for long series. 

In the long term, the centrality metrics that perform better are PageRank, static closeness, 

degree and temporal betweenness for long and short time series. In the case of short time 

series, PageRank performs better than for long time series in the long term, and the opposite 

is observed for the static closeness. The rest of the centrality metrics performs quite similar for 

both and short time series. 

Although the behavior of the centrality metrics using short and long time series is rather 

similar, the performance is considerably different. In the case of static closeness, this metric 

needs long time series to be able to detect over 40% of churners in the first decile both in the 

short and the long term. However, PageRank performs better with short time series, the AUC 

is always over than 85%, while the AUPR is over 62%. This particular metric is able to detect 

over 60% of churners both in the short and the long term in approach A. 



The centrality metrics with the lowest performance overall, are temporal closeness and static 

betweenness. Although both centrality metrics are over the baseline of AUC, both of them 

detect less than 10% of churners in the first decile and in the case of static betweenness for 

some predictions, the AUPR is under the baseline defined by the rate of churners. As a result 

of this performance, these metrics are not considered in approach B. 

------------------------------------------------Figure 4---------------------------------------------------- 

As mentioned earlier, in approach B the centrality metrics with the highest performance in 

approach A are compared using two different time series of length two and four weeks over a 

fixed period to check whether the studied churn behavior lasts short or long time as it was 

done in (Óskarsdóttir et al., 2018). Similarity forests are used to detect churners in the next 

month after the analysis within one week periods. Figure 4 illustrates the performance of 

these centrality metrics. Here, static closeness and degree detect more churners than 

PageRank. Temporal betweenness finds fewer churners than any of the static centrality 

metrics. 

In the short term, the performance of static closeness and degree is completely different 

inside a narrow range of values depending on whether the time series are long or short. For 

the first week, these centrality metrics can predict at least 30% of the churners in the first 

decile when the time series are short, while in long time series they are around 20%. In the 

second week, the performance increases for long time series, however, this behavior is not 

observed for the short time series. 

In the long term, static closeness and degree find over 25% of churners in the first decile in the 

fourth week independently of using long or short series. The performance of predicting in the 

fourth week is better than in the third week attending to TDL and AUPR the performance of all 

the centrality metrics increase except for temporal betweenness whose performance is better 

for the third week.  

--------------------------------------------------Table 2------------------------------------------------------------ 

As mentioned previously, one of the main differences between both approaches is the 

difference in churn rate. To illustrate a fair comparison between both approaches, Table 2 and 

Table 3 report the performance of centrality metrics using approach A in short and long term 

with a similar churn rate observed in approach B. The new sample is achieved by randomly 

removing observations from the minority class. In this situation, the undersampled dataset 

highlights the impact of both approaches’ definition to predict churn. Approach A follows, in 

general, the same pattern described previously that was observed in Figure 2 independently of 

using short or long series. PageRank centrality performs the best of all centrality metrics, 

followed closely by static closeness. Temporal betweenness increases its performance when 

the predictions are done with short time series, and degree and closeness have a similar 

performance. Due to the lowering values of churn rate, it is expected a drastically decreased of 

the AUPR curve for degree, static closeness and PageRank centrality, although their 

performance is more accurate in the 7th and 28th days and their values are over the baseline. 

--------------------------------------------------Table 3------------------------------------------------------------ 

As already mentioned, there are some differences between applying short and long time 

series. However, these differences are not significant enough to justify the need of using CDR 



of one month. Hence, in this case we agree with (Óskarsdóttir et al., 2018) on the use of short 

time series to predict churn applying SNA. 

 

6. CONCLUSION 

 

6.1. MAIN CONTRIBUTION 

SNA is a useful tool applied in multiple fields that can be used to represent the interaction 

between customers. This methodology allows defining churn prediction models not only on 

customers’ features but also on their behavior among their relationships. Most of the available 

literature on applying SNA to detect potential churners in telco use static graphs to map the 

relationships of the customers. Although some of the approaches use time series, as far as we 

know, there is no research about applying centrality metrics over temporal graphs.  

The managerial implications of our research are twofold. On the one hand, they further 

establish that the behavior of customers changes in the time leading up to their decision to 

churn. Therefore, it is not enough to consider only static graphs or behavioral features 

extracted from such graphs. Features that represent changes in behavior are necessary to 

predict churn more accurately. On the other hand, our work focusses on centrality metrics 

which represent the influence a customer has in the call network.  Proper analysis of customer 

characteristics relative to their centrality, before taking on a retention campaign has the 

potential to be more effective as, more influential customers can be targeted and they 

influence other potential churners to also not churn. Thus, the campaign could have a 

cascading effect.  

This paper tests the influence of customers’ behavior before churning based only on the 

evolution of the relative position of the customers among their relationships. With this 

purpose, customers’ relationships have been modeled by SNA in two different temporal 

graphs and multiple centrality metrics have been applied to measure customers’ behavior. This 

analysis evaluates the performance of SNA centrality metrics on representing dynamic 

customer behavior on churn. This behavior is extracted from the CDR and it is based on the 

interactions between customers through connections that are created by means of their 

phone usage within the telco. These connections are represented in their real time order of 

interaction due to the application of temporal graphs. The second main contribution was to 

compare centrality metrics over the temporal graphs in terms how well they represent and 

distinguish the behavior of customers before they churn.  

We consider two approaches to evaluate the predictive performance of time series of 

centrality metrics. In the first approach, the individual behavior of each customer is observed 

checking the key centrality metric to represent the behavior of customers. While in the second 

one, the time series belong to the same period to evaluate the capability of each centrality 

metric to detect churn in a practical situation. 

From the first approach, we can observe that most of the static centrality metrics perform 

better than the temporal ones. Therefore, the order of the interactions is not relevant for the 

evaluation of the customer relationships allowing quick results without using high 

computational methods. PageRank and static closeness detect churners better than any other 

centrality metric, both short and long term independently of using short or long time series. 



This means, that there is a clear pattern to differentiate churners from non-churners when all-

time series are aligned and the churners start their inactive period at the same time. In the 

second approach, static closeness outperforms the rest of centrality metrics both in short and 

long term, although the accuracy of the predictions changes depending on the length of the 

time series. This means that the pattern variation of PageRank and closeness in the time series 

allows predicting churners due to they are more sensitive to the different behavior between 

churners and nonchurners. It is interesting to highlight how the number of connections of the 

customers have not outperformed these centrality metrics, enhancing the influence of the 

closeness among customers and importance of their position among their relationships. 

It is important to consider that there is an expected gap in the performance of the centrality 

metrics when comparing both approaches with a similar churn rate, due to the influence of 

when the churners start their inactive period. In the case of approach B, the prediction is done 

over a wider number of days. This gap is different depending on the centrality metric, for 

example PageRank is affected significantly by this fact, but it is not the case for the static 

closeness. 

6.2. LIMITATIONS AND FUTURE WORK 

As all studies, this work has some limitations, which are important to highlight in case that any 

researcher would like to go on this new field. In this paper, the first limitation is the high 

computational requirements needed for the temporal centrality metrics applied over TOG. 

Working with CRD that have hundreds of thousands of observations is hard, and handle 

structures are needed to work with them. These temporal centrality metrics have become the 

bottleneck of this research, although it was implemented the REM algorithm, so it has been 

necessary to reduce the sample and limit the use of time series longer than a month. In the 

case of static graphs, these high requirements do not exist, and multivariate time series are 

achievable in a reasonable time. Overcoming this limitation, the evaluated sample allowed us 

to do a comparison of the performance of this centrality metrics to predict churn. 

In a future research, we propose to apply SNA techniques to simulate the influence of churners 
as a social contagion over a temporal aggregated static graph (Holme, 2014) to evaluate the 
power of churners instead of defining whether the behavior of customers allow to predict 
churn. Relational learners, which learn churn labels directly from the network, have been used 
with some success in the literature, although it has been shown that they are worse than their 
non-relational counterparts (Óskarsdóttir et al., 2017). Thus far, they have been used with 
static networks only.  However, developing relational classifiers on time evolving networks for 
churn prediction would be a very interesting and highly relevant research project and 
something worth working on. In a follow up study, our goal is to combine network features, 
centrality features and local customer features in one holistic churn prediction model, where 
we will apply a number of binary classification techniques in order to find an optimal approach 
that furthermore takes into account numerous reasons for churning.  
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 TABLES 

Table 1 Definition of centrality metrics for aggregated static graphs and time-ordered graphs 

Aggregated Static Graphs Time-Order Graphs 

Static Degree: 

 

(1) 

 

Temporal Degree: 

 

(2) 

 

Static Closeness: 

 

(3) 

 

Temporal Closeness: 

 

(4) 

 

Static Betweenness: 

 

(5) 

 

Temporal Betweenness: 

 

(6) 

 

Static PageRank: 

 

(7)  

 

Table 2 Reduction of Churn rate over model A using short time series 

 

 
Predicting in 

X days 
7 14 21 28 

 Churn rate 1.90% 1.70% 2.10% 2.00% 

Degree 

AUC 79.22% 70.35% 69.51% 74.23% 

Ten Lift 4.06 2.41 2.07 3.06 

AUPR 12.05% 3.46% 4.48% 6.74% 

Static 

Closeness 

AUC 78.87% 73.95% 72.05% 79.00% 

Ten Lift 3.85 2.77 2.50 3.91 

AUPR 9.02% 4.10% 4.64% 7.95% 

Static 

PageRank 

Centrality 

AUC 84.28% 78.64% 78.18% 81.88% 

Ten Lift 6.23 5.41 5.24 6.32 

AUPR 48.28% 42.01% 39.31% 47.53% 

Temporal 

Betweenness 

AUC 76.30% 76.59% 80.17% 79.31% 

Ten Lift 2.84 3.41 3.91 4.02 

AUPR 20.12% 21.85% 31.18% 31.37% 

 



Table 3 Reduction of Churn rate over model A using long time series 

 
Predicting in X 

days 
7 14 21 28 

 Churn rate 2.20% 1.90% 2.10% 2.70% 

Degree 

AUC 76.87% 68.84% 66.09% 70.88% 

Ten Lift 3.87 2.27 1.99 2.59 

AUPR 15.86% 6.24% 4.10% 9.65% 

Static Closeness 

AUC 81.83% 75.05% 72.93% 79.34% 

Ten Lift 4.82 3.12 2.77 4.28 

AUPR 20.72% 8.77% 10.14% 15.80% 

Static PageRank 

Centrality 

AUC 77.37% 70.59% 68.12% 77.04% 

Ten Lift 4.56 3.27 3.23 4.55 

AUPR 27.36% 17.44% 18.43% 30.18% 

Temporal 

Betweenness 

AUC 69.76% 72.64% 77.40% 76.00% 

Ten Lift 1.41 1.96 2.89 2.83 

AUPR 6.47% 10.11% 19.91% 17.94% 

 

 



FIGURES 

Figure 1 Visualization of a Sequence of Static Graphs and a Time-Ordered Graph 

 

Figure 2 Definition of approach A and approach B 

 

 

Figure 3 Churn Prediction in approach A 
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Figure 4 Churn Prediction in approach B 
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